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ABSTRACT

Reinforcement Learning with Verifiable Reward (RLVR) is a powerful method
for enhancing the reasoning abilities of Large Language Models, but its full po-
tential is limited by a lack of exploration in two key areas: Depth (the difficulty
of problems) and Breadth (the number of training instances). Our analysis of the
popular GRPO algorithm reveals a bias that down-weights difficult, low-accuracy
problems, which are crucial for improving reasoning skills. To address this, we in-
troduce Difficulty Adaptive Rollout Sampling (DARS), a method that re-weights
difficult problems by using targeted, multi-stage rollouts. This approach increases
the number of rollout outcomes for these harder problems according to our pro-
posed re-balancing schedules and leads to consistent gains in Pass@K. We also
found that simply enlarging the rollout size isn’t effective and can even harm per-
formance. We also investigated the role of breadth by scaling the batch size and
using full-batch updates. This significantly improved Pass@1 performance by
maintaining high token-level entropy, which indicates continued exploration and
reduced gradient noise. Finally, we present DARS-Breadth, a combined approach
that uses DARS with a large breadth of training data. This method demonstrates
simultaneous gains in both Pass@K and Pass@1, confirming that depth (adaptive
exploration) and breadth (scaling the training data) are orthogonal and essential
dimensions for unlocking the full reasoning power of RLVR.

1 INTRODUCTION

The emergence of reasoning-centric Large Language Models (LLMs) exemplified by OpenAI-
o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Kimi-1.5 (Team et al., 2025), has
pushed the frontier of LLM capability, especially for demanding tasks in complex reasoning such as
mathematics and programming. Unlike conventional instruction tuning that relies on human-labeled
data or RLHF pipelines that demand an auxiliary, well-trained reward model (Ouyang et al., 2022a;
Achiam et al., 2023; Grattafiori et al., 2024), this leap is driven by large-scale Reinforcement Learn-
ing with Verifiable Rewards (RLVR; Guo et al. 2025; Zeng et al. 2025) for which correctness can
be automatically and deterministically checked. The rewards of RLVR are granted solely when a
model’s output matches the ground-truth mathematical answer or passes all unit tests for code, al-
lowing scalable verification without manual labeling. RLVR is now regarded as a promising path
toward self-evolving LLMs, potentially bringing us closer to more powerful intelligence.

However, existing RLVR frameworks inadequately address the interplay between exploration depth
(difficulty scaling) and breadth (iteration instance quantity scaling), which leads to insufficient per-
formance gain for both Pass@1 and Pass@K. In this paper, we conduct a systematic analysis of two
under-exploited dimensions in RLVR: Depth and Breadth.

For the dimension of depth, our investigation reveals that existing methods of GRPO (Shao et al.,
2024) and its variants (Yu et al., 2025; Liu et al., 2025b), while adept at estimating the advan-
tage of a single rollout, are undermined by a distorted cumulative advantage at the group level.
This distortion disproportionately allocates attention to instances of medium difficulty, neglecting
high-difficulty instances indispensable for complex reasoning, as illustrated in Figure 2. This bias
fundamentally limits depth, the hardest problems a model can learn to solve, and constrains Pass@K
performance. To counteract this depth neglect, we propose Difficulty-Adaptive Rollout Sampling
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(DARS). DARS performs a lightweight first-stage rollout to estimate per-problem accuracies, then
allocates additional compute via targeted multi-stage rollouts to low-accuracy problems. By expand-
ing sampling on hard problems, DARS re-weights the cumulative advantage, making it easier for
LLMs to learn ‘deep’ samples and improving Pass@K performance.

We further identify breadth as the instance quantity consumed in a single iteration. We observe that
breadth has a significant impact on the LLM’s performance and continuous exploration capability,
as shown in Figure 4. We significantly increase the training batch size and replace PPO-minibatch
updates with full-batch updates for multiple PPO-epochs. This seemingly simple change dramati-
cally improves Pass@1 and sustains high token-level entropy throughout training, suggesting that
breadth acts as implicit entropy regularization that delays premature convergence. Importantly, the
gains from breadth are complementary to those from depth: we present DARS-Breadth that com-
bines our DARS with large-breadth training, producing simultaneous boosts in both Pass@K and
Pass@1. Our contributions can be summarized as follows:

• We conduct a systematic analysis on depth and breadth in RLVR, and uncover the depth
bias in GRPO: cumulative advantage silently underweights low-accuracy, high-difficulty
samples, capping Pass@K performance.

• We introduce DARS, which reallocates compute from medium difficulty problems to the
hardest problems via multi-stage rollout sampling. DARS re-weights the cumulative advan-
tage distribution and quantitatively expands the sparse reward signals for difficult problems.
In practice, DARS significantly improves Pass@K over multiple benchmarks.

• We further illustrate that large breadth in RLVR training matters for the Pass@1 perfor-
mance. Moreover, by combining DARS with large breadth training, we reveal the comple-
mentarity of Depth and Breadth in RLVR and acquire simultaneous boosts in both Pass@K
and Pass@1 performance.

2 UNDERSTANDING RLVR FROM DEPTH AND BREADTH

2.1 DEPTH: THE HARDEST PROBLEM SAMPLED IN RLVR

We first identify Depth as the hardest problem that can be correctly answered in the RLVR training
process. In the GRPO training process, groups whose entire rollouts yield incorrect answers suffer
from gradient vanishing. Hence, sampling high-difficulty questions with correct reasoning paths is
crucial for LLM training. We first show that merely increasing rollout size does not consistently
yield significant gains in Pass@K performance, and sometimes can even be harmful. We then
quantify GRPO’s cumulative advantage and highlight its under-weighting of high-difficulty samples.

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.39 0.41 0.43 0.45 0.47 0.49 0.51

P
as
s@
3
2

Pass@1

n=8

n=32

0.795

0.8

0.805

0.81

0.815

0.82

0.825

0.39 0.41 0.43 0.45 0.47 0.49 0.51

P
as
s@
1
2
8

Pass@1

n=8

n=32

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.52 0.53 0.54 0.55 0.56 0.57

P
as
s@
3
2

Pass@1

n=8

n=32

0.8

0.805

0.81

0.815

0.82

0.825

0.83

0.835

0.52 0.53 0.54 0.55 0.56 0.57

P
as
s@
1
2
8

Pass@1

n=8

n=32

Qwen2.5-Math-1.5b Qwen2.5-Math-1.5b Qwen2.5-Math-7b Qwen2.5-Math-7b

Pass@K drop

Pass@K drop

Pass@K raise
Pass@K raise

Figure 1: Training dynamics of Pass@1 and Pass@K performance of Qwen2.5-Math-1.5b and
Qwen2.5-Math-7b with different rollout size.

Naive Scaling of Rollout Size Benefits Pass@1, But Not Necessarily Pass@K. We present the
training dynamics of Pass@1 and Pass@K performance during the RLVR training process in Fig-
ure 1. Enlarging the rollout size allows the sampling of correct solutions to hard problems during
training. We originally assumed this would benefit Pass@K performance; however, experimental
results show that this is not always the case. We find that Qwen2.5-Math-7b can significantly bene-
fit from an increased rollout size, whereas for Qwen2.5-Math-1.5b, naively scaling rollout size can
even harm Pass@K performance.

Cumulative Advantage Bias in GRPO Variants hinders the improvement of Pass@K. In the
GRPO framework, the advantage estimation is derived by normalizing binary rewards:

Âstd
i =

ri − u

σ
, Ânostd

i = ri − u, (1)
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Figure 2: Statistical results of cumulative advantage. Group relative advantage calculation methods
underestimate high-difficulty problems. n denotes group size.

where ri is the binary reward of ith rollout, u is the mean value of the group rewards u =
mean({Ri}Gi=1) and σ is the standard deviation of the group rewards σ = std({Ri}Gi=1). In the
case of binary rewards, u also represents the accuracy of LLM rollouts. Dr. GRPO (Liu et al.,
2025b) removes the standard-deviation term from the advantage computation to eliminate question-
level difficulty bias, and demonstrates its superiority through extensive experiments. Consequently,
the experiments reported in this study were conducted primarily though the Dr. GRPO methodology.
We show more results of std-based advantage in Appendix F.1.
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Figure 3: Training dynamics of Pass@1 and Pass@K performance of Qwen2.5-Math-1.5b and
Qwen2.5-Math-7b with different batch size.

For a group G with rollout size N , we define the cumulative advantage of a group as the sum of
the absolute values of sample advantages: Agroup =

∑G
i=1 |Âi|. The cumulative advantage reflects

how much the algorithm weights each sample. Specifically, for Dr. GRPO,

Agroup = 2Nu(1− u), (2)

The cumulative advantage functional curve is plotted in Figure 2. As shown in the figure, group-
based advantage computation funnels its weight toward problems of medium difficulty while largely
overlooking those that are highly difficult. This bias limits the Pass@K performance of RLVR.
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2.2 BREADTH: ITERATION INSTANCE QUANTITY IN RLVR

We define Breadth as the number of instances used per iteration of the RLVR process. We’ll show
how increasing the batch size for the RLVR process improves the Pass@1 performance.

Breadth Matters for Pass@1 Performance. Most studies (Liu et al., 2025b;a; Yan et al., 2025; Fu
et al., 2025) conventionally set the batch size to 128. In this subsection, we drastically increase the
batch size to 3072 and plot the training dynamics of Pass@1 and Pass@32 performance in Figure
3. Naively increasing the batch size brings a Pass@1 improvement for all models, yet it harms
the Pass@128 performance of Qwen2.5-Math-1.5b. We consider that increasing the quantity of
instances used in each iteration makes the gradient direction more accurate and reduces the impact
of noise, thereby improving Pass@1 performance.
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Figure 4: Training dynamics of Pass@1 performance and token entropy for Qwen2.5-Math-1.5b
and Qwen2.5-Math-7b.

Breadth Sustains Entropy for Model Exploration.

High token entropy in LLMs indicates strong exploration capabilities. Our analysis shows a rela-
tionship between Pass@1 and token entropy during training. As illustrated in Figure 4, increased
training breadth enables LLMs to achieve higher entropy at a given Pass@1 accuracy. We believe
a large training breadth acts as a form of entropy regularization, preventing premature convergence
and boosting Pass@1 performance while maintaining high entropy.

3 METHODOLOGY

In Section 2, we analyze the bias inherent in group-based advantage computation. To solve this is-
sue, we introduce Difficulty Adaptive Rollout Sampling (DARS), which rebalances the cumulative
advantage via multi-stage sampling. By further synergizing the depth and breadth training dimen-
sions, we propose DARS-B, which improves both Pass@1 and Pass@K.

3.1 DIFFICULTY ADAPTIVE ROLLOUT SAMPLING (DARS)

As shown in Figure 5, given a data batch B = {qj}Mj=1 of reasoning questions, DARS operates in two
phases: (i) pre-rollout difficulty estimation that assigns to each question qj a scalar difficulty score
xj ∈ [0, 1]; and (ii) multi-stage rollout re-balancing that dynamically decides how many additional
trajectories ∆nj shall be allocated to qj so that the cumulative advantage for low-accuracy problems
is up-weighted. To simplify the subsequent formula representation, we define

S(âj) = 2âj(1− âj). (3)

Phase 1: Pre-Rollout Difficulty Estimation. For every qj , we draw a light first-stage rollout
consisting of Npre independent trajectories {τ (i)j }. Let the per-trajectory reward be binary, r(i)j ∈
{0, 1}. We define the empirical accuracy

âj =
1

Npre

Npre∑
i=1

r
(i)
j . (4)
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Figure 5: The overall training framework of our Difficulty Adaptive Rollout Sampling (DARS) with
breadth scaling. Our DARS consists of 2 phases: 1) a pre-rollout stage to evaluate the difficulty
of the given question, and 2) a re-balancing rollout stage to adjust the cumulative advantage. For
breadth scaling, we replace ppo minibatch as full batch with multiple ppo epochs.

The difficulty score is then set to the complementary accuracy xj = 1 − âj , so that xj ≈ 1 for the
hardest problems and xj ≈ 0 for the easiest ones.

Phase 2: Multi-Stage Rollout Re-Balancing. Let AN
group(u) denote the cumulative advantage under

GRPO for a group whose average accuracy is u with rollout size N . We aim to reallocate ∆N
additional trajectories across the mini-batch so that the effective cumulative advantage for each
question becomes an increasing function of its difficulty. To control the computing cost, we cap the
rollout sampling upper limit at Nmax. To this end, we design two rebalancing schedules.

Schedule 1: Equal-Treatment (ET). For every question qj we enforce the rebalanced cumulative
advantage as:

AET
group(qj) = ANpre

group (0.5). (5)
We raise the cumulative advantage of all difficulty problems (âj < 0.5) to the level achieved by a
medium-difficulty problem with accuracy âj = 0.5. The required extra trajectories are

∆nET
j = min(

⌈
ANpre

group (0.5)−ANpre

group (âj)

S(âj)

⌉
, Nmax −Npre). (6)

Schedule 2: Hardness-Weighted (HW). We now impose a monotonically increasing re-weighting
that allocates more rollouts to lower-accuracy problems:

AHW
group(qj) = 2(1− xj)ANpre

group (0.5). (7)
This yields

∆nHW
j = min(

⌈
2xj · ANpre

group (0.5)−ANpre

group (âj)

S(âj)

⌉
, Nmax −Npre). (8)

3.2 DEPTH SYNERGY WITH BREADTH SCALING

Our analysis in Section 2.2 empirically confirms the substantial Pass@1 improvements from large-
breadth training. While DARS primarily optimizes training depth via multi-stage rollout rebalance,
its dynamic batch-size adjustments preclude standard PPO-style mini-batch updates. To resolve this
architectural constraint while leveraging breadth benefits, we replace PPO’s mini-batch updates with
full-batch gradient descent across multiple PPO epochs, as illustrated in Figure 5. This modification
ensures compatibility with DARS’s dynamic allocation while maximizing effective training breadth
per optimization step. We term this integrated approach DARS-Breadth, unifying depth-adaptive
sampling with breadth maximization.

Full-batch training offers two key advantages: (1) elimination of mini-batch gradient noise, and (2)
sustained token-level exploration, acting as implicit regularization against premature convergence.
The resulting framework demonstrates complementary gains—DARS improves Pass@K through
depth optimization, while large-breadth training enhances Pass@1, highlighting their synergistic
roles in RLVR optimization.
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3.3 TRAINING TARGET

We adopt the clipped objective of GRPO without the KL penalty term. Following Dr. GRPO, we
likewise remove the response length handling from the GRPO target. Specifically, for a problem q
sampled in training data D, the training target is formalized as:

J (θ) = E(q∼D,{oi}Gi=1∼πθold
(q)[

1

G

G∑
i=1

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)
)

)]
,

(9)

where

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (10)

The token advantage Âi,t is computed using Equation 1.

4 EXPERIMENTS

4.1 SETUP

Evaluation and Training: We evaluate the RLVR process using 5 widely used mathematical rea-
soning benchmarks: MATH-500 (Lightman et al., 2023), OlympiadBench (He et al., 2024), Min-
vervaMath (Lewkowycz et al., 2022), AIME24, and AMC23. We combine all of the evaluation
benchmarks to report Pass@1 (Avg@128) and Pass@K performance. The training data used in this
work is OpenR1-45K, which is a subset of OpenR1-Math-220k (Hugging Face, 2025). More details
are shown in Appendix E.

Baseline and Methods: We compare with: (1) RLVR-baseline: Dr. GRPO with rollout size 8 and
batch size 128. (2) Depth-Naive: Simply increasing the rollout size to 32. (3) Breadth-Naive:
Simply increasing the batch size to 3072. (4) DARS-ET/HW: Our algorithm introduced in Section
3.1 with Equal-Treat/Hardness-Weighted schedule, using batch size 128 and Nmax = 32. (5) DARS-
ET/HW-Breadth: Our Depth-and-Breadth synergy algorithm introduced in Section 3.2, using batch
size 3072 and Nmax = 32. For all methods, the number of PPO mini-steps is uniformly set to 2.

Evaluation Protocol: For all baselines, we select the checkpoint with the best Pass@1 performance
for reporting. For DARS, we selected the checkpoint that achieved the best Pass@128 performance
after surpassing the baseline Pass@1 performance. Table 1 summarizes the Avg@128 performance
on each benchmark, the overall Pass@1 across all test data, and the Pass@128 performance.

4.2 MAIN RESULTS

Breadth scaling delivers a clear and consistent boost to Pass@1. Across every model scale and
every benchmark, Breadth-Naive outperforms both the GRPO baseline and Depth-Naive, lifting
average Pass@1 (Avg@128) by 1.9–3.7 points on AIME24, MATH500, and Olympiad tasks. This
advantage is not merely additive: when breadth is combined with depth through DARS-Breadth, the
margin widens further. DARS-Breadth reliably beats both Breadth-Naive and the original DARS
variants, confirming our central hypothesis—depth and breadth are complementary, not competing,
resources. Their synergy is what unlocks the next tier of LLM reasoning gains.

The practical impact is twofold. First, DARS-Breadth secures the highest Pass@1, the metric that
matters most for single-shot deployment. Second, it matches the best Pass@128 scores, demonstrat-
ing that the breadth-depth collaboration does not sacrifice the upper-bound capability revealed by
heavy sampling. Finally, the choice of schedule matters: the HW schedule consistently yields su-
perior Pass@K curves for both breadth and non-breadth training, while maintaining Pass@1 parity
with the ET schedule, making it the preferred option across the board.

4.3 TRAINING DYNAMICS AND ABLATION STUDY

In this subsection, we further show more training dynamics to illustrate properties of existing RLVR
methods and the superiority of our DARS and DARS-B.
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Table 1: Overall performance of Pass@1 (Avg@128) and Pass@128 of Qwen2.5-Math series.

Base Model + Method AIME24 MATH500 Olympiad AMC Minerva Avg@128 Pass@128

Qwen2.5-Math-1.5B 4.0 35.1 16.2 20.8 9.5 21.1 77.9
RLVR baseline 14.7 75.9 39.4 47.5 31.2 49.6 79.6
Depth-Naive 16.5 76.2 39.9 47.9 30.9 50.1 79.9
Breadth-Naive 18.5 77.6 41.7 49.8 31.9 51.5 79.2
DARS-1.5B-ET 15.8 76.0 40.9 47.2 30.0 50.0 81.2
DARS-1.5B-ET-Breadth 18.6 79.4 42.9 50.6 31.7 52.5 80.8
DARS-1.5B-HW 17.7 76.4 40.0 48.4 30.8 50.0 82.1
DARS-1.5B-HW-Breadth 19.3 79.0 42.7 51.9 31.6 52.4 82.2

Qwen2.5-Math-7B 11.6 52.3 19.7 35.2 15.3 30.1 82.1
RLVR baseline 26.8 82.2 44.3 57.2 35.7 55.3 81.4
Depth-Naive 28.0 83.8 46.4 59.0 37.3 57.0 80.3
Breadth-Naive 30.5 83.7 47.3 61.4 37.7 57.7 79.2
DARS-7B-ET 26.9 83.2 46.6 57.3 38.5 57.0 81.7
DARS-7B-ET-Breadth 33.3 83.8 47.8 61.3 38.4 58.1 82.1
DARS-7B-HW 30.1 83.5 47.1 59.4 37.2 57.3 83.5
DARS-7B-HW-Breadth 33.0 84.5 48.4 63.0 36.9 58.4 83.4

Pass@128 performance surpasses the base model, peaks quickly, and then declines. We con-
duct RLVR experiments with rollout size 8/32 to compare our DARS (with Nmax = 32), the train-
ing dynamics of Pass@128 performance during training is shown in Figure 6. Across all settings,
Pass@128 surpasses the base model during training, but declines after peaking, indicating that over-
training with RLVR harms Pass@128 performance. Notably, DARS (with Nmax = 32) incurs
substantially less inference cost than naively scaling the rollout size to n = 32. Despite this being
an unfair comparison in terms of computational expenditure, our DARS not only attains the highest
peak Pass@128 performance but also outperforms all other settings.
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Figure 6: Training dynamics of Pass@128 performance with different training steps of Qwen2.5-
Math-1.5b and Qwen2.5-Math-7b.

Depth Training with DARS Improve Pass@K Performance and Training Efficiency. Because
the Pass@K (K=32/128) metric is hard to improve monotonically—it even starts to drop after pro-
longed training—while Pass@1 remains comparatively stable and rarely collapses, we seek to boost
Pass@K without degrading Pass@1. Figure 7 plots Pass@128 against Pass@1 under a variety of
experimental settings. It shows that, at any fixed Pass@1 level, our DARS method delivers a con-
sistently higher Pass@128 than the other settings.

Table 2: Average rollout numbers per prompt.

Model Naive DARS-ET DARS-HW

Qwen2.5-Math-1.5B 32 15.2 (↓52.5%) 23.9 (↓25.3%)
Qwen2.5-Math-7B 32 12.8 (↓60.0%) 20.1 (↓37.2%)
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Figure 7: Training dynamics of Pass@32/Pass@128 and Pass@1 performance with different train-
ing steps of Qwen2.5-Math-1.5b and Qwen2.5-Math-7b.

It is worth noting that, unlike the naive approach of simply increasing the rollout size to 32, our
DARS achieves significantly higher training efficiency by allocating more rollouts to the hard prob-
lems. As shown in Table 2, our DARS methods need far fewer rollouts than the Depth-Naive method
while achieve better performance.

Depth-Breadth are Complementary in RLVR. We show that Depth and Breadth are two com-
plementary dimensions in RLVR. As shown in Figure 8, we present the Pass@1–Pass@K training-
dynamics curves for the Breadth, Depth, and the two-dimensional synergy approach DARS-Breadth.
The farther the Pass@1–Pass@K curve deviates outward, the more powerful the method. Our
DARS-Breadth curves lie on the outermost envelope: it not only achieves the best Pass@1, but also
simultaneously lifts Pass@K. This demonstrates the complementary roles of Depth and Breadth.
Ablation Study on Base Model. We further illustrate the effectiveness of DARS on Llama-3.1-8B.
The results are shown in Table 3. Our DARS-ET-Breadth achieves both Pass@1 and Pass@128
performance compared to other baselines, which further illustrates the effectiveness of our method.

Table 3: Overall performance of Pass@1 (Avg@128) and Pass@128 performance of Llama-3.1-8B.

Base Model + Method AIME24 MATH500 Olympiad AMC Minerva Avg@128 Pass@128

Llama-3.1-8B 0.23 6.13 1.54 2.76 2.72 3.25 52.7
GRPO baseline 0.66 29.6 7.09 10.1 15.7 15.8 56.5
Depth-Naive 0.43 33.6 9.40 12.3 19.7 18.9 58.6
Breadth-Naive 0.79 34.4 9.34 12.2 19.0 19.0 61.1
DARS-Llama-ET-Breadth 1.46 39.4 12.0 13.2 20.1 22.0 67.2
DARS-Llama-HW-Breadth 1.11 39.0 12.0 13.3 19.8 21.8 68.7

Complete Pass@K Accuracy Curve. We show the complete Pass@K curve for Llama-3.1-8B,
Qwen2.5-Math-1.5B, and Qwen2.5-Math-7B in Figure 9. The 3 chosen models of DARS are:
DARS-Llama-ET-Breadth, DARS-1.5B-HW-Breadth, and DARS-7B-HW-Breadth. DARS mod-
els demonstrate a breakthrough in the reasoning boundaries of the base model, especially on the
LLama-3.1-8B model, where the improvement in Pass@k is particularly significant.
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Figure 8: Depth and Breadth Synergy for Pass@1 and Pass@K (K=128) performance.

5 RELATED WORKS

Reinforcement Learning (RL) is now standard in post-training LLMs. After early reward-model
pipelines (Ouyang et al., 2022b), Direct Preference Optimization (Rafailov et al., 2023) stream-
lined training by exploiting pairwise preferences. RL with verifiable rewards (RLVR) has since
pushed reasoning benchmarks in math and code, culminating in OpenAI’s o1 (Jaech et al., 2024) and
the zero-RL breakthrough of DeepSeek-R1 (Guo et al., 2025). Follow-up Large Reasoning Mod-
els—Kimi 1.5 (Team et al., 2025), Gemini-Think (DeepMind, 2024), QwQ (Qwen, 2024)—and
studies like Zeng et al. (2025); Luo et al. (2025) further validate RLVR. The leading algorithm,
GRPO (Shao et al., 2024), extends PPO (Schulman et al., 2017) with group-relative advantages,
inspiring DAPO (Yu et al., 2025), VAPO (Yue et al., 2025b), and Dr. GRPO (Liu et al., 2025b).
Yet GRPO and its variants systematically undervalue hard problems, hurting Pass@K. More related
works are shown in Appendix B.
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Figure 9: Complete Pass@K accuracy curve of base models and our DARS models.

6 CONCLUSION

In this work, we reveal that GRPO-based RLVR methods under-weight hard problems due to
cumulative-advantage bias, capping Pass@K. Our DARS sampler cheaply re-allocates rollouts to
these hard instances, while large-breadth training with full-batch updates raises Pass@1. The uni-
fied DARS-Breadth framework jointly lifts Pass@1 and Pass@K, proving depth and breadth are
synergistic levers in RLVR.
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7 REPRODUCIBILITY STATEMENT

We have included a comprehensive reproducibility package as part of our supplementary materials
to facilitate the replication of all experiments presented in this paper. This includes anonymized
source code implementing the proposed model and training procedures, as well as the preprocessed
datasets used in our experiments. Detailed instructions for environment setup, data preparation,
and execution are provided in the accompanying README documentation. Furthermore, we have
supplied exact configuration files and scripts specifying all hyperparameters, and training commands
required to reproduce our results.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

During manuscript preparation, a large language model (LLM) was occasionally employed as an
auxiliary assistant to refine language expression, such as improving sentence fluency and enhancing
readability. The model was not involved in generating original research contributions: it did not
participate in formulating research questions, designing methodologies, conducting experiments,
analyzing results, or drafting substantive scientific content. All core intellectual work, including the
development of ideas, execution of experiments, and interpretation of findings, was carried out in-
dependently by the authors. Any linguistic suggestions offered by the LLM were critically reviewed
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and selectively incorporated, ensuring that accuracy, originality, and scholarly integrity were fully
maintained. The authors alone bear responsibility for the research content and conclusions, and the
LLM is not listed as a contributor or author.

B MORE RELATED WORKS

With the rapid advancement of RLVR and the proliferation of open-source LRMs, many studies
have begun to analyze the RLVR pipeline and these open LRMs. Several studies (Liu et al., 2025a;
Zhao et al., 2025; Shah et al., 2025) indicates that the self-reflect and self-critique behaviors ob-
served after RLVR originates from the base model rather than the RL process. Dang et al. (2025)
find that although the RLVR process benefits Pass@1, Pass@K may decline as training progresses.
Subsequently, Yue et al. (2025a) through extensive experimental analysis, discovered that RLVR’s
performance is significantly constrained by the base model; once training converges, it struggles to
surpass the capability boundary of the base model. These studies have sparked widespread concern
about the capability ceiling of RLVR, and consequently, the Pass@K metric has become a focal point
for diagnosing and potentially transcending the intrinsic limits imposed by the base model (Liang
et al., 2025). This paper analyzes and refines the RLVR pipeline from the dual perspectives of
Pass@1 and Pass@K.

C DERIVATION OF ADDITIONAL ROLLOUTS ∆nj

The cumulative advantage for a group with accuracy âj and total rollout size Nj = Npre +∆nj is
given by:

Agroup(âj , Nj) = Nj · S(âj),
where S(âj) = 2âj(1− âj).

After the first-stage rollout of size Npre, the initial cumulative advantage is:

ANpre

group (âj) = Npre · S(âj).

Our goal is to determine the number of additional trajectories ∆nj needed so that the final cumula-
tive advantage Agroup(âj , Nj) meets a target value Atarget

group(âj).

Equal-Treatment (ET) Schedule:

The target cumulative advantage is set to be constant for all questions with âj < 0.5:

AET
group(âj) = ANpre

group (0.5) = Npre · S(0.5).

We solve for ∆nET
j :

Agroup(âj , Nj) = AET
group(âj)

(Npre +∆nET
j ) · S(âj) = Npre · S(0.5)

∆nET
j · S(âj) = Npre · S(0.5)−Npre · S(âj)

∆nET
j =

Npre · S(0.5)−Npre · S(âj)
S(âj)

.

∆nET
j =

ANpre

group (0.5)−ANpre

group (âj)

S(âj)
.

The rollout size must be an integer, and we cap the total rollout sampling upper limit at Nmax, so

∆nET
j = min(

⌈
ANpre

group (0.5)−ANpre

group (âj)

S(âj)

⌉
, Nmax −Npre).

Hardness-Weighted (HW) Schedule:
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The target cumulative advantage increases with difficulty:

AHW
group(âj) = 2(1− âj) · AN

group(0.5) = 2xj ·Npre · S(0.5).

We solve for ∆nHW
j :

Agroup(âj , Nj) = AHW
group(âj)

(Npre +∆nHW
j ) · S(âj) = 2xj ·Npre · S(0.5)

∆nHW
j · S(âj) = 2xj ·Npre · S(0.5)−Npre · S(âj)

∆nHW
j =

2xj ·Npre · S(0.5)−Npre · S(âj)
S(âj)

.

Again, using the baseline advantage notation ANpre

group (âj) = Npre · S(âj), we obtain:

∆nHW
j = min(

⌈
2xj · ANpre

group (0.5)−ANpre

group (âj)

S(âj)

⌉
, Nmax −Npre).

Both derivations include a ceiling function and are capped at Nmax to control computational cost,
as shown in Equations 6 and 8 in the paper.

D MATHEMATICAL DERIVATION: GROUP CUMULATIVE ADVANTAGE AND
GRPO GRADIENT NORM

In this appendix, we provide a detailed mathematical derivation demonstrating the relationship be-
tween Group Cumulative Advantage and the gradient norm in GRPO. This derivation substantiates
the claim that Agroup serves as an effective indicator of the model’s attention to specific problems
during training.

D.1 GRPO GRADIENT FORMULATION

The GRPO objective function and its gradient are given by (we can remove the clip operation for
simplified analysis):

JGRPO(θ) = Eq∼D, {oi}G
i=1∼πθold

(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

ρi,t(θ)Âi

]
, (11)

∇θJGRPO(θ) = Eq∼D, {oi}G
i=1∼πθold

(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

Âi∇θρi,t(θ)

]

= Eq∼D, {oi}G
i=1∼πθold

(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

Âi
∇θπθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)

]

= Eq∼D, {oi}G
i=1∼πθold

(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

ρi,t(θ)Âi∇θ log πθ(oi,t|q, oi,<t)

]
.

(12)

D.2 DERIVATION OF GRADIENT NORM UPPER BOUND

We now derive the upper bound relationship between the gradient norm and Group Cumulative
Advantage.

The gradient norm of our adopted GRPO algorithm is shown as the following:

∥∇θJGRPO(θ)∥ =

∥∥∥∥∥∥E
 1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

ρi,t(θ)Âi∇θ log πθ(oi,t|q, oi,<t)

∥∥∥∥∥∥ . (13)
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Since the norm is a convex function and expectation is linear, by Jensen’s inequality:
∥E[X]∥ ≤ E[∥X∥] (14)

Thus:

∥∇θJGRPO(θ)∥ ≤ E

∥∥∥∥∥∥ 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

ρi,t(θ)Âi∇θ log πθ(oi,t|q, oi,<t)

∥∥∥∥∥∥
 . (15)

Applying the triangle inequality to the inner summation:∥∥∥∥∥∥
G∑
i=1

|oi|∑
t=1

ai,t

∥∥∥∥∥∥ ≤
G∑
i=1

|oi|∑
t=1

∥ai,t∥ , (16)

where:
ai,t =

1∑G
i=1 |oi|

ρi,t(θ)Âi∇θ log πθ(oi,t|q, oi,<t). (17)

Therefore:

∥∇θJGRPO(θ)∥ ≤ E

 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

∥∥∥ρi,t(θ)Âi∇θ log πθ(oi,t|q, oi,<t)
∥∥∥
 . (18)

Then we have,∥∥∥ρi,t(θ)Âi∇θ log πθ(oi,t|q, oi,<t)
∥∥∥ = |ρi,t(θ)| · |Âi| · ∥∇θ log πθ(oi,t|q, oi,<t)∥ . (19)

Thus:

∥∇θJGRPO(θ)∥ ≤ E

 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

|ρi,t(θ)| · |Âi| · ∥∇θ log πθ(oi,t|q, oi,<t)∥

 . (20)

We further take a boundedness assumption. in policy optimization, we assume the gradient log-
probabilities ∥∇θ log πθ(oi,t|q, oi,<t)∥ are bounded. Furthermore, it’s vital to notice that the impor-
tance ratio ρi,t(θ) are also bounded through the clip operation in GRPO algorithm.

Thus, there exists a constant C > 0 such that:
|ρi,t(θ)| · ∥∇θ log πθ(oi,t|q, oi,<t)∥ ≤ C. (21)

Therefore:

∥∇θJGRPO(θ)∥ ≤ C · E

 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

|Âi|

 . (22)

Noting that |Âi| is independent of t for fixed i:
G∑
i=1

|oi|∑
t=1

|Âi| =
G∑
i=1

|oi| · |Âi|. (23)

Thus:

∥∇θJGRPO(θ)∥ ≤ C · E

[∑G
i=1 |oi| · |Âi|∑G

i=1 |oi|

]
. (24)

In this paper, we define the Group Cumulative Advantage as:

Agroup =

G∑
i=1

|Âi|. (25)

By the weighted arithmetic mean inequality:∑G
i=1 |oi| · |Âi|∑G

i=1 |oi|
≤

∑G
i=1 |oi| ·

∑G
i=1 |Âi|∑G

i=1 |oi|
=

G∑
i=1

|Âi| = Agroup. (26)

Therefore:
∥∇θJGRPO(θ)∥ ≤ C · E [Agroup] . (27)
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D.3 THEORETICAL IMPLICATIONS

This derivation establishes that Group Cumulative Advantage Agroup provides an upper bound for
the expected gradient norm in GRPO. Consequently: Larger Agroup values indicate stronger gradient
signals for the corresponding problem. The training process allocates more ”attention” to problems
with higher Agroup values during parameter updates. Therefore, we consider Agroup serves as a
mathematically grounded indicator of problem importance in GRPO training dynamics.

This theoretical foundation validates the use of Group Cumulative Advantage as a meaningful metric
for analyzing training behavior and problem prioritization in GRPO.

E TRAINING AND EVALUATION DETAILS

Prompt for Solving Complex Reasoning Tasks

Your task is to solve the given question step by step. You should conduct a systematic,
thorough reasoning process before providing the final answer. This involves analyzing,
summarizing, exploring, reassessing, and refining your reasoning process through multiple
iterations. Each reasoning step should include detailed analysis, brainstorming, verification,
and refinement of ideas. You should include the final answer in \boxed{} for closed-form
results like multiple choices or mathematical results.

Parameters and Metrics. Currently, our experiments are conducted with Qwen2.5-Math series
language models (Yang et al., 2024). We set the temperature to 1.0 for both the training and evalua-
tion procedures. In this paper, we mainly use two metrics, Pass@1 and Pass@K. To acquire Pass@K
results, we sample 128 candidate responses for each question during the evaluation process; the cal-
culation of Pass@1 is derived from Avg@128. Both the training and evaluation processes are scored
using Math-Verify. The learning rate is 1e-6 for depth training methods, and 5e-6 for large breadth
training. We do not use the reference model and KL loss. For fair comparison, we uniformly set the
PPO mini step to 2 for all experiments. By default, the maximum prompt length is 1024, and the
maximum response length is 3072 for the Qwen2.5-Math series model.

Moreover, we have adopted the same unbiased, low-variance estimator for pass@k as used in prior
works (Yue et al., 2025a; Chen et al., 2021),

pass@K = Exi∼D

[
1−

(
n−ci
k

)(
n
k

) ]
,

Specifically, when K = N , the metric become: pass@K = c1 ∨ c2 ∨ · · · c128.

Implementation Details. Following LUFFY (Yan et al., 2025), we use the default subset and filter
out generations that are longer than 8192 tokens and those that are verified wrong by Math-Verify
1, resulting in 45k question-solution pairs. For training Llama-3.1-8B, we use the train split of
MATH dataset. Our training framework is derived from Verl (Sheng et al., 2024) pipeline, which
is a flexible, high-performance reinforcement-learning framework built for training large language-
model agents. With native PyTorch support and efficient distributed training, Verl lets researchers
quickly prototype and scale RL algorithms like PPO on GPUs. Following Dr. GRPO (Liu et al.,
2025b), we remove the KL loss and the length normalization in GRPO. All of our experiments are
conducted on H200 GPUs. At present, the LLM of our experiment is the Qwen2.5-Math series.

Training Steps and Checkpoint Steps. For non-breadth methods on Qwen2.5-Math-1.5B/7B,
we set the checkpoint step as 100. For breadth methods on Qwen2.5-Math-1.5B/7B, we set the
checkpoint step as 15. The specific training steps are determined according to the convergence of
the model. The number of training steps for non-breadth training is set as 300 for Llama-3.1-8B, 600
for Qwen2.5-Math-1.5B, and 500 for Qwen2.5-Math-7B. The number of training steps for breadth
training is set as 70. For breadth training, we set the total training steps as 105 for Qwen2.5-Math-
1.5B, and 75 for Qwen2.5-Math-7B.

1https://github.com/huggingface/Math-Verify
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F MORE EXPERIMENTAL RESULTS

F.1 ABLATION STUDY ON STD-BASED ADVANTAGE COMPUTATION

As illustrated in Section 2, Dr. GRPO (Liu et al., 2025b) removes the standard-deviation term
from the advantage computation to eliminate question-level difficulty bias, and demonstrates its
superiority through extensive experiments. Consequently, the experiments reported in this study
were conducted primarily though the Dr. GRPO methodology. To further illustrate the effectiveness
of DARS on std-based advantage computation, we conduct the experiment with HW schedule on
Qwen2.5-Math-1.5B model, as shown in Figure 10
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Figure 10: Comparison of our DARS on std-based advantage computation.

F.2 DEPTH AND BREADTH SYNERGY FOR PASS@1 AND PASS@32

In Section 4.3, we show the training dynamics of Pass@128-Pass@1 for DARS and baseline meth-
ods. To further illustrate the effectiveness of DARS, we show the training dynamics of Pass@32-
Pass@1 in Figure 11. Our DARS significantly improves the Pass@32 performance compared to
other methods.
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Figure 11: Complementary improve of Depth and Breadth Synergy for Pass@1 and Pass@K (K=32)
performance.
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F.3 COMPARISON OF ET/HW SCHEDULE IN BREADTH SCALING

In addition, compared with the ET schedule, DARS-HW-Breadth significantly improves the model’s
Pass@128 performance as shown in Figure 12. We consider this performance gain is due to the HW
schedule placing greater emphasis on difficult samples.
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Figure 12: Comparison of ET and HW schedule in breadth training of Qwen2.5-Math series.

F.4 IMPACT OF TEMPERATURE

Some researches (Karan & Du, 2025; Qin et al., 2025; Ni et al., 2025) indicates that temperature
matters in LLM reasoning. To further illustrate the performance improvement under different tem-
perature, we additionally add the above experiments. The results shows that the improvement of our
method is consistent over different temperature. The results are shown in Figure 13.

t=0.6 t=0.8 t=1.0 t=1.2 t=1.4 t=0.6 t=0.8 t=1.0 t=1.2 t=1.4

GRPO-Baseline 78.9 79.2 79.6 80 80 GRPO-Baseline 80.4 80.7 81.4 81.6 81.6

Depth-Naive 79.4 79.6 79.9 80.3 80.4 Depth-Naive 79.7 80 80.3 80.7 80.8

Breadth-Naive 78.9 78.9 79.2 79.6 79.9 Breadth-Naive 77.7 78.1 79.2 79.4 79.6

DARS-HW-Breadth 81.6 81.9 82.2 82.6 82.7 DARS-HW-Breadth 82.6 82.8 83.4 84.0 84.0

Qwen2.5-Math-1.5B Qwen2.5-Math-7B

Figure 13: Heat map of Pass@128 of Qwen2.5-Math series in different temperatures.

F.5 CONSISTENT IMPROVEMENT DURING RL PROCESS

To further show that our method consistently improve model performance, we calculated the mean
of Pass@128 and Pass@32 for the last 3 checkpoints of each method, as shown in Table 4.

F.6 PERFORMANCE OF NONE MATH MODEL.

We further evaluate our method on Qwen2.5-Math-7B-Instruct. The results are shown in Table 5. As
the results show, our method still outperforms the baseline in both the Pass@1 and Pass@K metrics.

F.7 DARS ELICITS LONGER REASONING CHAINS

This section investigates how DARS influences the reasoning length of LLMs. We tracked the re-
sponse length dynamics during the training of Qwen2.5-Math-1.5B and 7B models. Our experiments
reveal two key observations: (1) The training process shows a clear trend of increasing generation
length, as shown in Figure 14. (2) When evaluated on AIME 2024, models trained with DARS
consistently produce longer reasoning traces than the baseline, as shown in Figure 15. These results
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Table 4: Average performance of Pass@1/32/128 for the last 3 checkpoints during training.

Model Pass@1 Pass@32 Pass@128

Qwen2.5-Math-1.5B as the Base Model
GRPO-Baseline 48.8 74.7 80.8
Depth-Naive 49.5 74.4 80.6
Breadth-Naive 51.4 74.4 79.8
DARS-HW 49.5 75.7 81.9
DARS-HW-Breadth 52.4 76.4 82.1

Qwen2.5-Math-7B as the Base Model
GRPO-Baseline 55.1 76.9 81.8
Depth-Naive 56.4 76.7 80.9
Breadth-Naive 57.2 76.7 81.3
DARS-HW 56.8 78.8 83.4
DARS-HW-Breadth 58.3 79.1 83.7

Table 5: Overall performance of Pass@1 (Avg@128) and Pass@128 of Qwen2.5-7B-Instruct.

Model AIME24 Math500 Olympiad AMC Minerva Avg@128 Pass@128

Qwen2.5-7B-Instruct 11.9 72.3 37.1 42.2 31.9 47.2 80.3
GRPO-baseline 14.2 74.8 37.6 43.4 33.4 48.6 78.8
DARS-HW-Breadth 15.6 76.5 38.4 44.7 34.6 49.6 82.3

provide concrete evidence that our DARS method successfully stimulates the model to perform
deeper and more thorough thinking.

800

900

1000

1100

1200

1300

1400

1500

0 100 200 300 400 501

R
es

p
o

n
se

 L
en

g
th

Training Steps

DARS-HW

GRPO

800

900

1000

1100

1200

1300

1400

1500

1600

1700

0 100 200 300 400 500

R
es

p
o

n
se

 L
en

g
th

Training Step

DARS-HW

GRPO

Qwen2.5-Math-1.5B Qwen2.5-Math-7B

Figure 14: Training dynamics of response length for GRPO and DARS.

G DISCUSSION AND FUTURE WORK

In this section, we analyze how hyperparameters N and Nmax control the shape of the cumula-
tive advantage curve, and how this shape may influence training behavior. We further discuss how
dynamically adjusting these parameters could enable a smooth transition from Pass@K-oriented to
Pass@1-oriented training.
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Figure 15: Statistical results of response length on AIME 2024 for GRPO and DARS.

G.1 HYPERPARAMETER CONTROL OF CUMULATIVE ADVANTAGE SHAPE

We show the Cumulative Advantage shape of ET/HW schedule with N = 8 in Figure 16. By
continuously reducing the size of Nmax, the curve will contract accordingly. When Nmax = N , it is
equivalent to the vanilla method without performing DARS.
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Figure 16: Control the shape of Cumulative Advantage by adjusting the Nmax hyperparameter of
DARS.

G.2 POTENTIAL PASS@K TO PASS@1 TRAINING TRANSITION

The dynamic control of Nmax suggests an intriguing training strategy: starting with a large Nmax

value to maximize Pass@K performance through extensive exploration of hard problems, then grad-
ually reducing Nmax throughout training to transition toward Pass@1 optimization.

This approach mirrors curriculum learning principles, where the training difficulty is progressively
adjusted. Initially, the model benefits from the expanded solution space and diverse reasoning pat-
terns discovered through heavy sampling on hard problems (high Nmax). As training progresses and
the model’s capability matures, reducing Nmax focuses the training on refining the most promising
solution strategies, ultimately improving single-shot performance.

Future work will explore optimal annealing schedules for Nmax and investigate whether this tran-
sition strategy can simultaneously maximize both Pass@1 and Pass@K performance, potentially
overcoming the current limitations of RLVR training.
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