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ABSTRACT

Reinforcement Learning with Verifiable Reward (RLVR) is a powerful method
for enhancing the reasoning abilities of Large Language Models, but its full po-
tential is limited by a lack of exploration in two key areas: Depth (the difficulty
of problems) and Breadth (the number of training instances). Our analysis of the
popular GRPO algorithm reveals a bias that down-weights difficult, low-accuracy
problems, which are crucial for improving reasoning skills. To address this, we in-
troduce Difficulty Adaptive Rollout Sampling (DARS), a method that re-weights
difficult problems by using targeted, multi-stage rollouts. This approach increases
the number of rollout outcomes for these harder problems according to our pro-
posed re-balancing schedules and leads to consistent gains in Pass@K. We also
found that simply enlarging the rollout size isn’t effective and can even harm per-
formance. We also investigated the role of breadth by scaling the batch size and
using full-batch updates. This significantly improved Pass@ [ performance by
maintaining high token-level entropy, which indicates continued exploration and
reduced gradient noise. Finally, we present DARS-Breadth, a combined approach
that uses DARS with a large breadth of training data. This method demonstrates
simultaneous gains in both Pass@K and Pass@ I, confirming that depth (adaptive
exploration) and breadth (scaling the training data) are orthogonal and essential
dimensions for unlocking the full reasoning power of RLVR.

1 INTRODUCTION

The emergence of reasoning-centric Large Language Models (LLMs) exemplified by OpenAl-
ol (Jaech et al.| [2024), DeepSeek-R1 (Guo et al., 2025), and Kimi-1.5 (Team et al. [2025)), has
pushed the frontier of LLM capability, especially for demanding tasks in complex reasoning such as
mathematics and programming. Unlike conventional instruction tuning that relies on human-labeled
data or RLHF pipelines that demand an auxiliary, well-trained reward model (Ouyang et al., 2022aj
Achiam et al., 2023}, |Grattafiori et al., 2024)), this leap is driven by large-scale Reinforcement Learn-
ing with Verifiable Rewards (RLVR;|Guo et al.|[2025} Zeng et al.[2025) for which correctness can
be automatically and deterministically checked. The rewards of RLVR are granted solely when a
model’s output matches the ground-truth mathematical answer or passes all unit tests for code, al-
lowing scalable verification without manual labeling. RLVR is now regarded as a promising path
toward self-evolving LLMs, potentially bringing us closer to more powerful intelligence.

However, existing RLVR frameworks inadequately address the interplay between exploration depth
(difficulty scaling) and breadth (iteration instance quantity scaling), which leads to insufficient per-
formance gain for both Pass@ ] and Pass@XK. In this paper, we conduct a systematic analysis of two
under-exploited dimensions in RLVR: Depth and Breadth.

For the dimension of depth, our investigation reveals that existing methods of GRPO (Shao et al.,
2024) and its variants (Yu et al [2025; Liu et al., 2025b), while adept at estimating the advan-
tage of a single rollout, are undermined by a distorted cumulative advantage at the group level.
This distortion disproportionately allocates attention to instances of medium difficulty, neglecting
high-difficulty instances indispensable for complex reasoning, as illustrated in Figure 2] This bias
fundamentally limits depth, the hardest problems a model can learn to solve, and constrains Pass @K
performance. To counteract this depth neglect, we propose Difficulty-Adaptive Rollout Sampling
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(DARS). DARS performs a lightweight first-stage rollout to estimate per-problem accuracies, then
allocates additional compute via targeted multi-stage rollouts to low-accuracy problems. By expand-
ing sampling on hard problems, DARS re-weights the cumulative advantage, making it easier for
LLMs to learn ‘deep’ samples and improving Pass@K performance.

We further identify breadth as the instance quantity consumed in a single iteration. We observe that
breadth has a significant impact on the LLM’s performance and continuous exploration capability,
as shown in Figure[d] We significantly increase the training batch size and replace PPO-minibatch
updates with full-batch updates for multiple PPO-epochs. This seemingly simple change dramati-
cally improves Pass@] and sustains high token-level entropy throughout training, suggesting that
breadth acts as implicit entropy regularization that delays premature convergence. Importantly, the
gains from breadth are complementary to those from depth: we present DARS-Breadth that com-
bines our DARS with large-breadth training, producing simultaneous boosts in both Pass@K and
Pass@ 1. Our contributions can be summarized as follows:

* We conduct a systematic analysis on depth and breadth in RLVR, and uncover the depth
bias in GRPO: cumulative advantage silently underweights low-accuracy, high-difficulty
samples, capping Pass@K performance.

* We introduce DARS, which reallocates compute from medium difficulty problems to the
hardest problems via multi-stage rollout sampling. DARS re-weights the cumulative advan-
tage distribution and quantitatively expands the sparse reward signals for difficult problems.
In practice, DARS significantly improves Pass@K over multiple benchmarks.

* We further illustrate that large breadth in RLVR training matters for the Pass@ [ perfor-
mance. Moreover, by combining DARS with large breadth training, we reveal the comple-
mentarity of Depth and Breadth in RLVR and acquire simultaneous boosts in both Pass @K
and Pass@ | performance.

2 UNDERSTANDING RLVR FROM DEPTH AND BREADTH

2.1 DEPTH: THE HARDEST PROBLEM SAMPLED IN RLVR

We first identify Depth as the hardest problem that can be correctly answered in the RLVR training
process. In the GRPO training process, groups whose entire rollouts yield incorrect answers suffer
from gradient vanishing. Hence, sampling high-difficulty questions with correct reasoning paths is
crucial for LLM training. We first show that merely increasing rollout size does not consistently
yield significant gains in Pass@K performance, and sometimes can even be harmful. We then
quantify GRPO’s cumulative advantage and highlight its under-weighting of high-difficulty samples.
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Figure 1: Training dynamics of Pass@/] and Pass@K performance of Qwen2.5-Math-1.5b and
Qwen2.5-Math-7b with different rollout size.

Naive Scaling of Rollout Size Benefits Pass@1, But Not Necessarily Pass@K. We present the
training dynamics of Pass@ ] and Pass @K performance during the RLVR training process in Fig-
ure |1} Enlarging the rollout size allows the sampling of correct solutions to hard problems during
training. We originally assumed this would benefit Pass@K performance; however, experimental
results show that this is not always the case. We find that Qwen2.5-Math-7b can significantly bene-
fit from an increased rollout size, whereas for Qwen2.5-Math-1.5b, naively scaling rollout size can
even harm Pass @K performance.

Cumulative Advantage Bias in GRPO Variants hinders the improvement of Pass@K. In the
GRPO framework, the advantage estimation is derived by normalizing binary rewards:

~ r, —Uu ~
A‘th _ \ A;mstd =r;—u, (])
g
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Figure 2: Statistical results of cumulative advantage. Group relative advantage calculation methods
underestimate high-difficulty problems. n denotes group size.

where r; is the binary reward of 4., rollout, v is the mean value of the group rewards u =
mean({R;}% ;) and o is the standard deviation of the group rewards o = std({R;}$ ). In the
case of binary rewards, u also represents the accuracy of LLM rollouts. Dr. GRPO (Liu et al.,
2025b) removes the standard-deviation term from the advantage computation to eliminate question-
level difficulty bias, and demonstrates its superiority through extensive experiments. Consequently,
the experiments reported in this study were conducted primarily though the Dr. GRPO methodology.
We show more results of std-based advantage in Appendix [F.I]
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Figure 3: Training dynamics of Pass@/] and Pass@K performance of Qwen2.5-Math-1.5b and
Qwen2.5-Math-7b with different batch size.

For a group G with rollout size N, we define the cumulative advantage of a group as the sum of

the absolute values of sample advantages: Agroup = Zil |A;|. The cumulative advantage reflects

how much the algorithm weights each sample. Specifically, for Dr. GRPO,
Agrop = 2Nu(1 — u), 2)

The cumulative advantage functional curve is plotted in Figure 2] As shown in the figure, group-
based advantage computation funnels its weight toward problems of medium difficulty while largely
overlooking those that are highly difficult. This bias limits the Pass@K performance of RLVR.
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2.2 BREADTH: ITERATION INSTANCE QUANTITY IN RLVR

We define Breadth as the number of instances used per iteration of the RLVR process. We’ll show
how increasing the batch size for the RLVR process improves the Pass@ [ performance.

Breadth Matters for Pass@1 Performance. Most studies (Liu et al.l |2025bga};|Yan et al.l 2025} [Fu
et al.l 2025) conventionally set the batch size to 128. In this subsection, we drastically increase the
batch size to 3072 and plot the training dynamics of Pass@ [ and Pass @32 performance in Figure
[l Naively increasing the batch size brings a Pass@] improvement for all models, yet it harms
the Pass@ [28 performance of Qwen2.5-Math-1.5b. We consider that increasing the quantity of
instances used in each iteration makes the gradient direction more accurate and reduces the impact
of noise, thereby improving Pass@ I performance.
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Figure 4: Training dynamics of Pass@] performance and token entropy for Qwen2.5-Math-1.5b
and Qwen2.5-Math-7b.

Breadth Sustains Entropy for Model Exploration.

High token entropy in LLMs indicates strong exploration capabilities. Our analysis shows a rela-
tionship between Pass@1 and token entropy during training. As illustrated in Figure ] increased
training breadth enables LLMs to achieve higher entropy at a given Pass@1 accuracy. We believe
a large training breadth acts as a form of entropy regularization, preventing premature convergence
and boosting Pass@ I performance while maintaining high entropy.

3 METHODOLOGY

In Section 2] we analyze the bias inherent in group-based advantage computation. To solve this is-
sue, we introduce Difficulty Adaptive Rollout Sampling (DARS), which rebalances the cumulative
advantage via multi-stage sampling. By further synergizing the depth and breadth training dimen-
sions, we propose DARS-B, which improves both Pass@ ] and Pass@K.

3.1 DIFFICULTY ADAPTIVE ROLLOUT SAMPLING (DARS)

As shown in Figure , given a data batch B = {¢; } j]‘/il of reasoning questions, DARS operates in two

phases: (i) pre-rollout difficulty estimation that assigns to each question ¢; a scalar difficulty score
x; € [0, 1]; and (ii) multi-stage rollout re-balancing that dynamically decides how many additional
trajectories An; shall be allocated to g; so that the cumulative advantage for low-accuracy problems
is up-weighted. To simplify the subsequent formula representation, we define

S(a;) = 2a;(1 — a;). 3)

Phase 1: Pre-Rollout Difficulty Estimation. For every ¢;, we draw a light first-stage rollout

consisting of NP"¢ independent trajectories {Tj@ }. Let the per-trajectory reward be binary, rJ@ €
{0,1}. We define the empirical accuracy
1 NPTe
P (@)
aj = Npre Z 7"]- : (4)
i=1
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Figure 5: The overall training framework of our Difficulty Adaptive Rollout Sampling (DARS) with
breadth scaling. Our DARS consists of 2 phases: 1) a pre-rollout stage to evaluate the difficulty
of the given question, and 2) a re-balancing rollout stage to adjust the cumulative advantage. For
breadth scaling, we replace ppo minibatch as full batch with multiple ppo epochs.

The difficulty score is then set to the complementary accuracy x; = 1 — a;, so that x; ~ 1 for the
hardest problems and x; ~ 0 for the easiest ones.

Phase 2: Multi-Stage Rollout Re-Balancing. Let A}, (u) denote the cumulative advantage under
GRPO for a group whose average accuracy is u with rollout size N. We aim to reallocate AN
additional trajectories across the mini-batch so that the effective cumulative advantage for each
question becomes an increasing function of its difficulty. To control the computing cost, we cap the
rollout sampling upper limit at N™*. To this end, we design two rebalancing schedules.

Schedule 1: Equal-Treatment (ET). For every question g; we enforce the rebalanced cumulative
advantage as:

Agroup(17) = Agtoup (0.5). (5)
We raise the cumulative advantage of all difficulty problems (G; < 0.5) to the level achieved by a

medium-difficulty problem with accuracy a; = 0.5. The required extra trajectories are

AnET = min( Agroup (0-5) — Agroup (2;)
’ S(ay)

—‘ ’Nmax _ NpT'e). (6)

Schedule 2: Hardness-Weighted (HW). We now impose a monotonically increasing re-weighting
that allocates more rollouts to lower-accuracy problems:

Astou(07) = 2(1 = ;) Agrauy (0.5). (7
This yields

2x; - ANT(0.5) — AN ()
HW . J Tou| Tou] J max re
An; mm(’r £roup S(a) Eroup , N — NPTe). )

3.2 DEPTH SYNERGY WITH BREADTH SCALING

Our analysis in Section empirically confirms the substantial Pass@ I improvements from large-
breadth training. While DARS primarily optimizes training depth via multi-stage rollout rebalance,
its dynamic batch-size adjustments preclude standard PPO-style mini-batch updates. To resolve this
architectural constraint while leveraging breadth benefits, we replace PPO’s mini-batch updates with
full-batch gradient descent across multiple PPO epochs, as illustrated in Figure[5] This modification
ensures compatibility with DARS’s dynamic allocation while maximizing effective training breadth
per optimization step. We term this integrated approach DARS-Breadth, unifying depth-adaptive
sampling with breadth maximization.

Full-batch training offers two key advantages: (1) elimination of mini-batch gradient noise, and (2)
sustained token-level exploration, acting as implicit regularization against premature convergence.
The resulting framework demonstrates complementary gains—DARS improves Pass@K through
depth optimization, while large-breadth training enhances Pass@ I, highlighting their synergistic
roles in RLVR optimization.



Under review as a conference paper at ICLR 2026

3.3 TRAINING TARGET
We adopt the clipped objective of GRPO without the KL penalty term. Following Dr. GRPO, we
likewise remove the response length handling from the GRPO target. Specifically, for a problem ¢
sampled in training data D, the training target is formalized as:

T(0) = E(gp, 10,39, oy (@

[é i % (min (T’i,t(e)Ai,t, clip (Ti,t(@), 1—¢,1+ 5) A”>)>} ,

i=1 t=1

(C)]

where
m9(0it | q,0i <t)

T4 (Oiyt | q, Oi,<t) .

The token advantage Ai,t is computed using Equation

’I“,ﬁ(&) =

(10)

4 EXPERIMENTS

4.1 SETUP

Evaluation and Training: We evaluate the RLVR process using 5 widely used mathematical rea-
soning benchmarks: MATH-500 (Lightman et al., [2023), OlympiadBench (He et al., [2024), Min-
vervaMath (Lewkowycz et al., [2022), AIME24, and AMC23. We combine all of the evaluation
benchmarks to report Pass@ 1 (Avg@ 128) and Pass @K performance. The training data used in this
work is OpenR1-45K, which is a subset of OpenR1-Math-220k (Hugging Facel|2025). More details
are shown in Appendix

Baseline and Methods: We compare with: (1) RLVR-baseline: Dr. GRPO with rollout size 8 and
batch size 128. (2) Depth-Naive: Simply increasing the rollout size to 32. (3) Breadth-Naive:
Simply increasing the batch size to 3072. (4) DARS-ET/HW: Our algorithm introduced in Section
[3.T)with Equal-Treat/Hardness-Weighted schedule, using batch size 128 and N™*** = 32. (5) DARS-
ET/HW-Breadth: Our Depth-and-Breadth synergy algorithm introduced in Section using batch
size 3072 and N™#* = 32. For all methods, the number of PPO mini-steps is uniformly set to 2.

Evaluation Protocol: For all baselines, we select the checkpoint with the best Pass@ I performance
for reporting. For DARS, we selected the checkpoint that achieved the best Pass@ 28 performance
after surpassing the baseline Pass@ performance. Table [I|summarizes the Avg@ /28 performance
on each benchmark, the overall Pass@ [ across all test data, and the Pass@ [28 performance.

4.2 MAIN RESULTS

Breadth scaling delivers a clear and consistent boost to Pass@1. Across every model scale and
every benchmark, Breadth-Naive outperforms both the GRPO baseline and Depth-Naive, lifting
average Pass@1 (Avg@128) by 1.9-3.7 points on AIME24, MATHS500, and Olympiad tasks. This
advantage is not merely additive: when breadth is combined with depth through DARS-Breadth, the
margin widens further. DARS-Breadth reliably beats both Breadth-Naive and the original DARS
variants, confirming our central hypothesis—depth and breadth are complementary, not competing,
resources. Their synergy is what unlocks the next tier of LLM reasoning gains.

The practical impact is twofold. First, DARS-Breadth secures the highest Pass@1, the metric that
matters most for single-shot deployment. Second, it matches the best Pass@ 128 scores, demonstrat-
ing that the breadth-depth collaboration does not sacrifice the upper-bound capability revealed by
heavy sampling. Finally, the choice of schedule matters: the HW schedule consistently yields su-
perior Pass@K curves for both breadth and non-breadth training, while maintaining Pass@1 parity
with the ET schedule, making it the preferred option across the board.

4.3 TRAINING DYNAMICS AND ABLATION STUDY

In this subsection, we further show more training dynamics to illustrate properties of existing RLVR
methods and the superiority of our DARS and DARS-B.
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Table 1: Overall performance of Pass@ [ (Avg@ [128) and Pass@ 128 of Qwen2.5-Math series.
Base Model + Method AIME24 | MATHS00 | Olympiad | AMC | Minerva | Avg@128 | Pass@128

Qwen2.5-Math-1.5B 4.0 35.1 16.2 20.8 9.5 21.1 77.9
RLVR baseline 14.7 75.9 39.4 475 31.2 49.6 79.6
Depth-Naive 16.5 76.2 39.9 479 30.9 50.1 79.9
Breadth-Naive 18.5 77.6 41.7 49.8 31.9 51.5 79.2
DARS-1.5B-ET 15.8 76.0 40.9 472 30.0 50.0 81.2
DARS-1.5B-ET-Breadth 18.6 79.4 42.9 50.6 31.7 52.5 80.8
DARS-1.5B-HW 17.7 76.4 40.0 48.4 30.8 50.0 82.1
DARS-1.5B-HW-Breadth 19.3 79.0 42.7 51.9 31.6 524 82.2
Qwen2.5-Math-7B 11.6 52.3 19.7 35.2 15.3 30.1 82.1
RLVR baseline 26.8 82.2 44.3 57.2 35.7 55.3 81.4
Depth-Naive 28.0 83.8 46.4 59.0 37.3 57.0 80.3
Breadth-Naive 30.5 83.7 47.3 614 37.7 57.7 79.2
DARS-7B-ET 26.9 83.2 46.6 57.3 38.5 57.0 81.7
DARS-7B-ET-Breadth 333 83.8 47.8 61.3 384 58.1 82.1
DARS-7B-HW 30.1 83.5 47.1 59.4 37.2 57.3 83.5
DARS-7B-HW-Breadth 33.0 84.5 48.4 63.0 36.9 58.4 834

Pass @128 performance surpasses the base model, peaks quickly, and then declines. We con-
duct RLVR experiments with rollout size 8/32 to compare our DARS (with N™#* = 32), the train-
ing dynamics of Pass@ 128 performance during training is shown in Figure [f] Across all settings,
Pass@ 28 surpasses the base model during training, but declines after peaking, indicating that over-
training with RLVR harms Pass@ /28 performance. Notably, DARS (with N™#* = 32) incurs
substantially less inference cost than naively scaling the rollout size to n = 32. Despite this being
an unfair comparison in terms of computational expenditure, our DARS not only attains the highest
peak Pass@ [28 performance but also outperforms all other settings.
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Figure 6: Training dynamics of Pass@ /28 performance with different training steps of Qwen?2.5-
Math-1.5b and Qwen2.5-Math-7b.

Depth Training with DARS Improve Pass@K Performance and Training Efficiency. Because
the Pass@K (K=32/128) metric is hard to improve monotonically—it even starts to drop after pro-
longed training—while Pass@ I remains comparatively stable and rarely collapses, we seek to boost
Pass@K without degrading Pass@ [. Figure [/|plots Pass@ 128 against Pass@ [ under a variety of
experimental settings. It shows that, at any fixed Pass@1 level, our DARS method delivers a con-
sistently higher Pass @ 128 than the other settings.

Table 2: Average rollout numbers per prompt.

Model | Naive | DARS-ET | DARS-HW
Qwen2.5-Math-1.5B | 32 | 15.2 (152.5%) | 23.9 (125.3%)
Qwen2.5-Math-7B | 32 | 12.8 (160.0%) | 20.1 (137.2%)
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Figure 7: Training dynamics of Pass@32/Pass@ [28 and Pass@ I performance with different train-
ing steps of Qwen2.5-Math-1.5b and Qwen2.5-Math-7b.

It is worth noting that, unlike the naive approach of simply increasing the rollout size to 32, our
DARS achieves significantly higher training efficiency by allocating more rollouts to the hard prob-
lems. As shown in Table[2, our DARS methods need far fewer rollouts than the Depth-Naive method
while achieve better performance.

Depth-Breadth are Complementary in RLVR. We show that Depth and Breadth are two com-
plementary dimensions in RLVR. As shown in Figure |8 we present the Pass@ /-Pass@K training-
dynamics curves for the Breadth, Depth, and the two-dimensional synergy approach DARS-Breadth.
The farther the Pass@ [-Pass@K curve deviates outward, the more powerful the method. Our
DARS-Breadth curves lie on the outermost envelope: it not only achieves the best Pass@ I, but also
simultaneously lifts Pass@K. This demonstrates the complementary roles of Depth and Breadth.

Ablation Study on Base Model. We further illustrate the effectiveness of DARS on Llama-3.1-8B.
The results are shown in Table [3l Our DARS-ET-Breadth achieves both Pass@/ and Pass@ 128
performance compared to other baselines, which further illustrates the effectiveness of our method.

Table 3: Overall performance of Pass@ [ (Avg@ [28) and Pass@ 128 performance of Llama-3.1-8B.

Base Model + Method AIME24 | MATHS00 | Olympiad | AMC | Minerva | Avg@128 | Pass@128
Llama-3.1-8B 0.23 6.13 154 | 276 | 272 3.25 52.7
GRPO baseline 0.66 29.6 7.09 10.1 | 157 15.8 56.5
Depth-Naive 0.43 33.6 9.40 123 | 197 18.9 58.6
Breadth-Naive 0.79 34.4 9.34 122 | 190 19.0 61.1
DARS-Llama-ET-Breadth | 1.46 39.4 12.0 132 | 201 22.0 67.2
DARS-Llama-HW-Breadth | 1.11 39.0 120 | 133 | 198 21.8 68.7

Complete Pass@K Accuracy Curve. We show the complete Pass@K curve for Llama-3.1-8B,
Qwen2.5-Math-1.5B, and Qwen2.5-Math-7B in Figure 0] The 3 chosen models of DARS are:
DARS-Llama-ET-Breadth, DARS-1.5B-HW-Breadth, and DARS-7B-HW-Breadth. DARS mod-
els demonstrate a breakthrough in the reasoning boundaries of the base model, especially on the
LLama-3.1-8B model, where the improvement in Pass @k is particularly significant.



Under review as a conference paper at ICLR 2026

Qwen2.5-Math-1.5b (with DARS-ET) Qwen2.5-Math-7b (with DARS-ET)
0.83 0.85
0.825 0.845
0.82 0.84
o 0.835
% 0.815 o My O 0.83
® 081 te ©0.825
§ 0.805 baseline Q:? 0.82 baseline
0g |~ Breadh 0.815 ' _e—Breadth
0795  —*Depth (DARSET) 008.(8) ; —o—Dopi DARSED)
079 —e—DARS-ET-Breadth “0g | —S—DARS-ETBreadh
0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.525 0.535 0.545 0.555 0.565 0.575 0.585
Pass@!1 Pass@1
Qwen2.5-Math-1.5b (with DARS-HW) Qwen2.5-Math-7b (with DARS-HW)
0.83 o, ” 0.855
Ple, e
0.825 Ty e 0.85 o
MRro an,  0.845 e
0.82 e 0.84 Mope ity
% 0.815 ] % 0.835 e ¥
® o081 @ 08 aq
2 2 0.825
&£ 0.805 baseline £ 0.82 baseline
0.8 —®—Breadth 0.815 = —e—Breadth
0.795 Depth (DARS-HW) 008(% Depth (DARS-HW)
079 —e—DARS-HW-Breadth ! 0.8 —e—DARS-HW-Breadth
0.44 045 046 047 048 049 05 0.51 0.52 053 0.525 0.535 0.545 0.555 0.565 0.575 0.585 0.595
Pass@1 Pass@1

Figure 8: Depth and Breadth Synergy for Pass@ [ and Pass@K (K=128) performance.

5 RELATED WORKS

Reinforcement Learning (RL) is now standard in post-training LLMs. After early reward-model
pipelines (Ouyang et al. [2022b)), Direct Preference Optimization (Rafailov et all, 2023) stream-
lined training by exploiting pairwise preferences. RL with verifiable rewards (RLVR) has since
pushed reasoning benchmarks in math and code, culminating in OpenAI’s o1 and
the zero-RL breakthrough of DeepSeek-R1 (Guo et al. [2025). Follow-up Large Reasoning Mod-
els—Kimi 1.5 (Team et al, 2025), Gemini-Think (DeepMind, [2024), QwQ 2024)—and
studies like Zeng et al.| (2025)); [Luo et al.| (2025) further validate RLVR. The leading algorithm,
GRPO (Shao et al., [2024)), extends PPO (Schulman et al, [2017) with group-relative advantages,
inspiring DAPO (Yu et al., [2025), VAPO (Yue et al.| 2025b), and Dr. GRPO [2025D).
Yet GRPO and its variants systematically undervalue hard problems, hurting Pass@K. More related
works are shown in Appendix [B]
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Figure 9: Complete Pass @K accuracy curve of base models and our DARS models.

6 CONCLUSION

In this work, we reveal that GRPO-based RLVR methods under-weight hard problems due to
cumulative-advantage bias, capping Pass@K. Our DARS sampler cheaply re-allocates rollouts to
these hard instances, while large-breadth training with full-batch updates raises Pass@1. The uni-
fied DARS-Breadth framework jointly lifts Pass@/ and Pass@K, proving depth and breadth are
synergistic levers in RLVR.
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7 REPRODUCIBILITY STATEMENT

We have included a comprehensive reproducibility package as part of our supplementary materials
to facilitate the replication of all experiments presented in this paper. This includes anonymized
source code implementing the proposed model and training procedures, as well as the preprocessed
datasets used in our experiments. Detailed instructions for environment setup, data preparation,
and execution are provided in the accompanying README documentation. Furthermore, we have
supplied exact configuration files and scripts specifying all hyperparameters, and training commands
required to reproduce our results.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

During manuscript preparation, a large language model (LLM) was occasionally employed as an
auxiliary assistant to refine language expression, such as improving sentence fluency and enhancing
readability. The model was not involved in generating original research contributions: it did not
participate in formulating research questions, designing methodologies, conducting experiments,
analyzing results, or drafting substantive scientific content. All core intellectual work, including the
development of ideas, execution of experiments, and interpretation of findings, was carried out in-
dependently by the authors. Any linguistic suggestions offered by the LLM were critically reviewed
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and selectively incorporated, ensuring that accuracy, originality, and scholarly integrity were fully
maintained. The authors alone bear responsibility for the research content and conclusions, and the
LLM is not listed as a contributor or author.

B MORE RELATED WORKS

With the rapid advancement of RLVR and the proliferation of open-source LRMs, many studies
have begun to analyze the RLVR pipeline and these open LRMs. Several studies (Liu et al.,|2025a;
Zhao et al.l [2025; [Shah et al 2025)) indicates that the self-reflect and self-critique behaviors ob-
served after RLVR originates from the base model rather than the RL process. [Dang et al.| (2025)
find that although the RLVR process benefits Pass@ I, Pass@K may decline as training progresses.
Subsequently, [Yue et al.| (2025a)) through extensive experimental analysis, discovered that RLVR’s
performance is significantly constrained by the base model; once training converges, it struggles to
surpass the capability boundary of the base model. These studies have sparked widespread concern
about the capability ceiling of RLVR, and consequently, the Pass @ K metric has become a focal point
for diagnosing and potentially transcending the intrinsic limits imposed by the base model (Liang
et al., |2025). This paper analyzes and refines the RLVR pipeline from the dual perspectives of
Pass@] and Pass@K.

C DERIVATION OF ADDITIONAL ROLLOUTS Anj

The cumulative advantage for a group with accuracy a; and total rollout size N; = NP7 + An; is
given by:
Agouw (a5, Nj) = Nj - S(a;),
where S(a;) = 2a,;(1 — a;).
After the first-stage rollout of size N?7¢, the initial cumulative advantage is:

Agtoup (@) = NP7 - S(a;).

Our goal is to determine the number of additional trajectories An; needed so that the final cumula-
tive advantage Agroup (@, N;) meets a target value Agaup (G;).

Equal-Treatment (ET) Schedule:

The target cumulative advantage is set to be constant for all questions with a; < 0.5:

ABT (a,) = ANY °(0.5) = NP - S(0.5).

group group
We solve for An]ET:

Agroup (d] ’ NJ ) Ag{)up( )

(NP + AnST) - S(a;) = NP - 8(0.5)
AnST - S(a;) = NP - 8(0.5) — NP - S(ay)
NPT . 8(0.5) — NP . S(a;)
AnET = 2l
" S(ay )
ARET Al (0.5) — AN (@ ).
S(ay )

The rollout size must be an integer, and we cap the total rollout sampling upper limit at N"***, so

ANPTE‘ (0 5) ANzﬂe( )

ATLET — min group group Nmax _ nprey.
’ ( S(aj) ’ )

Hardness-Weighted (HW) Schedule:

13



Under review as a conference paper at ICLR 2026

The target cumulative advantage increases with difficulty:

Abono(5) = 2(1 — ;) - ANy (0.5) = 25 - NP - §(0.5).

We solve for AniY
Agroup (g, Nj) = Agonp (@)
(B e =20y N7 509
ni™ - S(a;) = 2x; - NP - §(0.5) — NP’ - S(ay)
(05) — N7t - S(ay)

ApiWV _ 2z - NP™° . S(0 o
! S(ay)

Again, using the baseline advantage notation Agmup (a;) = NP7¢ . S(a;), we obtain:

2x; - AN (0.5) — AN ()

group group

S(ay)

AnY = min(

7 7]\[max _ Npre)'

Both derivations include a ceiling function and are capped at N™* to control computational cost,
as shown in Equations [6| and [§]in the paper.

D MATHEMATICAL DERIVATION: GROUP CUMULATIVE ADVANTAGE AND
GRPO GRADIENT NORM

In this appendix, we provide a detailed mathematical derivation demonstrating the relationship be-
tween Group Cumulative Advantage and the gradient norm in GRPO. This derivation substantiates
the claim that Ay serves as an effective indicator of the model’s attention to specific problems
during training.

D.1 GRPO GRADIENT FORMULATION

The GRPO objective function and its gradient are given by (we can remove the clip operation for
simplified analysis):

G ‘07|
jGRPo(e)ZEq~D7{o@v}?:1~mom<-‘q) 3¢ | |Zzpm A} (o
=1 0; i=1 t=1
G loil
VoTJareo(9) = Eqp (0,8 ~mo,,, (L) 55 |O|ZZAWPM ]
=117 4=1 t=1

G ‘Uzl

ZZ A V(ﬂr() 01 t|q302 <t):|

1 |01| i—1 t—1 7T901d 0 t|Qa0z <t)

=Eup, (o) oy Clo) | 3~

r G |oql
1 )
=By, {038, ~ro,4 (1) S ol YD pie(®0)AiVologmg(oisla, 0i7<t)} :
- =1 177

Oil j=1 t=1
(12)
D.2 DERIVATION OF GRADIENT NORM UPPER BOUND

We now derive the upper bound relationship between the gradient norm and Group Cumulative
Advantage.

The gradient norm of our adopted GRPO algorithm is shown as the following:

G osl

1 R
ZZPi,t(G)Aive log 79 (04,¢|q, 0i,<t) | || - (13)

Vo Tareo (0)] = -
Sl S S
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Since the norm is a convex function and expectation is linear, by Jensen’s inequality:

[E[X]]] < E[]|X] (14)
Thus:
1 G oil R
IVoTarro(O)| < E ||| g > > _ pit(0)AiValogm(oislg,0<t)|| | . (15)

G
21:1 |o] i=1 t=1

Applying the triangle inequality to the inner summation:

G loil G oil
DD aiaf <3 laidll, (16)
i=1 t=1 i=1 t=1
where: 1
aip = =g Pit(0)AiVolog mp(0it|q, 0i <t)- 17
Zi:l |o]
Therefore:
1 G osl R
IVoTcrro @l <E | =" [pial®AValogmo(oidlg.0ic)|| . (18)
Ei:l |og] i=1 t=1
Then we have,
‘ pi1(0)A; Vg log mo(05.4lq, 05,<t) || = lpi.e(0)] - |Ai] - [|Volog mo (05 elq, 05,<e)ll . (19)
Thus:
1 G o
IVoTarpo(0)]| < E S T . |pis(0 |- IValogma(oitlg, 05<)ll | - (20)
=1 0; =1 t=1

We further take a boundedness assumption. in policy optimization, we assume the gradient log-
probabilities ||V log w9 (0; ¢, 0;, <+ )| are bounded. Furthermore, it’s vital to notice that the impor-
tance ratio p; ;(6) are also bounded through the clip operation in GRPO algorithm.

Thus, there exists a constant C' > 0 such that:

1pi1(0)] - Vo log mo(0itlg, 01,<1)l| < C. 1)
Therefore:
G o
IVeTarro(O)]l < C-E | =g——> > |Ail| . (22)
Zl 1ol im =
Noting that | 4;] is independent of ¢ for fixed i:
G loil R G R
S A=Y oA @
i=1t=1 i=1
Thus:
;] - |A
Fadarwo(®)] < - & | Ect oL 1AL 4
Zz 1 |02|
In this paper, we define the Group Cumulative Advantage as:
G
Agroup = Z |A1| 25)
i=1
By the weighted arithmetic mean inequality:
G G |3 G
oi| - |A; "ol DS Ay .
e T 26)
Zz 1 |oil > e loil
Therefore:
[VoTareo (0)|| < C - E [Agroup] - 27
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D.3 THEORETICAL IMPLICATIONS

This derivation establishes that Group Cumulative Advantage Agoup provides an upper bound for
the expected gradient norm in GRPO. Consequently: Larger Agoyp values indicate stronger gradient
signals for the corresponding problem. The training process allocates more “attention” to problems
with higher Agop values during parameter updates. Therefore, we consider Agpup serves as a
mathematically grounded indicator of problem importance in GRPO training dynamics.

This theoretical foundation validates the use of Group Cumulative Advantage as a meaningful metric
for analyzing training behavior and problem prioritization in GRPO.

E TRAINING AND EVALUATION DETAILS

Prompt for Solving Complex Reasoning Tasks

Your task is to solve the given question step by step. You should conduct a systematic,
thorough reasoning process before providing the final answer. This involves analyzing,
summarizing, exploring, reassessing, and refining your reasoning process through multiple
iterations. Each reasoning step should include detailed analysis, brainstorming, verification,
and refinement of ideas. You should include the final answer in \boxed{} for closed-form
results like multiple choices or mathematical results.

Parameters and Metrics. Currently, our experiments are conducted with Qwen2.5-Math series
language models (Yang et al.}2024). We set the temperature to 1.0 for both the training and evalua-
tion procedures. In this paper, we mainly use two metrics, Pass@ I and Pass @K. To acquire Pass@K
results, we sample 128 candidate responses for each question during the evaluation process; the cal-
culation of Pass@ ] is derived from Avg @ [28. Both the training and evaluation processes are scored
using Math-Verify. The learning rate is 1e-6 for depth training methods, and 5e-6 for large breadth
training. We do not use the reference model and KL loss. For fair comparison, we uniformly set the
PPO mini step to 2 for all experiments. By default, the maximum prompt length is 1024, and the
maximum response length is 3072 for the Qwen2.5-Math series model.

Moreover, we have adopted the same unbiased, low-variance estimator for pass@k as used in prior
works (Yue et al.,[2025a} |Chen et al., [2021)),
L) ]

(%)

Specifically, when K = N, the metric become: pass@K =c; Vca V -+ - c1o8.

pass@K =E;,.p

Implementation Details. Following LUFFY (Yan et al.,2025), we use the default subset and filter
out generations that are longer than 8192 tokens and those that are verified wrong by Math-Verify
resulting in 45k question-solution pairs. For training Llama-3.1-8B, we use the train split of
MATH dataset. Our training framework is derived from Verl (Sheng et al., 2024) pipeline, which
is a flexible, high-performance reinforcement-learning framework built for training large language-
model agents. With native PyTorch support and efficient distributed training, Verl lets researchers
quickly prototype and scale RL algorithms like PPO on GPUs. Following Dr. GRPO (Liu et al.,
2025b), we remove the KL loss and the length normalization in GRPO. All of our experiments are
conducted on H200 GPUs. At present, the LLM of our experiment is the Qwen2.5-Math series.

Training Steps and Checkpoint Steps. For non-breadth methods on Qwen2.5-Math-1.5B/7B,
we set the checkpoint step as 100. For breadth methods on Qwen2.5-Math-1.5B/7B, we set the
checkpoint step as 15. The specific training steps are determined according to the convergence of
the model. The number of training steps for non-breadth training is set as 300 for Llama-3.1-8B, 600
for Qwen2.5-Math-1.5B, and 500 for Qwen2.5-Math-7B. The number of training steps for breadth
training is set as 70. For breadth training, we set the total training steps as 105 for Qwen2.5-Math-
1.5B, and 75 for Qwen2.5-Math-7B.

"https://github.com/huggingface/Math- Verify
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F MORE EXPERIMENTAL RESULTS

F.1 ABLATION STUDY ON STD-BASED ADVANTAGE COMPUTATION

As illustrated in Section 2] Dr. GRPO [2025b) removes the standard-deviation term
from the advantage computation to eliminate question-level difficulty bias, and demonstrates its
superiority through extensive experiments. Consequently, the experiments reported in this study
were conducted primarily though the Dr. GRPO methodology. To further illustrate the effectiveness

of DARS on std-based advantage computation, we conduct the experiment with HW schedule on
Qwen2.5-Math-1.5B model, as shown in Figurelm

Qwen2.5-Math-1.5B Qwen2.5-Math-7B

0.76 =8 0.83 =8

0.755 —e-n=16 Pass@K raise 0.825 —-n=16 _
Q075 —*-DARS-HW % gy —*DARS-HW Pass@K raise
%0-745 ®0.815
£ 074 & 03l

0.735 0.805

0.73 0.8

04 042 044 046 048 0S5

04 042 044 046 048 0S5
Pass@1

Pass@1

Figure 10: Comparison of our DARS on std-based advantage computation.

F.2 DEPTH AND BREADTH SYNERGY FOR PASS@1 AND PASS@32

In Section[d.3] we show the training dynamics of Pass@ [28-Pass@1 for DARS and baseline meth-
ods. To further illustrate the effectiveness of DARS, we show the training dynamics of Pass@32-

Pass@] in Figure [Tl Our DARS significantly improves the Pass@32 performance compared to
other methods.

Qwen2.5-Math-1.5b (with DARS-ET)

wen2.5-Math-7b (with DARS-ET
077 : 08 Q ( )
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0.765 ~—®Breadth »'O/e/”e 0.795
—e—Depth (DARS-ET) ’77‘0,,}, 0.79
o 076 | —e—DARS-ET-Breadth ~0.785
o o
$0.755 § 08
;E 075 £ 0.775 baseline
0.77 —®—Breadth
0.745 0.765 —o—Depth (DARS-ET)
0.74 0.76 —e— DARS-ET-Breadth
0.44 045 0.46 047 048 049 05 0.51 052 0.53 0.525  0.535 0.545 0555 0.565 0.575  0.585
Pass@]1 Pass@]1
Qwen2.5-Math-1.5b (with DARS-HW) Qwen2.5-Math-7b (with DARS-HW) <
0.775 baseline 00/7’ 0.8 :70/6
0.77 —e—Breadth //o/e,b 0.795 '%,,/779/;}
Depth (DARS-HW) /"p,,a e%b 0.79 %% @,
0765 g DARS-HW-Breadth e J
I «0.785 *—
é 0.76 é‘)
2 z 0.78
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0.75 0,77 —®Breadth
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DARS-HW-Breadth
0.74 076 pegct
0.44 045 046 047 048 049 0.5 0.51 0.52 0.53 0.525 0.535 0.545 0.555 0.565 0.575 0.585

Pass@]1

Pass@]1

Figure 11: Complementary improve of Depth and Breadth Synergy for Pass@ ] and Pass@K (K=32)
performance.
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F.3 COMPARISON OF ET/HW SCHEDULE IN BREADTH SCALING

In addition, compared with the ET schedule, DARS-HW-Breadth significantly improves the model’s
Pass @128 performance as shown in Figure[I2] We consider this performance gain is due to the HW
schedule placing greater emphasis on difficult samples.

Qwen2.5-Math-1.5b Qwen2.5-Math-7b

0.83 0.85

0.825 0.845
o 0.82 - 0.84
S a0.835
= 0.815 S
% oz © 083 i)
é‘ : 5: 0.825 baseline

0.805 baseline 0.8

0.8 —o—DARS-ET-Breadth 0{;15 —e—DARS-ET-Breadth
0.795 ——DARS-HW-Breadth 6,81 —e— DARS-HW-Breadth
0.43 0.44 0.45 0.46 0.47 0.48 049 0.5 0.51 0.52 0.53 0.525 0.535 0545 0.555 0.565 0.575  0.585
Pass@l1 Pass@1

Figure 12: Comparison of ET and HW schedule in breadth training of Qwen2.5-Math series.

F.4 IMPACT OF TEMPERATURE

Some researches (Karan & Dul 2025} |Qin et al.|, [2025} N1 et al.| [2025)) indicates that temperature
matters in LLM reasoning. To further illustrate the performance improvement under different tem-
perature, we additionally add the above experiments. The results shows that the improvement of our
method is consistent over different temperature. The results are shown in Figure [I3]

Qwen2.5-Math-1.5B Qwen2.5-Math-7B
t=0.6 t=0.8 t=1.0 t=1.2 t=14 t=0.6 t=0.8 t=1.0 t=1.2 =14
GRPO-Baseline 789 792 796 80 80 GRPO-Baseline 804 80.7 814 8l.6 816
Depth-Naive 794 79.6 799 803 80.4 Depth-Naive 79.7 80 80.3 80.7 80.8
Breadth-Naive 789 789 792 79.6 799 Breadth-Naive 777 781 792 794 79.6

DARS-HW-Breadth | 81.6 819 82.2 826 - DARS-HW-Breadth = 82.6 82.8 83.4 84.0 84.0
Figure 13: Heat map of Pass@ 128 of Qwen2.5-Math series in different temperatures.

F.5 CONSISTENT IMPROVEMENT DURING RL PROCESS

To further show that our method consistently improve model performance, we calculated the mean
of Pass@ 128 and Pass @32 for the last 3 checkpoints of each method, as shown in Table

F.6 PERFORMANCE OF NONE MATH MODEL.

We further evaluate our method on Qwen2.5-Math-7B-Instruct. The results are shown in Table[5] As
the results show, our method still outperforms the baseline in both the Pass@ 1 and Pass @K metrics.

F.7 DARS ELICITS LONGER REASONING CHAINS

This section investigates how DARS influences the reasoning length of LLMs. We tracked the re-
sponse length dynamics during the training of Qwen2.5-Math-1.5B and 7B models. Our experiments
reveal two key observations: (1) The training process shows a clear trend of increasing generation
length, as shown in Figure [T4] (2) When evaluated on AIME 2024, models trained with DARS
consistently produce longer reasoning traces than the baseline, as shown in Figure[T3] These results
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Table 4: Average performance of Pass@ 1/32/128 for the last 3 checkpoints during training.

Model Pass@1 | Pass@32 | Pass@128
Owen2.5-Math-1.5B as the Base Model
GRPO-Baseline 48.8 74.7 80.8
Depth-Naive 49.5 74.4 80.6
Breadth-Naive 51.4 74.4 79.8
DARS-HW 49.5 75.7 81.9
DARS-HW-Breadth 52.4 76.4 82.1
QOwen2.5-Math-7B as the Base Model
GRPO-Baseline 55.1 76.9 81.8
Depth-Naive 56.4 76.7 80.9
Breadth-Naive 57.2 76.7 81.3
DARS-HW 56.8 78.8 83.4
DARS-HW-Breadth 58.3 79.1 83.7

Table 5: Overall performance of Pass@ [ (Avg@ [28) and Pass@ 128 of Qwen2.5-7B-Instruct.

Model AIME24 | Math500 | Olympiad | AMC | Minerva | Avg@128 | Pass@128
Qwen2.5-7B-Instruct | 11.9 72.3 37.1 | 22| 319 472 80.3
GRPO-baseline 142 74.8 37.6 | 434 | 334 486 78.8
DARS-HW-Breadth | 15.6 76.5 384 | 447 | 346 49.6 82.3

provide concrete evidence that our DARS method successfully stimulates the model to perform
deeper and more thorough thinking.

Qwen2.5-Math-1.5B Qwen2.5-Math-7B
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Figure 14: Training dynamics of response length for GRPO and DARS.

G DISCUSSION AND FUTURE WORK

In this section, we analyze how hyperparameters N and N™2* control the shape of the cumula-
tive advantage curve, and how this shape may influence training behavior. We further discuss how
dynamically adjusting these parameters could enable a smooth transition from Pass@ K-oriented to
Pass@ [-oriented training.
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Figure 15: Statistical results of response length on AIME 2024 for GRPO and DARS.

G.1 HYPERPARAMETER CONTROL OF CUMULATIVE ADVANTAGE SHAPE

We show the Cumulative Advantage shape of ET/HW schedule with N = 8 in Figure [[6] By
continuously reducing the size of Ny, the curve will contract accordingly. When Ny.x = N, it is
equivalent to the vanilla method without performing DARS.

ET_schedule with N=8 HW _schedule with N=8
4.5 8
4 7 ——N_max=64
5 3.5 > 6 ——N_max=32
o o
< 3 <5 N_max=16
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2 2.5 2 4 N_max=8
£ 2 ——N_max=32 =
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Accuracy Accuracy

Figure 16: Control the shape of Cumulative Advantage by adjusting the N,,,, hyperparameter of
DARS.

G.2 POTENTIAL PASS@K TO PASS@ 1 TRAINING TRANSITION

The dynamic control of N™?2* suggests an intriguing training strategy: starting with a large N™&*
value to maximize Pass@K performance through extensive exploration of hard problems, then grad-
ually reducing N™#* throughout training to transition toward Pass@ I optimization.

This approach mirrors curriculum learning principles, where the training difficulty is progressively
adjusted. Initially, the model benefits from the expanded solution space and diverse reasoning pat-
terns discovered through heavy sampling on hard problems (high N™2%). As training progresses and
the model’s capability matures, reducing N™#* focuses the training on refining the most promising
solution strategies, ultimately improving single-shot performance.

Future work will explore optimal annealing schedules for N™#* and investigate whether this tran-
sition strategy can simultaneously maximize both Pass@/ and Pass@K performance, potentially
overcoming the current limitations of RLVR training.
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