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Abstract

Mean-field games (MFG) have become significant tools for solving large-scale
multi-agent reinforcement learning problems under symmetry. However, the as-
sumption of exact symmetry limits the applicability of MFGs, as real-world sce-
narios often feature inherent heterogeneity. Furthermore, most works on MFG
assume access to a known MFG model, which might not be readily available for
real-world finite-agent games. In this work, we broaden the applicability of MFGs
by providing a methodology to extend any finite-player, possibly asymmetric,
game to an “induced MFG”. First, we prove that N -player dynamic games can be
symmetrized and smoothly extended to the infinite-player continuum via explicit
Kirszbraun extensions. Next, we propose the notion of α, β-symmetric games, a
new class of dynamic population games that incorporate approximate permutation
invariance. For α, β-symmetric games, we establish explicit approximation bounds,
demonstrating that a Nash policy of the induced MFG is an approximate Nash of
the N -player dynamic game. We show that TD learning converges up to a small
bias using trajectories of the N -player game with finite-sample guarantees, permit-
ting symmetrized learning without building an explicit MFG model. Finally, for
certain games satisfying monotonicity, we prove a sample complexity of rOpε´6q

for the N -agent game to learn an ε-Nash up to symmetrization bias. Our theory is
supported by evaluations on MARL benchmarks with thousands of agents.

1 Introduction

Competitive multi-agent reinforcement learning (MARL) has found a wide range of applications in
the recent years [52, 59, 48, 45, 35, 34]. Simultaneously, MARL is fundamentally challenging at
the regime with many agents due to an exponentially growing search space [58], also known as the
curse-of-many-agents. Even finding an approximate solution (i.e. approximate Nash) is PPAD-hard
[16], thus potentially intractable. For these reasons, it has been an active area of research to identify
“islands of tractability”, where MARL can be solved efficiently (see e.g. [33, 43]).

In this work, we develop a theory of efficient learning for MARL problems that exhibit approximate
symmetry building upon the theory of mean-field games (MFG). MFG is a common theoretical
framework for breaking the curse of many agents under perfect symmetry. Initially proposed by [30]
and [25], MFG analyzes N -player games with symmetric agents when N is large. In this setting,
the so-called propagation of chaos permits the reduction of the N -player game to a game between
a representative agent and a population distribution. This theoretical framework has been widely
studied in many recent works [1, 20, 42, 43, 60, 61].

However, works on MFG exhibit two major bottlenecks preventing wider applicability in MARL.
First and foremost, the aforementioned works on MFG all assume some form of exact symmetry
between agents. Namely, in the MFGs, all agents must have the same reward function and dynamics
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Work Symmetry Approximation Learning Learn w/o model
Saldi et al., 2018 Exact ✓(asymptotic) ✗ -
Yardim et al., 2024 Exact ✓(explicit) ✗ -
Cui and Koeppl, 2021 Exact ✓(asymptotic) ✓(reg.) ✗
Zaman et al., 2023 Exact ✗ ✓(reg.) ✗
Parise and Ozdaglar, 2019 Graphon ✓(explicit) ✗ -
Zhang et al., 2023 Graphon ✗ ✓(mon.) ✗
Pérolat et al., 2022 Multi-pop. ✗ ✓(mon.) ✗

Our work α, β-symm. ✓(explicit) ✓(mon.) ✓

Table 1: Selected models of symmetric games studied in MF-RL works. (reg.: only Nash with
regularization strictly bounded away from zero, mon.: monotonicity assumption)

must be homogeneous (or permutation invariant) among agents. Such perfect symmetry between
agents in MARL is theoretically convenient yet practically infeasible: Even in applications where
symmetry is presumed, usually, there are imperfections in dynamics that break invariance. Little
research has studied whether MFGs could offer tractable approximations to otherwise intractable
games that might exhibit approximate symmetries. Secondly, many works on MFG (such as [19, 42])
implicitly assume that an exact model of the MFG is known to the algorithm akin to solving a known
MDP. In real-world applications, an exact MFG model might not be readily available. MFGs can
potentially address settings where only N -player dynamics (possibly incorporating imperfections
and heterogeneity) can be simulated; however, such a theory of MFGs has yet to be developed.

We address these shortcomings by developing a theoretically sound MARL framework for scenarios
when permutation invariance holds only approximately. Unlike previous work on MFG, our theoretical
approach is constructive: we show that given any MARL problem, one can construct an MFG
approximation that permits efficient learning. We define a new, broad class of games with approximate
permutation invariance, dubbed α, β-symmetric games, for which approximate Nash equilibria can
be learned efficiently. Our theoretical framework provides end-to-end learning guarantees for policy
mirror descent combined with TD learning. Our experimental findings further demonstrate strong
performance improvements in MARL problems with thousands of agents.

1.1 Related Work

We compare our work with selected past MFG results in Table 1, and also provide a detailed
commentary in this section.

Mean-field games and RL. MFGs represent a particular type of competitive game where players
exhibit strong symmetries. Past work has studied the existence of MFG Nash equilibrium as well
as its approximation of finite-player Nash [10, 11, 47]. The convergence of RL algorithms has also
been widely studied in discrete-time MFG assuming either contractivity in the stationary equilibrium
setting [64, 61, 19, 60, 13] or monotonicity in the finite-horizon setting [43, 42, 62, 41, 44]. These
models however assume exact homogeneity between all participants. Furthermore, existing algorithms
typically assume knowledge of the exact MFG model [19, 64], hindering their real-world applicability.
Multi-population MFG (MP-MFG) can incorporate multiple types of populations exposed to different
dynamics [25, 42, 53, 17, 5, 11, 24]. However, within each population exact symmetry must hold
and the number of types must be much smaller than the number of agents. Moreover, MP-MFG can
be lifted to an equivalent single-population MFG [24] under certain constraints. Overall, all of these
works require variations of the stringent symmetry assumptions, restricting their applicability. A
detailed survey of learning MFG can be found at [32].

Graphon MFG. Graphon games, proposed initially by [40], can incorporate heterogeneity between
MFG agents by assuming graphon-based interactions. The setting has been analyzed in discrete-time
[14, 57] as well as in the continuous time setting [2, 7, 3]. Recently, policy mirror descent has
been analyzed in this setting to produce convergence guarantees under monotonicity conditions [65].
However, these works on graphon mean-field games still incorporate exact symmetry in the form of
the graphon: namely, the types of agents must follow a symmetric distribution and interactions must
be through a symmetric graphon. In fact, graphon MFGs can still be reduced to regular MFGs [65].
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Other related work. Another class of games where a large number of agents can be tackled tractably
are the so-called potential games [46], generalized to Markov potential games incorporating dynamics
[33]. Approximate potentials have been studied in a similar spirit on Markov α-potential games [22]
and near potential games [8]. However, to the best of our knowledge, approximate symmetry has not
been studied in the literature of MFGs.

1.2 Our Contributions

We list the following as our contributions, compared to past work summarized in the previous section.
1. We first tackle the foundational but understudied question for MFGs: when can a given N -agent

game be meaningfully extended to an infinite-player MFG? We construct a well-defined MFG
approximation to an arbitrary (possibly non-symmetric) finite-player dynamical game (DG) using
the idea of function symmetrization and via Kirszbraun Lipschitz extensions.

2. Using our extension, we define a new class of α, β-symmetric DGs for which it is tractable to
find approximate Nash. α, β-symmetry generalizes permutation invariance in dynamic games to
arbitrary MARL problems, where parameters α, β quantify degrees of heterogeneity in dynamics
and player rewards respectively.

3. We prove that the solution of the induced MFG is indeed an approximate Nash to the original
α, β-symmetric DG up to a bias of Op1{

?
N ` α ` βq, demonstrating that MFG approximation is

robust to heterogeneity and finite-agent errors in the DG.
4. We analyze TD learning on the trajectories of the finite-agent DG. We show that by only using

Opε´2q samples from the N -player game, policies can be approximately evaluated on the abstract
MFG up to symmetrization error.

5. Finally, we show that under monotonicity conditions, policy mirror descent (PMD) combined with
TD learning converges to an approximate Nash equilibrium using rOpε´6q sample trajectories of
the N -player DG. This provides an end-to-end learning guarantee for MARL under α, β-symmetry,
characterizing a novel class of problems that can be solved efficiently with MARL.

2 Main Results

Notation. For K P Ną0, let rKs :“ t1, . . . ,Ku. Let ∆X be the probability simplex over X . For any
N P Ną0 define ∆X ,N :“ tµ P ∆X |Nµpxq P Ně0,@x P X u. For x P XN , define the empirical
distribution σpxq P ∆X ,N as σpxqpx1q “ 1{N

řN
i“1 1xi“x1 . Let SK be the set of permutations over

the set rKs, so SK :“ tg : rKs Ñ rKs | g bijectiveu. For x “ px1, . . . , xKq P XK and g P SK ,
define gpxq :“ pxgp1q, . . . , xgpKqq P XK . Define x´i P XK´1 as the vector with i-th entry of a
removed, and px,x´iq P XK as the vector where i-th coordinate of x has been replaced by x P X .

We consider discrete state-action sets S,A. We denote the set of time-dependent policies on S,A as
Π :“ tπ : S ˆ rHs Ñ ∆Au. We abbreviate πhpa|sq :“ πps, hqpaq. For p : S Ñ ∆A and ρ P ∆S ,
we define pρ ¨ pq P ∆S as pρ ¨ pqps, aq :“ ρpsqppsqpaq for all s, a P S ˆA. Finally, we define entropy
Hpuq :“ ´

ř

a upaq log upaq for u P ∆A. We denote DKLpu|vq :“
ř

a upaq log upaq

vpaq
for u, v P ∆A.

2.1 Finite-Horizon Dynamic Games

Firstly, we define finite-horizon dynamic games, the main object of interest of this work.

Definition 1 (N-player FH-DG). An N -player finite-horizon dynamic game (FH-DG) is a tuple
pS,A, ρ0, N,H, tP iuNi“1, tRiuNi“1q where the state and actions sets S,A are discrete, ρ0 P ∆S , the
number of players N P Ną1, horizon length H P Ną0, and transition dynamics and rewards are
functions such that P i : S ˆ A ˆ pS ˆ AqN´1 Ñ ∆S and Ri : S ˆ A ˆ pS ˆ AqN´1 Ñ r0, 1s.

The above definition differs from Markov games [51], where a common state is shared by all agents.
In FH-DG, each agent only observes their own state and the dynamics depend on the state vector of
all N agents. Such a model can be especially realistic in cases where games have natural locality,
that is, the game state is not globally available to agents. Next, we define the Nash equilibrium.
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Definition 2 (FH-DG Nash equilibrium). For a FH-DG G “ pS,A, ρ0, N,H, tP iuNi“1, tRiuNi“1q,
policy tuple πππ “ pπ1, . . . , πN q P ΠN the expected total reward of agent i P rN s is defined as

J piq pπππq :“ E

«

H´1
ÿ

h“0

Ripsih, a
i
h, ρρρ

´i
h q

ˇ

ˇ

ˇ

ˇ

ˇ

@j:sj0„ρ0, aj
h„πj

hpsjhq

sjh`1„P j
p¨|sjh,a

j
h,ρρρ

´j
h q

ff

where ρρρh :“ psih, a
i
hqNi“1. The exploitability of agent i for policies πππ is then defined as Epiqpπππq :“

maxπPΠ J piq
`

π,πππ´i
˘

´ J piq pπππq. If maxi Epiqpπππq “ 0, πππ is called a Nash equilibrium (NE) of the
FH-DG. If maxi Epiqpπππq ď δ, πππ is called a δ-Nash equilibrium (δ-NE) of the FH-DG.

At a δ-NE, the incentive for any selfish agent to deviate is small, therefore, approximate NE is a
natural solution concept for FH-DG. However, the problem of finding an NE is challenging: not
only is the problem computationally intractable in general [15], but for large N the search space of
policies grows exponentially. This motivates the approximation via symmetrization in the remainder
of the work.

2.2 Symmetrization and Lipschitz Extension

In order to define approximate symmetry, we first show that finite-agent dynamics of Definition 1 can
be extended to infinitely many players. In the process, we tackle a question that is relevant for MFGs
beyond our work:When and how can we build an MFG model on the continuum, given dynamics on
finitely many players? We will use the notions of symmetrization and Lipschitz extension.

Definition 3 (Symmetric function, symmetrization). A function f : XK Ñ Y is called symmetric if
fpgpxqq “ fpxq, @x P XK , g P SK . For a symmetric f : XK Ñ Y , we define its population lifted
version sf : ∆X ,K Ñ Y as the well-defined function such that sfpµq “ fpxq for @x P XK satisfying
σpxq “ µ. Given f : XK Ñ RD, we define the symmetrization Sym pfq : XK Ñ Y as

Sym pfq pxq “
1

K!

ÿ

gPSK

fpgpaqq, @a P XK .

We also denote ĘSym pfq :“ ĞSym pfq.

We note that the terminology “symmetrization” is consistent as Sym pfq is indeed a symmetric
function (as verified in Section A). Furthermore, if f is symmetric then Sym pfq “ f as expected.

Finally, to extend DG to the infinite-player continuum, we will use the following special case of the
Kirszbraun-Valentine theorem, which concerns Lipschitz extensions of functions from strict subsets
of the Euclidean space to the entirety of the space preserving their Lipschitz modulus.

Lemma 1 (Kirszbraun-Valentine [27, 56]). Let d1, d2 P Ną0, and U Ă Rd1 . Let f : U Ñ Rd2 be an
L-Lipschitz function with respect to the Euclidean norm }¨}2. Then, there exists Ext pfq : Rd1 Ñ Rd2

such that Ext pfq is L-Lipschitz and Ext pfq pxq “ fpxq for all x P U .

While Ext pfq is not unique in general, it can be explicitly formulated in various ways [37, 54], and
the particular formulation is not important in this work.

2.3 Mean-field Games and α, β-Symmetric Games

Next, using the definitions from the previous section, we show how the FH-DG can be extended to an
MFG. We formalize the finite-horizon MFG (FH-MFG), which will be the main approximation tool.

Definition 4 (Finite-horizon mean-field game). A finite-horizon mean-field game (FH-MFG) is a
tuple pS,A, ρ0, H, P,Rq where S,A are discrete, ρ0 P ∆S , H P Ną0, the transition dynamics P is
a function P : S ˆAˆ∆SˆA Ñ ∆S , and the reward R is a function R : S ˆAˆ∆SˆA Ñ r0, 1s.

Compared to Definition 1, Definition 4 introduces two conceptual changes under the premise of
exact symmetry: (1) the dependency of dynamics to the states and actions of other agents have
been reduced to a dependency on a population distribution on ∆SˆA, and (2) N agents have been
implicitly replaced by a single representative agent. We next extend the definition NE to MFGs.
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Definition 5 (Induced population, MFG-NE). For a FH-MFG defined by the tuple pS,A, ρ0, H, P,Rq,
we define the population update operators Γ,Λ as

Γpµ, πqps1, a1q :“
ÿ

sPS,aPA
µps, aqP ps1|s, a, µqπpa1|s1q (1)

Λpπq :“
␣

Γp¨ ¨ ¨ΓpΓpρ0 ¨ π0, π1q ¨ ¨ ¨ , πh´1qq
(H´1

h“0
. (2)

For π P Π and µ “ tµhu
H´1
h“0 P ∆H

SˆA, the expected reward is defined as

V pµ, πq :“ E

«

H´1
ÿ

h“0

Rpsh, ah, µhq

ˇ

ˇ

ˇ

ˇ

ˇ

s0„ρ0, ah„πhpshq

sh`1„P psh,ah,µhq

ff

. (3)

We define MFG exploitability as Epπq :“ maxπ1PΠ V pΛpπq, π1q ´ V pΛpπq, πq and FH-MFG-NE as:

Policy π˚ “ tπ˚
hu

H´1
h“0 P Π such that Epπ˚q “ 0. (MFG-NE)

Intuitively, the above definition of MFG-NE requires that the policy π is optimal against the population
flow it induces. Questions of existence [9, 4, 23] and approximation of the FH-DG under exact
symmetry [47] have been thoroughly studied in the literature. That is, if an N -player game exhibits
exact symmetry, then the MFG-NE exists and is an approximate NE of the FH-DG.

Taking a constructive approach, we show that the FH-MFG-NE of an appropriately constructed MFG
is also an approximate NE for a given FH-DG without a prior model. The definition below of an
“induced MFG” demonstrates how arbitrary non-symmetric dynamics can be extended to an MFG.

Definition 6 (Induced FH-MFG). Let G “ pS,A, ρ0, N,H, tP iuNi“1, tRiuNi“1q be a FH-DG. The
MFG induced by G, denoted MFG pGq, is defined to be the pS,A, ρ0, H, P,Rq, where P : S ˆ A ˆ

∆SˆA Ñ ∆S and R : S ˆ A ˆ ∆SˆA Ñ r0, 1s are defined for all s P S, a P A, µ P ∆SˆA as:

P ps, a, µq :“
N
ÿ

i“1

Ext
`

ĘSym
`

P ips, a, ¨q
˘˘

pµq

N
, Rps, a, µq :“

N
ÿ

i“1

Ext
`

ĘSym
`

Rips, a, ¨q
˘˘

pµq

N
.

MFG pGq is well-defined due to Lemma 1. In words, the definition of MFG pGq consists of two
main operations: (1) symmetrize (ĘSym p¨q) and extend (Ext p¨q) P i, Ri to ∆SˆA, and (2) average
symmetrized dynamics and rewards for all players. Furthermore, in the special case P i “ P j and
Ri “ Rj for all i ‰ j and P ips, a, ¨q, Rips, a, ¨q are symmetric, the MFG pGq has dynamics and
rewards Ext

`

sP 1
˘

,Ext
`

sR1
˘

, which are simply the Lipschitz extensions of P 1, R1 to the continuum.

Remark 1. Even for exact symmetric games, Definition 6 is relevant. The availability of an MFG
model is typically taken for granted, however, since real-world algorithms might only be able to
access finite-agent dynamics without a known MFG model, it is a valid research question when and
how a game can be meaningfully extended to infinite players (answered by Definition 6).

Finally, we provide the definition of approximate or α, β-symmetry.

Definition 7 (α, β-Symmetric DG). Let G “ pS,A, ρ0, N,H, tP iuNi“1, tRiuNi“1q be an N -player
FH-DG, inducing MFG pGq “ pS,A, ρ0, H, P,Rq. If it holds for α, β ě 0 that

max
iPrNs,s,aPSˆA

µP∆SˆA

max
ρρρPpSˆAq

N´1

σpρρρq“µ

}P ips, a,ρρρq ´ P ps, a, µq}1 ď α,

max
iPrNs,s,aPSˆA

µP∆SˆA

max
ρρρPpSˆAq

N´1

σpρρρq“µ

|Rips, a,ρρρq ´ Rps, a, µq| ď β,

then the FH-DG G is called α, β-symmetric.

As expected, an exactly symmetric N -player game is also 0, 0-symmetric, and any dynamic game G is
α, β-symmetric for some constants α ď 2, β ď 1. Hence, Definition 7 generalizes exact permutation
invariance. Games that exhibit near-exact symmetries will have very small constants α, β, we will
next provide approximation and learning guarantees for such finite-agent games.
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2.4 Approximation of NE under Approximate Symmetry

In this section, we will prove that a NE of the induced MFG pGq is also an approximate NE of the
finite-agent game G. We will provide an explicit bound on the approximation, motivating the use of
MFGs for solving FH-DG.

We first introduce the notion of κ-sparse dynamics. In words, with κ-sparse dynamics an agent at
state s playing action a is impacted only by other agents occupying a sparse set of “neighboring”
state-actions Ns,a Ă S ˆ A where |Ns,a| ď κ. For a subset U Ă X , we define the function
pU : X Ñ X Y tKu as pU pxq “ x if x P U and pU pxq “K otherwise, where K is treated as a
placeholder element such that KR U .
Definition 8 (κ-sparse dynamics/rewards). A function f : XM Ñ Y is called κ-sparse (on some
U Ă X ) if |U | ď κ and fpxq “ fpyq whenever pU pxiq “ pU pyiq for all i “ 1, . . . ,M . Dynamics
tP iuNi“1 (resp. rewards tRiuNi“1) are called κ-sparse if all P ips, a, ¨q (resp. Rips, a, ¨q) are κ-sparse
on some Us,a Ă S ˆ A for all s P S, a P A (resp. Us,a Ă S ˆ A for all s P S, a P A).

Sparsity is common in FH-DG, particularly when there is spatial structure. Many standard MFG
problems such as the beach-bar problem [43] and crowd modeling [64] are in fact pκ “ 1q-sparse, as
agents are only affected by the population distribution at their current state.

Using sparsity, we provide an upper bound of the Lipschitz constants of maps P ps, a, ¨q, Rps, a, ¨q of
the induced MFG on the continuum ∆SˆA, demonstrating that unless the FH-DG exhibits dominant
players, P,R have bounded Lipschitz moduli independent of N .
Lemma 2 (Lipschitz extension bound). Let G be an FH-DG with dynamics and rewards
tP iuNi“1, tRiuNi“1 admitting the induced mean-field game MFG pGq with dynamics and rewards
P,R. Assume that tP iuNi“1, tRiuNi“1 are κ-sparse and it holds that

}P ips, a,ρρρq ´ P ips, a, pps1, a1q, ρρρ´jqq}1 ď C1, |Rips, a,ρρρq ´ Rips, a, pps1, a1q, ρρρ´jqq| ď C2,

for any i, j P rN s, i ‰ j, s, s1 P S, a, a1 P A and ρρρ P pS ˆ AqN´1 for some constants C1, C2. Then,
the induced P,R have Lipschitz modulus at most C1Nκ and C2N

?
κ respectively, that is,

}P ps, a, µq ´ P ps, a, µ1q}2 ď C1Nκ}µ ´ µ1}2, |Rps, a, µq ´ Rps, a, µ1q| ď C2N
?
κ}µ ´ µ1}2,

for any s P S, a P A, µ, µ1 P ∆SˆA.

The above theorem characterizes a condition on the original FH-DG for the induced FH-MFG to have
smooth (Lipschitz) dynamics. The theorem suggests that the game must have no dominant players so
that the effect of each agent on others is upper bounded of order Op1{Nq. Furthermore, by standard
results in MFG literature, if the “no dominant players” condition of Lemma 2 holds, the population
update Γ is also Lipschitz continuous with some modulus Lpop,µ that is independent of N .

Finally, we state the main approximation result, which quantifies how closely the true N -player game
Nash equilibrium can be approximated by the mean-field Nash equilibrium of the symmetrized game.
Theorem 1. Let G “ pS,A, ρ0, N,H, tP iuNi“1, tRiuNi“1q be an N -player FH-DG and MFG pGq “

pS,A, ρ0, H, P,Rq. Let the Lipschitz modulus of the population update operator Γ in µ be Lpop,µ. If
π˚ P Π is a MFG-NE of MFG pGq, then pπ˚, . . . , π˚q P ΠN is an ϵ-NE of the FH-DG, where

ϵ “ O

˜

H2p1 ´ LH
pop,µq

p1 ´ Lpop,µq
?
N

` αH2
1 ´ LH

pop,µ

1 ´ Lpop,µ
` βH

¸

.

Proof. (sketch) We show that (1) the empirical distribution of agent state-actions over S ˆ A
approximates the induced mean-field Λpπ˚q, (2) marginal distributions of states of an agent Prsih “ ¨s

in FH-DG are also approximated by the mean-field, and (3) explicitly bounding the difference
between V and J piq. The formal proof and explicit upper bound are presented in Section B.3.

Most critically, the approximation bound proves that the MFG approximation is robust to small het-
erogeneity: when α, β are small, the induced MFG-NE approximates the true NE well. Furthermore,
the upper bound suggests three different asymptotic regimes depending on Γ being non-expansive,
contractive, or expansive. If Lpop,µ ď 1, the bound above is polynomial. If Lpop,µ ą 1, α ą 0 might
incur an exponential dependency on H , whereas the error due to β ą 0 only scales linearly with
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OpβHq. However, the exponential worst-case dependence of the bias on H is generally unavoidable
even under perfect symmetry, as matching lower bounds are known [63]. Theorem 1 also recovers
the bounds known for exactly symmetric FH-DG (i.e. α “ β “ 0, see [63]).

Finally, we emphasize that Theorem 1 does not assume any particular structure on the FH-DG: the
results apply for any values of α, β, although the quality of approximation will vary. Furthermore, it is
known that for N ą 2, finding an ϵ-NE for the FH-DG is PPAD-complete even for a certain absolute
constant ϵ [18]. Hence, even when α, β are not close to 0, the result will be useful in approaching the
PPAD-complete limit via mean-field approximation.

We emphasize that the results so far already suggest a learning algorithm: one can estimate (e.g.
via neural networks) the induced P,R and solve the MFG directly with standard algorithms (e.g.
[43, 31]). However, this method can be prohibitively expensive as it involves learning functions to
and from ∆SˆA. The remainder of the paper will be dedicated to formulating more efficient methods.

2.5 Policy Evaluation with α, β-Symmetry

In this section, we analyze TD learning for α, β-symmetric FH-DG. While Definition 6 provides an
explicit construction of an MFG, we show that this construction is not needed for policy evaluation.
Namely, using TD learning, a policy π can be evaluated with respect to the (induced) mean-field
Λpπq only through sampling trajectories of the FH-DG G. We first define Q functions on the MFG.

Definition 9 (Mean-field Q values). For the MFG pS,A, ρ0, H, P,Rq, for τ ą 0, h “ 0, . . . ,H ´ 1,
we define (entropy regularized) Q-values for each h “ 0, . . . ,H ´ 1 and s P S, a P A as

Qτ,π
h ps, aq :“ E

«

H´1
ÿ

h1“h

Rpsh1 , ah1 , µh1 q ` τHpπh1 p¨|sh1 qq

ˇ

ˇ

ˇ

ˇ

ˇ

sh“s, ah“a, sh1`1„P psh1 ,ah1 ,µh1 q,

ah1 „πh1`1psh1`1q, µh1 :“Λpπqh1 ,@h1
ěh

ff

.

In other words, the Q-values of a policy π are computed with respect to the MDP induced by the
population distributions Λpπq in the MFG. We note that the above definition does not match the
typical definition of Q-values in a multi-agent setting, and rather is defined concerning an abstract
MFG. We note that we will occasionally treat Qτ,π

h as an element of the vector space RSˆA.

For the finite-horizon problem, we will analyze TD learning, which is a standard method for policy
evaluation with established guarantees beyond MFGs [55]. We formulate Algorithm 1, presented for
simplicity as performing TD learning on agent 1.

Algorithm 1 TD Learning for α, β-symmetric games

Input: FH-DG G, epochs M , learning rates tηmum, policy π P Π, entropy regularization τ ě 0.
1: pQ0

hps, aq Ð 0, @h P t0, . . . H ´ 1u, s P S, a P A
2: for m P 0, 1, . . . ,M ´ 1 do
3: Using π for all agents, sample path from G: tρρρm,h, rm,hu

H´1
h“0 :“ tsim,h, a

i
m,h, r

i
m,hui,h.

4: Perform TD update:

pQm`1
h Ð pQm

h ` ηm
`

pQm
h`1ps1m,h`1, a

1
m,h`1q ` r1m,h ` Hpπp¨|s1m,hqq

´ pQm
h ps1m,h, a

1
m,hq

˘

es1m,h,a
1
m,h

, @h ă H ´ 1

pQm`1
H´1 Ð pQm

H´1 ` ηmpHpπp¨|s1m,H´1qq ` r1m,H´1 ´ pQm
h ps1m,h, a

1
m,hqqes1m,H´1,a

1
m,H´1

5: Return t pQM
h u

H´1
h“0 .

Theorem 2 (TD learning for α, β-Symmetric Games). Let G be an N -player FH-DG and
MFG pGq be its induced MFG. Let π P Π be a policy such that Λpπq “ µ “ tµhuh and
δ :“ infh,s,a s.t. Prs1h“s,a1

h“ssą0 Prs1h “ s, a1h “ ss. Assume Algorithm 1 is run with π for M ą 0

epochs for with learning rates ηm :“ 2δ´1

m`2δ´1 . Then, the output t pQM
h uh of Algorithm 1 satisfies

E
”

řH´1
h“0 } pQM

h ´ Qτ,π
h }2µh

ı

ď O
`

1
M ` 1

N ` α2 ` β2
˘

, where } ¨ }p is defined for p P ∆SˆA as

}q}p :“
b

ř

s,a pps, aqqps, aq2.
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Theorem 2 provides a finite-sample guarantee for TD learning, a building block of many MARL
and MFG algorithms. Most importantly, it suggests that in order to use mean-field game theory to
approximate NE of an FH-DG G, there is no need to explicitly build a model of MFG pGq. Instead,
TD learning in the original N -player game when all the agents pursue policy π allows the evaluation
of the mean-field Q-values of π efficiently. The rate of convergence suggested by Theorem 2 matches
the optimal known rates for TD-learning in a single-agent setting [28]. In practice, one can use the
trajectories of all N agents to further improve efficiency, instead of only using that of agent i “ 1.

2.6 Learning NE under α, β-Symmetry

We complete our framework by providing our key theoretical result: any α, β-symmetric DG can be
solved approximately only using samples from the N -player DG, under monotonicity assumptions.
Our algorithm uses TD learning as a building block, with stochastic policy evaluations used for policy
mirror descent updates [29, 61, 65].
Definition 10 (Monotone MFG [43, 42]). A MFG with dynamics P and rewards R is called monotone
if P is independent of µ, and for all µ, µ1 it holds that

ř

s,apRps, a, µq ´ Rps, a, µ1qqpµps, aq ´

µ1ps, aqq ă 0. A DG G is called monotone extendable if MFG pGq is monotone.

To motivate this definition, we provide a large class of DGs that are relevant and monotone-extendable.
Example 1 (Asymmetric dynamic congestion games). For any i P rN s, let hi : S ˆ A ˆ rN s Ñ

r0, 1s, ri : S ˆ A Ñ r0, 1s be arbitrary functions so that hips, a, ¨q is non-increasing for any s, a.
Assume P ip¨|s, a,ρρρ´iq does not depend on ρρρ´i for any s, a, and Rips, a,ρρρ´iq be 1-sparse so that
Rips, a,ρρρ´iq “ hips, a,

řN
j“1 1ρj“ps,aqq ` rips, aq. Such games can be seen as generalizations of

congestion games [46] and congestion games with player-specific incentives [39], for which an
efficient solution is unknown. We prove monotone extendability and characterize the values of α, β
and Lipschitz constants for such games in Section D.1

Algorithm 2 Policy mirror descent for α, β-symmetric games (Symm-PMD)

Input: FH-DG G, epochs T , TD learning epochs M , learning rates tξtut, entropy τ .
1: Initialize uniform policy: π0,hpa|sq “ 1{|A|, @h P t0, . . . H ´ 1u, s P S, a P A
2: for t P 0, 1, . . . , T ´ 1 do Ź Run for T epochs
3: Run Algorithm 1 for policy πt, M epochs, entropy τ , tηhum as in Theorem 2
4: Obtain t pQt

hu
H´1
h“0 , set pqthps, aq :“ pQt

hps, aq ´ Hpπt,hp¨|sqq.
5: Perform PMD update: (@s P S, h “ 0, . . . ,H ´ 1)

pπt`1,hp¨|sq :“ arg max
uP∆A

ξt
1 ´ τξt

«

pqthps, ¨qJu ` τHpuq

ff

´ DKLpu|πt,hp¨|sqq.

6: Update policies: πt`1,hp¨|sq :“
´

1 ´ 1
t`1

¯

pπt`1,hp¨|sq ` 1
t`1 Unifp¨q, @s P S.

7: Return π̄ :“ t 1
T`1

řT
t“0 πt,hu

H´1
h“0 .

Theorem 3 (Convergence of PMD). Let G be a monotone extendable α, β-symmetric game. Assume
Symm-PMD (Algorithm 2) runs with learning rates ξt “ 1?

t`1
, entropy regularization τ P p0, 1{2q,

M ě Opε´2q TD iterations for T ě rOpε´4q epochs. Then, the output policy π̄ is a Opε ` ατ´1 `

βτ´1 ` τ´1{
?
N ` τq-Nash equilibrium of G in expectation.

Proof. The proof is based on [65] with the added complications of finitely many agents, approximate
symmetry, and stochastic TD learning. Full proof is presented in Section D.3.

Theorem 3 suggests a sample complexity of rOpε´6q trajectories from the N -agent FH-DG in order
to compute a ε-NE (up to symmetrization bias). In fact, it is (to the best of our knowledge) the first
finite-sample guarantee for computing approximate NE for a large class of dynamic games with many
agents. Most importantly, the number of agents N does not appear in the complexity: hence, the
curse of many agents can be provably circumvented for α, β-symmetric games. Even in the exactly
symmetric case (α “ β “ 0), Theorem 3 is the first guarantee to the best of our knowledge for
learning FH-MFG-NE only observing trajectories of the N -agent game.
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3 Experimental Results

We support our theory by deploying Symm-PMD (Algorithm 2) on several large-scale α, β-symmetric
games. For evaluations, we modify the well-known benchmarks from MFG literature (see [13]) to
propose three games with asymmetric incentives: A-RPS, A-SIS, and A-Taxi. A-RPS is an adaptation
of RPS [13] to incorporate asymmetric rewards for agents. A-SIS models disease propagation in a
large population individually choosing to self-isolate or go out, incorporating asymmetric agents with
individual susceptibility/healing rates and unique aversions to isolation. Finally, A-Taxi simulates a
large population of taxis serving clients in a grid, with individual preferences for regions and crowd
aversion. In our experiments, we use N “ 1000 and N “ 2000 agents demonstrating the ability
of our framework to handle large MARL games. A-Taxi incorporates |S| ą 230, H “ 128, hence
necessitates neural parameterization. Our setup is thoroughly described in Section E.

We deploy Symm-PMD on two different DGs, with α “ 0, β « 0.1, N “ 2000, H “ 10 on A-RPS
and α « β « 0.1, N “ 1000, H “ 20 for A-SIS. We compare the symmetrized approach of
Symm-PMD to its asymmetric counterpart independent PMD (IPMD), where a separate policy is
learned for each agent. The training curves, pictured in Figures 1-(b,c) characterize the exploitabilty
of the learned policies throughout training. In both cases, while IPMD has no approximation bias in
principle, it struggles to converge presumably suffering from the curse-of-many-agents. Symm-PMD,
on the other hand, rapidly converges to a policy profile with low exploitability and is much more
sample-efficient. In both cases, Symm-PMD converges to a solution with low bias.

We demonstrate the scalability of our approach with neural policies. In the A-Taxi environment, we
use PPO [50] with symmetrized neural policies and compare to the settings the policy has access to
agent identities (either one-hot encoded, in OH-NN, or as an integer, in ID-NN). Symmetrized policies
outperform either benchmark by converging faster and to a better solution. Learning independent
neural policies for each of 1000 agents (Ind-NN) is extremely expensive in this setting: this approach
performs the worst and is orders of magnitude computationally more expensive.

Computational efficiency. We also emphasize the computational efficiency of symmetrization: since
our algorithm need not learn separate policies for each agent, it is drastically more computationally
efficient compared to independent PMD. In A-SIS and A-RPS benchmarks, learning is 60% faster,
whereas symmetrized neural PPO in A-Taxi is >95% faster than its independent counterpart.

(a) (b) (c)

Figure 1: (a) The mean rewards throughout training of symmetric policies (Sym-NN), policies with
onehot encoding for i (OH-NN), policies with numerical encoding for i (Ind-NN) and independent
policies (Ind-NN) in A-Taxi. (b, c) The exploitability throughout multiple epochs of Symm-PMD
(Algorithm 2) and IPMD, for A-RPS with β “ 0.1 in (b) and A-SIS with α “ β “ 0.1 in (c).

4 Discussion and Conclusion

We formulated a new class of competitive MARL problems (α, β-symmetric games) that can be
tractably solved. We constructively showed that every α, β-symmetric FH-DG can be efficiently
approximated by an induced MFG. We provided theoretical guarantees for TD learning, and under
monotonicity, for PMD to approximate NE up to symmetrization bias. These results provide a
complete theory of learning under approximate symmetry, supported by numerical experiments.
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A Preliminaries

Firstly, we present several basic facts regarding symmetrization and symmetric functions.

Lemma 3. For any f : XK Ñ Y , Sym pfq is a symmetric function.

Proof. For any g1 P SK , we have

Sym pfq pg1pxqq “
1

K!

ÿ

gPSK

fpgpg1pxqqq “
1

K!

ÿ

gPSK

fpgpxqq “ Sym pfq pxq,

since composition by g1 defines a bijection from SK onto itself.

Lemma 4. For any symmetric function f : XK Ñ Y , Sym pfq “ f .

Proof. By simple computation:

Sym pfq pxq “
1

K!

ÿ

gPSK

fpgpxqq “
1

K!

ÿ

gPSK

fpxq “ fpxq.

13



Normed policy space. In the proofs, we equip the policy space Π with the norm } ¨ }1 defined as
}π ´ π1}1 :“ sup

sPS
}πpsq ´ π1psq}1,

for any π, π1 P Π. We present several useful results.
Lemma 5. Let π, π1 P Π and µ, µ1 P ∆S be arbitrary. Then,

}µ ¨ π ´ µ1 ¨ π1}1 ď }µ ´ µ1}1 ` }π ´ π1}1.

Proof. The lemma follows from the two inequalities

}µ ¨ π ´ µ ¨ π1}1 ď
ÿ

s,a

|µpsqπpa|sq ´ µpsqπ1pa|sq|

ď
ÿ

s

µpsq
ÿ

a

|πpa|sq ´ π1pa|sq| ď }π ´ π1}1,

and similarly:

}µ ¨ π ´ µ1 ¨ π}1 ď
ÿ

s,a

|µpsqπpa|sq ´ µ1psqπpa|sq|

ď
ÿ

s

|µpsq ´ µ1psq|
ÿ

a

πpa|sq “ }µ ´ µ1}1.

Lemma 6 (Lemma B.2 of [61]). Assume E a finite set, g : E Ñ Rp a vector value function, and
ν, µ two probability measures on E. Then,

›

›

›

›

›

ÿ

e

gpeqµpeq ´
ÿ

e

gpeqνpeq

›

›

›

›

›

1

ď
λg

2
}µ ´ ν}1,

where λg :“ supe,e1 }gpeq ´ gpe1q}1.

To establish explicit upper bounds on the approximation rate, we will use standard concentration
tools.
Definition 11 (Sub-Gaussian). Random variable ξ is called sub-Gaussian with variance proxy σ2 if
@λ P R : E

“

eλpξ´Erξsq
‰

ď e
λ2σ2

2 . In this case, we write ξ P SGpσ2q.

It is easy to show that if ξ P SGpσ2q, then αξ P SGpα2σ2q for any constant α P R. Furthermore, if
ξ1, . . . , ξn are independent random variables with ξi P SGpσ2

i q, then
ř

i ξi P SGp
ř

i σ
2
i q. Finally, if

ξ is almost surely bounded in ra, bs, then ξi P SGppb ´ aq
2
{4q. We also state the well-known Hoeffding

concentration bound and a corollary, Lemma 8.
Lemma 7 (Hoeffding inequality [36]). Let ξ P SGpσ2q. Then for any t ą 0 it holds that

P |ξ ´ E rξs | ě t ď 2e´ t2

2σ2 .
Lemma 8. Let ξ P SGpσ2q. Then

E r|ξ ´ E rξs |s ď
?
2πσ2, E

“

pξ ´ E rξsq2
‰

ď 4σ2

Proof.

E r|ξ ´ E rξs |s “

ż 8

0

Pp|ξ ´ E rξs | ě tqdt
pIq

ď 2

ż 8

0

e´ t2

2σ2 dt “
?
2πσ2.

Inequality pIq is true due to Lemma 7. Likewise,

E
“

pξ ´ E rξsq2
‰

“

ż 8

0

Pppξ ´ E rξsq2 ě tqdt

“

ż 8

0

Pp|ξ ´ E rξs | ě
?
hqdt

pIIq

ď 2

ż 8

0

e´ h
2σ2 dt “ 4σ2
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For controlling errors under stochasticity, the following simple lemma will be useful.

Lemma 9 (Harmonic partial sum bound). For any integers s, s̄ such that 1 ď s̄ ă s and p ‰ ´1, it
holds that

log s ´ log s̄ `
1

s
ď

s
ÿ

n“s̄

1

n
ď

1

s̄
` log s ´ log s̄,

sp`1

p ` 1
´

s̄p`1

pp ` 1q
` s̄p ď

s
ÿ

n“s̄

np ď
sp`1

p ` 1
´

s̄p`1

p ` 1
` sp, if p ě 0

sp`1

p ` 1
´

s̄p`1

p ` 1
` sp ď

s
ÿ

n“s̄

np ď
sp`1

p ` 1
´

s̄p`1

p ` 1
` s̄p, if p ď 0

Proof. The proof follows from the the basic fact that if f : r1,8q Ñ Rě0 is a non-increasing
function, then

ż s

s̄

fpxqdx ` fpsq ď

s
ÿ

n“s̄

fpnq ď

ż s

s̄

fpxqdx ` fps̄q,

and likewise for a non-decreasing function f : r1,8q Ñ Rě0, it holds that

ż s

s̄

fpxqdx ` fps̄q ď

s
ÿ

n“s̄

fpnq ď

ż s

s̄

fpxqdx ` fpsq.

Finally, we slightly generalize the definition of MFG-NE (Definition 12), as our approximation
theorems are somewhat more general than what is stated in the main body of the paper: we consider
approximate MFG-NE rather than only exact MFG-NE.

Definition 12 (δ-MFG-NE). A policy sequence πππ˚ P ΠH is called a δ-MFG-NE of the MFG
pS,A, ρ0, H, P,Rq if it holds that

Eptπ˚
hu

H´1
h“0 q ď δ. (δ-MFG-NE)

A remark on extension Lemma 1 and ∆S . For given N ą 0 and map P̄ : ∆SˆA,N Ñ ∆S with
Lipschitz modulus L on ∆SˆA,N , the Kirszbraun-Valentine Lemma (Lemma 1) only guarantees an
L-Lipschitz extension Ext

`

P̄
˘

: ∆SˆA,N Ñ RS . However, we can trivially side-step this issue
with a modified application of Kirszbraun-Valentine. Let Proj∆S

: RS Ñ ∆S be the projection
operator to the convex set ∆S . For any extension Ext

`

P̄
˘

, Proj∆S
˝Ext

`

P̄
˘

is also a valid L-
Lipschitz extension that preserves P̄ on the set ∆SˆA,N as Proj∆S

is non-expansive. Moreover,
Proj∆S

˝Ext
`

P̄
˘

has image set contained in ∆S as required.

B Extended Proofs on Approximation

B.1 Proof of Lemma 2

The proof relies on the properties of symmetrization and Lemma 6. Forn convenience we denote
K :“ N ´ 1 in this proof.

Firstly, we show that for any i, j P rN s, s P S, a P A, the functions Sym
`

P i
˘

ps, a, ¨q and
Sym

`

Ri
˘

ps, a, ¨q also satisfy the bounded variation and sparsity assumptions. Assume that
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ρρρ P pS ˆ AqK , ps1, a1q P S ˆ A arbitrary, Then, by definition,

}Sym
`

P i
˘

ps, a,ρρρq ´ Sym
`

P i
˘

ps, a, pps1, a1q, ρρρ´jqq}2

ď
1

K!

›

›

›

›

›

ÿ

gPSK

P ips, a, gpρρρqq ´
ÿ

gPSK

P ips, a, gpps1, a1q, ρρρ´jqq

›

›

›

›

›

2

ď
1

K!

ÿ

gPSK

›

›P ips, a, gpρρρqq ´ P ips, a, gpps1, a1q, ρρρ´jqq
›

›

2

ď
1

K!

ÿ

gPSK

C1 ď C1.

Furthermore, assume P ips, a, ¨q is κ-sparse on some set Us,a Ă S ˆ A where |Us,a| ď κ. Let
ρρρ,ρρρ1 P pS ˆ AqK be two vectors agreeing in their entries in Us,a, i.e., pUs,a

pρρρq “ pUs,a
pρρρ1q. Then,

Sym
`

P i
˘

ps, a,ρρρq “
1

K!

ÿ

gPSK

P ips, a, gpρρρqq

“
1

K!

ÿ

gPSK

P ips, a, gpρρρqq

“ Sym
`

P i
˘

ps, a,ρρρ1q,

since gpρρρ1q agrees with gpρρρq on its elements in Us,a as well, as pUs,apgpρρρqq “ pUs,apgpρρρ1qq. Therefore
we conclude Sym

`

P i
˘

is also κ-sparse on Us,a. By similar computation,
ˇ

ˇSym
`

Ri
˘

ps, a,ρρρq ´ Sym
`

Ri
˘

ps, a, pps1, a1q, ρρρ´jqq
ˇ

ˇ ď C2,

and Sym
`

Ri
˘

is also κ-sparse.

Next, we establish that the lifted functions ĘSym
`

P i
˘

ps, a, ¨q only depend on µpsq for s P Us,a,
that is, we show that if µ, µ1 are such that µps1, a1q “ µ1ps1, a1q for all ps1, a1q P Us,a, then
ĘSym

`

P i
˘

ps, a, µq “ ĘSym
`

P i
˘

ps, a, µ1q. Let µ, µ1 P ∆SˆA,K be such that µps1, a1q “ µ1ps1, a1q

for all ps1, a1q P Us,a. Take arbitrary ρρρ,ρρρ1 such that σpρρρq “ µ, σpρρρ1q “ µ1. It holds that for some
permutation g1 P SK that g1pρρρ1q agrees with ρρρ on all entries taking values in Us,a, as ρρρ1 and ρρρ have
the same count of elements in Us,a. Then

ĘSym
`

P i
˘

ps, a, µq “
1

K!

ÿ

gPSK

P ips, a, gpρρρqq

“
1

K!

ÿ

gPSK

P ips, a, gpg1pρρρ1qqq

“
1

K!

ÿ

gPSK

P ips, a, gpρρρ1qq “ ĘSym
`

P i
˘

ps, a, µ1q.

A similar argument works for ĘSym
`

Ri
˘

ps, a, ¨q, allowing us to conclude that
ĘSym

`

P i
˘

ps, a, ¨q,ĘSym
`

Ri
˘

ps, a, ¨q only depend on µps1, a1q if ps1, a1q P Us,a.

Finally, we analyze the Lipschitz modulus of the lifted functions 1{N
ř

i
ĘSym

`

P i
˘

, 1{N
ř

i
ĘSym

`

Ri
˘

.
Let µ1, µ2 P ∆SˆA,K and ρρρ1 “ tρi1uKi“1, ρρρ2 “ tρi2uKi“1 P pS ˆ AqK be such that σpρρρ1q “

µ1, σpρρρ2q “ µ2. Then,

}ĘSym
`

P i
˘

ps, a,ρρρ1q ´ ĘSym
`

P i
˘

ps, a,ρρρ2q}1 ď C1

ÿ

iPrKs

1ρi
1‰ρi

2
.

Taking the minimum over such ρρρ1, ρρρ2, we have that

}ĘSym
`

P i
˘

ps, a, µ1q ´ ĘSym
`

P i
˘

ps, a, µ2q}1

ď min
ρρρ1,ρρρ2PpSˆAq

K

σpρρρ1q“µ1, σpρρρ2q“µ2

C1

ÿ

iPrKs

1ρi
1‰ρi

2
ď C1K}µ1 ´ µ2}1,
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as ρρρ1, ρρρ2 can differ at a minimum at K}µ1 ´ µ2}1 coordinates. Finally, as concluded from the
arguments above, since ĘSym

`

P i
˘

ps, a, µ1q only depends on µ1ps1, a1q for s1, a1 P Us,a, one can
choose µ̄1, µ̄2 P ∆SˆA such that µ̄1ps1, a1q “ µ1ps1, a1q and µ̄2ps1, a1q “ µ2ps1, a1q for all ps1, a1q P

Us,a and µ̄1ps2, a2q “ µ̄2ps2, a2q whenever ps2, a2q ‰ Us,a. Then,

}ĘSym
`

P i
˘

ps, a, µ1q ´ ĘSym
`

P i
˘

ps, a, µ2q}1 “}ĘSym
`

P i
˘

ps, a, µ̄1q ´ ĘSym
`

P i
˘

ps, a, µ̄2q}1

“C1K}µ̄1 ´ µ̄2}1

“C1K
ÿ

s1,a1PUs,a

|µ̄1ps1, a1q ´ µ̄2ps1, a1q|

ďC1K

d

ÿ

s1,a1PUs,a

|µ̄1ps1, a1q ´ µ̄2ps1, a1q|2
?
κ

ďC1K
?
κ}µ̄1 ´ µ̄2}2 ď C1K

?
κ}µ1 ´ µ2}2,

thus proving Lipschitz bound on the set ∆SˆA,K . By an identical argument, it holds that

|ĘSym
`

Ri
˘

ps, a, µ1q ´ ĘSym
`

Ri
˘

ps, a, µ2q| ď C2pN ´ 1q
?
κ}µ1 ´ µ2}2.

The result follows from an application of Lemma 1 to extend 1{N
ř

i
ĘSym

`

Ri
˘

ps, a, ¨q and
1{N

ř

i
ĘSym

`

P i
˘

ps, a, ¨q from ∆SˆA,N to ∆SˆA, as the norm equivalence } ¨ }2 ď } ¨ }1 holds.

B.2 Population Flows are Lipschitz Continuous

Lemma 10 (Lipschitz continuity of Γ). Let P : S ˆ A ˆ ∆SˆA Ñ ∆S be such that P ps, a, µq is
Lipschitz continuous in } ¨ }1 norm with modulus Kµ ą 0 and

Ks :“ sup
s,s1

a,µ

›

›P ps, a, µq ´ P ps1, a, µq
›

›

1
, Ka :“ sup

a,a1

s,µ

›

›P ps, a, µq ´ P ps, a1, µq
›

›

1
.

Then it holds for all µ, µ1 P ∆SˆA, π, π
1 P Π that:

}Γpµ, πq ´ Γpµ1, πq}1 ď

ˆ

Ks ` Ka

2
` Kµ

˙

}µ ´ µ1}1,

for all π P Π, µ, µ1 P ∆SˆA.

Proof. The proof is inspired by [61], apart from the fact that in our case the population update
operator is defined differently as:

Γpµ, πqps1, a1q :“
ÿ

sPS,aPA
µps, aqP ps1|s, a, µqπpa1|s1q

We will prove a slightly more general statement, that

›

›Γpµ, πq ´ Γpµ1, π1q
›

›

1
ď }µ ´ µ1}1

ˆ

Ks ` Ka

2
` Kµ

˙

` }π ´ π1}1.
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Firstly, we upper bound the Lipschitz modulus of the function with respect to µ. For any µ, µ1 P

∆SˆA, it holds that:
›

›Γpµ, πq ´ Γpµ1, πq
›

›

1

ď
ÿ

s1,a1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s,a

pµps, aqP ps1|s, a, µq ´ µ1ps, aqP ps1|s, a, µ1qqπpa1|s1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

s1,a1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s,a

pµps, aq ´ µ1ps, aqqP ps1|s, a, µqπpa1|s1q

ˇ

ˇ

ˇ

ˇ

ˇ

`
ÿ

s1,a1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

sPS,aPA
µ1ps, aqpP ps1|s, a, µq ´ P ps1|s, a, µ1qqπpa1|s1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

›

ÿ

s,a

pµps, aq ´ µ1ps, aqqpP ps, a, µq ¨ πq

›

›

›

›

›

1

`
ÿ

s,a

µ1ps, aq
ÿ

s1

|P ps1|s, a, µq ´ P ps1|s, a, µ1q|
ÿ

a1

πpa1|s1q

ď }µ ´ µ1}1
max }P ps, a, µq ¨ π ´ P pss,sa, µq ¨ π}1

2
` Kµ}µ ´ µ1}1

ď }µ ´ µ1}1
max }P ps, a, µq ´ P pss,sa, µq}1

2
` Kµ}µ ´ µ1}1.

where the last two lines follow from Lemma 6 and Lemma 5. Since

}P ps, a, µq ´ P pss,sa, µq}1 ď Ks ` Ka,

we have the claimed inequality

›

›Γpµ, πq ´ Γpµ1, πq
›

›

1
ď }µ ´ µ1}1

ˆ

Ks ` Ka

2
` Kµ

˙

.

Finally, the Lipschitz constant for the policy π is computed by:

›

›Γpµ, πq ´ Γpµ, π1q
›

›

1
ď

ÿ

s1,a1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s,a

µps, aqP ps1|s, a, µq
`

πpa1|s1q ´ π1pa1|s1q
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

s,a,s1

µps, aqP ps1|s, a, µq
ÿ

a1

ˇ

ˇπpa1|s1q ´ π1pa1|s1q
ˇ

ˇ

ď }π ´ π1}1.

B.3 Proof of Theorem 1

The main ideas of the approximation proof are similar to some arguments from MFG literature (e.g.
see [47]) with two major differences: (1) the dynamics of the finite player game are not exactly
symmetric, and (2) unlike some standard works the dynamics and rewards depend on the distribution
of agents over state-action pairs, not just states.

For given R and P define the following constants:

Ls “ sup
s,s1,a,µ

ˇ

ˇRps, a, µq ´ Rps1, a, µq
ˇ

ˇ , La “ sup
s,a,a1,µ

ˇ

ˇRps, a, µq ´ Rps, a1, µq
ˇ

ˇ ,

Ks “ sup
s,s1,a,µ

›

›P p¨|s, a, µq ´ P p¨|s1, a, µq
›

›

1
, Ka “ sup

s,a,a1,µ

›

›P p¨|s, a, µq ´ P p¨|s, a1, µq
›

›

1
.

We also introduce the shorthand notation for any s P S, u P ∆A, µ P ∆SˆA:

P p¨|s, u, µq “
ÿ

aPA
upaqP p¨|s, a, µq, Rps, u, µq “

ÿ

aPA
upaqRps, a, µq.
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By [61, Lemma C.1], it holds that

}P p¨|s, u, µq ´ P p¨|s1, u1, µ1q}1 ďKµ}µ ´ µ1}1 ` Ksdps, s1q `
Ka

2
}u ´ u1}1,

|Rps, u, µq ´ Rps1, u1, µ1q| ďLµ}µ ´ µ1}1 ` Lsdps, s1q `
La

2
}u ´ u1}1. (4)

We will define a new operator for tracking the evolution of the population distribution over finite time
horizons for a time-varying policy @π “ tπhu

H´1
h“0 P Π:

Γhpµ, πq :“ Γp. . .ΓpΓpµ, π0q, π1q . . . , πh´1q
looooooooooooooooooomooooooooooooooooooon

h times

so that Γ0pµ, πq :“ µ. Lemma 10 yields the Lipschitz condition:

}Γnpµ, tπiu
n´1
i“0 q ´ Γnpµ1, tπiu

n´1
i“0 q}1

ď Lpop,µ}Γn´1pµ, tπiu
n´2
i“0 q ´ Γn´1pµ1, tπ1

iu
n´2
i“0 q}1 ` }πn´1 ´ π1

n´1}1

ď Ln
pop,µ}µ ´ µ1}1 `

n´1
ÿ

i“0

Ln´1´i
pop,µ }πi ´ π1

i}1, (5)

where Lpop,µ is the Lipschitz constant of Γ in µ.

We also define a useful function Ξ : pS ˆ AqN ˆ ΠN Ñ ∆SˆA such that for any ρρρ “ tpsi, aiquNi“1,

Ξpρρρ, sπq “
1

N

N
ÿ

i“1

P p¨|si, ai, σpρρρ´iqq ¨ sπ.

In other words, Ξ is the average population flow expected under symmetrized dynamics and reference
policy sπ.

The proof will proceed in four steps:

• Step 1. Bounding the expected deviation of the empirical population distribution from the
mean-field distribution E r}pµh ´ µh}1s for any given policy π.

• Step 2. Bounding total variation distance (or equivalently ℓ1 distance) between the marginal
distributions Prs1h “ ¨s in the N -player game and Prsh “ ¨s in the mean-field game,

• Step 3. Bounding difference of N agent value function J p1q and the infinite player value
function V , when all the players except the first one play the same policy,

• Step 4. Bounding the exploitability of an agent when each of N agents are playing the
FH-MFG-NE policy.

Step 1: Empirical distribution bound. Due to its relevance for a general connection between the
FH-MFG and the N -player game, we state this result in the form of an explicit bound. In this step, we
will assume N players of the FH-DG pursue policies tπiui “ tπi

hui,h P ΠN , and random variables
f Furthermore, assume sπ “ tsπhuh P Π arbitrary, and induces population µ “ Λpsπq “ tµhuh. We
also define the quantity ∆h :“ 1

N

řN
i“1 }πi

h ´ sπh}1 and s∆ :“ maxhPrHs ∆h.

The proof will proceed inductively over h. First, for time h “ 0, we have

E r}pµ0 ´ µ0}1s ďE

«
›

›

›

›

›

pµ0 ´
1

N

N
ÿ

i“1

ρ0 ¨ πi
0

›

›

›

›

›

1

ff

` E

«
›

›

›

›

›

1

N

N
ÿ

i“1

ρ0 ¨ πi
0 ´ µ0

›

›

›

›

›

1

ff

ď
ÿ

sPS
aPA

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

p1si0“s,ai
0“a ´ ρ0psqπi

0pa|sqq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

`
1

N
E

«

N
ÿ

i“1

}πi
0 ´ sπ0}1

ff

ď|S||A|

c

π

2N
` ∆h,
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where the last line is due to Lemma 8 and the fact that 1si0“s,ai
0“a are independent, bounded (hence

subgaussian) random variables, and that we have E
”

1si0“s,ai
0“a

ı

“ ρ0psqπps, aq “ µ0ps, aq.

Next, denoting the σ-algebra induced by the random variables ptsih, a
i
huqi,h1ďh as Fh, we have that:

E r}pµh`1 ´ µh`1}1 |Fh s ďE r}pµh`1 ´ E rpµh`1 |Fh s }1 |Fh s
loooooooooooooooooooomoooooooooooooooooooon

p△q

` E r}E rpµh`1 |Fh s ´ Ξpρρρh, sπh`1q}1 |Fh s
loooooooooooooooooooooooomoooooooooooooooooooooooon

p˝q

` E r}Ξpρρρh, sπh`1q ´ Γppµh, sπhq}1 |Fh s
loooooooooooooooooooooomoooooooooooooooooooooon

p‹q

` E r}Γppµh, sπhq ´ µh`1}1 |Fh s
looooooooooooooooomooooooooooooooooon

p♡q

(6)

We upper bound the four terms separately. For p△q, it holds that

p△q “E r}pµh`1 ´ E rpµh`1 |Fh s }1 |Fh s

“
ÿ

sPS,aPA
E r|pµh`1ps, aq ´ E rpµh`1ps, aq |Fh s | |Fh s

ď|S||A|

c

π

2N
,

since each pµh`1psq is an average of N independent subgaussian random variables (specifically
N independent Bernoulli random variables) given Fh. Specifically, each indicator is bounded
1sih`1“s,ai

h`1“a P r0, 1s almost surely and therefore is sub-Gaussian with 1sih`1“s,ai
h`1“a P

SGp1{4q.

Next, for the term p˝q,

p˝q “ E r}E rpµh`1 |Fh s ´ Ξpρρρh, sπh`1q}1 |Fh s

“
1

N
E
„
›

›

›

›

N
ÿ

i“1

P ip¨|sih, a
i
h, ρρρ

´i
h q ¨ πi

h`1 ´

N
ÿ

i“1

P p¨|sih, a
i
h, σpρρρ´i

h qq ¨ sπh`1

›

›

›

›

1

ˇ

ˇ

ˇ

ˇ

Fh

ȷ

ď
1

N
E
„ N
ÿ

i“1

}P ip¨|sih, a
i
h, ρρρ

´i
h q ´ P p¨|sih, a

i
h, σpρρρ´i

h qq}1

ˇ

ˇ

ˇ

ˇ

Fh

ȷ

`
1

N

N
ÿ

i“1

}πi
h`1 ´ sπh`1}1.

By the α-symmetry condition, it follows that p˝q ď α ` ∆h`1.

For p‹q “ }Ξpρρρh, sπhuiq ´ Γppµh, sπhq}1,

p‹q “ E r}Ξpρρρh, sπh`1q ´ Γppµh, sπh`1q}1 |Fh s

“ E
„
›

›

›

›

1

N

N
ÿ

i“1

P p¨|sih, a
i
h, σpρρρ´i

h qq ¨ sπh`1 ´
ÿ

s1,a1

pµhps1, a1qP p¨|s1, a1, pµhq ¨ sπh`1

›

›

›

›

1

ˇ

ˇ

ˇ

ˇ

Fh

ȷ

.

“
1

N
E
„›

›

›

›

N
ÿ

i“1

P p¨|sih, a
i
h, σpρρρ´i

h qq ¨ sπh`1 ´

N
ÿ

i“1

P p¨|sih, a
1
h, pµhq ¨ sπh`1

›

›

›

›

1

ˇ

ˇ

ˇ

ˇ

Fh

ȷ

.

The vectors pN ´ 1qσpρρρ´i
h q, Npµh can differ by only 1 in one component due to the i-th agent being

excluded from the former, it holds that

}Nσpρρρ´i
h q ´ Npµh}1 ď }pN ´ 1qσpρρρ´i

h q ´ Npµh}1 ` }σpρρρ´i
h q}1 ď 3,

therefore for any s, a,

}P p¨|s, a, σpρρρ´i
h qq ´ P p¨|s, a, pµhq}1 ď

3Kµ

N
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almost surely and p‹q is further upper bounded by p‹q ď
3Kµ

N .

Finally, the last term p♡q can be bounded using:

p♡q “E
“

}Γppµh, sπhq ´ Γpµsπ
h, sπhq}1 |Fh

‰

ď Lpop,µ}pµh ´ µh}1.

To conclude, merging the bounds on the three terms in Inequality (6) and taking the expectation on
both sides, by the law of iterated expectations we obtain:

E r}pµh`1 ´ µh`1}1s ďLpop,µE r}pµh ´ µh}1s ` |S||A|

c

π

2N
`

3Kµ

N
` ∆h`1 ` α.

Induction on h yields the bound for all h:
E r}pµh ´ µh}1s

ď

h
ÿ

h1“0

Lh´h1

pop,µ

ˆ

|S||A|

c

π

2N
`

3Kµ

N
` ∆h`1 ` α

˙

ď
1 ´ Lh`1

pop,µ

1 ´ Lpop,µ

ˆ

|S||A|

c

π

2N
` s∆ `

3Kµ

N
` α

˙

, (7)

where we adopt the convenient shorthand
1´Lh`1

pop,µ

1´Lpop,µ
:“ h if Lpop,µ “ 1.

Step 2: Marginal state-action distributions. In this step, we analyze the distributions Prsih “

¨, aih “ ¨s. For simplicity, assume each player i ‰ 1 follows policy π P Π, player 1 follows an
arbitrary policy sπ P Π: we denote the induced random variables in the N -player game G as sih, a

i
h, pµh.

Assume that in the mean-field game MFG pGq, the representative player in MFG pGq also follows
policy sπ, evaluated against distribution µ :“ Λpπq: denote the induced random variables as sh, ah.
In this setting, we will inductively upper bound the quantity

}Prsh “ ¨s ´ Prs1h “ ¨s}1.

Firstly, for h “ 0, it holds by definition that
Prs0 “ ¨s “ Prs10 “ ¨s “ ρ0,

hence }Prs0 “ ¨s ´ Prs10 “ ¨s}1 “ 0.

Next, for the time step h ` 1,
}Prsh`1 “ ¨s ´ Prs1h`1 “ ¨s}1

ď

›

›

›

›

ÿ

s,ρρρ

P 1ps, sπhpsq, ρρρqPrs1h “ s,ρρρ´i
h “ ρρρs ´

ÿ

s

P ps, sπhpsq, µhqPrsh “ ss

›

›

›

›

1

ď

›

›

›

›

ÿ

s,ρρρ

P ps, sπhpsq, σpρρρqqPrs1h “ s,ρρρ´i
h “ ρρρs ´

ÿ

s

P ps, sπhpsq, µhqPrsh “ ss

›

›

›

›

1

`

›

›

›

›

ÿ

s,ρρρ

rP 1ps, sπhpsq, ρρρq ´ P ps, sπhpsq, σpρρρqqsPrs1h “ s,ρρρ´i
h “ ρρρs

›

›

›

›

1

ď

›

›

›

›

ÿ

s,ρρρ

P ps, sπhpsq, σpρρρqqPrs1h “ s,ρρρ´i
h “ ρρρs ´

ÿ

s

P ps, sπhpsq, µhqPrsh “ ss

›

›

›

›

1

` α, (8)

where the last line follows from the α-symmetry condition. For the remaining term, we first observe
the inequality:

›

›

›

›

ÿ

s,ρρρ

rP ps, sπhpsq, σpρρρqq ´ P ps, sπhpsq, µhqsPrs1h “ s,ρρρ´i
h “ ρρρs

›

›

›

›

1

ď
ÿ

s,ρρρ

Kµ}σpρρρq ´ µh}1 Prs1h “ s,ρρρ´i
h “ ρρρs

ď Kµ Er}σpρρρq
´i
h ´ µh}1s

ď Kµ Er}pµh ´ µh}1s `
3Kµ

N
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as again }pµh ´ σpρρρ´i
h q}1 ď 3{N almost surely, as Npµh and pN ´ 1qσpρρρ´i

h q differ by one in one
coordinate only. Then, applying the triangle inequality and marginalizing over ρρρ in Inequality (8),

}Prsh`1 “ ¨s ´ Prs1h`1 “ ¨s}1

ď

›

›

›

›

ÿ

s

P ps, sπhpsq, µhqPrs1h “ ss ´
ÿ

s

P ps, sπhpsq, µhqPrsh “ ss

›

›

›

›

1

` α `
3

N
` Kµ Er}pµh ´ µh}1s

ď}Prs1h “ ss ´ Prsh “ ss}1 ` α `
3Kµ

N
` Kµ Er}pµh ´ µh}1s

where in the last line we used the fact that Markov kernels are non-expansive in ℓ1 norm, where in
this case the Markov kernel is given by P p¨|s, sπhpsq, µhq for all s P S.

Inductively applying the recursive bound above we obtain the inequality for all h:

}Prs1h “ ¨s ´ Prsh “ ¨s}1 ď ph ´ 1q

ˆ

α `
3Kµ

N

˙

` Kµ

h´1
ÿ

h“0

Er}pµh ´ µh}1s. (9)

By the result in Step 1 (Inequality 7), since s∆ ď 2{N in this case it holds that

E r}pµh ´ µh}1s ď
1 ´ Lh`1

pop,µ

1 ´ Lpop,µ

ˆ

|S||A|

c

π

2N
`

5Kµ

N
` α

˙

,

for all h “ 0, . . . , N ´ 1. Merging the two inequalities:

}Prs1h “ ¨s ´ Prsh “ ¨s}1

ď Lpop,µ

h´1
ÿ

h“0

1 ´ Lh`1
pop,µ

1 ´ Lpop,µ

ˆ

|S||A|

c

π

2N
`

5Kµ

N
` α

˙

` ph ´ 1q

ˆ

α `
3Kµ

N

˙

. (10)

Step 3. Bounding value function. In this step, we bound the difference between the expected returns
of a player in the N player game and the induced MFG (denoted by functions J, V respectively).
Namely, we will upper bound the deviation

|J p1qpsπ, π, . . . , πq ´ V pΛpπq, sπq|

for any two policies sπ, π P Π.

As in step 1, assume each player i ‰ 1 follows policy π P Π, and player 1 follows policy sπ: we
denote the induced random variables in the N -player game G as sih, a

i
h, pµh. Assume that in the

mean-field game MFG pGq, the representative player in MFG pGq also follows policy sπ, evaluated
against distribution µ :“ Λpπq: denote the induced random variables as sh, ah.

By the results in Step 1,2 shown in inequalities (7), (9), since s∆ ď 2{N in this case it holds that:

E r}pµh ´ µh}1s ď
1 ´ Lh`1

pop,µ

1 ´ Lpop,µ

ˆ

|S||A|

c

π

2N
`

5Kµ

N
` α

˙

}Prs1h “ ¨s ´ Prsh “ ¨s}1

ď ph ´ 1q

ˆ

α `
3Kµ

N

˙

` Kµ

h´1
ÿ

h“0

Er}pµh ´ µh}1s

for all h “ 0, . . . , N ´ 1.

At a fixed time step h, the expected one-step reward differences can be decomposed into four terms:

|ErRpsh, ah, µhqs ´ ErR1ps1h, a
1
h, ρρρ

´iqs|

ď |ErRpsh, ah, µhqs ´ ErRps1h, a
1
h, µhqs|

` |ErRps1h, a
1
h, µhqs ´ ErRps1h, a

1
h, pµhqs|

` |ErRps1h, a
1
h, pµhqs ´ ErRps1h, a

1
h, σpρρρ´iqqs|

` |ErRps1h, a
1
h, σpρρρ´iqqs ´ ErR1ps1h, a

1
h, ρρρ

´iqs|,
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enumerating these terms as (I), (II), (III), and (IV), we upper bound each as follows:

(I) ď
La

2
}Prsh “ ¨, ah “ ¨s ´ Prs1h “ ¨, a1h “ ¨s}1

ď
La

2
}Prsh “ ¨s ´ Prs1h “ ¨s}1

(II) ďLµ Er}pµh ´ µh}1s

(III) ďLµ Er}pµh ´ σpρρρ´iq}1s ď Lµ
3

N
(IV) ďβ

where the last line uses the α, β symmetry condition.

Then, summing up over the entire time horizon, we obtain the result

|J p1qpsπ, π, . . . , πq ´ V pΛpπq, sπq|

ď

H´1
ÿ

h“0

ˆ

Lµ Er}pµh ´ µh}1s `
La

2
}Prsh “ ¨s ´ Prs1h “ ¨s}1

˙

` βH `
3HLµ

N
(11)

or substituting the upper bounds established before,

|J p1qpsπ, π, . . . , πq ´ V pΛpπq, sπq|

ď

H´1
ÿ

h“0

˜

Lµ Er}pµh ´ µh}1s `
LaKµ

2

h´1
ÿ

h1“0

Er}pµh1 ´ µh1 }1s

¸

` βH `
3HLµ

N
` H2

ˆ

α `
3Kµ

N

˙

ď

H´1
ÿ

h“0

˜

LµE
phq `

LaKµ

2

h´1
ÿ

h1“0

Eph1
q

¸

` βH `
3HLµ

N
` H2

ˆ

α `
3Kµ

N

˙

(12)

where we define the quantity

Ephq :“
1 ´ Lh`1

pop,µ

1 ´ Lpop,µ

ˆ

|S||A|

c

π

2N
`

5Kµ

N
` α

˙

.

Step 4. Bounding exploitability function. Finally, we use the results from the previous steps to
upper bound the exploitability of the MFG-NE policy π˚ in the FH-DG. Let µ˚ “ Λpπ˚q. Let π1 be
arbitrary.

J p1qpπ1, π˚, . . . , π˚q ´ J p1qpπ˚, . . . , π˚q ďV pΛpπ˚q, π1q ´ V pΛpπ˚q, π˚q

` |J p1qpπ˚, π˚, . . . , π˚q ´ V pΛpπ˚q, π˚q|

` |J p1qpπ1, π˚, . . . , π˚q ´ V pΛpπ˚q, π1q|.

The last two terms in this inequality can be bounded by Inequality (12) by choosing sπ “ π˚ and
sπ “ π1 respectively, and the first term satisfies

V pΛpπ˚q, π1q ´ V pΛpπ˚q, π˚q ď δ

as π is assumed to be a δ-MFG-NE.

Then, the main statement of the theorem is obtained by observing

Epiqpπ˚q “ max
π1PΠ

J piq
`

π1, π˚,´i
˘

´ J piq pπ˚, . . . , π˚q

ď δ ` 2
H´1
ÿ

h“0

˜

LµE
phq `

LaKµ

2

h´1
ÿ

h1“0

Eph1
q

¸

` 2βH `
6HLµ

N
` 2H2

ˆ

α `
3Kµ

N

˙

,

where once again

Ephq :“
1 ´ Lh`1

pop,µ

1 ´ Lpop,µ

ˆ

|S||A|

c

π

2N
`

5Kµ

N
` α

˙

.
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Namely, if Lpop,µ “ 1, then

Ephq “ O
ˆ

h

ˆ

α `
1

?
N

˙˙

,

if Lpop,µ ă 1, then

Ephq “ O
ˆ

α `
1

?
N

˙

,

and finally if Lpop,µ ą 1, then

Ephq “ O
ˆ

Lh
pop,µ

ˆ

α `
1

?
N

˙˙

.

C Extended Results on TD Learning

We will make use of the following technical lemma.

Lemma 11. Let G “ pS,A, ρ0, N,H, tP iuNi“1, tRiuNi“1q be a FH-DG which induces MFG pGq “

pS,A, N,H, P,Rq. Furthermore, assume that the population flow operator Γ of the induced MFG
satisfies the Lipschitz condition

}Γpµ, πq ´ Γpµ1, πq}2 ď Lpop,µ}µ ´ µ1}2,

for all policies π and µ, µ1 P ∆SˆA. Then, if all players in the FH-DG play policy π P Π, it holds
that

E
“

}pµh ´ µh}22

‰

ď C
1 ´ L

2ph`1q
pop,µ

1 ´ L2
pop,µ

˜

|S||A|

N
`

18K2
µpH2 ` 2q

N2
` 2pH2 ` 2qα2

¸

,

for some absolute constant C ą 0.

Proof. Due to its relevance for a general connection between the FH-MFG and the N -player game,
we state this result in the form of an explicit bound. In this step, we will assume N players of the
FH-DG pursue policies tπiui “ tπi

hui,h P ΠN such that πi “ π for some π P Π, and random
variables tsih, a

i
hui,h1ďh, ρρρh P pS ˆ AqN are generated according to the finite player dynamics.

The proof will proceed inductively over h. First, for time h “ 0, we have

E
“

}pµ0 ´ µ0}22

‰

ďE
”

}pµ0 ´ ρ0 ¨ π0}
2
2

ı

ď
ÿ

s,a

E

»

–

˜

1

N

N
ÿ

i“1

1si0“s,ai
0“a ´ pρ0 ¨ π0qps, aq

¸2
fi

fl

ď
ÿ

s,a

1

N2
E

«

N
ÿ

i“1

´

1si0“s,ai
0“a ´ pρ0 ¨ π0qps, aq

¯2
ff

ď
|S||A|

N
,

due to the fact that 1si0“s,ai
0“a are independent, bounded random variables, and that we have

E
”

1si0“s,ai
0“a

ı

“ ρ0psqπps, aq “ µ0ps, aq.
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Next, denoting the σ-algebra induced by the random variables tsih, a
i
hui,h1ďh as Fh, we have that:

E
“

}pµh`1 ´ µh`1}22 |Fh

‰

(13)

ď E
“

}pµh`1 ´ E rpµh`1 |Fh s }22 |Fh

‰

` E
“

}µh`1 ´ E rpµh`1 |Fh s }22 |Fh

‰

(14)

ď E
“

}pµh`1 ´ E rpµh`1 |Fh s }22 |Fh

‰

` p1 ` δ´1
h qE

“

}Γppµh, πhq ´ E rpµh`1 |Fh s }22 |Fh

‰

` p1 ` δhqE
“

}Γppµh, πhq ´ µh`1}22 |Fh

‰

(15)

ďE
“

}pµh`1 ´ E rpµh`1 |Fh s }22 |Fh

‰

loooooooooooooooooooomoooooooooooooooooooon

p△q

`2p1 ` δ´1
h qE

“

}E rpµh`1 |Fh s ´ Ξpρρρh, πhq}22 |Fh

‰

looooooooooooooooooooooomooooooooooooooooooooooon

p˝q

` 2p1 ` δ´1
h qE

“

}Ξpρρρh, πhq ´ Γppµh, πhq}22 |Fh

‰

loooooooooooooooooooomoooooooooooooooooooon

p‹q

`p1 ` δhqE
“

}Γppµh, πhq ´ µh`1}22 |Fh

‰

looooooooooooooooomooooooooooooooooon

p♡q

(16)

where inequalities 15 and 16 follow from applications of Young’s inequality, where δh ą 0 is a
positive value to be determined later. We upper bound the four terms separately as in the proof of
Theorem 1. For p△q, it holds that

p△q “E
“

}pµh`1 ´ E rpµh`1 |Fh s }22 |Fh

‰

ď
|S||A|

N
,

since each pµh`1psq is an average of independent subgaussian random variables given Fh. Specifically,
each indicator is bounded 1sih`1“s,ai

h`1“a P r0, 1s almost surely.

Next, for the term p˝q,

p˝q “ E
“

}E rpµh`1 |Fh s ´ Ξpρρρh, sπh`1q}22 |Fh

‰

ď
1

N2
E
„
›

›

›

›

N
ÿ

i“1

P ip¨|sih, a
i
h, ρρρ

´iq ¨ πh`1 ´

N
ÿ

i“1

P p¨|sih, a
i
h, σpρρρ´iqq ¨ πh`1

›

›

›

›

2

1

ˇ

ˇ

ˇ

ˇ

Fh

ȷ

ď
1

N2
E
„

˜

N
ÿ

i“1

}P ip¨|sih, a
i
h, ρρρ

´iq ´ P p¨|sih, a
i
h, σpρρρ´iqq}1

¸2
ˇ

ˇ

ˇ

ˇ

Fh

ȷ

By the α-symmetry condition, it follows that p˝q ď α2.

For p‹q “ Er}Ξpρρρh, πhuiq ´ Γppµh, πhq}22|Fhs,

p‹q ď E
“

}Ξpρρρh, sπh`1q ´ Γppµh, sπh`1q}21 |Fh

‰

“ E
„
›

›

›

›

1

N

N
ÿ

i“1

P p¨|sih, a
i
h, σpρρρ´i

h qq ¨ sπh`1 ´
ÿ

s1,a1

pµhps1, a1qP p¨|s1, a1, pµhq ¨ sπh`1

›

›

›

›

2

1

ˇ

ˇ

ˇ

ˇ

Fh

ȷ

“
1

N2
E
„
›

›

›

›

N
ÿ

i“1

P p¨|sih, a
i
h, σpρρρ´i

h qq ¨ sπh`1 ´

N
ÿ

i“1

P p¨|sih, a
1
h, pµhq ¨ sπh`1

›

›

›

›

2

1

ˇ

ˇ

ˇ

ˇ

Fh

ȷ

.

The vectors pN ´ 1qσpρρρ´i
h q, Npµh can differ by only 1 in one component due to the i-th agent being

excluded from the former, it holds that

}Nσpρρρ´i
h q ´ Npµh}1 ď }pN ´ 1qσpρρρ´i

h q ´ Npµh}1 ` }σpρρρ´i
h q}1 ď 3,

therefore for any s, a,

}P p¨|s, a, σpρρρ´i
h qq ´ P p¨|s, a, pµhq}1 ď

3Kµ

N

almost surely and p‹q is further upper bounded by p‹q ď
9K2

µ

N2 .

Finally, the last term p♡q can be upper bounded using the Lipschitz condition on Γ, namely:

p♡q “E
“

}Γppµh, πhq ´ Γpµπ
h, πhq}22 |Fh

‰

ď L2
pop,µ}pµh ´ µh}22.
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To conclude, merging the bounds on the three terms in Inequality (6) and taking the expectations we
obtain:

E
“

}pµh`1 ´ µh`1}22

‰

ďp1 ` δhqL2
pop,µE

“

}pµh ´ µh}22

‰

`
|S||A|

N

` 2p1 ` δ´1
h q

9K2
µ

N2
` 2p1 ` δ´1

h qα2.

Induction on h yields the bound for all h:

E
“

}pµh ´ µh}22

‰

ď

h
ÿ

h1“0

L2ph´h1
q

pop,µ

˜

h
ź

h2“h1`1

p1 ` δh2 q

¸˜

|S||A|

N
` 2p1 ` δ´1

h1 q
9K2

µ

N2
` 2p1 ` δ´1

h1 qα2

¸

.

Here, we specify δh :“ p1 ` h2q´1, for which it holds that
8
ź

h“0

p1 ` δhq “

8
ź

h“0

p1 ` p1 ` h2q´1q ď C,

for an absolute constant C ă 10. Then,

E
“

}pµh ´ µh}22

‰

ď

h
ÿ

h1“0

L2ph´h1
q

pop,µ C

˜

|S||A|

N
` 2pH2 ` 2q

9K2
µ

N2
` 2pH2 ` 2qα2

¸

.

which yields the stated upper bound of the lemma

E
“

}pµh ´ µh}22

‰

ď
1 ´ L

2ph`1q
pop,µ

1 ´ L2
pop,µ

C

˜

|S||A|

N
`

18K2
µpH2 ` 2q

N2
` 2pH2 ` 2qα2

¸

, (17)

where we adopt the convenient shorthand
1´L2ph`1q

pop,µ

1´L2
pop,µ

:“ h if Lpop,µ “ 1.

Note that while the Lipschitz modulus used in Lemma 11 is with respect to the } ¨ }2 norm, Lemma 2
readily guarantees that this will hold.

C.1 Extended Proof of Theorem 2

Let µ “ tµhuh :“ Λpπq, and note that by the proof of Theorem 1, it holds that (Inequality 10)

Ah :“ }Prs1h “ ¨, a1h “ ¨s ´ Prsh “ ¨, ah “ ¨s}1

ď }Prs1h “ ¨s ´ Prsh “ ¨s}1

ď Lpop,µ

h´1
ÿ

h“0

1 ´ Lh`1
pop,µ

1 ´ Lpop,µ

ˆ

|S||A|

c

π

2N
`

5Kµ

N
` α

˙

` ph ´ 1q

ˆ

α `
3Kµ

N

˙

.

Likewise, by Lemma 11,

Bh :“Er}µh ´ σpρρρ´1
m,hq}21s

:“Er}µh ´ σpρρρ´1
m,hq}22s|S||A|

ď
1 ´ L

2ph`1q
pop,µ

1 ´ L2
pop,µ

2C

˜

|S||A|

N
`

18K2
µpH2 ` 2q

N2
` 2pH2 ` 2qα2

¸

|S||A| `
18|S||A|

N2
.

Will will commonly utilize the bounds pQm
h P r0, Qmaxs, Qτ,π

h P r0, Qmaxs almost surely for Qmax :“
Hp1 ` log |A|q, as the one-step rewards are bounded in range r0, 1s and the policy entropy has trivial
upper bound log |A|. Denote the marginal probabilities of s1m,h, a

1
m,h (which is i.i.d. for all m) as

ph P ∆SˆA, which clearly does not depend on epoch m as the same policies are deployed at each
TD learning round.

We outline the proof strategy into different steps as follows:
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• Step 1. Analyze the algorithm for the Q-values at time step H ´ 1, that is, show that in
expectation }Qτ,π

H´1 ´ pQm
H´1}2pH´1

decreases with Op1{mq over epochs, up to a small bias
term.

• Step 2. Assuming that the error at some time h decreases with rate Op1{mq, show that the
error }Qτ,π

h´1 ´ pQm
h´1}2pH´1

also decreases with rate Op1{mq, showing that the magnification
in the constants are not too large.

• Step 3. Conclude the statement of the theorem by induction.

Step 1. We will first analyze the evolution of pQm
H´1. By definition, it holds that

Qτ,π
H´1ps, aq “ Rps, a, µH´1q ` HpπH´1p¨|sqq.

In other words, there is no bootstrapping and the stochastic error does not have a dependence on
future biased estimates. Firstly, if s1m,H´1 “ s, a1m,H´1 “ a,ρρρm,H´1 “ ρρρ, then it holds almost
surely that

Qτ,π
H´1ps, aq ´ pQm`1

H´1ps, aq

“ Qτ,π
H´1ps, aq ´ pQm

H´1ps, aq ´ ηmprim,H´1 ´ pQm
h ps, aqq

“ p1 ´ ηmqpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq ´ ηmprim,H´1 ` HpπH´1p¨|sqq ´ Qτ,π
H´1ps, aqq

“ p1 ´ ηmqpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq ´ ηmppR1ps, a,ρρρ´1
m,H´1q ´ Rps, a, µH´1qq,

as the entropy term HpπH´1p¨|sqq cancels out. Denote the σ-algebra
Fm

s,a :“ Fttsm1,h, am1,hum1ăm, sm,H´1 “ s, am,H´1 “ au

for any fixed s, a. Then, noting that pQm
H´1ps, aq is Fm

s,a-measurable, we have the inequalities

ErpQτ,π
H´1ps, aq ´ pQm`1

H´1ps, aqq2|Fm
s,as

“ E
„ˆ

p1 ´ ηmqpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq ´ ηmpR1ps, a,ρρρ´1
m,H´1q ´ Rps, a, µH´1qq

˙2ˇ
ˇ

ˇ

ˇ

Fm
s,a

ȷ

“ p1 ´ ηmq2pQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq2

` 2p1 ´ ηmqηmpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqqErR1ps, a,ρρρ´1
m,H´1q ´ Rps, a, µH´1q|Fm

s,as

` η2m ErpR1ps, a,ρρρ´1
m,H´1q ´ Rps, a, µH´1qq2|Fm

s,as

We use Young’s inequality and using the fact that rewards are bounded in r0, 1s,

ErpQτ,π
H´1ps, aq ´ pQm`1

H´1ps, aqq2|Fm
s,as

ď p1 ´ 2ηmqpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq2 ` ηmpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq2

` ηm ErpR1ps, a,ρρρ´1
m,H´1q ´ Rps, a, µH´1qq2|Fm

s,as ` p1 ` Q2
maxqη2m

ď p1 ´ ηmqpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq2 ` ηm ErpR1ps, a,ρρρ´1
m,H´1q ´ Rps, a, µH´1qq2|Fm

s,as2

` p1 ` 2Q2
maxqη2m

ď p1 ´ ηmqpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq2 ` ηm Er2β2 ` 2L2
µ}σpρρρ´1

m,H´1q ´ µH´1}22|Fm
s,as

` p1 ` 2Q2
maxqη2m

We then take expectations and use the law of total expectation to obtain the bound:
ErpQτ,π

H´1ps, aq ´ pQm`1
H´1ps, aqq2s

ď p1 ´ ηmqpH´1ps, aqErpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq2s

` ηmpH´1ps, aqErpR1ps, a,ρρρ´1
m,H´1q ´ Rps, a, µH´1qq2|sm,H´1 “ s, am,H´1 “ as

` pH´1ps, aqp1 ` 2Q2
maxqη2m

` p1 ´ pH´1ps, aqqErpQτ,π
H´1ps, aq ´ pQm`1

H´1ps, aqq2s

ď p1 ´ pH´1ps, aqηmqErpQτ,π
H´1ps, aq ´ pQm

H´1ps, aqq2s

` ηmpH´1ps, aqEr2β2 ` 2L2
µ}σpρρρ´1

m,H´1q ´ µH´1}22|sm,H´1 “ s, am,H´1 “ as

` pH´1ps, aqp1 ` 2Q2
maxqη2m
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Summing this inequality over all state-action pairs with weight pH´1, we obtain

Er}Qτ,π
H´1 ´ pQm`1

H´1}2pH´1
s

ď p1 ´ δηmqEr}Qτ,π
H´1 ´ pQm

H´1}2pH´1
s

`
ÿ

s,a

ηmpH´1ps, aqEr2β2 ` 2L2
µ}σpρρρ´1

m,H´1q ´ µH´1}22|sm,H´1 “ s, am,H´1 “ as

` p1 ` 2Q2
maxqη2m

“ p1 ´ δηmqEr}Qτ,π
H´1 ´ pQm

H´1}2pH´1
s ` p1 ` 2Q2

maxqη2m

` 2ηmβ2 ` 2ηmL2
µ Er}µH´1 ´ σpρρρ´1

m,H´1q}22s

ď p1 ´ δηmqEr}Qτ,π
H´1 ´ pQm

H´1}2pH´1
s ` p1 ` 2Q2

maxqη2m ` 2ηmpβ2 ` L2
µBH´1q.

We expand this recursive inequality as follows. Define the shorthand notation Πm1

m :“
śm1

k“mp1 ´

δηkq. Then, for any M ą 0,

Er}Qτ,π
H´1 ´ pQM

H´1}2pH´1
s

ď ΠM´1
0 ` p1 ` 2Q2

maxq

M´1
ÿ

m“0

η2mΠM´1
m`1 ` 2

M´1
ÿ

m“0

ηmpβ2 ` L2
µBH´1qΠM´1

m`1

ď ΠM´1
0 ` p1 ` 2Q2

maxqη2M´1 ` 2ηM´1pβ2 ` L2
µBH´1q

` p1 ` 2Q2
maxq

M´2
ÿ

m“0

η2mΠM´1
m`1 ` 2

M´2
ÿ

m“0

ηmpβ2 ` L2
µBH´1qΠM´1

m`1 . (18)

We bound the multiplicative terms Πm1

m . Assuming that ηm is of the form ηm “ u
v`m , for any

m ď m1, we have that

Πm1

m “

m1
ź

k“m

p1 ´ δηkq ď expt´δ
m1
ÿ

k“m

ηkqu

ď expt´δ
m1
ÿ

k“m

u

v ` k
qu ď expt´δu log

m1 ` v

m ` v ´ 1
u

ď

ˆ

m ` v ´ 1

m1 ` v

˙δu

using Lemma 9. Taking the values u “ v “ 2δ´1, this reduces to

Πm1

m ď

ˆ

m ` u ´ 1

m1 ` u

˙2

,

Placing this in Inequality 18 for the two terms appearing ΠM´1
m`1 ,Π

M´1
0 , we obtain

Er}Qτ,π
H´1 ´ pQM

H´1}2pH`1
s

ď

ˆ

u ´ 1

M ` u ´ 1

˙2

` p1 ` 2Q2
maxq

ˆ

u

M ` u ´ 1

˙2

` 2

ˆ

u

M ` u ´ 1

˙

pβ2 ` L2
µBH´1q

` p1 ` 2Q2
maxq

M´2
ÿ

m“0

ˆ

u

m ` u

˙2ˆ
m ` u

M ` u ´ 1

˙2

` 2pβ2 ` L2
µBH´1q

M´2
ÿ

m“0

ˆ

u

m ` v

˙ˆ

m ` u

M ` u ´ 1

˙2

ď
C1u

pM ` u ´ 1q
` C2upβ2 ` L2

µBH´1q,
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for some absolute constants C1, C2. This inequality concludes the convergence result for the Q
values at time step H ´ 1, showing a rate of convergence Op1{Mq over M epochs up to a bias of
Opβ2 ` α2 ` 1{Nq.

Step 2. Next, we analyze the case h ă H ´ 1. Again under the observation that if s1m,h “ s, a1m,h “

a, s1m,h`1 “ s1, a1m,h`1 “ a1, then it holds almost surely that

Qτ,π
h ps, aq ´ pQm`1

h ps, aq

“ Qτ,π
h ps, aq ´ pQm

h ps, aq ´ ηmp pQm
h`1ps1, a1q ` r1m,h ´ pQm

h ps, aqq

“ p1 ´ ηmqpQτ,π
h ps, aq ´ pQm

h ps, aqq ´ ηmp pQm
h`1ps1, a1q ` r1m,h ´ Qτ,π

h ps, aqq,

since again as the entropy terms Hpπhp¨|sqq cancel. Defining the induced σ-algebra

Fm
h :“ Fttsm1,h, am1,hum1ăm, sm,h “ s, am,h “ au.

Note that with respect to Fm
h , pQm

h1 is measurable for any h1 as pQm
h1 only depends on episodes previous.

we have the lower bound:

ErpQτ,π
h ps, aq ´ pQm`1

h ps, aqq2|Fm
h s

“ p1 ´ ηmq2 ErpQτ,π
h ps, aq ´ pQm

h ps, aqq2|Fm
h s

` pηmq2 Erp pQm
h`1ps1, a1q ` r1m,h ´ Qτ,π

h ps, aqq2|Fm
h s

´ 2ηmpQτ,π
h ps, aq ´ pQm

h ps, aqqEr pQm
h`1ps1m,h`1, a

1
m,h`1q ` r1m,h ´ Qτ,π

h ps, aq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

△

|Fm
h s

“ p1 ´ ηmq2pQτ,π
h ps, aq ´ pQm

h ps, aqq2 ` pηmq2Q2
max

´ 2pηmqpQτ,π
h ps, aq ´ pQm

h ps, aqqEr△|Fm
h s,

ď p1 ´ 2ηmqpQτ,π
h ps, aq ´ pQm

h ps, aqq2 ` 2pηmq2Q2
max

` pηmqpQτ,π
h ps, aq ´ pQm

h ps, aqq2 ` pηmqEr△2|Fm
h s,

ď p1 ´ ηmqpQτ,π
h ps, aq ´ pQm

h ps, aqq2 ` 2pηmq2Q2
max ` pηmqEr△|Fm

h s2, (19)

as pQm
h is Fm measurable, using Young’s inequality in the last line. Then, taking expectations on both

sides,

E
„

´

Qτ,π
h ps1, a1q ´ pQm`1

h ps1, a1q

¯2
ȷ

ďp1 ´ phps1, a1qηmqErQτ,π
h ps1, a1q ´ pQm

h ps1, a1qq2s

` 2phps1, a1qpηmq2Q2
max ` phps1, a1qηm Erp∆2qs (20)

The last bias term due to bootstrapping and finite population bias we bound separately. We decompose
p△q as follows.

Er△|Fm
h s2 ď

ˆ

1 `
1

pH ´ hq2

˙

Er pQm
h`1ps1, a1q ´ Qτ,π

h`1ps1, a1q |Fm
h s

` 2pH ´ h ` 1q2
ˇ

ˇ

ˇ

ˇ

ErQτ,π
h`1ps1, a1q |Fm

h s ´
ÿ

ss,sa

P pss,sa, µhqQτ,π
h`1pss,saq

ˇ

ˇ

ˇ

ˇ

2

` 2pH ´ h ` 1q2|Err1m,h ´ Rps, a, µhq |Fm
h s|2
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The three terms are upper-bounded by the inequalities in expectation:

|Er pQm
h`1ps1m,h`1, a

1
m,h`1q ´ Qτ,π

h`1ps1m,h`1, a
1
m,h`1q |Fm

h s|2

ď Er| pQm
h`1ps1m,h`1, a

1
m,h`1q ´ Qτ,π

h`1ps1m,h`1, a
1
m,h`1q|2|Fm

h s

ď } pQm
h`1 ´ Qτ,π

h`1}2ph`1p¨|s,aq

ˇ

ˇ

ˇ

ˇ

ErQτ,π
h`1ps1m,h`1, a

1
m,h`1q |Fm

h s ´
ÿ

ss,sa

P pss,sa|s, a, µhqQτ,π
h`1pss,saq

ˇ

ˇ

ˇ

ˇ

2

ď
Q2

max

4
E
”

2α2 ` 2K2
µ}µh ´ σpρρρ´1

m,hq}21|Fm
h

ı

ˇ

ˇ

ˇ

ˇ

Err1m,h ´ Rps, a, µq |Fm
h s

ˇ

ˇ

ˇ

ˇ

2

“ 2|ErR1ps, a,ρρρ´1
m,hq ´ Rps, a, σpρρρ´1

m,hqq |Fm
h s|2 ` 2|ErRps, a, σpρρρ´1

m,hqq ´ Rps, a, µhq |Fm
h s|2

ď 2β2 ` 2L2
µ Er}µh ´ σpρρρ´1

m,hq}21|Fm
h s

Therefore, we conclude by an application of Young’s inequality that almost surely,

|△|2 ď

ˆ

1 `
1

pH ´ hq2

˙

} pQm
h`1 ´ Qτ,π

h`1}2ph`1p¨|s,aq

` pH ´ h ` 1q2Q2
maxrα2 ` β2 ` p2K2

µ ` 4L2
µqEr}µh ´ σpρρρ´1

m,hq}21|Fm
h ss.

We place this in Inequality 20 to obtain

E
„

´

Qτ,π
h ps1, a1q ´ pQm`1

h ps1, a1q

¯2
ȷ

ďp1 ´ δηmqErQτ,π
h ps1, a1q ´ pQm

h ps1, a1qq2s ` 2η2mQ2
max

` ηm

ˆ

1 `
1

pH ´ hq2

˙

Er} pQm
h`1 ´ Qτ,π

h`1}2ph`1
s

` ηmpH ´ h ` 1q2Q2
maxrα2 ` β2 ` p2K2

µ ` 4L2
µqEr}µh ´ σpρρρ´1

m,hq}21ss

Finally, taking a weighted sum of both sides of the inequality over s1, a1 with weights ph,

E
”

}Qτ,π
h ´ pQm`1

h }2ph

ı

ďp1 ´ δηmqEr}Qτ,π
h ´ pQm`1

h }2ph
s ` 2η2mQ2

max

` ηmpH ´ h ` 1q2Q2
maxrα2 ` β2 ` p2K2

µ ` 4L2
µqBhs

Expanding this recursive inequality and using the same notation as in Step 1 for the multiplicative
terms, also taking the inductive assumption that Er} pQm

h`1 ´ Qτ,π
h`1}2ph`1

s ď G1

2δ´1`m´1 ` G2 for
some G1, G2 which depends on problem parameters but not on m, we have the final inequality:

E
”

}Qτ,π
h ´ pQm`1

h }2ph

ı

ďΠM´1
m“0 Er}Qτ,π

h ´ pQ0
h}2ph

s `
C3u

M ´ 2 ` v

` 2
M´2
ÿ

m“0

pηmq2Q2
maxΠ

M´1
m`1

`

M´2
ÿ

m“0

ηmpH ´ h ` 1q2Q2
maxrα2 ` β2 ` p2K2

µ ` 4L2
µqBhsΠM´1

m`1

`

M´2
ÿ

m“0

ηm

ˆ

1 `
1

pH ´ hq2

˙ˆ

G1

2δ´1 ` m ´ 1
` G2

˙

ΠM´1
m`1
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Once again as in Step 1, fixing the values u “ v “ 2δ´1,

E
”

}Qτ,π
h ´ pQm`1

h }2ph

ı

ďQ2
max

ˆ

u ´ 1

M ` u ´ 1

˙2

`
C3u

M ´ 2 ` v
`

M´2
ÿ

m“0

Q2
max

8δ´2

pM ` u ´ 1q2

`

M´2
ÿ

m“0

pH ´ h ` 1q2Q2
maxrα2 ` β2 ` p2K2

µ ` 4L2
µqBhs

2pm ` uqδ´1

pM ` u ´ 1q2

`

M´2
ÿ

m“0

ˆ

1 `
1

pH ´ hq2

˙ˆ

G1

2δ´1 ` m ´ 1
` G2

˙

2pm ` uqδ´1

pM ` u ´ 1q2

Using the fact that
řM

m“1pm ` uq « M2 and
řM

m“1 c “ cM , for some absolute constants we have
that

E
”

}Qτ,π
h ´ pQm`1

h }2ph

ı

ď

ˆ

2
Q2

maxδ
´1

M ` 2δ´1 ´ 1

˙2

`
C3δ

´1

M ´ 2 ` 2δ´1
`

C4Q
2
maxδ

´2

M ` δ´1 ´ 1

` C5pH ´ h ` 1q2Q2
maxrα2 ` β2 ` p2K2

µ ` 4L2
µqBhsδ´1

`

ˆ

1 `
1

pH ´ hq2

˙ˆ

C6δ
´1G1

2δ´1 ` m ´ 1
` C7G2δ

´1

˙

(21)

Step 3. Finally, we conclude with the proof using Steps 1 and 2. By using Inequality 21, it readily
follows that

E
”

}Qτ,π
h ´ pQm`1

h }2ph

ı

“ O
ˆ

1

M
` α2 ` β2 `

1

N

˙

,

for all h, as the bound in Step 1 established the rate for time step H ´ 1. We comment on the
constants: Inequality 21 shows that in the worst case, there might be an exponential dependence on
H , which might be fundamental.

D Extended Results on Monotonicity and Learning NE

D.1 Example: Asymmetric Congestion Games

Note that by symmetry in arguments, it follows that Sym
`

Rips, a, ¨q
˘

“ Rips, a, ¨q for any s, a, as

Sym
`

Rips, a, ¨q
˘

pρρρq “
1

pN ´ 1q!

ÿ

fPSN´1

Rips, a, gpρρρqq

“
1

pN ´ 1q!

ÿ

fPSN´1

˜

hips, a,
N
ÿ

j“1

1gpρρρqj“ps,aqq ` rips, aq

¸

“hi

˜

s, a,
N
ÿ

j“1

1ρj“ps,aq

¸

` rips, aq

“Rips, a,ρρρq

By simple computation, the population lifted rewards ĘSym
`

Rips, a¨q
˘

are given by
ĘSym

`

Rips, a¨q
˘

pµq “ hips, a,Nµps, aqq ` rips, aq, @µ P ∆SˆA,N´1.

We provide an extension to the continuum ∆SˆA via linear interpolation in this case, while many
other alternatives are possible. Take the function rhi : S ˆ A ˆ r0, 1s Ñ r0, 1s such that

rhips, a, uq :“ pNu ´ tNuuqhips, a, tNuuq ` prNus ´ Nuqhips, a, rNusq.

The function is clearly monotonically decreasing in u. Furthermore, it is also Lipschitz continuous in
u, as for any u1 ą u2,

rhips, a, u1q ´ rhips, a, u2q ď |u1 ´ u2|.

Finally, the asymmetry due to rewards can be upper bounded by
β ď sup

s,a
sup
i,j

sup
kPrNs

|hips, a, kq ´ hjps, a, kq|.
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D.2 Preliminaries for Learning Regularized Monotone MFG

We present several results required to establish convergence under monotonicity. We define the
(entropy regularized) MFG value functions for an arbitrary population flow µ P ∆SˆA and policy
π P Π as

V τ
h ps|µ, πq :“ E

«

H´1
ÿ

h1“h

Rpsh1 , ah1 , µh1 q ` τHpπh1 p¨|sh1 qq

ˇ

ˇ

ˇ

ˇ

ˇ

s0“s, ah1 „πh1 psh1 q

sh1`1„P psh1 ,ah1 ,µh1 q

ff

Qτ
hps, a|µ, πq :“ E

«

H´1
ÿ

h1“h

Rpsh1 , ah1 , µh1 q ` τHpπh1 p¨|sh1 qq

ˇ

ˇ

ˇ

ˇ

ˇ

sh“s, ah“a, sh1`1„P psh1 ,ah1 ,µh1 q,

ah1 „πh1`1psh1`1q,@h1
ěh

ff

.

We define the regularized value function of the game similarly:

V τ pµ, πq :“ E

«

H´1
ÿ

h“0

Rpsh, ah, µhq ` τHpπhp¨|shqq

ˇ

ˇ

ˇ

ˇ

ˇ

s0„ρ0, ah„πhpshq

sh`1„P psh,ah,µhq

ff

.

As expected, with these definitions it holds that

V τ
h ps|µ, πq “

ÿ

aPA
πhpa|sqQτ

hps, a|µ, πq,

V τ pµ, πq “
ÿ

sPS
ρ0psqV τ

0 ps|µ, πq .

We also define the quantity
qτhps, a|µ, πq :“ Qτ

hps, a|µ, πq ´ Hpπhp¨|sqq,

which corresponds to the more standard entropy regularized value function. Firstly, we provide
several useful lemmas and definitions.
Definition 13 (Entropy regularized MFG-NE). For a given MFG pS,A, ρ0, H, P,Rq, a policy
π˚
τ P Π is called the τ -entropy regularized MFG-NE if it holds that

max
π1PΠ

V τ pΛpπ˚
τ q, π1q ´ V τ pΛpπ˚

τ q, π˚
τ q. (Regularized MFG-NE)

While entropy regularization will enable the convergence of our algorithm, it will also introduce a
bias in terms of the original (unregularized) MFG. The next lemma quantifies this bias.
Lemma 12 (Regularization bias). Let µ P ∆SˆA and policy π P Π be arbitrary. Then, it holds that

|V τ pµ, πq ´ V pµ, πq| ď τH log |A|.

Furthermore, if π˚
τ is a τ -entropy regularized MFG-NE, then it is a τH log |A|-MFG-NE, that is,

Epπ˚
τ q ď 2H log |A|.

Proof.

|V τ pµ, πq ´ V pµ, πq| “

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

H´1
ÿ

h“0

τHpπp¨|shqq

ˇ

ˇ

ˇ

ˇ

ˇ

s0„ρ0, ah„πhpshq

sh`1„P psh,ah,µhq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ďE

«

H´1
ÿ

h“0

τ |Hpπp¨|shqq|

ˇ

ˇ

ˇ

ˇ

ˇ

s0„ρ0, ah„πhpshq

sh`1„P psh,ah,µhq

ff

ď Hτ log |A|,

since entropy is upper bounded by |Hpπp¨|shqq| ď log |A|. The bound for exploitability follows
from:
Epπ˚

τ q “max
π1PΠ

V pΛpπ˚
τ q, π1q ´ V pΛpπ˚

τ q, π˚
τ q

“max
π1PΠ

V pΛpπ˚
τ q, π1q ´ V τ pΛpπ˚

τ q, π1q ` V τ pΛpπ˚
τ q, π1q ´ V pΛpπ˚

τ q, π˚
τ q

ďτH log |A| ` max
π1PΠ

V τ pΛpπ˚
τ q, π1q ´ V pΛpπ˚

τ q, π˚
τ q

ďτH log |A| ` max
π1PΠ

V τ pΛpπ˚
τ q, π1q ´ V τ pΛpπ˚

τ q, π˚
τ q ` V τ pΛpπ˚

τ q, π˚
τ q ´ V pΛpπ˚

τ q, π˚
τ q

ď2τH log |A| ` max
π1PΠ

V τ pΛpπ˚
τ q, π˚

τ q ´ V τ pΛpπ˚
τ q, π˚

τ q

“2τH log |A|.
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We note that in our setting, a monotone MFG exhibits a unique MFG-NE, in fact, a unique regularized
MFG-NE for any value of τ [65]. The above lemma shows that the bias introduced due to entropy
regularization is of the order Opτq as expected.

Finally, we state several standard facts about monotone MFG, adapted from various works [65, 43, 42].
Lemma 13 (Monotone improvement lemma). Let µ, rµ P ∆SˆA P ∆H

S,A which are induced by
policies π, rπ P Π respectively. , that is Λprπq “ rµ and Λpπq “ µ. If the MFG is monotone, that is, if
Definition 10 is satisfied, then it holds that:

V τ pµ, πq ` V τ prµ, rπq ´ V τ pµ, rπq ´ V τ prµ, πq ď 0.

Proof. The proof follows [65], except for the absence of a graphon. For monotone MFG, due to the
assumption that P does not depend on µ, it holds that

V τ pµ, πq ´ V τ prµ, πq “ V pµ, πq ´ V prµ, πq ,

V τ prµ, rπq ´ V τ pµ, rπq “ V prµ, rπq ´ V pµ, rπq .

Furthermore, similar to [65], it holds that

V prµ, rπq ´ V pµ, rπq “
ÿ

s,a

rµps, aqpRps, a, rµhq ´ Rps, a,µhqq,

V pµ, πq ´ V prµ, πq “
ÿ

s,a

µps, aqpRps, a,µhq ´ Rps, a, rµhqq.

Then, using the monotonicity assumption on the rewards, it holds that

V τ pµ, πq ` V τ prµ, rπq ´ V τ pµ, rπq ´ V τ prµ, πq

“ V pµ, πq ` V prµ, rπq ´ V pµ, rπq ´ V prµ, πq

“
ÿ

s,a

rµps, aqpRps, a, rµhq ´ Rps, a,µhqq ´
ÿ

s,a

µps, aqpRps, a,µhq ´ Rps, a, rµhqq

“
ÿ

s,a

prµps, aq ´ µps, aqqpRps, a, rµhq ´ Rps, a,µhqq ď 0.

The next lemma is simply an adaptation of the standard MFG performance difference lemma in single
agent RL to the MFG setting.
Lemma 14 (Performance difference lemma). For an arbitrary MFG, let π, rπ P Π and µ “ Λpπq.

V τ
0 ps|µ, rπq ´ V τ

0 ps|µ, πq ` τE
rπ,µ

«

H´1
ÿ

h“0

DKL prπh p¨ | shq |πh p¨ | shqq

ˇ

ˇ

ˇ

ˇ

ˇ

s0 “ s

ff

“ Eπ̃,µ

«

H
ÿ

h“1

xqτh psh, ¨|µ, πq ´ τ log πh p¨ | shq , rπh p¨ | shq ´ πh p¨ | shqy | s0 “ s

ff

.

Proof. See the standard proof technique for the performance difference lemma, e.g. [38, 65].

Finally, we state two technical lemmas due to [65].
Lemma 15 (Lemma I.3 of [65]). Let p, p1 P ∆A be arbitrary, and pp “ p1 ´ βqp ` βUnifpAq for
some β P p0, 1q. Then,

DKL pp˚|ppq ď log
|A|

β
,

DKL pp˚|ppq ´ DKL pp˚|pq ď
β

1 ´ β
.

Lemma 16 (Lemma 3.3 in [6]). Let p, p˚ P ∆A, α ą 0 and g : A Ñ r0, Hs be arbitrary, and
q P ∆A be a distribution such that qp¨q 9 pp¨q exptαgp¨qu. Then,

xgp¨q, p˚p¨q ´ pp¨qy ď αH2{2 ` α´1 rDKL pp˚}pq ´ DKL pp˚}qqs .
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D.3 Extended Proof of Theorem 3

As mentioned before, the proof is an adaptation of [65] to setting where learning occurs with N
potentially asymmetric agents. The main differences will be the absence of an explicit MFG and the
fact that our algorithms are only allowed to use samples of finite agent trajectories.

Define the random variable µt :“ Λpπtq, which is the mean-field population distribution induced by
the policy at epoch t. We denote the random variables due to estimation error of the q-functions at
epoch t, time step h and an arbitrary state s as

Es
t,h :“

ˇ

ˇxpqthps, ¨q ´ qτhps, ¨|µt, πtq, π
˚
hp¨|sq ´ πt,hp¨|sqy

ˇ

ˇ .

Furthermore, let π˚
τ be the unique τ -regularized MFG-NE. We define the quantity

∆t :“ Eµ˚
h

rDKL pπ˚
h p¨ | shq }πt,h p¨ | shqqs ,

which will be the main quantity of error to be bounded using the techniques of [65]. Let βt :“ 1{t ` 1.
Finally, we also define the distribution mismatch ceofficient

Cdist :“ sup
t,h

sup
s,a

µt,hps,aqą0

µ˚
hps, aq

µt,hps, aq
,

which is always finite (and bounded) in our entropy-regularized setting (see for instance [12]).

It holds (almost surely) for any s P S that:

DKLpπ˚
hp¨|sq|πt`1,hp¨|sqq

ď DKL pπ˚
h p¨ | sq |pπt`1,h p¨ | sqq ` βt{p1 ´ βtq

ď ´ξt
@

pqth ps, ¨|µt, πtq ´ τ log πh p¨ | sq , π˚
h p¨ | sq ´ πt,h p¨ | sq

D

` DKL pπ˚
h p¨ | sq |πt,h p¨ | sqq `

1

2
ξ2t

ˆ

H ` τH log |A| ` τ log
|A|

βt

˙2

`
βt

1 ´ βt

ď ´ξt xqτh ps, ¨|µt, πtq ´ τ log πh p¨ | sq , π˚
h p¨ | sq ´ πt,h p¨ | sqy

` DKL pπ˚
h p¨ | sq |πt,h p¨ | sqq `

1

2
ξ2t

ˆ

H ` τH log |A| ` τ log
|A|

βt

˙2

`
βt

1 ´ βt
` ξtEt,h

Then,

∆t`1 ´ ∆t

:“
H´1
ÿ

h“0

Eµ˚
h

rDKL pπ˚
h p¨ | shq |πt`1,h p¨ | shqq ´ DKL pπ˚

h p¨ | shq }πt,h p¨ | shqqs

ď ηV τ pµt, πtq ´ V τ pµt, π
˚q ´ τξt

H´1
ÿ

h“0

Eµ˚
h

rDKL pπ˚
h p¨ | shq }πt,h p¨ | shqqs

`
1

2
ξ2tH

ˆ

H ` τH log |A| ` τ log
|A|

βt

˙2

`
βt

1 ´ βt
H ` 2ξt

H´1
ÿ

h“0

Eµ˚
h

rEt,hs

ď ´τξt∆t `
1

2
ξ2tH

ˆ

H ` τH log |A| ` τ log
|A|

βt

˙2

`
β

1 ´ βt
H ` 2ξt

H´1
ÿ

h“0

Eµ˚
h

rEt,hs

Or rearranging both side,

∆t ď
1

τξt
p∆t ´ ∆t`1q `

ξt
2τ

H

ˆ

H ` τH log |A| ` τ log
|A|

βt

˙2

`
βtH

p1 ´ βtqτξt

`
2

τ

H
ÿ

h“1

Eµ˚
h

rεhs .
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Summing this inequality from t “ 1, . . . , T , we obtain

1

T

T
ÿ

t“1

∆t ď
1

Tτξt
∆1 `

ξt
2τ

H

ˆ

H ` τH log |A| ` τ log
|A|

βt

˙2

`
βtH

p1 ´ βtqτξt

`
2

τ

H
ÿ

h“1

Eµ˚
h

rεhs .

Given that ξt “ 1{
?
t ` 1 and βt “ 1{t ` 1, we obtain the bounds

1

T

T
ÿ

t“1

∆t “
τ´1∆1 ` τ´1H2 ` τH log |A| ` τ log2 T

?
T

`

řT
t“1

řH´1
h“0 Eµ˚

h

”

Es
t,h

ı

Tτ
,

and finally using Young’s inequality on the last term, and an application of Pinsker’s inequality,

1

T

ÿ

t

ÿ

h

Eµ˚
h

„

1

2
}πt,hp¨|shq ´ π˚

hp¨|shq}21

ȷ

ď
1

T

T
ÿ

t“1

∆t

ď
τ´1∆1 ` τ´1H2 ` τH log |A| ` τ log2 T

?
T

`
2
řT

t“1

řH´1
h“0 Eµ˚

h

”

Es
t,h

ı

Tτ
,

ď
τ´1∆1 ` τ´1H2 ` τH log |A| ` τ log2 T

?
T

`

řT
t“1

řH´1
h“0 Eµ˚

h

“

8}pqthpsh, ¨q ´ qτhpsh, ¨q}22

‰

Tτ2
,

`

řT
t“1

řH´1
h“0 Eµ˚

h

“

}πt,hp¨|shq ´ π˚p¨|shq}22

‰

4T
.

Rearranging the terms,

1

T

ÿ

t

ÿ

h

Eµ˚
h

„

1

2
}πt,hp¨|shq ´ π˚

hp¨|shq}21

ȷ

ď
4τ´1∆1 ` 4τ´1H2 ` 4τH log |A| ` 4τ log2 T

?
T

`

řT
t“1

řH´1
h“0 Eµ˚

h

“

32}pqthpsh, ¨q ´ qτhpsh, ¨q}22

‰

Tτ2
.

Finally, noting that by Theorem 2, after taking expectations on both sides it holds
that ErEµ˚

h

“

4}pqthpsh, ¨q ´ qτhpsh, ¨q}22

‰

s “ Opε2 ` α2 ` β2 ` 1{Nq, if follows that
ErEµ˚

h

“
ř

h }sπhp¨|shq ´ π˚
hp¨|shq}22

‰

s ď Opε2 ` τ´2α2 ` τ´2β2 ` τ´21{Nq . Using the standard
Lipschitz continuity of exploitability (see e.g. [61]), the exploitability bound in expectation holds.
Using Lemma 12, we obtain the upper bound in expectation on the exploitability of the output policy
sπ in terms of the original (unregularized) DG.

E Details of Experiments

E.1 Hardware Setup for Experiments

Except the A-Taxi benchmark, all our experiments are CPU-based. We use a single AMD EPYC
7742 CPU, equipped with 128GB RAM. For training policy and value neural networks with PPO
in the A-Taxi benchmark, we use a single RTX 3090 GPU. With this setup, running Symm-PMD
and IPMD in the A-SIS and A-RPS benchmarks takes between 5-20 minutes, and running PPO on
A-Taxi takes approximate 2 hours. Evaluating exploitability for a given policy on A-SIS and A-RPS
takes around 2 hours, as we employ a brute-force UCB-type bandit algorithm to accurately estimate
best response in this setting.
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E.2 Extended Descriptions of the Experimental Setup

For simplified notation, denote the state-action marginal densities

σactionspρρρ, aq “
ÿ

s1PS
σpρρρqps1, aq,

σstatespρρρ, sq “
ÿ

s1PA
σpρρρqps, a1q.

Modified rock-paper-scissors (A-RPS). We formulate a modified population rock-paper-scissors
game inspired by the formulation of [13]. Our version incorporates varying preferences between
agents between possible moves as well as a crowdedness penalty.

A-RPS consists of three states S :“ tR,P, Su and three actions A :“ tR,P, Su. We use N “ 2000
players and a time horizon of H “ 10, though these can be increased or decreased arbitrarily. We
define the rewards as follows.

Rips “ R, a,ρρρ´iq “ ´ciσactionspρρρ, aq ´ ui
Rσstatespρρρ, P q ` viRσstatespρρρ, Sq,

Rips “ P, a,ρρρ´iq “ ´ciσactionspρρρ, aq ´ ui
Pσstatespρρρ, Sq ` viPσstatespρρρ,Rq,

Rips “ S, a,ρρρ´iq “ ´ciσactionspρρρ, aq ´ ui
Sσstatespρρρ,Rq ` viSσstatespρρρ, P q.

The coefficients ci, ui, vi are unique for each agent indicating their own utilities/rewards due to losing,
winning, or individual penalty due to crowdedness. The state transitions are deterministic and are
given by:

P ips1|s, a,ρρρ´iq “ 1s1“a.

We generate the fixed coefficients ui, vi randomly by adding bounded noise to coefficients from [13],
so that

ui
R “ 2 ` εiR, viR “ 1 ` sεiR

ui
P “ 4 ` εiP , viP “ 2 ` sεiP

ui
S “ 6 ` εiS , viS “ 3 ` sεiS .

Therefore, the magnitudes of the player-specific additive terms determine β. In the case of A-RPS,
α “ 0.

Infection modeling with asymmetric agents (A-SIS). This benchmark, inspired by the SIS bench-
mark of [13], models a large population of infected or healthy agents that can choose to go out
or remain in isolation. Unlike the SIS benchmark, A-SIS is formulated as an N -player game and
incorporates individual differences in natural susceptibilities, recovery rates, and aversion of isolation
between agents. We formalize the dynamic game as follows. The game consists of the state space
S “ tI,Hu (I indicating infected, H indicating healthy), and action space A “ tD,Uu (D indicat-
ing social distancing, U indicating going out). The initial states si0 are sampled i.i.d. from a uniform
distribution over S . Each agent i P N has a fixed susceptibility parameter αi P r0, 1s, a fixed healing
probability θi P r0, 1s and a fixed aversion to isolation parameter ξi P r0, 1s.

P ipI|H,D,ρρρ´iq “ 0

P ipI|H,U,ρρρ´iq “ αi ˚ σppqρρρqpI, Uq,

P ipI|I,D,ρρρ´iq “ 1 ´ θi,

P ipI|I, U,ρρρ´iq “ 1 ´ θi.

The probabilities of staying healthy are of course always defined by

P ipH|s, a,ρρρ´iq :“ 1 ´ P ipI|s, a,ρρρ´iq.

The rewards of each agent are give by the following which incorporates a penalty for illness and an
agent specific penalty for isolation:

Rips, a,ρρρ´iq “ ´1s“I ´ ξi1a“D.
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Parameter Value
Initial learning rate 2.5e´4
Learning rate schedule Linear
γ (discount factor) 0.999
λGAE (see[49]) 0.95
Entropy regularization 6e´3
Value loss coefficient 0.9
Maximum gradient norm 0.5
Clip coefficient 0.2
Sample trajectories per epoch 1
NN training passes per epoch 4
Minibatch size 16 384
Advantage normalization Yes

Table 2: Hyperparameters of the PPO algorithm.

The agent parameters αi, θi, ξi are as expected fixed throughout the game, and are sampled to be
close. In the case of A-SIS, we solve N “ 1000 agents with a time horizon of H “ 20.

Asymmetric taxi (A-Taxi). Finally, as a more complicated benchmark we adapt the Taxi As in [13],
we use the following layout of the city map, where S indicates the starting cell of all agents, both H
and S are impenetrable barriers and the rest of the city is divided into 2 zones.

¨

˚

˚

˚

˚

˚

˚

˝

1 1 1
1 1 1
1 1 1
H S H
2 2 2
2 2 2
2 2 2

˛

‹

‹

‹

‹

‹

‹

‚

The action space of each agent is A :“ tU,D,L,R,W u, indicating actions to move in four directions
(up, down, left, right respectively) and wait at the current location. Customers can only be picked
up while waiting, and delivered while waiting. Each cell in the grid generates a new customer with
probability 0.2, which the agents can observe. Upon picking up a customer, a random target coordinate
is generate within the same zone. Customers can only be left at their target cells. Successful deliveries
of customers in zone 1 generate a base reward of 1.1, whereas successful deliveries of customers in
zone 2 generate a lower reward of 1.0. Furthermore, each agent has a zone specific reward multiplier
β1
i , β

2
i ą 0, so that agent i by delivering a customer in zone 1 gains reward 1.1β1

i and vice versa.
This models varying efficiencies of taxi drivers as well as individual preferences to various zones of
the city. Furthermore, we incorporate a crowdedness penalty: an agent i P rN s at state s at time h will
not move (simulating a jamming effect) with probability mint

ř

j wj1sjh“s, 0.7u, where twjuNj“1 are
player specific weights indicating their contribution to traffic jams. This intends to simulate unique
contributions of each driver to traffic jams, presumably due to vehicle types, driving styles, etc.

The number of states in the game is on the order of 230, making a neural network approximation
fundamental. For this reason, we use value and policy networks with two hidden layers with 128
neurons each, with a leaky ReLU nonlinearity. We adopt the PPO implementation of CleanRL [26]
for our purposes. The hyperparameters used are indicated in Table 2.

E.3 Extended Experimental Results

We report two additional sets of results regarding the sensitivity of our algorithms to α, β and the
population distribution behvaiour in the A-Taxi environment.

In Figure 2-(a), we report the sensitivity of the exact MFG-NE (computed via code provided in [21])
to heterogeneity parameters α, β in terms of exploitability in the N “ 1000 player game. While
keeping the other parameter constant at 0, we sweep through various values of each of α, β in the
range p0, 1{4q. While around the 0.1 threshold, the exploitability rises as expected, for smaller values
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of α, β the bias introduced is very small, providing an empirical analysis of the approximation bound
of Theorem 1.

(a) (b)

Figure 2: (a) The sensitivity of the MFG-NE to heterogeneity parameters α, β in the A-SIS envi-
ronment, in terms of exploitability. (b) Percentage of vehicles in Zone 1 in the A-Taxi environment
throughout training epochs for 4 benchmark algorithms.

In Figure 2-(b), we keep track of number of taxis choosing to operate in Zone 1 in the A-Taxi
environment throughout training. While rewards in Zone 2 are higher in this environment, congestion
effects require a mixed Nash equilibrium: agents must randomly choose at the very first step to serve
either Zone 1 or 2. The figure demonstrates the main advantage of policy-based methods for learning
Nash: unlike most value-based methods, PPO can learn a mixed strategy instead of converging to a
deterministic policy. As an additional benchmark, in the figure we evaluate Symm-NN without any
entropy regularization (τ “ 0, shown by the line Symm-NN-NR). In this case, the policy rapidly
converges to a deterministic policy, indicating that a non-zero entropy regularizer might be necessary
for learning a Nash equilibrium.
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