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Abstract

A hallmark of biological intelligence and control is combinatorial generalization: animals
are able to learn various things, then piece them together in new combinations to produce
appropriate outputs for new tasks. Inspired by the ability of primates to readily imitate
seen movement sequences, we present a model of motor control using a realistic model of
arm dynamics, tasked with imitating a guide that makes arbitrary two-segment drawings.
We hypothesize that modular organization is one of the keys to such flexible and general-
izable control. We construct a modular control model consisting of separate encoding and
motor RNNs and a scheduler, which we train end-to-end on the task. We show that the
modular structure allows the model to generalize not only to unseen two-segment trajec-
tories, but to new drawings consisting of many more segments than it was trained on, and
also allows for rapid adaptation to perturbations. Finally, our model recapitulates exper-
imental observations of the preparatory and execution-related processes unfolding during
motor control, providing a normative explanation for functional segregation of preparatory
and execution-related activity within the motor cortex.
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1. Introduction

Animal behavior is believed to be atomic: composed of a discrete set of “syllables” or motifs
which together form a “grammar” Wiltschko et al. (2015); Markowitz et al. (2018). Ac-
tion sequences are then generated by combining syllables and executing them sequentially.
The compositional structure inherent in this scheme allows animals to flexibly recombine
motor primitives to generate novel, ecologically relevant movement patterns. This system
affords animals a combinatorially large movement repertoire built of out simpler compo-
nents. However, the specialized structures in the motor system required to implement this
scheme efficiently remain unknown.

Existing experiments in the motor cortices of non-human primates performing reaching
movements have indicated that the process of movement generation is comprised of three
interdependent stages: a preparatory stage, a trigger signal and action execution. During
the preparatory stage, the parameters for a motion are able to be decoded from the motor
cortex Churchland et al. (2010) indicating that the planned trajectory is present in the
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motor cortex despite the lack of motion production. After the onset of the trigger signal,
the motor cortex exhibits dynamics which produce downstream muscle activations leading
to the desired motion.

In order to combine multiple motor primitives into complex sequences, there must be
additional structure to support these longer sequences. Recent work studying the neural
dynamics of rhesus macaques performing skilled, practiced compound reaches has indi-
cated that conjunctive movement consists of separate independent chains of motor pro-
cesses sharing the same underlying neural substrate Zimnik and Churchland (2021). In
order to skillfully and smoothly execute a sequence of movements, the motor cortex needs
to simultaneously prepare for an upcoming movement while current motor commands are
being executed. This multi-tasking capability requires functional segregation preparatory
activity and execution within the underlying motor cortical circuitry. Existing research
suggests that this is implemented in biological systems by separating preparatory activity
and execution into orthogonal subspaces.

We demonstrate that a task-optimized neural network is able to implement arbitrary
motor subroutines in a flexible and reusable manner. Our model demonstrates remark-
able generalization capabilities due to its structure. Through learning, our model exhibits
emergent self-organization of its latent representation which facilitates robust production
of movement patterns. Furthermore, our model is able to continuously produce sequences
of motion interference, demonstrating properties of functional segregation exhibited in bio-
logical neural circuits.

2. Methods

Our model architecture resembles the sequence-to-sequence models used in natural language
processing Sutskever et al. (2014). The input data (from the observed “guide”) consists of
procedurally generated movements consisting of up to two straight segments, represented by
a sequence of x,y coordinates. The agent constructs an embedding by sequentially ingesting
the x,y coordinates of the guide sequence into an encoder implemented as a recurrent neural
network (RNN) consisting of continuous-time neurons which we denote as continuous time
recurrent neural networks (CT-RNN) Appendix A.1. The encoder produces a single (static)
readout, or embedding, at the end of each segment. These embeddings are fed into the motor
RNN at pre-specified times by a scheduler, which modulates the embedding by a ramping
function such that motion onset is triggered by the falling edge of the ramping signal which
is analogous to a ’go cue‘ used in animal experiments Hennequin et al. (2014). The ramping
signal is multiplied by the embedding of the subsequently executed segment such that the
motor RNN does not receive information about the movement until the ramping signal
has commenced. The beginning of the ramp signal was timed such that the embedding
signal was provided 7 steps before the end of the previous segment such that the go signal
aligns with the end of the previous segment. This setup effectively ’loads‘ the embedding of
the movement into the motor RNN prior to its execution. However due to the continuous
nature of the compound movement, the temporal overlap of the preparation and execution
phases force the network to simultaneously process both the future motor command while
completing the current segment.
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Figure 1: a) Schematic of encoder-decoder training setup with trained continuous time re-
current neural networks (CT-RNN) in both the Encoder and Motor RNN com-
ponents of our system. b) Example trajectories used for training the model,
consisting of procedurally generated single and 2-segment trajectories of various
length and angles. c) Examples of complex, out-of-distribution sequences gen-
erated by the trained model. d) Polar histogram indicating the distribution of
preferential movement direction. Each neuron is assigned a preferential move-
ment direction based on its activity profile. The red line indicates the optimal
movement direction e) Distribution of preferred reach direction for different start-
ing locations within the drawing board, computed by finding the reach direction
which minimized error.
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The motor RNN takes in the ramp-modulated static encoder embedding and produces
a sequence of muscle activation commands which are implemented by a realistic simulation
of an over-actuated two-link arm moving in two dimensional space Kalidindi et al. (2021),
Lillicrap and Scott (2013). Our model receives feedback about angular position and velocity
of the joints of the arm but must learn to time the muscle activity in order to produce the
target motion sequence. The entire system is trained end-to-end on one or two segment
motions using stochastic gradient descent and supervised learning using mean squared er-
ror of the virtual pen with respect to the target sequence at each moment in time. Our
model additionally included biologically relevant loss terms penalizing neural activity and
simultaneous activation of antagonistic muscle pairs. Appendix A.3

3. Results

Although our model was trained on sequences of straight lines with at most two segments
(Figure 1b), we find that our network is able to generalize to sequences of arbitrarily many
more segments, enabling the network to draw complex figures which it has never been
trained on before (Figure 1c). We posit that this ability arises from the implicit modular
structure of our network. This modularity is consistent with recordings from the primate
motor cortical system Zimnik and Churchland (2021). We find that the architectural seg-
mentation of movement production into a preparatory phase and execution-related phase,
motivated by electrophysiology data, encouraged the network to produce relaxation dynam-
ics and permitted it to reuse existing circuitry for the production of conjunctive sequences.
This is a result of the decoder’s ability to cycle through phases of preparation and execution
in which the clear separation of stages and the tendency of the dynamics to return to a
fixed point allows the activity to ‘reset’ between movements and prevents interference from
prior movements. We also demonstrate that the structural priors imposed on our model
give rise to characteristic behaviors of biological motor control including orthogonality of
preparatory and execution-related activity and rapid adaptation to changes in physics.

3.1. Preferred movement directions

We analyzed the preferred movement direction for each neuron. This was done by quantizing
the possible movement directions and determining the direction which caused maximal
activation for each neuron, which indicates its preferred movement direction. Here we found
a bimodal distribution with peaks located approximately 180 degrees from one another
Figure 1d. This phenomenon has been previously reported by Lillicrap and Scott (2013), in
which this effect is attributed as the optimal neural activity for the biomechanical properties
of the limb. Next, we investigated whether the preferred movement directions would allow
us to predict the optimal movement direction, which we defined as the direction which
minimized the cumulative squared error for a short trajectory. As shown in Figure 1e, this
direction was tightly distributed around 270 degrees. In the specific starting position used to
generate Figure 1d, the optimal direction was at 261 degrees, which is nearly perpendicular
to the peaks of the bimodal distribution of preferred directions.
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Figure 2: a) PCA embedding of the encoder latent state which is fed into the motor RNN
over a dataset of single-segment reaches starting from the same initial position,
colored by reach angle and with size corresponding to the reach distance. This
embedding represents the input that the motor RNN receives during the prepara-
tory phase. b) PCA embedding of the motor RNN latent state one step before
motion onset, similarly colored and sized. The manifold of embeddings are home-
omorphic to a cylinder and is parameterized by reach angle and distance. The
space of the encoded latent state and motor RNN latent state right before motion
are almost identical up to a linear transformation, indicating that the motor RNN
effectively loads in the representation produced by the encoder.
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3.2. Structured latent representations of movement

We investigated how guide trajectories were represented in our motor RNN. We instructed
our model to hold for a fixed period during which the embedding of the trajectory was fed
into the decoder, emulating experiments on non-human primates Churchland et al. (2010).
In our experiments, we are able to decode future movement from the motor RNN one time-
step prior to motion onset with an mean average error of 0.129 radians on a held-out dataset
indicating that the relevant movement parameters were present in the motor RNN state.
We also observed that low-dimensional PCA projections of neural activity during reaches of
varying angle and length exhibit rich topological structure. Visualizing the projections onto
the top 2 principle components show that the manifold of latent representations in both
the encoder and the motor RNN are homeomorphic to a cylinder parameterized by the
angle and length of the reach (Figure 2). This smooth mapping of movement parameters
presumably allows the network to robustly encode the desired trajectory and provides an
initialization of the motor RNN state which evolves autonomously.
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Figure 3: a) Visualization of the the neural activity during the preparatory period (blue)
and execution period (red) projected onto the top 3 principle components of the
neural activations during preparation period (left) and the same neural activity
projected onto the top 3 principle components of the neural activity during execu-
tion (right). b) Computed subspaces consisting of the first 4 principle components
of the neural activity during the preparatory period and execution period. We
quantify the orthogonality of the subspaces by taking the dot products of the PCs.
We observe that the top PC of the execution-period components are completely
orthogonal to all of the components of the preparation period components.

3.3. Orthogonality of neural activity during preparation and execution

Additionally we sought to understand how our network was able to simultaneously execute
an existing motor command while reading in future commands without interference. In
line with experimental results, we observed that our network separated preparatory activ-
ity and execution into orthogonal subspaces Churchland et al. (2010). Visual inspection of
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the principle components of preparatory activity and execution-related activity reveals this
relationship (Figure 3a). Quantifying this relationship by computing the top 4 principle
components, which account for 97.7% and 96.7% of the preparatory and execution-related
activity respectively, shows that these components are largely orthogonal and the top princi-
ple component of the execution period is orthogonal to all of the components of the activity
in the preparatory period (Figure 3b). The subspaces which contain the activity during
preparatory phase and execution phase do overlap, however, the direction which accounts
for the maximum amount of variance during the execution phase is completely absent during
preparation. Qualitatively, we observe that during the preparation phase, the neural activ-
ity spreads out along a hyperplane and this entire space rotates onto a new set of axes during
the execution phase, during which the activity contracts back to the origin (Figure 3a). We
posit that orthogonality of these processes emerges as a consequence of the need for the
circuit to support both preparatory and execution-related processes simultaneously.

3.4. Embedding reuse in multi-segment sequences

We compared movements consisting of two segments with single segment movements to
evaluate whether the network reused the same neural activity for both the multi-segment
and the single-segment movement. Our model was commanded to perform randomly sam-
pled 2-segment movements and then, independently, only the second half of the 2-segment
movements. Computing PCA on all of the neural activity showed that there were 6 principle
components accounting for 92% of the variance. Visualizing the evolution of these compo-
nents over time reveal that the second half of the 2-segment movements quickly converged
to the same trajectories as the 1-segment movements even in cases when the activity had
not returned to zero yet (Figure 4). This demonstrates that our network not only reuses the
same neural representation for conjunctive movements but also is able to avoid interference
by neural activity from the first segment.

3.5. Rapid adaptation to changes in arm physics

Many experimental studies have used perturbations of underlying physics of the task in
order to assess the role of the motor cortex (Cherian et al. (2013); Vyas et al. (2018); Sun
et al. (2022)). We modeled this by assessing our models ability to recover from changes
in biomechanical arm parameters. After increasing the moment of inertia of our simulated
arm by 30%, we observed significant position errors. However, after less than 20 additional
gradient steps confined to the weights of only the motor RNN (keeping the encoder RNNs
fixed), our model was able to rapidly adapt to the change in inertia to recover its original
performance, assessed on a held out evaluation set of 40 movements. (Figure 5a)

3.6. Feedback knockout

The dynamics of the motor network are driven by a combination of internal recurrence,
and time-varying feedback from the arm. We sought to characterize how much of our
dynamics were derived from autonomous temporal dynamics in the motor network based
on the static information contained in the preparatory state set by the encoding network
output. We knocked out feedback from the arm and observed how its performance degraded
while repeatedly drawing a diamond. The knockout model still produced approximately the
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Figure 4: Comparison of neural activity for 2-segment trajectories and 1-segment trajec-
tories consisting of the second half of the 2-segment trajectories. In the right
figure we’ve plotted the first 6 PCs, which account for 92% of the variance and
the neural activity. The 1-segment trajectories are plotted in solid lines, and
2-segment trajectories are plotted in dotted lines. Notably, the second half of
the 2-segment trajectories converges almost identically to the corresponding 1-
segment trajectory despite not yet returning fully to zero before the onset of the
second segment. This implies that the motor RNN executes 2-segment sequences
as the conjunction of two single segment sequences and demonstrates reuse of the
neural circuit despite the additional separating work the network must do in the
two-segment trajectories to deal with the initial overlap of the two segments.
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correct shape, but gradually drifted away from the target location, indicating that the model
utilized feedback mostly as a correctional signal rather than a major source of dynamical
drive.
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Figure 5: a) Performance of our model while recovering from changing the arm moment of
inertia by 30%, training only the motor RNN portion of the model. b) Comparison
of our model tracing a diamond multiple times with and without feedback.

4. Discussion

Our model takes inspiration from the versatility of animals in producing novel movement
outputs and of primates in their ability to “mirror” seen movements to generate combi-
natorially flexible movements with a biophysical multi-jointed model arm. Although it is
difficult to make claims about how faithful RNNs are as a model of biology, our model
provides confirmation that observed phenomena of motor cortical dynamics have functional
utility in allowing neural circuits to reuse previously seen motor primitives and recombine
them into complex sequences of movements. We found that the orthogonality of prepara-
tory and execution-related activity emerged in our end-to-end trained model from the need
to separate incoming planned movement instructions from generating ongoing movements
and is indicative that this phenomenon is needed in order to prevent interference between
subsequent movements. Additionally, the separation of movement production into prepara-
tory and execution phases allowed our model to robustly generalize to significantly more
complicated movements. We find that both of these phenomena are critical to facilitating
modularity and generalization in RNNs and our experiments provide insight into why these
structures may exist in biology.

In our study, we focused on how the motor RNN is able to learn and composibly reuse
movements. However, a complete model of compositional control would require the ability to
decompose arbitrary drawings into modular sub-routines, which, in our study was supplied
by an external trigger signal. Additionally, we focused on a limited set of movements
consisting of combinations of straight reaches whereas realistic drawing require a larger
repertoire of primitive movements. These are natural directions for future study.

The ability of an agent to decompose complex tasks into subroutines is a core component
in how intelligent agents are able to adapt to new environments and form complex behaviors.
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This skill acquisition capability has been studied in the context of reinforcement learning
in the hopes of producing artificial agents which are able to solve novel tasks Sharma et al.
(2019) Xu et al. (2020). Biological systems are able to efficiently acquire new skills and
recombine them in novel environments, solving tasks which are inaccessible to current state
of the art artificially intelligence systems. These systems have been evolutionarily optimized
to efficiently learn and perform tasks that are critical for survival; thus, they provide clues for
how to engineer artificially intelligent systems to exhibit similarly remarkable capabilities.
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Appendix A. Model Architecture

There are two neural network models in our model: The encoder model and the motor
RNN. They both contain a continuous time recurrent neural network which is a variant of
the traditional recurrent neural network.

A.1. Continuous Time Recurrent Neural Network (CT-RNN)

The CT-RNN component of our network is a continuous time RNN with tanh non-linearity,
discretized using the forward eurler method as a discrete approximation for the continuous
time dynamics.

τ
h[t+ 1]− h[t]

∆t
= σ(x+Wh[t])

where h[t], h[t + 1] represents the vector-valued state of the hidden units at time step
t, W is the recurrent weight matrix, x is the input from upstream layers, σ is the tanh
non-linearity and dt and τ are constants with the values dt = 1.0 and τ = 100. In our
network the hidden layer size is 1024 units.

A.2. Input/Output Layers

In addition to the CT-RNN module, our encoder is furnished with a 2-layer multi-layer
perceptron (MLP) which takes in the x,y coordinates as input and has sizes 2 × 1024 and
1024× 1024 with an intermediate ReLU non-linearity. The output of this network is fed in
to the CTRNN as input.

The decoder also has an input MLP which takes in as input the concatenation of the
1028 unit embedding produced by the encoder along with the x,y coordinates of the current
tip location, the two angles specifying the position of the arm joints, as well as the current
angular velocity of the two arm joints for a full input size of 1034. This is fed into a 2-layer
MLP with sizes 1034×1024 and 1024×1024 with a ReLU as the intermediate non-linearity.
The decoder is also furnished with a 2-layer MLP with sizes 1024×1024 and 1024×6 which
produces a 6 dimensional muscle activation vector which is consumed by our realistic arm
environment.

A.3. Loss Function

Our model was trained to reproduce a target sequence of points using mean squared error
with additional terms penalizing hidden neuron activation and antagonistic muscle activa-
tion. Thus our loss has the following form:

L(y, ŷ, h, u) = 1

L
∥y − ŷ∥22 + α∥h∥1 + β(uextend · ucontract)

Where y and ŷ are the respective target sequence and model-produced sequence of x,y
positions of the pen tip, h is the vector of hidden activations from the motor RNN, uextend
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and ucontract are the produced muscle activation vectors for the muscles which extend the
arm joints and the corresponding contracting muscles, L is the sequence length, α, β are
weighting terms and ∥ · ∥2, ∥ · ∥1 are L2 and L1 norms respectively.
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