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Abstract

The creation of planning models, and in particular domain
models, is among the last bastions of tasks that require exten-
sive manual labor in AI planning; it is desirable to simplify
this process for the sake of making planning more accessi-
ble. To this end, we investigate whether large language mod-
els (LLMs) can be used to generate planning domain models
from textual descriptions. We propose a novel task for this
as well as a means of automated evaluation for generated do-
mains by comparing the sets of plans for domain instances.
Finally, we perform an empirical analysis of 7 large language
models, including coding and chat models across 9 different
planning domains. Our results show that LLMs, particularly
larger ones, exhibit some level of proficiency in generating
correct planning domains from natural language descriptions.

1 Introduction
Large language models (LLMs) have demonstrated robust
emergent abilities for open-ended tasks like story gener-
ation, poetry, and dialogue (Zhao et al. 2023b; Hayawi,
Shahriar, and Mathew 2023). Their potential is no longer
limited to natural language. Rather, they have shown the
ability to generate highly structured output that resembles
code from natural language descriptions of programs (Li,
Allal, and Zi 2023; Touvron, Lavril, and Izacard 2023).
It is natural to wonder how these abilities generalize to
knowledge engineering tasks such as those used for problem
representation in symbolic methods. Despite the efficacy
of symbolic methods such as boolean satisfiability (SAT)
solvers (Biere et al. 2021), automated planners (Helmert
2006), and automated theorem provers (Harrison, Urban,
and Wiedijk 2014) in their respective domains, the issue of
representing a problem accurately and efficiently still hin-
ders the wider adoption and accessibility of these power-
ful methods. If LLMs can bridge the gap between natu-
ral language description of the problem and symbolic rep-
resentation, it would enable large-scale adoption of sym-
bolic methods and reduce the dependency on technical ex-
perts. Motivated by this, we investigate LLMs for generat-
ing problem representations for automated planning (Ghal-
lab, Nau, and Traverso 2004). We explore whether the
commonsense knowledge, natural language capabilities, and
emergent structured code generation ability of LLMs help
constructing declarative planning domains. Specifically, we

leverage LLMs to automatically translate natural language
description of a domain to Planning Domain Description
Language (PDDL) (Fox and Long 2003).

The problem of domain generation from natural language
has been studied earlier (Lindsay et al. 2017; Hayton et al.
2020) and recently Guan et al. (2023) also attempted this
problem using LLMs. Despite these studies, the task of eval-
uating the usefulness of the generated domain description is
extremely difficult. Previous works leveraged human experts
for evaluation. We argue that for rigorous, automated evalu-
ation we need a ground truth; a vetted domain specification.
Hence, in this work we focus on the task of creating high
quality reconstructions of PDDL domain from natural lan-
guage; where the generated domain is ideally equivalent to
the ground truth. Restricting the generation of PDDL do-
main to an approximated equivalence class would make the
generated domains more amenable to existing planners and
further the goal of using the generated descriptions for pro-
ducing executable plans. To further clarify, while Guan et al.
(2023) uses LLMs to learn a PDDL models from a textual
descriptions, this is not our main purpose in this work. We
aim at in this work to understand how such methods can be
evaluated, and due to this, need to depend on additional as-
sumption that a reference domain is available. While this is
a stronger assumption than what is made in earlier work, this
allows for fully automated evaluation.

The core contributions of this work are fourfold. First, we
define a task of PDDL domain reconstruction from natural
language; based off a ground truth. Second, we define two
metrics for evaluating domain quality that do not depend on
any form of manual human evaluation. Third, we examine
classes of natural language descriptions of PDDL actions to
investigate if the inclusion and exclusion of particular infor-
mation impacts the ability to generate domains or the qual-
ity of generated domains. Finally, we evaluate 7 different
LLMs, including coding and chat models, and provide a de-
tailed analysis of the results from each on 9 domains.

2 Background
Planning
There are many ways to represent planning problems; for-
malisms over the years have been driven by concerns of effi-
ciency and accessibility. Some of these plan representations



include the STRIPS (Ghallab et al. 1998), ADL (Pednault
1994), and SAS+ (Bäckström and Nebel 1995) formalisms.

In this work, we use the Planning Domain Definition Lan-
guage (PDDL) for the declarative plan representation, but
when necessary to discuss the underlying formalisms we re-
fer to parts of planning problems and domains using the fol-
lowing lifted STRIPS formalism, largely inline with Corrêa
and Seipp (2022). A lifted STRIPS planning problem is de-
fined as a 5-tuple Π = ⟨F , C,A, s0, S∗⟩. F is a finite set
of predicates that describe the world. C is a finite set of con-
stants representing objects in the world, optionally including
type information. We define Fg as the set of all grounded
predicates, that is, predicates in which all variables are re-
placed by legal constants from C. A state s ⊆ Fg is a set
of grounded predicates that describe the state of the world,
such that f ∈ s if and only if f is a true fact about the world.
The set of all possible states is the power set of Fg , denoted
by S. A is a set of action schema where each a ∈ A is a 3-
tuple ⟨pre(a), add(a), del(a)⟩ where pre(a) ⊆ F is the set
of predicates that must hold to apply the action, add(a) ⊆ F
is the set of predicates that become true after the action is ap-
plied, and del(a) ⊆ F is the set of predicates that become
false. An action schema a ∈ A can be grounded by sub-
stituting all variables in a with allowed constants from C.
The grounded action ag = ⟨preg(ag), addg(ag), delg(ag)⟩
is defined as a 3-tuple of its grounded pre, add, and del pred-
icates, and we define Ag as the set of all grounded actions.
Finally, s0 ⊆ Fg is the initial state of the world for the plan-
ning task and S∗ ⊆ S is the set of possible goal states.

For a grounded action ag ∈ Ag and a state s ∈ S, we
say that ag is applicable in s if preg(ag) ⊆ s. Applying an
applicable action ag in the state s results in a state s[ag] :=
(s/delg(ag))∪addg(ag). A plan for a problem Π is therefore
a sequence of grounded actions π = (a1, · · · , an) which
when applied transforms the initial state s0 into a goal state
in S∗. The action sequence defines a state sequence S =
(s0, · · · , sn) such that si = si−1[ai] for 1 ≤ i ≤ n and
sn ∈ S∗. The set of all plans for Π is denoted by PΠ.

A planning domain for a lifted STRIPS planning prob-
lem Π is the problem’s predicate and action schema sets
D = ⟨F ,A⟩, while we say Π is a problem for D and write
ΠD if Π uses D as its underlying domain, regardless of the
specific objects, initial state, and goal states (C, s0, S∗) for
the problem.

Large Language Models (LLMs)
Language Models are probabilistic predictors for language
tokens that when given a sequence of tokens T =
(t0, t1, · · · , tn) in a corpus C will output a set of predictions
and associated probabilities P ⊆ C × IR for tn+1 based on
the data the model has been trained on. Different decoding
strategies can be used to select a token in P based on the
probabilities, one such strategy is the greedy strategy which
sets tn+1 equal to the highest probability token in P . The
new tn+1 can be appended to T and the process can be re-
peated for the next token. The maximum allowed size of T
is known as the context window, which limits the amount of
tokens able to use for prediction.

Large language models are a class of language model

characterized by their large size and emergent abilities on
tasks that smaller language models are unable to perform
on. LLMs are almost always implemented on-top of a Trans-
former architecture (Vaswani et al. 2017). There are many
different types of large language models trained on various
types of data, and models may be tuned to perform differ-
ent types of tasks such as code generation (Li, Allal, and Zi
2023) or acting as chat agents (Touvron, Lavril, and Izacard
2023); a survey can be found at (Zhao et al. 2023a).

In-Context Learning for LLM inference is a technique
classified as an emergent ability of LLMs to perform at a
higher level of performance on tasks using examples of
desired inputs and outputs (Dong et al. 2022). For example,
rather than the prompt: “Solve the following
addition problem: 1 + 2”, an in-context learn-
ing prompt would read: “Solve the following
addition problems: In: 2 + 3, Out: 5;
In: 4 + 2, Out: 6; ..., In: 1 + 2,”, where
the prompt is composed of 3 parts (1) An instruction (2) a
set of context examples and a (3) a query which is expected
to be answered inline with the context examples. In-context
learning is used in our work and much of the related work
such as (Liu et al. 2023) and (Guan et al. 2023).

3 Approach
The goal of this work is the evaluation of LLM’s abilities
to generate PDDL domains. In particular, we are interested
in generating and evaluating these domains on an action-
by-action basis where each prompt to the LLM is a request
to generate one action in a domain using context examples
from other domains. This action-by-action prompting was
inspired by Guan et al. (2023) and is primarily a concern
due to the size of the LLM’s context window.

We now turn to characterizing the concrete task we are
trying to solve, an overview can be seen in Figure 1. In order
to evaluate generated domains automatically, a ground truth
domain is needed to compare the generated domains against.
For this we use existing PDDL domains as a starting point in
our approach. Given a starting domain D = ⟨F ,A⟩, we be-
gin by converting all action schema in A to natural language
descriptions of action schema, N(A). We assume that a list
of the predicates in the domain F and natural language de-
scriptions of these predicates N(F) are given to us as con-
text for the domain. This assumption, while slightly limit-
ing accessibility, is the cornerstone which allows this task a
much more robust set of automatic evaluation options than
when the context for the domain is just a natural language
description (as in Guan et al. (2023)). The natural language
action N(a) ∈ N(A), along with a specification of domain
predicates ⟨F , N(F)⟩, is used as the query for the in-context
learning prompt. For the prompt’s context examples, other
actions are randomly sampled from action schema outside
of the domain D of the current action. A model then takes
these prompts and transforms them into a sequence of tokens
T (a) representing a as a PDDL action. An attempt is made
to parse T (a) as a PDDL action a′. This is the first loca-
tion at which automated evaluation is possible, as there are
numerous reasons why T (a) may fail to be a valid PDDL
action, many of which can be extracted by just attempting



Listing 1: A context example from a prompt N(a) for the
fly-airplane action from the logistics domain, including the
”Allowed Predicates” which function as the domain specifi-
cation ⟨F , N(F)⟩.

Allowed Predicates:
(in-city ?loc - place ?city - city) : a

place loc is in a city.
(at ?obj - physobj ?loc - place) : a

physical object obj is at a place loc.
(in ?pkg - package ?veh - vehicle) : a

package pkg is in a vehicle veh.

Input:
The action, "FLY-AIRPLANE" will fly an

airplane from one airport to another.
After the action, the airplane will be
in the new location.

PDDL Action:
(:action FLY-AIRPLANE

:parameters (?airplane - airplane ?loc-
from - airport ?loc-to - airport)

:precondition (at ?airplane ?loc-from)
:effect (and (not (at ?airplane ?loc-

from)) (at ?airplane ?loc-to))
)

to parse T (a). For all T (a) that were successfully parsed
into a reconstructed PDDL action a′, we add them to the
set of successfully reconstructed actions A′. Next, for each
a′ ∈ A′ we create a reconstructed domain D′ from D by
replacing A with (A/a) ∪ a′ where a is the original action
that generated a′. Note that for our formulation A′ is not the
set of actions for a D′, rather we look at |A′| new domains
D′s for each action, inline with our action by action-based
evaluation strategy. This is also due to practicality reasons,
in order to use A′ for D′, all actions in the domain would
need to get through the parsing phase in which T (a) is con-
verted to a′, this is simply not a reasonable assumption to
make. Our task then, is to evaluate the quality of each D′

with respect to D.

Description Classes
We investigate several strategies for converting PDDL ac-
tion schema a ∈ A to their natural language descriptions,
N(a) ∈ N(A). Each strategy produces a distinct class of
natural language representations of the action model.

1. Base Nb(A): Base descriptions include only information
including the action name, parameters, and the parameter
types of the action, as well as a one-line description of
what the action does without explicitly mentioning any
predicates. For example: “The action ’unstack’ will have
a hand unstack a block x from a block y.”

2. Flipped Nf(A): Flipped descriptions include the base
descriptions with an additional description of all predi-
cates that are deleted preconditions in that action schema,
that is, for an action schema a ∈ A, Nf(a) is Nb(a) ex-
tended with a description of predicates in pre(a)∩del(a)

Figure 1: A high level overview of our proposed task

as preconditions. The motivation behind this class is to
evaluate if predicates that are explicitly changed are the
most important things to include in a natural language de-
scription for the LLM, as they might be for a person when
describing a domain. For example: “The action ’unstack’
will have a hand unstack a block x from a block y, if the
block x is clear, on top of y, and the hand is empty.”

3. Random Nr(A): Random descriptions act as a random
baseline to compare against flipped descriptions, as well
as another higher information content baseline to com-
pare against base descriptions. For each action schema
a, the description includes the base description Nb(a),
and descriptions of |pre(a) ∩ del(a)| random predicates
sampled from pre(a), add(a) and del(a), where is the
description is dependent on if the predicate was sampled
from the precondition or effect. For example: “The ac-
tion ’unstack’ will have a hand unstack a block x from
a block y, if the hand is empty and x is on y. After the
action, y should be clear.”.

Evaluating
When considering how to evaluate the performance of LLMs
on this task, note that LLMs will frequently output se-
quences of tokens for our evaluation that cannot be inter-
preted as a valid planning domain. Some of these errors are
syntax based while others are based on the semantics of the
underlying PDDL tokens. If a model does output a valid do-
main, it must be evaluated in terms of its quality.

Domain Reconstruction Quality Metrics
Evaluating the quality, a correctly generated planning do-
main is a difficult task. Current metrics such as human ex-
pert evaluation (Guan et al. 2023; LI et al. 2023; Hayton
et al. 2020) provide a rough but subjective measure that is
impossible to automate. Like Guan et al. (2023), we have de-
signed our task such that all generated domains are based off



an existing domain which we can evaluate with respect to a
baseline. We look at and evaluate two automated metrics for
measuring the quality of generated domains. The first met-
ric, action reconstruction error, is a more traditional auto-
mated metric that measures the distance between generated
actions in domains, but we note it is a poor metric. We pro-
pose a second metric, heuristic domain equivalence, which
provides a more robust and tolerant approximation of true
domain equivalence.

Action Reconstruction Error (ARE) The Action Recon-
struction Error (ARE) is a measure of how different two
action schema a, a′ ∈ A are. We define the action recon-
struction error as the size of the difference of predicates in
the precondition and effect between a and a′:

ARE(a, a′) =|pre(a) △ pre(a′)|+
|add(a) △ add(a′)|+
|del(a) △ del(a′)|

where A△B is the symmetric difference (A/B)∪(B/A).
This metric is useful for understanding the distribution of
how close the domains output by the models with respect to
the original domains. However, we claim that this metric is
not a good measurement for actual domain quality. It does
not take into account the fact that preconditions and effects
can be added or removed from an action without changing
the meaning of the action at all, for example, adding a static
predicate from a precondition as an effect. To remedy this,
we propose an alternative metric based on how usable the
domain is for planning.

Plan Applicability for Heuristic Domain Equivalence
The primary reason a planning domain is created is so that
it can be used as the underlying representation for a set of
problems in the domain. The problems implicitly define a
set of plans, and when reconstructing domains, we can mea-
sure domain equivalence in terms of equivalence of the sets
of plans for a collection of problems. While it is not practical
to check if the full set of plans is equivalent, it is possible to
check for a number of plans on number some problems we
care about in the domain.

The domain equivalence heuristic is computed as follows:
given an original planning domain D, a reconstructed plan-
ning domain D′, and a set of solvable planning problems for
D, PD, each problem Π ∈ PD can be transformed into a
problem Π′ ∈ PD′ that uses D′ as its underlying domain.
For each such pair of problems Π and Π′ and some corre-
sponding subsets of their plans P ⊆ PΠ and P ′ ⊆ PΠ′ ,
we can cross check whether P ⊆ PΠ′ and P ′ ⊆ PΠ. For
each individual plan, the test can be efficiently performed
using a plan validator1. This heuristic, plan equivalence on
P for a subset of plans, is a necessary condition for true do-
main equivalence, and its negation is a sufficient condition
to show true domain inequality.

Result Classes
We propose four result classes for classifying the action
from an LLMs output. Each class other than the heuristically

1https://github.com/KCL-Planning/VAL

equivalent domain class has multiple sub-classes to give a
better idea of the types of problems encountered.

1. Syntax Error: The model produced syntactically invalid
PDDL. This PDDL cannot be parsed to evaluate an ac-
tion reconstruction error with. Subclasses (in precedence
order): (1) No PDDL (NoPDDL): Model did not output
any PDDL, (2) Parenthesis Mismatch (PError): issues re-
garding the matching parenthesis in the PDDL (3) Unex-
pected Token (UToken): The PDDL parser failed after
finding an unexpected token.

2. Semantic Error: The model produced syntactically
valid PDDL, but the PDDL doesn’t integrate with the
intended problems. Subclasses (1) Type Error (TError):
The model produced an unexpected type (2) Predicate
Argument Error (PAError): the wrong number of vari-
ables were passed to a predicate (3) Wrong Action Name
(NError), The name of the action is wrong (4) Bad
Precondition (BPError): PDDL STRIPS does not allow
negated preconditions, but one is present.

3. Different Domain: The model produced syntactically
valid PDDL that integrates with the original domain, but
the underlying domains are different by way of the do-
main equivalence heuristic. The behavior of the actions
is not as intended, plans from the original domain cannot
be applied in the new domain and vice versa. Subclasses
(1) No Plans Found (NoPlan): No plans were able to be
found on problems in the new domain (2) New Plan Ap-
plication Error (NPApp): Could not apply a new plan to
the original domain (3) Original Plan Application Error
(OPApp): The original plan could not be applied to the
new domain.

4. (Heuristically) Equivalent Domain: The model pro-
duced syntactically valid PDDL that integrates with the
desired domain under the domain equivalence heuristic,
plans from the original domain can be applied in the new
domain and vice versa.

The classes form a hierarchy in which syntax errors super-
seded semantic errors which supersede both the different and
equivalent domain classes which are mutually exclusive. i.e.
An output with both syntax and semantic errors will only be
marked as a the error caught first, the syntax error.

4 Experiments and Results
Setup
For evaluation, we evaluate over the LLaMA family of
LLMs (Touvron, Lavril, and Izacard 2023), as well as Star-
Coder (SC) (Li, Allal, and Zi 2023). For LLaMA we eval-
uate over both the base pre-trained models at 7b, 13b, 70b
parameters. We also evaluate the 7b, 13b, 70b LLaMA mod-
els that have been fined tuned for chat using reinforcement
learning with human feedback (RLHF) (Ouyang, Wu, and
Jiang 2022). For token selection for all models, we use
greedy sampling in which the token with the highest output
probability is selected as the next token.

For our domains we select 9 PDDL domains with vary-
ing action and predicate complexities. We include 4 domains



from (Silver et al. 2023) guaranteed not to be in the train-
ing set, as they were created after LLaMA and StarCoder
were trained. These domains are marked with a†. The re-
mainder of our domains are famous classical planning do-
mains, many of which have appeared in International Plan-
ning Competitions.

1. Blocksworld – 5 predicates 4 actions : A robot hand tries
to stack blocks on a table in a particular configuration.

2. Gripper – 4 predicates 3 actions : A robot moves balls
from one room to another using grippers.

3. Heavypack†– 5 predicates 2 actions : Specified items
must be packed into a box depending on item weight.

4. Hiking†– 5 predicates 2 actions : Hikers must navigate to
a location over varying terrain.

5. Logistics – 3 predicates 6 actions : Items must be trans-
ported to locations using planes and trucks.

6. Depot – 6 predicates 5 actions : A combination of blocks
and logistics domains.

7. Miconic – 6 predicates 4 actions : A lift delivers multi-
ple passengers to their desired floors from their starting
floors.

8. Trackbuilding†– 4 predicates 3 actions : An agent must
build a path for a train to take to a given location.

9. TrapNewspapers†- 7 predicates 3 actions : A delivery-
person must deliver newspapers to a number of safe lo-
cations from a home base.

For the domain equivalence heuristic, our problem set con-
sists of 2 simple randomly selected problems from each do-
main. We select 10 plans using a top-k planner K∗ (Lee,
Katz, and Sohrabi 2023). The top-k plans for a problem Π
are the set of k different plans with the lowest costs, where
in our case of unit costs is the same as the length of the plan.
While any k plans could be used for computing the domain
equivalence heuristic, using the top-k plans we ensure that
minimally the optimal plans for the evaluated problems are
equivalent. To test for plan validity we use VAL.

Evaluating Heuristic Domain Equivalence Over
Different LLMs
For this experiment we exclusively use base descriptions in
which only a description of the action’s parameters and types
without reference to predicates. For prompt generation, each
base action description is turned into 60 prompts, each with
3 randomly sampled context examples from outside of its
domain. We note that this sampling is done uniformly across
all types of actions, the only restriction being that the action
used for context cannot be in the same domain as the ac-
tion we are generating for. We chose to use 60 prompts as a
trade-off between experiment runtime and statistical signif-
icance. We chose to use 3 context examples after a manual
parameter search, finding increasing the number of context
examples further did not improve results, while decreasing
past 3 lead to worse results.

Figure 2 (Top) displays the breakdown of outputs over
the primary result classes. Two results are immediately ap-
parent from this. First, LLMs particularly larger ones, are

Result SC 7b 7bC 13b 13bC 70b 70bC

Syntax 3.70 15.31 22.03 1.30 25.73 0.36 8.49

NoPDDL 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PError 0.31 0.21 0.16 0.00 0.10 0.00 0.05
UToken 3.39 15.10 21.82 1.30 25.62 0.36 8.07

Semantics 18.02 22.29 36.15 14.64 22.97 7.08 11.72

PAError 15.57 17.55 25.10 8.59 15.26 4.58 9.17
NError 0.16 0.10 0.00 0.05 0.16 0.10 0.05
TError 2.29 4.64 10.57 5.78 7.45 2.40 2.50
BPError 0.00 0.21 0.47 0.21 0.10 0.00 0.00
Diff 67.55 56.46 36.25 75.21 43.13 63.75 58.07

NoPlan 51.72 44.64 23.07 59.43 26.72 42.50 41.77
NPApp 7.76 8.85 8.80 8.96 11.67 12.34 11.20
OPApp 8.07 2.97 21.72 6.82 4.74 8.91 5.10

Equiv 10.73 5.94 5.57 8.85 8.18 28.80 21.72

Table 1: Distribution of Result Classes and Subclasses.
Lower is better for all classes and subclasses except equiva-
lent domain (Equiv), for which higher is better. Best results
in bold.

quite good at generating syntactically and semantically valid
PDDL, the best model LLaMA-2-70b, is able to construct
valid PDDL in 93% of domains. When looking at valid
PDDL generated, we see that the ratio of heuristically equiv-
alent domains to non-equivalent domains and number of
heuristically equivalent domains is largely dependent on
model size (see Figure 3). The best result was on LLaMA-2-
70b. It reconstructed 29% domains to be heuristically equiv-
alent to the natural language descriptions. This is a very
promising result in terms of the applicability of LLMs for
the task of PDDL domain generation. Second, in terms of
different types of models, it is surprising that the LLaMA
chat models perform worse on this task than base LLaMA
models across the board. Typically these models that have
been trained with RLHF are seen to do better than base mod-
els across the board (Ouyang, Wu, and Jiang 2022).

We next turn to discussing result subclasses. Table 1 dis-
plays the lopsided breakdown of syntax and semantic er-
rors. There were no instances of the No PDDL subclass, all
models evaluated output something minimally interpretative
as PDDL. Parenthesis mismatch errors were also negligi-
ble. The overwhelming majority of syntax errors were un-
expected token errors encountered within the PDDL while
parsing which encompassed a whole range of issues from
duplicate “:precondition” tags to attempting to add
type annotation to variables mentioned in predicates. For se-
mantic errors, the primary breakdown was dominated by is-
sues related to predicate argument counts where the model
added or removed arguments to predicates in the action
schema. Type errors were rare, we note that StarCoder per-
formed best in this regard. Incorrect action name errors were
exceedingly rare. Finally, different-domain subclasses dis-
played in Figure 2 (Bottom) reveal an interesting insight
into the quality of generated domains. The results show that



Figure 2: (Top) Characterizing LMM outputs in terms of core result classes. (Bottom) Breakdown of Different-Domain Sub-
classes

Figure 3: Overview of LLaMA result class percentages with
respect to model size. Contains both chat and base models

across the board, the majority of valid generated domains in
the different domain result class are not able to be used for
planning, with the planner failing to produce any valid plan
using the reconstructed problems in domain PD′ . with the
rest falling relatively equally between failing to apply plans.
The remaining different-domains failures are split relatively
equally due to failures in cross validating the new plans on
the original domains and vice versa.

Evaluating Heuristic Domain Equivalence Over
Description Classes and LLMs
For this experiment, we evaluate result classes over the three
proposed description classes. To generate our prompts, we

map each action to 20 prompts in each of the 3 description
classes. The context for the prompts is taken from the same
description class and is always taken from domains outside
the domain of the action to evaluate. For evaluation we use
the same setup as our first experiment and evaluate over our
result classes. Figure 4 displays a breakdown of the perfor-
mance of each model on each description class. The results
show that while on some models the flipped class performs
well, it is not consistent and not as statistically significant
as we had predicted. We are surprised to see that the base
class performs on par with the random and flipped classes
on the LLaMA models, leading us to conclude that at least
for the classes we looked at where the number of predicates
in flipped is small, the extra information provided by the
random and flipped descriptions is not significant enough to
sway the results for these models. The anomaly here is Star-
Coder in which providing the extra context in the random
and flipped classes boots its performance by around 10%.

Action Reconstruction Error and Result Class
For this experiment we evaluate the models in terms of
their action reconstruction error to see how close from a
predicate-by-predicate point of view the model gets to re-
constructing the original actions. Additionally, we investi-
gate the the relationship between the action reconstruction
error and the result classes as well as how the action recon-
struction error may be used to augment our use of heuristic
domain equivalence. This experiment uses the same setup
as the experiment over description classes, each a ∈ A is
mapped to Nb(a) and is used for 60 prompts. All prompts
are evaluated on each LLM and result classes and ARE is
evaluated for classes for all classes except syntax errors as
ARE cannot be automatically computed without a parsed ac-
tion.

Figure 5 displays the distributions of action reconstruc-
tion errors (ARE) for each model, and splits each bucket by
reconstruction class. This gives a good picture of how much
each model deviates from the original action. We note that
the better performing models tend to have their distributions



Figure 4: Breakdown of LLMs over Top Level Result Classes vs Different Description Classes.

cluster around lower AREs, that is, they construct actions
that are similar in terms of the exact predicates used in the
original action. This additionally exposes the flaws of ARE
as a metric for domain equivalence as we can see that just
being close to the original action in terms of predicate simi-
larity is not good enough and that plenty of domains outside
this range are heuristically equivalent. This understanding
of ARE can also help us find false positives in heuristically
equivalent domains that are not truly equal, since only a fi-
nite number of problems and plans for each problem can be
evaluated. Hence when searching for false positives it can be
useful to start with domains with the highest ARE since it is
more likely something with many predicates changed from
the original action represents a different domain.

5 Related Work
Large Language Models and Planning
There are been a number of papers that investigate the use of
LLMs for planning. Some recent work (cf. Valmeekam et al.
(2022); Raman et al. (2022)) use LLMs as planners, while
others (cf Guan et al. (2023); Liu et al. (2023)) use LLMs
as auxiliary components of a hybrid planning system while
leveraging automated planners for solving the planning task.
The general consensus seems to be that LLMs are not very
good as planners. This finding was one of the motivations
for this work in this work, as we focus on using LLMs to aid
automated planning rather than as planners themselves.

LLM+P The LLM+P framework (Liu et al. 2023) was one
of the first to recognize the potential of combining LLMs
and planners as hybrid systems, and utilizing LLMs to east
the use of automated planners . The LLM+P architecture
takes in (1) natural language descriptions of problem in a
planning domain, (2) a context example of a natural lan-

guage problem in the given domain being converted to a
PDDL problem, and (3) a PDDL domain file. Using these
inputs the model uses an underlying LLM to convert the nat-
ural language problem description and context into a PDDL
problem. This is then combine with the PDDL domain in-
put to an automated planner producing a PDDL plan, the
resulting plan is then fed into an LLM which describes the
plan in natural language. LLM+P’s applicability is some-
what hindered by their assumptions that a PDDL domain
exists, and context examples converting natural language de-
scriptions of problems to PDDL problems for these domains
exist. Such assumptions are impossible to meet in the case
of things like narrative action model acquisition, and indeed
still requires an expert in the system somewhere to write the
domains and the context examples. Our work does not focus
on using LLMs to generate PDDL tasks, but it is tangential
to all of LLM+P’s assumptions. We (1) investigate the con-
struction the PDDL domain rather than have it provided and
(2) do this using context examples from arbitrary domains
rather than from the same domain.

LLM-DM The most closely related work to ours is the
end-to-end domain construction and planning framework
from Guan et al. (2023) which we will call LLM-DM. LLM-
DM is composed of a three-part process, automated domain
construction, human refinement of domain, and planning
with the domain. We are interested primarily in their au-
tomated domain construction as it is a very similar task to
ours. For this, LLM-DM generates a domain on an action-
by-action basis, each prompt containing five parts: (1) an in-
struction describing the PDDL creation task, (2) one or two
context examples from the blocksworld domain on what a
translation of an action description to PDDL looks like, (3)
a natural language description of the domain, (4) a natural
language description of the action and (5) a dynamically up-



Figure 5: Action Reconstruction Error (ARE) Distribution with respect to Reconstruction Class Over LLMs

dated list of predicates used by the domain including nat-
ural language action descriptions. As the domain is gener-
ated action-by-action, the instruction and context examples
include requests for the model to generate a list of new pred-
icates based on the description of the action. LLM-DM eval-
uates constructing PDDL on three domains (Logistics, Tyre-
world, and a custom domain, ”Household”) using the LLMs
GPT-4 (OpenAI 2023) and GPT-3.5 Turbo (ChatGPT). To
measure the quality of the constructed domain, manual hu-
man evaluation is used, experts annotate the PDDL domain
output, marking the PDDL with mistakes and corrections,
which the authors claim provides and approximate distance
between the generated PDDL and correct PDDL.

LLM-DM provided inspiration in our work to generate
domains using LLMs on an action-by-action basis rather
than trying to have the LLM output the full domain. The au-
thors cite well-founded concerns about the context window
size and the potential for corrective feedback on an action-
by-action basis, making this more useful for the end user.
For our work, instead of providing the model with a descrip-
tion of the domain and having the model extract the pred-
icates at each stage on-top of the action translation, we ex-
plicitly provided the allowed predicates and their description
as the description of the domain. This change is key for be-
ing able to automatically evaluate the constructed domains,
and is responsible for our automated evaluation approaches
rather than a manual evaluation approaches.

Textual and Narrative Action Model Acquisition

The task we propose is similar to the action-model extraction
from text task (Lindsay et al. 2017) and narrative action-
model acquisition task from text task (Hayton et al. 2020;
LI et al. 2023) in which the goal is from natural language
to generate the entire domain model from Fg and Ag if
grounded and F ,A, and potentially C if lifted. A downside
of these tasks is that it very difficult to automatically evalu-
ate performance on, as it requires a full understanding of the
natural language text and expert knowledge of PDDL do-
mains. Evaluation for these tasks is frequently done either
via expert analysis of the generated PDDL domain such as
in (Hayton et al. 2020; Huang, Chen, and Zhang 2014) or
automated metrics such as that can’t fully capture the per-
formance of the model. These shortcomings in evaluation
were a driver of both our problem formulation and proposed
domain quality metrics.

6 Conclusion and Future Work
There are many avenues which could be explored using this
work as a springboard. In particular we are interested in
three main directions: (1) deeper investigations of the ca-
pabilities of large language models in terms of selection and
tuning, (2) using re-prompting for fixing mistakes in PDDL
for chat-based LLMs, (3) investigating more robust tasks
and metrics.

First, in terms of LLMs there is a lot that could be done
to extend this work. The results showing improved perfor-
mance on larger models is a good starting point for future
work and is in line with Guan et al. (2023) which evalu-
ates with respect to GPT-4 and GPT 3.5. coming to similar
conclusions that larger pre-trained models are better when it
comes to handling PDDL construction. Future work and ap-
plications not interested in tuning should take this into con-
sideration using larger models such as GPT-4 and LLaMA-
70b as baselines, other large models such as Bloom (Big-
Science Workshop 2022) would be promising to evaluate
over. Our experiment over description classes revealed the
coding model StarCoder performs quite well in certain cases
when additional predicate information is included in natural
language descriptions, we believe this warrants a further in-
vestigation of coding models and their capabilities. Beyond
just selection of LLMs, there are two more properties of
LLMs we could investigate. First, LLM tuning approaches,
such as fine tuning and prompt tuning have been shown to
allow small LLMs to perform well on tasks they are tuned
on. Second, chat based LLMs with large context windows
have can be re-prompt and provide corrective feedback (Ra-
man et al. 2022). Guan et al. (2023) use successfully demon-
strate corrective reprompting from tools like VAL and other
reprompting to provide corrective feedback to LLMs. Using
our result classification system, adding support for correc-
tive reprompting where the re-prompt is based on informa-
tion regarding result class is a clear next step.

Finally, we discuss a potential alternatives that could be
made to our evaluation. As discussed in our approach, we
do not use A′ as the set of action schema for a D′ for a
number of practical reasons. However, evaluating the per-
formance of domains in which all actions are generated is
desirable target for evaluation. Towards this end, it would be
interesting to evaluate with respect to a form of iterative do-
main completion task after an initial action has been gener-
ated. Previously generated actions in A′ could then be used
as part of the prompt until a full reconstructed action schema
for the reconstructed domain D′ has been constructed.
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