
ON THE TRANSFERABILITY OF DEEP-Q NETWORKS

ABSTRACT

Transfer Learning (TL) is an efficient machine learning paradigm that allows over-
coming some of the hurdles that characterize the successful training of deep neural
networks, ranging from long training times to the needs of large datasets. While
exploiting TL is a well established and successful training practice in Supervised
Learning (SL), its applicability in Deep Reinforcement Learning (DRL) is rarer.
In this paper, we study the level of transferability of three different variants of
Deep-Q Networks on popular DRL benchmarks as well as on a set of novel, care-
fully designed control tasks. Our results show that transferring neural networks
in a DRL context can be particularly challenging and is a process which in most
cases results in negative transfer. In the attempt of understanding why Deep-Q
Networks transfer so poorly, we gain novel insights into the training dynamics
that characterizes this family of algorithms.

1 INTRODUCTION

Over the last years, the marriage between Reinforcement Learning (RL) algorithms and deep neural
networks, commonly denoted as Deep Reinforcement Learning (DRL) (François-Lavet et al., 2018)
has gained tremendous attention (Henderson et al., 2018). Neural networks have, in fact, proven
to be extremely successful both in a model-free RL setting as in a model-based one. Large part of
their success can be attributed to their ability of serving as feature extractors as well as function
approximators, a property that allows them to successfully learn optimal value functions (Mnih
et al., 2013; 2015; Van Hasselt et al., 2016; Zhao et al., 2016; Wang et al., 2016b; Sabatelli et al.,
2020), stochastic policies (Lillicrap et al., 2015; Schulman et al., 2015b;a; Wang et al., 2016a; Mnih
et al., 2016; Schulman et al., 2017; Haarnoja et al., 2018; Fujimoto et al., 2018), and models of
an environment (Ha & Schmidhuber, 2018; Kaiser et al., 2019; Hafner et al., 2019a;b; 2020) that
is usually formalized as a Markov Decision Process (MDP) Puterman (1990). Despite the many
remarkable achievements, training a DRL agent is a process that can be very time-consuming. The
task of solving an optimal decision making problem is, in fact, a challenging problem of its own,
which is sometimes made even more difficult by the DRL community itself, which requires DRL
practitioners to test the performance of their algorithms on benchmarks that are computationally
very expensive (for a position paper about this topic see (Obando-Ceron & Castro, 2020)). One
way of overcoming the need of individually training a DRL agent from scratch each time a new
RL problem is encountered is based on Transfer Learning (TL). TL focuses on designing training
strategies that allow machine learning models to retain and reuse previously learned knowledge
when getting trained on new, unseen problems (Pan & Yang, 2009; Zhuang et al., 2020). Within
deep learning, TL is largely adopted by the Supervised Learning (SL) community (Huh et al., 2016;
Mormont et al., 2018; Sabatelli et al., 2018a; Domı́nguez Sánchez et al., 2019; Vandaele et al.,
2021; Ho & Kim, 2021), as it allows to train neural networks on problems that are characterized
by a lack of appropriate training data or sufficient computational resources; however, typical TL
approaches such as off the shelf feature extraction, or fine-tuning (Sharif Razavian et al., 2014) have
rarely been thoroughly studied from a DRL perspective. Therefore, the degree of transferability of
DRL algorithms is not yet known. In this work, we focus on value-based, model-free algorithms,
a family of techniques which focuses on training neural networks with the intent of learning an
approximation of an optimal value function. While several of such algorithms, commonly denoted
as Deep-Q Networks, exist, research studying their TL properties is, on the contrary scarce, and a
clear answer to the question ”How transferable are Deep-Q Networks?” has yet to be given. In the
attempt to clearly answering this question, we present the following three contributions:
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• We present a first large scale empirical study that analyses the TL properties of popular
model-free DRL algorithms on the Atari Arcade Learning Environment (ALE), where we
show that transferring pre-trained networks in a DRL context can be a very challenging
task.

• We design a set of novel, control experiments which allows us to thoroughly characterize
the TL dynamics of Deep-Q Networks.

• While studying Deep-Q Networks from a TL perspective, we discover novel learning dy-
namics that provide a better understanding of how this family of algorithms deals with RL
tasks.

2 A LARGE-SCALE EMPIRICAL STUDY

In this section, we carry out a large-scale TL experiment on several games from the Atari Environ-
ment (Sec. 2.1). The experimental protocol is detailed in Sec. 2.2 and results are discussed in Sec.
2.3.

2.1 THE ATARI ENVIRONMENT

In this study, we use the Atari Arcade Learning Environment (ALE) (Bellemare et al., 2013). Next
to being one of the most popular benchmarks in DRL, the ALE is particularly well suited for TL
research as it allows to choose among a set of 57 Atari games that can be used as sourceMS and
target MT MDPs within a deep transfer learning setting. Since training a model-free agent on
the games of the ALE is a process which can be computationally very expensive, we have carefully
selected a subset of 10 different environments. Numerous reasons guided the game selection process.
First, we have selected games for which we guarantee that a model-free DRL agent can learn a
good policy for. Since, as discussed by Lazaric (2012), one of the key requirements of TL is that of
correctly identifying and transferring knowledge across source and target tasks, we naturally ensured
that some knowledge coming in the form of neural network parameters representing a near-optimal
value function was available for transfer. Second, while it is true that all of the selected games result
in an agent that can improve its policy over time, some games were chosen because the learned
policy resulted in a final performance that was not on par with that of a human expert player. This
is, for example, the case of the Frostbite game, where the gap in performance between an agent
trained with the DQV-Learning algorithm (Sabatelli et al., 2018b) (≈ 270) and a human expert
player (≈ 4300) is particularly significant. It follows that Frostbite is an interesting target task for
transfer, as the agent’s performance can potentially be improved through TL. Furthermore, we have
also ensured that among the selected games, some environments are more similar to each other than
others. This is, for example, the case for the Ms. Pacman and Bank Heist games which, as can be
seen in Fig. 1, are two games where the state space is represented as a maze, and where the end goal
of an agent is that of learning how to navigate it. In like manner, we have also included games that
are very different from each other as is, e.g., the case for the Crazy Climber and Pong games, where
it is clear from Fig. 2 that no visual similarities are shared among the two environments. Including
visually similar and dissimilar games allows us to investigate whether, as is the case for supervised
learning, a source task is particularly well suited for transfer if it is similar to its respective target
task (Mensink et al., 2021).

Figure 1: The visually similar Ms
Pacman and Bank Heist games.

Figure 2: The highly different
Crazy Climber and Pong games.
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2.2 EXPERIMENTAL SETUP

We investigate the TL performance of agents that get trained with the DQV-Learning algorithm
(Sabatelli et al., 2018a), and with the DDQN algorithm (Van Hasselt et al., 2016). We take models
which come as pre-trained on 10 Atari games and transfer them to all remaining environments. We
mostly consider the same games for both algorithms (Bank Heist, Boxing, Crazy Climber,
Fishing Derby, Frostbite, James Bond, Ms. Pacman, Pong and Zaxxon) with the only
exception that for DDQN Frostbite is replaced by Gopher, and Zaxxon is replaced by Ice Hockey
as the Frostbite and Zaxxon DDQN agents failed to improve their policy whilst training. It is
worth noting that TL is particularly easy to perform as both algorithms learn an approximation of
the optimal state-action value function Q(s, a; θ) by training a convolutional neural network (see
Appendix A for its exact architecture and all hyper-parameter settings) directly on the images rep-
resenting the state of the game. Since the state space across Atari games is always represented as an
84× 84× 4 tensor, it is straightforward to transfer the same neural architecture among various Atari
environments without needing special modifications. However, the only modification that we apply
to a pre-trained network concerns its last layer responsible for estimating the different Q values,
which we always replace and randomly re-initialize. Following the typical deep transfer learning
literature, we investigate whether in DRL it is as beneficial as it is in supervised learning to transfer
a network that comes as pre-trained onMS and fine-tune it onMT . We do this by quantitatively
assessing the transfer learning benefits on eachMS/MT pair by computing the area ratio metric
r (Taylor & Stone, 2009). Specifically, given a learning curve representing the performance of an
agent pre-trained onMS , and that of an agent that is instead trained from scratch, we compute r as
follows:

r =
area ofMS − area ofMT

area ofMT
. (1)

2.3 RESULTS

The results on eachMS/MT pair for both the DQV and DDQN algorithms are presented in Table
1. In each cell of the tables, we report the area ratio metric defined in Eq. 1: the lower (resp.
higher) this score, the less (resp. more) beneficial it is to transfer and fine-tune a pre-trained agent.
When it comes to the DQV algorithm, we can see that, out of nine target environments, there is
only one Atari game for which it is always beneficial to transfer and fine-tune a pre-trained model:
Fishing Derby. In fact, a positive area ratio score is obtained no matter which source environment
is used for pre-training, although the best results have been obtained when starting from an Enduro
or Pong pre-trained network, which both resulted in an area ratio score of ≈ 0.72. Positive transfer
can also be observed on the Frostbite and James Bond games, but only for a limited number of
source games. For example, a Bank Heist pre-trained agent transfers well to both target games as it
obtains an area ratio score of 0.729 and 0.973 respectively, but the same cannot be said for an Enduro
pre-trained network, which on Frostbite results in absent transfer (the area ratio score is, in fact,
−0.017), and yields negative transfer on James Bond (r = −0.41). We can also observe that there
are environments where it is surprisingly never beneficial to transfer and fine-tune a pre-trained
agent. This is, for example, the case for the Bank Heist and Pong games, where independently
from which source gameMS is used for pre-training, a negative area ratio score is always obtained.
Furthermore, it can also be observed that transfer learning across environments is not symmetric, as
one source gameMS can result in positive transfer when it gets transferred to a certain target game
MT , but the same outcome is not obtained when transfer is performed in the opposite direction.
As an example we can consider the Boxing/Fishing Derby games: positive transfer is obtained
when transferring from Boxing→Fishing Derby (r = 0.552), but negative transfer is obtained
when transferring from Fishing Derby → Boxing (r = −0.893). When it comes to the DDQN
algorithm, similar conclusions can be drawn: we can again observe that there are only very few
cases for which it is beneficial to transfer and fine-tune a pre-trained DRL agent. Examples of such
cases are networks that are pre-trained on Ice Hockey and James Bond which get transferred to
Boxing (r = 0.245 and r = 0.232 respectively), or Boxing and Enduro models that get transferred
to Pong (r = 0.936 and r = 0.248). Bank Heist and Pong are again the two target environments
for which most of the transferred source models resulted in negative transfer, while differently from
the experiments performed with the DQV algorithm, this time no positive transfer can be observed
on Fishing Derby. Overall, the process of fine-tuning a pre-trained DDQN agent mostly results in
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Table 1: The results obtained when fine-tuning ten different pre-trained agents (rows) on nine other
Atari games (columns), with DQV (top table) and DDQN (bottom table). Positive values (in cyan)
represent positive transfer, while negative values (in orange) represent negative transfer. The darker
the color, the higher the absolute value of the area ratio score.

DQV BankHeist Boxing CrazyClimber Enduro FishingDerby Frostbite JamesBond MsPacman Pong Zaxxon
BankHeist - -0.019 -1 -0.317 0.5 0.729 0.973 -0.089 -1.238 -0.998

Boxing -0.494 - -0.278 -0.852 0.552 -0.01 0.247 -0.184 -0.841 -0.999
CrazyClimber -0.569 -0.261 - -0.593 0.19 0.277 0.621 -0.111 -1.206 -0.178

Enduro -0.571 -0.018 -0.25 - 0.726 -0.017 -0.41 -0.08 -0.466 -0.164
FishingDerby -1 -0.893 -0.093 -0.45 - 0.068 0.197 -0.136 -3.083 -0.999

Frostbite -0.933 0.024 -1 -0.348 0.222 - 0.569 0.009 -0.663 -0.076
JamesBond -0.123 -0.106 -0.131 -0.033 0.519 0.262 - 0.218 -1.329 -1
MsPacman -0.985 -0.219 -0.012 -0.494 0.6 0.346 0.398 - -1.646 -0.997

Pong -1 -0.083 -0.428 -0.476 0.725 -0.024 0.896 0.123 - -0.729
Zaxxon -0.76 -0.028 0.037 -0.116 0.385 0.16 -0.253 0.06 -1.602 -

DDQN BankHeist Boxing CrazyClimber Enduro FishingDerby Gopher IceHockey Jamesbond MsPacman Pong
BankHeist - 0.121 -0.378 -0.006 -0.107 0.042 -0.006 -0.058 0.001 -3.013

Boxing -0.316 - -0.104 -0 0.038 0.06 0.015 -0.225 -0.027 0.936
CrazyClimber -0.192 -0.487 - -0.012 -0.084 0.016 0.015 0.016 -0.015 -2.64

Enduro -0.296 0.193 -0.167 - 0.039 0.03 0.019 -0.235 -0.039 0.248
FishingDerby -0.212 -0.545 -1 -0.085 - 0.016 0.001 -0.055 -0.026 -0.935

Gopher -0.466 0.044 -0.108 -0.005 0.007 - -0.005 -0.094 -0.02 -1.816
IceHockey -0.046 0.245 -0.067 0.014 -0.178 0.072 - 0.037 -0.015 0.112
Jamesbond -0.145 0.232 -0.064 0.005 -0.267 0.031 -0.092 - -0.006 -1.578
MsPacman -0.173 -1.179 -0.129 -0.06 0.003 -0.019 0.007 0.071 - -2.774

Pong -0.127 0.028 -0.12 0.01 0.037 0.042 0.002 -0.174 -0.006 -

absent transfer, as can be observed by the area ratio scores obtained on Enduro, Fishing Derby,
Gopher and Ice Hockey which are all ≈ 0 on average.

3 CONTROL EXPERIMENTS

The results presented in the previous section seem to be questioning the level of transferability
of DRL agents. In fact, the training strategy of fine-tuning a pre-trained model on MT does not
result in the same type of performance gains that have been extensively observed in a supervised
learning context. To better characterize their TL properties, we have designed a set of simple control
experiments that allow us to examine their transfer learning behavior in training conditions that do
not require extraordinarily long training times for learning an optimal policy.

3.1 THE CATCH ENVIRONMENTS

To this end, we have implemented four different versions of the Catch game, a simple RL task that
was first presented by Mnih et al. (2014), and that has been widely used within the literature for
investigating the performance of DRL algorithms in a fast, and computationally less expensive man-
ner than the one required by the Atari games (van de Wolfshaar et al., 2018; Aittahar et al., 2020).
In the game of Catch, an agent controls a paddle at the bottom of the environment, represented by
a 21× 21 grid, and has to catch a ball falling from top to bottom, which can potentially bounce off
walls. At each time step, the agent can choose between three actions: move the paddle one pixel to
the right, move it to the left, or keep it in the same position in the grid. An RL episode ends either
when the agent manages to catch the ball, in which case it receives a reward of 1, or when it misses
the ball, which naturally results in a reward of 0. Following the design choices presented in (van de
Wolfshaar, 2017), we model the ball to have vertical speed of vy = −1 cell/s and horizontal speed
of vx ∈ {−2,−1, 0, 1, 2}. From now on, we will refer to this version of the game as Catch-v0, as it
is the most basic and simplest form of the game that will be used throughout our experiments. Next
to Catch-v0 we have implemented three slightly different and arguably more complex versions of
the game as well: Catch-v1, where we increased the complexity of the game by reducing the size
of the paddle that the agent controls. While for Catch-v0 its size is of five pixels, in Catch-v1 it is
of two pixels, therefore requiring the agent to be more precise if it wants to successfully catch the
falling ball. The second alternative version of Catch is Catch-v2. In this case, the dynamics of the
game are identical to the ones that define Catch-v0; however, the way the 21×21 grid is represented
changes. While in Catch-v0 as well as in Catch-v1 the state is represented by a binary grid where
all pixels, but the ones representing the paddle and the ball have a value of 0, in Catch-v2 the cells
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around the paddle and the ball can have a random value between 0 and 255. This design choice

0 100 200 300

0.2

0.4

0.6

0.8

1

Epochs

%
of

ca
ug

ht
ba

lls Catch-v0
Catch-v1
Catch-v2
Catch-v3

Figure 3: Image on the left: the four different versions of the Catch environment. In clockwise order:
Catch-v0, Catch-v1, Catch-v3 and Catch-v2. Image on the right: learning curves obtained by
a DQN agent that is trained from scratch on the aforementioned Catch versions. Shaded areas
correspond to ±1 std. obtained over 5 different random seeds.

makes it much harder for a convolutional network to correctly locate and identify the position of the
paddle and of the falling ball and makes Catch-v2 the arguably most complex version among the
different Catch environments. Lastly, we have implemented Catch-v3, a version of Catch which
is identical to the one that is modeled by Catch-v0 with the main difference that the representation
of the state is now mirrored, therefore requiring the agent to look at different parts of the grid if it
wants to locate the paddle, and understand that the ball is unnaturally moving from the bottom to
the top. For an impression of all four Catch versions see the left image of Fig. 3. Given the overall
simplicity of the different Catch environments, we now train a DQN agent instead of the arguably
more complex DQV and DDQN agents that we considered in Sec. 2. As we can see from the results
reported in the right plot of Fig. 3, averaged over five different runs, the agent is able to success-
fully learn a near optimal policy for all Catch versions. When it comes to Catch-v0, Catch-v2
and Catch-v3 we can observe that by the end of training, the agent is able to catch ≈ 100% of the
falling balls, whereas its performance is slightly worse (≈ 90%) when it comes to Catch-v1 1. We
can also observe that among the different Catch versions, Catch-v0 and Catch-v3 appear to be the
easiest ones, as the agent requires significantly less training episodes to converge when compared
to Catch-v1 and Catch-v2. Furthermore, in line with the explanation presented beforehand, our
results also confirm the hypothesis that Catch-v2 is the overall most complicated Catch version, as
learning requires significantly more, and potentially unstable, training epochs.

3.2 FROM ONE CATCH TO ANOTHER

We now replicate the TL study presented in Sec. 2 on the aforementioned Catch environments, with
the hope of identifying why the process of fine-tuning a pre-trained convolutional neural network
in a DRL context, seems to not be as beneficial as it is in the supervised learning one. Our goal is
to find at least one pair of Catch environments which results in positive transfer, and to then po-
tentially identify some properties within the different Catch versions that could also hold for the
pairs of Atari games which have yielded positive transfer in Table 1. We formulate two hypothesis,
based on which, we expect to experimentally observe positive transfer. First, we foresee that positive
transfer will happen for all possible Catch combinations, as in the end the source MDPMS and the
target MDPMT do not significantly differ from each other: in fact, the main task across different
Catch versions remains that of catching a falling ball; the action space is identical; and so is the
reward function that always returns a value of 1 when the agent succeeds in catching the falling ball.
This hypothesis is also motivated by supervised learning research which shows that the higher the
similarity between the source domain DS and the target domain DT , the better the performance of a

1Please note that the performance on Catch-v1 can be improved by increasing the complexity of the DQN
agent by adding one more convolutional layer. However, as the goal is to transfer the same type of model
across Catch games, we did not modify the architecture of the DQN agent, at the cost of having a slightly
worse performing model.
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transferred pre-trained network (Sabatelli et al., 2018a). Second, in the case the previous hypothesis
will not be empirically supported, we expect to at least observe positive transfer when using a model
that comes as pre-trained either on Catch-v1 or on Catch-v2. In fact, as described above and also
shown by the performance reported in Fig. 3, these are the two most complicated versions of the
Catch environment. In supervised learning, one of the main factors that makes a certain source task
TS good for transferring is its complexity (Mensink et al., 2021), which is usually defined in terms of
dataset size and number of classes to classify, therefore we expect the complexity of the source game
to play an important role within DRL as well. Similarly to what we did for DQV and DDQN in Sec.
2, we take the four different models that have been trained from scratch on their respective Catch ver-
sion, randomly re-initialize their last layer (responsible for estimating the different state-action val-
uesQ(s, a)) and fully fine-tune the pre-trained network on the three remaining Catch environments.

Table 2: The area ratio obtained after fine-tuning a pre-
trained DQN agent on the different Catch environments. We
can see that no matter which source game is used for pre-
training, transfer learning surprisingly never results in posi-
tive transfer.

Catch-v0 Catch-v2 Catch-v3 Catch-v4
Catch-v0 - -0.026 -0.486 -0.479
Catch-v2 -0.16 - -0.121 -0.248
Catch-v3 -0.406 -0.313 - -0.465
Catch-v4 -0.016 -0.24 -0.179 -

The results of this study are re-
ported in Fig. 4, where, from left
to right, we show the performance
that is obtained when considering
Catch-v0, Catch-v1, Catch-v2 and
Catch-v3 as target MDPMT . The
performance of each transferred net-
work is compared against the per-
formance that is obtained after train-
ing a DQN agent from scratch which
matches with the results reported in
Fig. 3. Surprisingly we found that
fine-tuning a pre-trained DQN agent
never resulted in positive transfer
learning. This can clearly be seen in all plots represented in Fig. 4 and by the results reporting
the area ratio metric in Table 2. The only case where starting from a pre-trained network appeared
to be at least in part beneficial is represented by the first plot of Fig. 4 when Catch-v1 is considered
as source MDPMS . In this case we can in fact observe some learning speed improvements within
the first 25 learning epochs. This is not surprising as an agent which is able to catch a ball with a
small paddle (as defined by the game Catch-v1) should in principle also be able to do this when the
size of its paddle is larger (which is the case for Catch-v0). What is more surprising, however, is
that while training progresses we see that the performance of a Catch-v1 pre-trained model starts
deteriorating and that this model barely converges to the same performance that is obtained by a
model trained from scratch. When it comes to all other MS/MT pairs we see that pre-trained
networks always perform significantly worse than randomly initialized models trained from scratch,
with some extreme cases, as the one reported in the last plot of Fig. 4, where a Catch-v0 pre-trained
agent is barely able to improve its policy over time at all. These results invalidate our two hypotheses
mentioned above as they clearly show that positive transfer in DRL does not arise whenMS and
MT are similar, nor whenMS is more complex thanMT .
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Figure 4: The results obtained after using a pre-trained Catch agent and fine-tuning it on a different
Catch version. We can observe that despite all Catch versions being very similar no positive trans-
fer is ever observed, as a model trained from scratch always outperforms a pre-trained, fine-tuned
network.

3.3 SELF-TRANSFER

The surprisingly poor transfer learning performance observed in the previous experiment made
us question the level of transferability of Deep-Q Networks even more. To further character-
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ize their TL properties, we decided to investigate whether pre-trained DRL agents are at least
able to transfer to themselves. To this end, we studied what happens when a DQN agent gets
transferred to a version of Catch that matches with the version of the game that was also used
during the pre-training stage. This experiment is in large part identical to the one presented
in Sec. 3.2, with the only difference being that now MS = MT . Moreover, differently
from the previous study, we now also investigate what happens if instead of fine-tuning the net-
work completely, we just use the pre-trained DQN agent as a simple feature extractor, therefore
only training its last layer (the head) responsible for estimating the different state-action values.

Table 3: The area ratio scores obtained after performing self-
transfer. We can see that if only the last linear layer is trained,
then positive transfer is obtained on all Catch environments,
whereas if the network is fine-tuned, positive transfer is (in part)
only obtained on Catch-v2.

Catch-v0 Catch-v1 Catch-v2 Catch-v3
Only-Head 0.05 0.141 0.674 0.059

Fine-Tuning 0.017 -0.218 0.393 -0.236

Our results are presented in Fig.
5, where for each Catch version,
the full lines represent the per-
formance of a network that is
trained from scratch, whereas the
dashed and dotted lines respec-
tively report the performance
that is obtained when the net-
work is either used as simple
feature extractor or entirely fine-
tuned. We can see that if a pre-
trained Deep-Q Network is used
as a simple feature extractor, the agent can converge to the optimal policy almost immediately. In
fact, as can consistently be observed in all plots of Fig. 5 and from the results presented in Table 3,
training only the last layer of a pre-trained network yields positive transfer for all different Catch
versions. However, when a fine-tuning training strategy is adopted, much more surprising results
have been obtained. First, and more importantly, we can see that despite all models showing some
learning speed improvements at early training iterations, their final performance is never on par
with the one that is obtained when the same kind of model is either used as a feature extractor or
trained from scratch (the dotted lines are consistently below the dashed and full lines). While when
it comes to Catch-v0 the policy learned by a fine-tuned model still allows the agent to successfully
catch ≈ 95% of the falling balls, the same cannot be said when the models are tested on Catch-v1,
Catch-v2 and Catch-v3, where the difference in terms of performance between a model trained
from scratch and a fine-tuned one is much more significant. Please also note that special attention
should be given to Catch-v2, which is an environment where the area ratio score reported in Table 3
can be misleading as it does not entirely reflect the quality of the final policy learned by the agent. In
fact, while it is true that an r value of 0.393 is obtained, it is worth noting that a fine-tuned network
converges to a policy that is significantly worse than the one of a network trained from scratch, as
the agent is only able of catching ≈ 80% of the falling balls. Second, as highlighted by the large
variance across different training runs, fine-tuning on Catch-v1 and Catch-v3 resulted in highly
unstable learning as well.
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Figure 5: The results of our self-transfer experiments. From left to right the performance obtained
on Catchv-0, Catch-v1, Catch-v2 and Catch-v3 after either training only the last linear layer of
a pre-trained Deep-Q Network (dotted lines), or after wholly fine-tuning the model (dashed lines).
We can see that the former transfer learning strategy yields significantly better results, and that a
fine-tuning approach results in networks that in three cases out of four are not even able to transfer
to themselves.
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4 THE TWO LEARNING PHASES OF DEEP-Q NETWORKS

A prototypical Deep-Q Network takes as input an image representing the state of the environment
and processes it through a series of convolutions and a fully connected layer. When this is done, it
outputs as manyQ(s, a) values as there are actions available to the agent, a process that corresponds
to learning a linear policy in the latent feature space of the network. It follows that by the end of
training, such a model has to serve two purposes: it has to perform as a feature extractor as well as
an optimal value function approximator. Extracting relevant features from high dimensional inputs
and learning an optimal value function can arguably be seen as two separate tasks; yet, despite their
dissimilarity, we believe that they are more interconnected than one might expect. Specifically, we
hypothesize that while learning, a Deep-Q Network has to carefully find a balance between training
the parts that serve as feature extractors and the components that are responsible for estimating a
policy. The poor TL performance observed throughout this work could therefore be the result of
using models where the feature extractor component of an agent, as it comes as pre-trained, is too
detached from the respective final layer of the network, which is randomly initialized instead. To
show that a Deep-Q Network has to carefully coordinate training its feature extractor components
and its final layer, let us consider the left image of Fig. 6. The figure depicts how the weights of an
agent, whose feature extractor layers are represented by a square and the linear layer is represented
through circles, change according to the self-TL experiments presented in Sec. 3.3. Each experiment
is represented through two networks, one on the left side of the arrow representing the source model,
and a second one, on the right part of the arrow, obtained by the end of training. From top to bottom,
and from left to right, the first three network pairs represent the training process of: a randomly
initialized model trained from scratch, a pre-trained model whose only last linear layer is trained
after random initialization, and a pre-trained agent who gets fully fine-tuned. Following the results
presented in Sec. 3.3, we know that positive transfer is only obtained when the last linear layer
is trained in isolation after being randomly re-initialized, whereas negative transfer is obtained if a
fine-tuning training strategy is adopted.

Pre-training
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Figure 6: Image on the left: a visualization of differently initialized Deep-Q Networks before and
after training. Image on the right: a successful example of positive transfer.

We now investigate the TL performance of a model that is a combination of the Only-Head and
Fine-Tuning settings (see bottom right image of Fig. 6 for a visualization). Specifically, we fine-
tune a Deep-Q Network whose last linear layer is initialized with the parameters that yielded positive
transfer in Sec. 3.3 (Only-Head in Fig. 6), whereas its convolutional and fully connected layers are
initialized with the parameters that yielded negative transfer (Fine-Tuning in Fig. 6). We visualize
the self-transfer performance of these models, denoted as ‘Hybrid”, as they are a hybrid combination
of two differently pre-trained networks, in Fig. 7 with a cyan dashed dotted line. We can observe
that learning is characterized by a very atypical behavior: the network starts by improving its per-
formance (thanks to the already trained final layer); it then goes through a second stage where it
starts to perform more poorly (due to the poor feature extractor part), and then finally starts learning
stably (when the feature extractor and the head of the model are synchronized). We believe that the
poor TL performance observed throughout this work is, therefore, the result of models which could
not find a balance between a randomly initialized head and their respective pre-trained layers which
are too biased towards the source task.
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Based on these results, one critical question still remains to be answered: how come positive transfer
for some Atari games was observed in Sec. 2?. We believe that the answer to this question does not
lie within the feature representations that a Deep-Q Network learns, but rather in some inner prop-
erties of the environment that is used as target task and that favors a Deep-Q Network to correctly
synchronize its components. As a proof of concept, we have created one final Catch environment,
called Catch-v4, which is identical to Catch-v0 with the only difference being that a positive re-
ward is returned to the agent only if it manages to catch five falling balls in a row. We can see from
the right image of Fig. 6 that a model trained from scratch (represented by the purple line) is not
able to improve its policy over time at all, as the reward signal is probably too sparse for learning,
whereas a Catch-v0 model is now able to yield positive transfer. We hence believe that some en-
vironments, if combined with certain learning algorithms, are more prone to positive transfer than
others, as was, e.g., the case for Fishing Derby and DQV-Learning where positive transfer was
observed no matter what source task was used for pre-training. This is not due to the representations
that are learned by a pre-trained network but rather because of some specific dynamics within the
target MDPMT .
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Figure 7: The performance (in cyan) of a fine-tuned pre-trained network whose last layer is initial-
ized with parameters that yielded positive transfer, whereas its convolutional and fully conntected
layers are initialized with parameters that yielded negative transfer.

5 RELATED WORK & CONCLUSION

The closest research to the one presented in this work is certainly that of Farebrother et al. (2018)
and Tyo & Lipton (2020), who also studied the generalization properties of Deep-Q Networks in a
model-free DRL context. Our extensive experiments confirm some of the preliminary claims that
were made by the former about the potentially poor TL properties of Deep-Q Networks, but con-
tradict the study of the latter, who suggested that fine-tuning DRL agents results in positive transfer
when moving from a simpler task to a harder. While both works are certainly valuable, we also
believe that their experimental results are not as thorough and on par with the ones of this study as
they both considered a very limited number of RL problems (four and three respectively), therefore
leaving the question ”How transferable are Deep-Q Networks?” unanswered. We believe that the
answer to it is ”barely”, but we also believe that their poor TL properties, as well as the learning
dynamics identified in Sec. 4, are inherent to this family of algorithms only. In fact, it is worth
noting that several works describing the benefits of TL in RL do exist (but they all differ from the
study presented in this work): Tirinzoni et al. (2018) show that it possible to successfully transfer
value functions across tasks, yet their work does not consider deep networks as function approxima-
tors but rather Gaussian mixtures. Parisotto et al. (2015) show that it can be beneficial to fine-tune
a pre-trained DRL agent, but they consider multi-task learning and policy gradient algorithms as
a way of pre-training. Rusu et al. (2016) also show that fine-tuning can be beneficial, but in the
context of progressive networks and again of policy gradient techniques. Similar conclusions for
Actor-Critic algorithms can also be found in the works of Zhu et al. (2017) and Chen et al. (2021).
Furthermore, Landolfi et al. (2019) and Sasso et al. (2021) show that fine-tuning a pre-trained net-
work can be beneficial for DRL tasks, but for model-based RL approaches, which are again part of
a family of techniques that is different from the ones analyzed in this work. To conclude, we would
like to stress out that despite the overall poor TL performance observed throughout this paper, pos-
itive transfer can nevertheless be obtained in a model-free DRL setup, and hope that this paper can
serve as a solid starting point for the DRL community which is interested in designing general and
transferable agents.
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A APPENDIX

We hereafter provide additional information about how the model-free DRL algorithms considered
throughout this paper were trained. In Table 4 and 5, we provide the hyper-parameters that were used
for the large scale empirical study presented in Sec. 2, while we then describe the DQN architecture
used for the control experiments presented in Sec. 3.

DQN: The agent comes in the form a two-hidden layer convolutional neural network which is
followed by a fully connected layer of 256 hidden units preceding the final linear layer responsible
for estimating the different Q(s, a) values. The first convolutional layer has 32 channels whereas
the second one has 64 channels. All layers of the network are activated by a ReLU non-linearity. We
use an experience replay memory buffer that is set to contain 400000 trajectories, and start training
the model as soon as 5000 trajectories have been collected. For exploration purposes, we adopt the
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Table 4: Hyper-parameters used when training a DDQN agent from scratch. We follow the experi-
mental setup introduced in the original paper Van Hasselt et al. (2016).

Hyper-parameter
Atari Arcade Learning Version Deterministic-v4

Frame-Skipping True
Reward Clipping [−1, 1]
Epsilon Greedy ε 0.1
Discount Factor γ 0.99

Pre-processing scheme 84× 84× 4
Q-optimizer RMSprop

Q Learning rate 0.00025
Optimizer ρ 0.95
Optimizer ε 0.01

Memory size S 1M trajectories

Table 5: Hyper-parameters used when training a DQV agent from scratch. We can see that they
mostly correspond to the ones presented in Table 4 with the main difference being the epsilon greedy
parameter ε that is set to 0.5 instead of 1.0, and the additional information given for the V network
which is trained for learning an approximation of the state-value function.

Hyper-parameter
Atari Arcade Learning Version Deterministic-v4

Frame-Skipping True
Reward Clipping [−1, 1]
Epsilon Greedy ε 0.5
Discount Factor γ 0.99

Pre-processing scheme 84× 84× 4
Q-optimizer RMSprop

Q Learning rate 0.00025
V -optimizer SGD

V Learning rate 0.001
Optimizer ρ 0.95
Optimizer ε 0.01

Memory size S 1M trajectories

popular epsilon-greedy strategy with an initial ε value of 1 which gets linearly annealed over time
to 0.1. Learning a near optimal policy on the aforementioned Catch environments with this type of
DQN agent can require between the 3 and the 5 hours of training time.
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