
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLATPOSE: AN UPSAMPLING-FREE TRANSFORMER
FOR HUMAN POSE ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Human Pose Estimation (HPE) methods often face a trade-off between accuracy
and computational cost, which is largely driven by the reliance on upsampling
layers to generate high-resolution feature maps. This paper examines the neces-
sity of this convention, investigating whether spatial upsampling is indispensable
for precise pose estimation. Our preliminary experiments reveal that coordinate
classification-based methods exhibit notable robustness to feature map resolution,
unlike their heatmap-based counterparts. This insight suggests a promising, yet
challenging, path toward developing entirely upsampling-free architectures. To
address the core challenge of recovering fine-grained geometric relationships from
spatially coarse features, we introduce FlatPose, a novel and efficient framework
that operates directly on low-resolution feature maps from the network backbone.
At the heart of FlatPose is a two-stage hierarchical feature enhancement strategy.
First, in the Global Encoding stage, we propose the Implicit Coordinate Attention
mechanism, which empowers the model to learn a dynamic, content-aware “se-
mantic coordinate system” to model complex, non-local geometric structures from
spatially coarse features. Second, in the Targeted Refinement stage, a Salience-
Guided selection mechanism identifies the most critical feature regions, which are
then deeply optimized via a targeted cross-attention module that focuses compu-
tation where it is most needed. Extensive experiments on the challenging COCO,
MPII, and CrowdPose benchmarks show that FlatPose achieves a compelling bal-
ance between accuracy and computational efficiency. Our work validates that
high-precision pose estimation is achievable without explicit upsampling, offer-
ing a new and effective paradigm for the field. Our code will be open source.

1 INTRODUCTION

Human Pose Estimation (HPE) Chen et al. (2023a); Sun et al. (2019); Zhou et al. (2023) is a fun-
damental task in computer vision, has largely evolved along two main paradigms, as conceptually
illustrated in Figure 1(a). The dominant heatmap-based methods (Paradigm 1) attain high precision
by processing high-resolution feature maps, which necessitates computationally expensive upsam-
pling layers (e.g., deconvolution) to restore feature resolution Cai et al. (2020); Wang et al. (2023);
An et al. (2024). This reliance introduces a significant bottleneck, increasing both complexity and
parameters, which in turn hinders their use in many practical scenarios Janampa & Pattichis (2025);
Jiang et al. (2023). This high computational cost prompted us to investigate a critical question: is
this reliance on high-resolution features an immutable requirement for all HPE paradigms?

To answer this, we performed a controlled experiment summarized in Figure 1(b). This high compu-
tational cost prompted us to investigate a critical question: is this reliance on high-resolution features
an immutable requirement for all HPE paradigms? To answer this, we performed a controlled exper-
iment summarized in Figure 1(b). We started from a baseline based on a ResNet50 backbone, using
three deconvolution layers to produce a high-resolution 64× 48 feature map, and then progressively
reduced the resolution down to 8× 6 by removing these upsampling stages. The results are striking:
while the performance of the heatmap-based approach collapses from 71.8 AP to a mere 17.2 AP
as resolution decreases, coordinate-based methods demonstrate remarkable robustness. This aligns
with the preliminary findings in SimCC Li et al. (2022) and RTMPose Jiang et al. (2023). This
growing body of evidence suggests that the coordinate classification paradigm is inherently robust
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(b) Performance comparison (AP on COCO Val) of different paradigms(a) A conceptual comparison of different HPE paradigms

Figure 1: Motivation for our upsampling-free approach. (a) A conceptual comparison of different
HPE paradigms, showing how FlatPose avoids computationally expensive upsampling layers. (b)
Performance comparison on COCO Val under decreasing feature map resolution. The experiment
demonstrates the robustness of coordinate-based methods and FlatPose to lower resolutions, in con-
trast to the collapse of heatmap-based methods, which motivates our design.

to feature map resolution, opening a promising path toward entirely upsampling-free architectures
that can alleviate the efficiency burden of conventional designs.

This insight motivates a fundamental architectural shift, away from the upsampling-heavy Paradigm
1 towards the more efficient Paradigm 3 shown in Figure 1(a). We introduce FlatPose, a novel and
efficient framework that fully embraces this shift by operating directly on low-resolution feature
maps using a unified Transformer architecture. FlatPose employs a hierarchical feature enhance-
ment strategy to achieve precise decoding from coarse features. For the first stage, we propose the
Implicit Coordinate Attention (ICA) mechanism, a novel module designed to empower the model
with geometric reasoning capabilities directly on coarse feature representations. Unlike methods
using static positional encodings Shi et al. (2022); Yuan et al. (2021); Liu et al. (2023), ICA dy-
namically learns a content-aware “semantic coordinate system,” enabling it to model the complex,
non-local geometric structures of the human body with high precision. Subsequently, in the refine-
ment stage, a process of Targeted Key Region Refinement identifies the most critical feature regions
for each keypoint. These selected features, acting as queries, then interact with the full feature con-
text (serving as keys and values) within a targeted cross-attention module. This interaction allows
the model to deeply refine the information within these critical regions. The updated features are
then integrated back into the full context, iteratively enhancing the overall representation for a more
precise final prediction.

The main contributions of this paper are summarized as follows: 1) Our systematic experiments
reveal that coordinate classification methods are significantly more robust to low-resolution fea-
tures than their heatmap-based counterparts, providing a solid empirical foundation for designing
upsampling-free HPE models. 2) We propose FlatPose, an efficient, upsampling-free HPE frame-
work. It features our novel Implicit Coordinate Attention (ICA) module for capturing global ge-
ometric relationships and a targeted cross-attention mechanism for refining key features, enabling
high-precision localization on low-resolution feature maps. 3) Extensive experiments on challenging
benchmarks show that FlatPose is highly competitive, achieving a compelling balance of accuracy
and efficiency by significantly reducing computational cost and parameters compared to models that
rely on upsampling.

2 RELATED WORK

Heatmap-based methods Zhang et al. (2020); Feng et al. (2023); Purkrabek & Matas (2025); Newell
et al. (2016) have become a dominant paradigm in human pose estimation due to their superior
accuracy. These methods localize keypoints by predicting a 2D spatial probability distribution (a
heatmap) for each point. However, their core challenge lies in the computational overhead required

2
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Figure 2: The overall architecture of FlatPose and a detailed illustration of the ImplicitCoord At-
tention (ICA) mechanism. The left panel shows the main pipeline, where features are first encoded
by N blocks and then refined for M iterations. The right panel details the ICA mechanism, where a
dynamic geometric bias is generated by interpolating a learnable grid and injected into the attention
score.

to generate high-resolution heatmaps. Various strategies have emerged to mitigate this, such as
constructing high-resolution features only for relevant regions An et al. (2024), recovering high-
quality heatmaps from low-resolution features Wang et al. (2023); Hu et al. (2024), or using more
efficient backbones Wang et al. (2022); Xu et al. (2022; 2023). While innovative, these approaches
are fundamentally optimizations within the heatmap paradigm.

To overcome the limitations of heatmap-based methods, such as quantization errors and high com-
putational costs, coordinate classification methods like SimCC have gained significant attention.
By transforming continuous coordinate prediction into a discrete classification task, these mod-
els can effectively process low-resolution features, granting them a natural robustness to resolution
changes. This opens a promising avenue for designing efficient, upsampling-free models. Following
this trend, methods like RTMPose Lu et al. (2024); Jiang et al. (2023); Yang et al. (2023) and SAR
have further explored reducing or eliminating upsampling layers. This body of work validates the
potential of the upsampling-free direction but also surfaces a critical challenge: how to capture com-
plex, non-local geometric relationships from low-resolution features where spatial structure is lost.
Standard Transformers Dosovitskiy et al. (2020); Liu et al. (2021) often rely on static positional en-
codings, which are insufficient for this nuanced task. Our work, FlatPose, directly addresses this gap
by introducing a novel attention mechanism designed to learn pose-dependent geometric structures
from these coarse, spatially-ambiguous features.

3 METHODOLOGY

Our proposed method, FlatPose, is founded on a paradigm that directly challenges the conventional
reliance on upsampling layers in human pose estimation. As substantiated by our preliminary exper-
iments (Figure 1), the coordinate classification paradigm exhibits remarkable resilience to reductions
in feature map resolution, such a property not shared by heatmap-based approaches. Capitalizing
on this insight, we designed a streamlined and efficient framework that entirely bypasses explicit
spatial upsampling. The overall architecture of FlatPose is depicted in the left part of Figure 2.

3.1 AN UPSAMPLING-FREE PARADIGM VIA FEATURE PROCESSING

Unlike traditional models that restore feature resolution, our approach operates directly on the low-
resolution feature map produced by the backbone network. Let the initial feature map be F ∈
RC×Hf×Wf , where C is the number of channels, and Hf ,Wf are the feature dimensions. First,
we use a 3 × 3 convolutional layer to project the channel dimension C to match the embedding
dimension D required by our Transformer modules.

F ′ = Conv3×3(F ) (1)
Here, the resulting feature map F ′ ∈ RD×Hf×Wf maintains its spatial dimensions but has an ad-
justed channel depth D. Subsequently, we reshape this 2D feature map F ′ into a 1D sequence of
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tokens X ∈ RL×D, where the sequence length L = Hf × Wf . To preserve spatial awareness
after this process, we add a standard 2D sinusoidal position encoding Epos ∈ RL×D to the token
sequence, yielding the initial input X0 for our feature enhancement pipeline.

X0 = X + Epos (2)

This initial processing is the foundation of our upsampling-free framework. All subsequent geomet-
ric and contextual relationship modeling is performed on this 1D token representation.

3.2 GLOBAL CONTEXT ENCODING WITH IMPLICIT COORDINATE ATTENTION (ICA)

Token sequences inherently lack the explicit 2D structure required for many vision tasks. To over-
come this, we propose Implicit Coordinate Attention (ICA), a mechanism that embeds geometric
reasoning directly into the attention process, as detailed in the right part of Figure 2. ICA distin-
guishes itself from prior work in two main aspects. In contrast to Deformable Attention Zhu et al.
(2020), which learns sparse sampling offsets, ICA computes a dense bias matrix to augment the
standard attention scores. Furthermore, while Conditional Positional Encodings (CPE) Chu et al.
(2021) generate content-aware absolute position embeddings, ICA’s bias is a function of the relative
semantic distance between tokens. This bias is generated by a continuous function, learned through
feature grid interpolation, which uniquely allows the model to reason explicitly about geometric
relationships.

3.2.1 DYNAMIC SEMANTIC COORDINATE GENERATION

Instead of relying on fixed positions, ICA dynamically computes a coordinate for each feature to-
ken based on its semantic content. As shown in the “Bias” generation process in Figure 2, this
begins by projecting the input token sequence X0 ∈ RL×D into specialized query-like and key-like
representations for both the X and Y axes.

Qr,x = X0Wq,x Qr,y = X0Wq,y (3)
Kr,x = X0Wk,x Kr,y = X0Wk,y (4)

Here, Wq,x,Wk,x,Wq,y,Wk,y ∈ RD×D′
are learnable projection matrices, and we set the interme-

diate dimension to D′ = D/4. The semantic coordinate c
(i)
x for the i-th token along the x-axis is

then generated via a scaled inner product passed through a tanh activation.

c(i)x = tanh
(
γ⟨q(i)r,x, k

(i)
r,x⟩

)
(5)

In this equation, the inner product ⟨·, ·⟩ computes a content-based similarity score. This score is
scaled by a learnable parameter γ and mapped to the range [−1, 1] to produce the final coordinate.
An identical process is performed independently to compute the corresponding semantic coordinate
c
(i)
y along the y-axis.

3.2.2 CONTINUOUS RELATIVE POSITIONAL BIAS GENERATION

Having established the semantic location of each token, the attention bias is generated as a contin-
uous function of their relative semantic distance. This process involves several steps, as depicted in
the right part of Figure 2.

First, for any pair of tokens (i, j), we compute their semantic distance vector ∆c(i,j).

∆c(i,j) = (|c(i)x − c(j)x |, |c(i)y − c(j)y |) (6)

Since cx and cy are in [−1, 1], the elements of ∆c(i,j) are in [0, 2]. We then normalize this vector to
a query coordinate p(i,j)query in the range [−1, 1]2 for grid sampling. This combined step corresponds to
the “Compute & Normalize Relative Distance” block in the diagram.

p(i,j)query = ∆c(i,j) − 1 (7)

This query coordinate is used to probe a small, learnable bias grid Gbias ∈ RDbias×S×S via differen-
tiable bilinear interpolation, denoted by ϕ.

f
(i,j)
interp = ϕ(Gbias, p

(i,j)
query) (8)

4
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Table 1: Detailed configurations of our FlatPose model variants. The ‘Coarse’ and ‘Refine’ columns
denote the number of coarse-tuning and fine-tuning blocks, respectively. The backbone is based on
ConvNeXtV2 Woo et al. (2023).

Model Input Backbone Dim. Coarse Refine K Params(M) GFLOPs AP

FlatPose-B 256× 192 ConvNeXtV2-N 256 4 2 4 21.6 2.8 75.4
FlatPose-L 256× 192 ConvNeXtV2-T 256 6 3 4 37.3 4.9 77.4
FlatPose-L 384× 288 ConvNeXtV2-T 256 6 3 6 37.4 11.5 78.2

Figure 3: Illustration of the Salience-Guided selection strategy. Salience scores are computed for
each feature token. The tokens with the top-K highest scores are selected as queries for the refine-
ment stage.

As detailed in the “Bilinear Interpolation” panel of Figure 2, this step samples a feature vector
finterp for each continuous query coordinate. This feature is then concatenated with the precise query
coordinate and refined by an MLP to produce the final bias B(i,j) for each of the Nh attention heads.

B(i,j) = MLPinterp(concat[f (i,j)
interp, p

(i,j)
query]) (9)

3.2.3 FINAL ATTENTION INTEGRATION

The final attention score is computed by integrating the generated bias with standard content-based
attention. As shown in the ICA overview in Figure 2, the bias term B is added to the scaled dot-
product scores of the content-based query (Qattn) and key (Kattn).

Score(i, j) =
Q

(i)
attn(K

(j)
attn)

T

√
dk

+B(i,j) (10)

Here, dk is the dimension of the key vectors. This combined score allows the model to consider both
content similarity and learned geometric priors.

3.3 ITERATIVE REFINEMENT WITH TARGETED CROSS-ATTENTION

After the Global Context Encoding stage establishes a general understanding of the pose, we intro-
duce an Iterative Refinement stage to achieve high precision. As illustrated in Figure 2, this stage
executes a select-attend-update loop for M iterations. This process progressively enhances the fea-
ture representation by focusing computation on the most salient visual tokens. The context entering
each iteration is a complete set of visual tokens, denoted as Xcontext ∈ RL×C .

3.3.1 SALIENCE-GUIDED SELECTION

The first step in each iteration is to select a small subset of tokens to act as the query. A Salience
Head first processes the full set of input visual tokens, Xcontext, assigning a relevance score to each
one. This is conceptually similar to token pruning strategies in efficient Transformers Xia et al.
(2022); Liang et al. (2022); Wang et al. (2024); Chen et al. (2023b). Following this, a selection
mechanism identifies the indices I of the tokens with the highest scores, as illustrated in Figure 3.
These indices are then used to collect the corresponding feature vectors from the full context map to
form the query. This selection process is formally defined as:

Xquery = Gather(Xcontext, I) (11)

5
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Here, the Gather operation selects tokens from the input tensor Xcontext ∈ RL×C along its first
dimension based on the index set I. The resulting query tensor, Xquery ∈ RLq×C , is a compact subset
of the original context, where Lq = |I| is the number of selected tokens. To ensure computational
efficiency, our design makes Lq significantly smaller than L (Lq ≪ L).

3.3.2 TARGETED REFINEMENT

The compact query sequence Xquery is then deeply refined. It is fed as the Query into a Cross
Attention Transformer Block, while the full, un-altered context map Xcontext serves as the source for
both the Key and Value. This allows the small set of critical query tokens to attend to the entire
global context, efficiently enriching their features. The interaction is computed as:

Xrefined = CrossAttentionBlock(Xquery, Xcontext, Xcontext) (12)

The output, Xrefined, has the same dimension as the input query, RLq×C , but its features are now
contextually enriched.

3.3.3 CONTEXT UPDATE AND ITERATION

The final step is to integrate the refined features back into the global context. The Update operation
is a scatter-overwrite mechanism: the refined tokens in Xrefined are written back into the full context
map at their original locations, replacing the previous features. This produces an updated context
map for the next iteration, X(i+1)

context, whose dimensions remain RL×C . This entire select-attend-
update cycle is repeated M times, with each iteration further enhancing the precision of the feature
representation.

3.3.4 CLS HEAD FOR FINAL PREDICTION

After M refinement iterations, the final enhanced context map is passed to the CLS Head. This
head employs two separate linear classifiers to predict the probability distributions for the x and y
coordinates of each keypoint.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

4.1.1 DATASETS AND EVALUATION METRICS.

We conduct extensive experiments on three challenging public benchmarks: MS COCO Lin et al.
(2014), MPII Human Pose Andriluka et al. (2014), and CrowdPose Li et al. (2019), using their
standard evaluation protocols. For COCO, we train on ‘train2017’ and evaluate on ‘val2017’ and
‘test-dev2017’ using mean Average Precision (AP). For MPII, we report the head-normalized Per-
centage of Correct Keypoints (PCKh@0.5). For CrowdPose, we use AP to evaluate robustness in
crowded scenes.

4.1.2 IMPLEMENTATION DETAILS.

Models are trained for 210 epochs on 8 NVIDIA RTX 4090 GPUs using a ConvNeXt backbone and
the AdamW optimizer with a base learning rate of 1 × 10−3. We use a cosine annealing schedule
with a linear warm-up. Standard data augmentation and flip-testing at inference are employed. An
Exponential Moving Average (EMA) hook is used to stabilize training.

4.1.3 MODEL CONFIGURATIONS

To demonstrate scalability, we instantiate several FlatPose variants by varying the backbone and
module depths. Detailed configurations are presented in Table 1.

6
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Table 2: Comparison with state-of-the-art methods on the COCO validation set. FlatPose-L is di-
rectly compared to SHaRPose-Base, with performance and efficiency changes indicated by arrows
(↑↓). Best results for each metric are in bold.

Method Input Params(M) GFLOPS AP AP50 AP75 AR

SimpleBaseline Xiao et al. (2018) 256× 192 68.6 15.7 72.0 89.3 79.8 77.8
HRNet-W48 Sun et al. (2019) 256× 192 63.6 14.6 75.1 90.6 82.2 80.4
TokenPose-B Li et al. (2021) 256× 192 13.5 5.7 74.7 89.8 81.4 80.0
TokenPose-L/D24 Li et al. (2021) 256× 192 27.5 11.0 75.8 90.3 82.5 80.9
ViTPose-S Xu et al. (2022) 256× 192 24.3 5.6 73.9 90.3 81.6 79.2
ViTPose-B Xu et al. (2022) 256× 192 89.9 18.5 75.7 90.5 82.9 80.9
SHaRPose-Small An et al. (2024) 256× 192 28.4 4.9 74.2 90.2 81.8 79.5
SHaRPose-Base An et al. (2024) 256× 192 93.9 17.1 75.5 90.6 82.3 80.8
RTMPose Jiang et al. (2023) 256× 192 27.7 4.2 74.8 - - -
SimCC Li et al. (2022) 256× 192 66.3 14.6 75.9 - - 81.2
FlatPose-B (Ours) 256× 192 21.6 2.8 75.4 93.6 82.7 78.4
FlatPose-L (Ours) 256× 192 37.3↓60% 4.9↓71% 77.4↑1.9 93.6 84.9 80.2

HRNet-W48 Sun et al. (2019) 384× 288 63.6 32.9 76.3 90.8 82.9 81.2
ViTPose-B Xu et al. (2022) 384× 288 89.9 44.1 76.9 90.9 83.2 82.1
SHaRPose-Base An et al. (2024) 384× 288 93.9 32.9 77.4 91.0 84.1 82.4
FlatPose-L (Ours) 384× 288 37.4↓60% 11.5↓65% 78.2↑0.8 93.7 85.1 80.9

4.2 RESULTS ON COCO VAL SET

Table 2 shows our results on the COCO validation set, where FlatPose demonstrates a superior
accuracy-efficiency trade-off. At an input resolution of 256×192, our lightweight FlatPose-B model
achieves a competitive 75.4 AP with only 2.8 GFLOPS. This showcases a remarkable efficiency,
as it outperforms recent lightweight models like RTMPose-m by 0.6 AP while using 33% fewer
GFLOPS. Our premier model, FlatPose-L, sets a new state of the art for this resolution with 77.4
AP. This result surpasses heavyweight models like ViTPose-B by 1.7 AP and SHaRPose-Base by 1.9
AP, and also outperforms strong coordinate-based methods such as SimCC by 1.5 AP. Crucially, this
superior accuracy is achieved with a fraction of the computational cost; its 4.9 GFLOPS represent
a 73% reduction compared to ViTPose-B and a 66% reduction compared to SimCC. At the higher
384 × 288 resolution, FlatPose-L again achieves a top performance of 78.2 AP, beating previous
methods with a 65% reduction in computational cost. As shown in Figure 4, the model’s learned
attention maps confirm its ability to adaptively focus on relevant body regions, which contributes to
the precise final pose.

Input Attn. Map Output Input Attn. Map Output Input Attn. Map Output

Figure 4: This figure visualizes our model’s learned attention maps, demonstrating its ability to
adaptively focus on relevant body regions for precise final pose estimation.

4.3 RESULTS ON COCO TEST-DEV SET

On the challenging COCO test-dev set, our FlatPose-L model confirms its strong generalization and
efficiency, as shown in Table 3. It achieves a state-of-the-art 76.7 AP, outperforming a series of
strong contenders. Notably, it surpasses the recently proposed SAR by 0.4 AP, as well as estab-
lished methods like ViTPose-B by 0.5 AP and SIMCC by 0.7 AP. Crucially, this top-tier accuracy

7
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Table 3: Comparison with state-of-the-art methods on the COCO test-dev set. All models use an
input size of 384 × 288. Our FlatPose-L is directly compared to ViTPose-B. Best results for each
metric are in bold.

Method Input Params(M) GFLOPS AP AP50 AP75 AR

SimpleBaseline Xiao et al. (2018) 384× 288 68.6 35.6 73.7 91.9 81.1 79.0
HRNet-W48 Sun et al. (2019) 384× 288 63.6 32.9 75.5 92.5 83.3 80.5
SIMCC Li et al. (2022) 384× 288 66.3 32.9 76.0 92.4 83.5 81.1
SAR Wang & Zhang (2024) 384× 288 - - 76.3 92.5 83.6 81.2
TokenPose-L/D24 Li et al. (2021) 384× 288 29.8 22.1 75.9 92.3 83.4 80.8
ViTPose-B Xu et al. (2022) 384× 288 89.9 44.1 76.2 92.7 83.7 81.3
FlatPose-L (Ours) 384× 288 37.4↓58% 11.5↓74% 76.7↑0.5 92.8 84.3 81.7

is delivered with only 11.5 GFLOPs and 37.4M parameters, representing massive 74% and 58%
reductions in computation and model size, respectively, when compared to ViTPose-B.

4.4 RESULTS ON CROWDPOSE AND MPII

On the challenging CrowdPose and MPII benchmarks, FlatPose demonstrates strong robustness and
generalization. The comprehensive results are presented in Table 4. On the CrowdPose test set,
our FlatPose-L model achieves a competitive performance of 67.9 AP, outperforming methods like
ViTPose-B and SARPose, and showing an improvement over the strong HRNet-W32 baseline. For
the MPII validation set, FlatPose-L achieves a leading result of 90.7 PCKh@0.5, surpassing other
strong methods such as GatedUniPose and HRNet. It is worth noting that all results reported for the
MPII dataset were obtained using a 256× 256 input size.

Table 4: Comparison with state-of-the-art methods on the CrowdPose and MPII datasets. For meth-
ods not evaluated on a specific dataset, results are marked with ’-’.

Method CrowdPose MPII

AP AP(E) AP(M) AP(H) PCKh@0.5

HRNet-W32 Sun et al. (2019) 67.5 77.0 68.7 55.3 90.0
ViTPose-B Xu et al. (2022) 66.5 76.1 67.9 54.6 -
SRPose Wang et al. (2023) 64.7 74.4 65.7 52.3 -
SARPose Wang & Zhang (2024) 66.3 73.7 63.0 57.6 -

SimpleBaseline Xiao et al. (2018) - - - - 88.2
SimCC Li et al. (2022) - - - - 90.0
TokenPose Li et al. (2021) - - - - 89.4
GatedUniPose Feng et al. (2024) - - - - 90.2

FlatPose-L (Ours) 67.9 78.6 69.4 54.0 90.7

4.5 ABLATION STUDY

To analyze the contribution of each key component and validate our design choices, we conduct a
comprehensive series of ablation studies on the COCO validation set. All experiments are based on
our FlatPose-B configuration unless otherwise specified. The results are consolidated in Table 5.

Analysis of Core Design Choices. Part A of Table 5 validates our fundamental design decisions.
First, to isolate the contribution of our head architecture from the backbone, we replaced Con-
vNeXtV2 with a standard ResNet-50. As shown in row (2), our FlatPose head with a ResNet-50
backbone achieves 73.9 AP, significantly outperforming a standard upsampling-based SimpleBase-
line (row 1) which scored 72.0 AP. This result confirms the effectiveness of our proposed head,
which improves performance by 1.9 AP while simultaneously using 16% fewer GFLOPs. Second,
we tested an alternative prediction paradigm by replacing our SimCC classification head with a di-
rect regression head trained with L1 loss (row 3). This led to a substantial 1.1 AP drop from 75.4 to

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Comprehensive ablation studies of FlatPose on the COCO validation set. We analyze the
core design choices, attention mechanism, architecture depth, and refinement strategy. The baseline
for most ablations is our FlatPose-B model.

Group Configuration Params (M) GFLOPS AP

Part A: Core Design Choices
(1) SimpleBaseline (ResNet-50 + Deconv Head) 34.0 5.5 72.0
(2) FlatPose (ResNet-50 Backbone) 33.4 4.6 73.9
(3) FlatPose-B w/ Regression Head (L1 Loss) 21.9 2.9 74.3
(4) FlatPose-B + Upsampling Layers 24.8 3.9 75.5
(5) FlatPose-B (ConvNeXtV2-N, Ours) 21.6 2.8 75.4

Part B: Attention Mechanism
(6) FlatPose-B w/o ICA (Standard Attention) 21.3 2.7 74.1
(5) FlatPose-B w/ ICA (Ours) 21.6 2.8 75.4

Part C: Architecture Depth (Coarse + Refine)
(7) 3 + 3 Blocks 21.5 2.8 75.2
(8) 4 + 4 Blocks 23.2 2.9 75.5
(9) 4 + 2 Blocks (Ours) 21.6 2.8 75.4

Part D: Refinement Strategy (K value)
(10) K = 2 21.6 2.8 75.2
(11) K = 8 21.6 2.8 75.3
(12) K = Full 21.6 2.8 75.4
(13) K = 4 (Ours) 21.6 2.8 75.4

74.3, demonstrating that the coordinate classification scheme is crucial for maintaining high perfor-
mance in our upsampling-free framework. Finally, to justify our upsampling-free design, we created
a variant by adding upsampling layers after our Transformer blocks (row 4). While this slightly in-
creased performance by 0.1 AP (from 75.4 to 75.5), it came at the cost of a nearly 40% surge in
GFLOPs, confirming that our upsampling-free approach provides a much better accuracy-efficiency
trade-off.

Analysis of Model Components. Part B, C, and D analyze the specific components of our model.
In Part B, replacing our proposed Implicit Coordinate Attention (ICA) with standard self-attention
(row 6) causes a 1.3 AP drop with negligible changes in complexity, highlighting the importance of
ICA’s learned geometric priors. Part C explores the optimal depth and configuration of our coarse
and refine stages. While the 4+4 configuration (row 8) achieves the highest AP at 75.5, the 4+2
block configuration (row 9) achieves a very close 75.4 AP with fewer parameters. We therefore
adopt the 4+2 structure as it provides the best balance of performance and complexity. Lastly, Part
D studies the impact of the number of selected tokens (K) in the refinement stage. Choosing K = 4
(row 13) achieves the same peak performance as attending to all tokens (“Full”, row 12), but with
significantly lower computational overhead in the refinement stage, making it the optimal choice.

5 CONCLUSION

In this paper, we addressed the high computational cost associated with the upsampling layers
common in human pose estimation. We proposed FlatPose, a novel and entirely upsampling-free
framework that operates directly on low-resolution feature maps. Our approach is built upon the
robustness of the coordinate classification paradigm and introduces a two-stage feature enhance-
ment strategy. The core of our method is the novel Implicit Coordinate Attention (ICA), which
learns a dynamic “semantic coordinate system” to effectively capture complex geometric relation-
ships from flattened features. This is complemented by an iterative refinement stage using salience-
guided cross-attention, which efficiently focuses computation on salient regions to achieve high pre-
cision. Extensive experiments on challenging benchmarks, including COCO, MPII, and CrowdPose,
demonstrate that FlatPose achieves a highly competitive trade-off between accuracy and efficiency,
outperforming strong baselines while using significantly fewer computational resources. Ultimately,
this work demonstrates that high-accuracy pose estimation does not solely depend on spatial upsam-
pling, providing an effective and promising new paradigm for efficient HPE model design.
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A APPENDIX: ANALYSIS ON THE ROBUSTNESS OF COORDINATE
CLASSIFICATION TO FEATURE RESOLUTION

The disparate reliance on feature upsampling between heatmap-based and coordinate classification-
based paradigms stems from fundamental differences in their strategies for encoding and decoding
keypoint location information. This difference becomes visually evident when comparing the quality
of the final (or equivalent) heatmaps as the spatial resolution of the input feature maps changes, as
illustrated in Figure 5.

Heatmap=64×48 Heatmap=32×24 Heatmap=16×12 Heatmap=8×6

Heatmap

SIMCC

Figure 5: A visualization comparing the generated (or equivalently reconstructed) heatmaps from
the two methods as the input feature map resolution is progressively reduced. Notably, even as the
resolution of the feature map fed into the SimCC head decreases significantly, the reconstructed
equivalent heatmap maintains clear and localizable peaks. While the sharpness or confidence of
these peaks may slightly diminish, they do not suffer the catastrophic degradation seen in the tradi-
tional heatmap approach.

Heatmap-based Methods explicitly encode the location of a keypoint k into a 2D spatial proba-
bility distribution, the heatmap Mk ∈ RHout×Wout . The localization precision is directly coupled
with the heatmap’s spatial resolution Hout,Wout. When the heatmap is generated from a low-
resolution feature map F ∈ RC×Hf×Wf from the backbone (i.e., Hout ≈ Hf ,Wout ≈ Wf ), the
effective stride S = Himage/Hf is large. This means a single pixel in the heatmap corresponds
to a large S × S region in the original image, introducing significant quantization error. This
coarse discretization limits the heatmap’s ability to represent sub-pixel locations accurately, losing
high-frequency spatial details. From an information theory perspective, this constrains the “spa-
tial bandwidth” available for encoding the precise location. Therefore, upsampling is critical for
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heatmap-based methods, as it generates higher-resolution heatmaps (H ′
out ≫ Hf ,W

′
out ≫ Wf ),

thereby increasing the capacity for spatial encoding to carry finer location information and maxi-
mizing the mutual information I(Mk;Ltrue) between the predicted heatmap and the true keypoint
location.

Coordinate Classification Methods (e.g., SimCC) , in contrast, adopt a different encoding strat-
egy. They decouple the 2D localization problem into two independent 1D classification tasks, pre-
dicting the coordinates for the X and Y axes separately. The outputs are two probability vectors,
PX ∈ RWbins and PY ∈ RHbins , where Wbins and Hbins are the number of predefined discrete
coordinate “bins”. The core advantage of this approach is that the resolution of the output coordi-
nates—determined by Wbins and Hbins, which can be set to be much larger than Wf and Hf—is
effectively decoupled from the spatial resolution of the input feature map F . The model learns a
mapping function g : F 7→ (PX , PY ). Even if the input feature F is spatially coarse (i.e., small
Wf , Hf without upsampling), as long as it retains sufficient discriminative cues (often encoded in
the channel dimension C), a sufficiently powerful mapping function g (which in FlatPose is en-
hanced by Transformer blocks) can effectively transform these cues into fine-grained 1D probabil-
ity distributions. The final coordinate is typically decoded by calculating the expected value, e.g.,
xk =

∑Wbins−1
i=0 i · PX(i), which inherently provides a form of sub-pixel interpolation. Therefore,

the information bottleneck in the coordinate classification paradigm lies more in the effectiveness
of extracting discriminative information from F (i.e., I(F ;Ltrue)) and the capacity of the mapping
function g, rather than the spatial “bandwidth” limitation of the output representation itself.

In summary, the strong dependency of heatmap-based methods on upsampling arises from their
spatial encoding of positional information. In contrast, coordinate classification methods, through
information transformation and the decoupling of output and input spaces, demonstrate the potential
for high-precision localization without the need for explicit spatial upsampling, providing the key
theoretical underpinning for efficient models like FlatPose.

B APPENDIX: QUALITATIVE VISUALIZATION RESULTS ON COCO

To provide an intuitive understanding of our model’s performance, Figure 6 presents qualitative
results on challenging examples from the COCO test-dev set. These visualizations showcase Flat-
Pose’s ability to accurately localize keypoints even in complex scenarios involving varied poses,
scales, and occlusions. The results align with our quantitative findings, demonstrating the robust-
ness and high precision of our upsampling-free approach.

Figure 6: Qualitative visualization of our FlatPose-L model on the COCO test-dev set. The model
demonstrates strong localization capabilities across a diverse range of human poses and complex
scenes without relying on any upsampling layers.
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C APPENDIX: LIMITATIONS AND FUTURE WORK

While FlatPose demonstrates a highly competitive balance between accuracy and efficiency, its core
design choice—the complete abandonment of upsampling layers—introduces specific trade-offs.
These are most evident in its slightly lower performance on certain metrics, namely the Average
Recall (AR) on the COCO validation set and the Average Precision for hard instances (AP (H)) on
the CrowdPose benchmark. We attribute these limitations to the inherent challenges of processing
spatially coarse feature maps.

Reduced Recall on COCO val. As shown in our combined results table, our FlatPose-L model,
despite achieving a higher overall AP, reports a slightly lower AR. Average Recall primarily mea-
sures the model’s ability to detect all ground-truth keypoints, regardless of precision. Our hypoth-
esis is that the initial aggressive downsampling in the backbone network, which produces the low-
resolution feature map for FlatPose, can lead to information loss for certain keypoints. Specifically,
keypoints that are very small in scale, have low contrast, or are subtly defined might have their
feature signatures “averaged out” or merged with the background in the coarse feature grid. Once
this information is lost, even a powerful feature enhancement mechanism like our Transformer head
cannot recover it, leading to a failure to detect (a “miss”) for these challenging keypoints. In con-
trast, methods that utilize upsampling maintain a finer spatial grid, which offers a better chance of
preserving these weak signals, thus benefiting recall.

Difficulty in Densely Crowded Scenes. On the CrowdPose dataset, which is specifically designed
to test robustness in crowded environments, FlatPose-L achieves a competitive overall AP but shows
a certain gap in the “Hard” metric (AP (H)). This metric evaluates performance on instances with
severe occlusion or very close proximity. The primary challenge here is feature entanglement. In
a low-resolution feature map, keypoints from multiple, closely interacting individuals can be pro-
jected onto the same or adjacent feature cells. This creates highly ambiguous feature representations
where signals from different people are conflated. While our ICA mechanism is designed to model
geometric relationships, it may struggle to first disentangle these aliased features that have lost their
precise spatial separation. Upsampling-based methods inherently mitigate this issue by creating
more spatial “bins,” allowing features from different individuals to remain more spatially distinct
and thus easier to process, which is particularly crucial for the most challenging crowded cases.

Future Work. These limitations highlight a clear trade-off between computational efficiency and
the ability to resolve spatial ambiguity. Future work could explore hybrid approaches that intro-
duce minimal, highly targeted upsampling or employ more sophisticated feature disentanglement
techniques that can operate effectively on coarse feature maps. Developing attention mechanisms
specifically designed to deconvolve mixed signals within a single feature token could also be a
promising direction to enhance performance in crowded scenes without sacrificing the efficiency of
the upsampling-free paradigm.

D APPENDIX: HYPERPARAMETER DETAILS AND PSEUDOCODE FOR ICA

In response to the reviewer’s feedback, this section provides a detailed breakdown of the Implicit
Coordinate Attention (ICA) mechanism, first detailing its hyperparameters and then presenting a
formal pseudocode description of its forward pass.

D.1 ICA HYPERPARAMETER CONFIGURATION

Table 6 presents a comprehensive list of hyperparameters for the ICA module, clarifying its archi-
tecture and parameterization.

D.2 ICA PSEUDOCODE

Algorithm 1 provides the step-by-step procedure for the ICA forward pass, detailing how the
content-based attention scores are augmented with the dynamically generated semantic bias.
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Table 6: Detailed hyperparameter configurations for the Implicit Coordinate Attention (ICA) mod-
ule.

Hyperparameter Symbol Value /
Configuration

Description

Embedding Dimension D 256 The input/output dimension for each token.
Number of Heads Nh 8 The number of parallel attention heads.
Dimension per Head dk 32 The dimension for Q, K, V in each head

(D/Nh).
Semantic Coord. Dim. D′ 64 Intermediate dimension for semantic

coordinates (D/4).
Coord. Gen. Scale γ (D′)−0.5 Fixed scaling factor of 0.125 for stability.
Bias Grid Size S 16 The spatial dimension of the learnable bias

grid (S × S).
Bias Grid Feature Dim. Dbias 64 The channel dimension for each point in the

bias grid.
Interpolator MLP MLPinterp Input: Dbias + 2 = 66

Hidden: Linear(128),
GELU
Output: Linear(8)

The MLP refining interpolated features to
produce the final bias for each head.

Algorithm 1 Implicit Coordinate Attention (ICA) Forward Pass

1: Input: Token sequence X ∈ RL×D, feature map dimensions Hf ,Wf .
2: Parameters: Projection matrices Wq,Wk,Wv,Wo; semantic coord. matrices

Wq,x,Wk,x,Wq,y,Wk,y; learnable bias grid Gbias; interpolator MLP MLPinterp.

3: # — 1. Standard Content-based Attention Path —
4: Qattn,Kattn, Vattn ← XWq, XWk, XWv ▷ Project to Q, K, V for content
5: Reshape Qattn,Kattn, Vattn to split into Nh heads.
6: Scorecontent ← (QattnK

T
attn)/
√
dk ▷ Shape: (Nh, L, L)

7: # — 2. Dynamic Semantic Bias Path —
8: # 2a. Generate semantic coordinates
9: qr,x, kr,x ← XWq,x, XWk,x

10: cx ← tanh(γ · sum(qr,x ⊙ kr,x, dim = −1)) ▷ Shape: (L, )
11: qr,y, kr,y ← XWq,y, XWk,y

12: cy ← tanh(γ · sum(qr,y ⊙ kr,y, dim = −1)) ▷ Shape: (L, )

13: # 2b. Compute relative bias from coordinates
14: ∆cx ← |cx[:,None]− cx[None, :]| ▷ Relative distance matrix, shape: (L,L)
15: ∆cy ← |cy[:,None]− cy[None, :]|
16: pquery ← stack([∆cx − 1,∆cy − 1], dim = −1) ▷ Normalize to [−1, 1]2
17: finterp ← GridSample(Gbias, pquery) ▷ Bilinear interpolation
18: Binput ← concat(finterp, pquery)
19: B ← MLPinterp(Binput) ▷ Shape: (L,L,Nh)
20: B ← permute(B, (2, 0, 1)) ▷ Final bias, shape: (Nh, L, L)

21: # — 3. Combine, Attend, and Output —
22: Scorefinal ← Scorecontent +B
23: A← Softmax(Scorefinal) ▷ Attention weights
24: Yheads ← AVattn
25: Ymerged ← merge heads(Yheads)
26: Y ← YmergedWo

27: Return: Output token sequence Y ∈ RL×D
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