
Under review as a conference paper at ICLR 2024

COLLABORATIVE LLM-AGENTS FOR EDITABLE DRIV-
ING SCENE SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Scene simulation in autonomous driving has gained significant attention because of
its huge potential for generating customized data. However, existing editable scene
simulation approaches face limitations in terms of user interaction efficiency, multi-
camera photo-realistic rendering and external digital assets integration. To address
these challenges, this paper introduces ChatSim, the first system that enables ed-
itable photo-realistic 3D driving scene simulations via natural language commands
with external digital assets. To enable editing with high command flexibility, Chat-
Sim leverages a large language model (LLM) agent collaboration framework. To
generate photo-realistic outcomes, ChatSim employs a novel multi-camera neural
radiance field method. Furthermore, to unleash the potential of extensive high-
quality digital assets, ChatSim employs a novel multi-camera lighting estimation
method to achieve scene-consistent assets’ rendering. Our experiments on Waymo
Open Dataset demonstrate that ChatSim can handle complex language commands
and generate corresponding photo-realistic scene videos.

1 INTRODUCTION

Perception Chen et al. (2015; 2017); Wu et al. (2017); Chen et al. (2016); Caesar et al. (2020); Li
et al. (2020) is the window of an autonomous vehicle into the external environment. To ensure
the robustness of the vehicle’s perceptual capabilities during both training and testing phases, it
necessitates the collection of high-quality perception data in substantial volumes Chang et al. (2019);
Sun et al. (2020b). However, the operation of a fleet for the acquisition of real-world data often incurs
prohibitive expenses, particularly for specialized or customized requirements. For instance, in the
aftermath of an accident or intervention involving an autonomous vehicle, it is imperative to test the
vehicle’s perception system across a spectrum of similar scenarios. While replicating such scenario
data from real-world instances is nearly impossible due to the uncontrollability of actual scenes Rong
et al. (2020); Bergamini et al. (2021), customized scene simulation emerges as a vital and feasible
alternative. It enables the precise modeling of specific conditions without high costs and logistical
complexities of real-world data collection Amini et al. (2020); Yang et al. (2020).

Figure 1: ChatSim enables the editing of photo-realistic
3D driving scene simulations via language commands.

To effectively simulate customized driving
scenes, we identify three key properties as funda-
mental. First, the simulation should be capable
of following sophisticated or abstract demands,
thereby facilitating the production. Second, the
simulation should generate photo-realistic, view-
consistent outcomes, which allow for the closest
approximation to vehicle observations in real-
world scenarios. Third, it should allow for the
integration of external digital assets Miric et al.
(2019); Banta (2016) with their photo-realistic
textures and materials while fitting the lighting
conditions. This capability would unlock the
potential for data expansion by incorporating a
wide array of external digital assets, satisfying
customized needs.
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A vast array of significant works have been proposed for scene simulation, yet they fail to meet all
three of these requirements. Traditional graphics engines, such as CARLA Dosovitskiy et al. (2017)
and UE Engine, offer editable virtual environments with external digital assets, but the data realism
is restricted by asset modeling and rendering qualities. Image generation based methods, such as
BEVControl Yang et al. (2023a), DriveDreamer Wang et al. (2023b), MagicDrive Gao et al. (2023),
can generate realistic scene images based on various control signals, including BEV maps, bounding
boxes and camera poses. However, they struggle to maintain view consistency and face challenges
in importing external digital assets due to the absence of 3D spatial modeling. Rendering-based
methods have been proposed to obtain photo-realistic and view-consistent scene simulation. Notable
examples like UniSim Yang et al. (2023b) and MARS Wu et al. (2023b) come equipped with a suite
of scene-editing tools. However, these systems require extensive user involvement in every trivial
editing step via code implementation, which is ineffective when performing the editing. Furthermore,
while they handle vehicles in observed scenarios effectively, their inability to support external digital
assets restricts opportunities for data expansion and customization.

To fulfill the identified requirements, we introduce ChatSim, the first system that enables editable
photo-realistic 3D driving scene simulations via natural language commands with external digital
assets. To use ChatSim, users simply engage in a conversation with the system, issuing commands
through natural language without any involvement in intermediate simulation steps; see Figure 1
for illustration. To address complex or abstract user commands effectively, ChatSim adopts a large
language model (LLM)-based multi-agent collaboration framework. The key idea is to exploit
multiple LLM agents, each with a specialized role, to decouple an overall simulation demand
into specific editing tasks, thereby mirroring the task division and execution typically founded in
the workflow of a human-operated company. This workflow offers two key advantages for scene
simulation. First, LLM agents’ ability to process human language commands allows for intuitive
and dynamic editing of complex driving scenes, enabling precise adjustments and feedback. Second,
the collaboration framework enhances simulation efficiency and accuracy by distributing specific
editing tasks among specialized agents, ensuring detailed and realistic simulations with improved
task completion rates.

To generate photo-realistic outcomes, we propose McNeRF in ChatSim, a novel neural radiance
field method that incorporates multi-camera inputs, offering a broader scene rendering. This inte-
gration fully exploits camera setups on vehicles but raises two significant challenges: camera pose
misalignment due to asynchronized trigger times and brightness inconsistency due to different camera
exposure times. To address camera pose misalignment, McNeRF uses a multi-camera alignment
to reduce extrinsic parameter noises, ensuring rendering quality. To address brightness inconsis-
tency, McNeRF integrates the critical exposure times to recover scene radiance in HDR, markedly
mitigating the issue of color discrepancies at the intersections of two camera images with different
exposure times. To import external digital assets with their realistic textures and materials, we propose
McLight, a novel multi-camera lighting estimation that blends skydome and surrounding lighting.
Our skydome estimation restores accurate sun behavior with peak intensity residual connection,
enabling the rendering of prominent shadows. For surrounding lighting, McLight queries McNeRF
to achieve complex location-specific illumination effects, like those in the tree shade with sunlight
being blocked. This significantly improves the rendering realism of the integrated 3D assets.

We conduct extensive experiments on the Waymo autonomous driving dataset and show that ChatSim
generates photo-realistic customized perception data including dangerous corner cases according
to various human language commands. Our method is compatible with mixed, highly-abstract and
multi-round commands. Our method achieves SoTA performance with an improvement of 4.5%
in photo-realism with a wide-angle rendering. Moreover, we demonstrate our lighting estimation
outperforms the SoTA methods both qualitatively and quantitatively, reducing the intensity error and
angular error by 57.0% and 9.9%.

2 RELATED WORK

Scene simulation for autonomous driving. Current scene simulation methods can be generally
divided into three categories: graphics engines, image generation, and scene rendering. Graphics
engines, such as CARLA Dosovitskiy et al. (2017), AirSim Shah et al. (2018), OpenScenario Editor
Editor, 51Sim-One 51Sim-One and RoadRunner Crescenzi et al. (2001), create a virtual world for
simulating a wide range of driving scenarios. However, there exists a significant domain gap between
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Method Photo-
realistic Dim. Multi-

camera Editable External
assets Language Open-

source
CARLA Dosovitskiy et al. (2017) 3D ✓ ✓ ✓ ✓

AirSim Shah et al. (2018) 3D ✓ ✓ ✓ ✓
OpenScenario Editor 3D ✓ ✓ ✓ ✓

51Sim-One 51Sim-One 3D ✓ ✓ ✓
RoadRunner Crescenzi et al. (2001) 3D ✓ ✓ ✓ ✓

BEVGen Swerdlow et al. (2023) ✓ 2D ✓ ✓ ✓
BEVControl Yang et al. (2023a) ✓ 2D ✓ ✓

DriveDreamer Wang et al. (2023b) ✓ 2D ✓ ✓ ✓
DrivingDiffusion Li et al. (2023a) ✓ 2D ✓ ✓ ✓

GAIA-1 Hu et al. (2023) ✓ 2D ✓ ✓
MagicDrive Gao et al. (2023) ✓ 2D ✓ ✓

READ Li et al. (2023b) ✓ 3D ✓
Neural SG Ost et al. (2021) ✓ 3D ✓ ✓
Neural PLF Ost et al. (2022) ✓ 3D ✓

S-NeRF Xie et al. (2023) ✓ 3D ✓ ✓
UniSim Yang et al. (2023b) ✓ 3D ✓
MARS Wu et al. (2023b) ✓ 3D ✓ ✓

ChatSim (Ours) ✓ 3D ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of existing and proposed methods for autonomous driving simulation.

the virtual world and reality. Image generation methods can generate realistic scene images based
on different control signals, such as HD maps Swerdlow et al. (2023); Gao et al. (2023); Li et al.
(2023a), sketch layout Yang et al. (2023a), bounding boxes Li et al. (2023a); Wang et al. (2023b);
Gao et al. (2023), text Li et al. (2023a); Wang et al. (2023b); Gao et al. (2023); Hu et al. (2023) and
driving actions Wang et al. (2023b); Hu et al. (2023). However, these approaches can hardly maintain
scene consistency. To obtain a coherent driving scene, methods based on scene rendering target to
reconstruct the 3D scene. READ Li et al. (2023b) employs point clouds and uses a U-Net to render
images. With the rapid development of Neural Radiance Field (NeRF) Mildenhall et al. (2021);
Barron et al. (2021; 2022); Müller et al. (2022); Sun et al. (2022); Wang et al. (2023a), several works
Xie et al. (2023); Guo et al. (2023); Yang et al. (2023b); Wu et al. (2023b); Ost et al. (2021); Turki
et al. (2023); Kundu et al. (2022); Ost et al. (2022) also exploit NeRFs to model cars and static street
backgrounds in outdoor environments. Moreover, notable examples like UniSim Yang et al. (2023b)
and MARS Wu et al. (2023b) come equipped with a suite of scene-editing tools. However, these
methods require extensive user involvement in intermediate editing steps and they fail to support
external digital assets for data expansion. In this work, we propose ChatSim that achieves automatic
simulation editing via language commands and integrates external digital assets to enhance realism
and flexibility. In ChatSim, we integrate McNeRF, a novel neural radiance field designed to leverage
multi-camera inputs for high-fidelity rendering.

Lighting estimation. Lighting estimation focuses on assessing the illumination conditions of a
real-world environment to seamlessly integrate digital objects. Early methods Lalonde & Matthews
(2014); Lalonde et al. (2010) for outdoor environments use explicit cues like detected shadows on the
ground. Recent works usually adopt learning-based approaches Garon et al. (2019); Hold-Geoffroy
et al. (2019); LeGendre et al. (2019); Hold-Geoffroy et al. (2017); Li et al. (2018); Zhang et al. (2019)
by predicting different lighting representations like spherical lobes Boss et al. (2020); Li et al. (2018),
light probes LeGendre et al. (2019), environment map Sengupta et al. (2019); Somanath & Kurz
(2021), HDR sky model Hold-Geoffroy et al. (2019); Zhang et al. (2019); Wang et al. (2022) and
lighting volume Wang et al. (2022). However, few of them consider multi-camera input, which is
common for driving scenarios. In this paper, we propose a novel multi-camera lighting estimation
method, McLight, combining with our McNeRF, to estimate a wider range of lighting and obtain the
spatially-varying lighting effects of assets.

Large language model and collaborative framework. Large Language Models (LLMs) are AI
systems trained on extensive data to understand, generate, and respond to human language. GPT
Brown et al. (2020) is a pioneering work to generate human-like content. The following updated
versions GPT-3.5 ChatGPT and GPT-4 OpenAI (2023), provide more intelligent capabilities like
chatting, browsing and coding. Notable other large language models include InstructGPT Ouyang
et al. (2022), LLaMA Touvron et al. (2023) and PaLM Chowdhery et al. (2022); Anil et al. (2023).
Based on LLM, many works Wang et al. (2023c); Du et al. (2023); Zhuge et al. (2023); Hao et al.
(2023); Akata et al. (2023) improve the problem-solving abilities by integrating communication
among multiple agents. Hong et al. (2023) and Wu et al. (2023a) define a group of well-organized
agents to form operating procedures with conversation and code programming. In this paper, we
exploit the power of collaborative LLM agents in simulation for autonomous driving, enabling the
various editing of 3D scenes via language commands.

3



Under review as a conference paper at ICLR 2024

Agent of 
Project ManagerUser

“Move the viewpoint
5m forward.”“Retrieve the Mercedes

model, change color to black.”

“Given the extrinsic, 
render novel views”“The Mercedes is driving

towards the viewpoint slowly.”

“Remove all the cars.”“Render the Mercedes model
with given vehicle poses”

Language Command
Data Flow

Compose to Video

Multiview 
Image Data

Access to

Technique
Agents

Position:
Role:

Technical Engineer
Deleting vehicles

Profile

Outcome with editing

Workflow

Delete.py

Role Functions

“Remove all the cars.”

+ delete_index: 0
+ position: (u=245, v=453）

Structured 
configuration

+ delete_index:1
+ position: (u=523, v=297）

Tech Agent for 
View Adjustment

Tech Agent for 
Background Rendering

Tech Agent for 
Vehicle Deleting

Camera
Extrinsics

Bkg. Images

Inpainted Bkg. Images

Tech Agent for 
3D Asset Management

Tech Agent for 
Vehicle Motion

Tech Agent for 
Foreground Rendering

Car model

Car model 
& Motion

Foreground Images

LLM

Language Command Input Data

I want to remove all the cars in
the scene and add a black
Mercedes driving towards me
slowly. Meanwhile, move my
viewpoint 5m forward. 

Yes, of course!
Agent example

Figure 2: ChatSim system overview. The system exploit multiple collaborative LLM agents with specialized
roles to decouple an overall demand into specific editing tasks. Each agent equips an LLM and corresponding
role functions to interpret and execute its specific tasks.

3 COLLABORATIVE LLM-AGENTS FOR EDITING

The ChatSim system analyzes specific user commands and returns a video that meets customized
needs; see Figure 2. Since user commands could be abstract and sophisticated, it requires the system
to have flexible task-handling ability. Directly applying a single LLM agent struggles with multi-step
reasoning and cross-referencing. To address this, we design a series of collaborative LLM agents,
where each agent is responsible for a unique aspect of the editing task.
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����

���	�������������������������� !��"�������#��������!���"�����#����$��%�&%�"�����&��'������ ����������()($�(�($(*(���������������(�%���(������'�*+�)� ,���-�./01232104056/�67�810459:�;������� ������$�#� ������()(���#�� ��� �!�����'$#� ������(�(���#�� ��� ���!�$���'�(*(���#�� ��� ��#,���!����� �����!�+%��'�&���'������ � ��",��;�����������$�#� ������(�%���(�� �&������&��&<�� �,=��!��"�����#�� #�&����$�"������#��������� �����%���!�,�(�%���(�� ����'�����,��-�>10?2/�762@40�A�����"���#�������$����������'�&�����������B=CD!��"��$����%�<�� �()($�(�($�(*($�(�%���(,��-�E1FG:H60�1I4@391:����������������� �"���)�"#�� JK� ��LJ���������%������#�����MN�'����� �����%����!�OK�  � ����LJ�PQ���()(J�N$Q���(�(J�N$Q���(*(J�N$Q��(�%���(J�MN$Q��R�Q�����K� ��LJ�"�����%������#���������%�����%��S��TOK�  � ����LJ�PQ���()(J�N$Q���(�(J�+T$Q���(*(J�N$Q��(�%���(J�N$Q�R���
Figure 3: Prompt of view adjustment agent.

Agents in ChatSim comprise two key components: a
Large Language Model (LLM) and the corresponding role
functions. The LLM is responsible for understanding the
received commands while the role functions process the
received data. Each agent is equipped with unique LLM
prompts and role functions tailored to their specific duties
within the system. To accomplish their tasks, agents first
convert the received commands to a structured configura-
tion using LLM with the assistance of prompts. Then the
role functions utilize the structured configuration as param-
eters to process the received data and produce the desired
outcomes; see an agent example on the right side of Figure
2. This workflow endows agents with both language inter-
pretation capabilities and precise execution capabilities.

Project Manager Agent. The project manager agent
decomposes direct commands into clear natural language instructions dispatched to other editing
agents. To equip the project manager agent with the capability of command decomposition, we design
a series of prompts for its LLM. The core idea of the prompts is to describe the action set, give the
overall goal, and define the output form with examples; The role functions send the decomposed
instructions to other agents for editing. The presence of the project manager agent enhances the
system’s robustness in interpreting various inputs and streamlines operations for clarity and fine
granularity.

Tech agent for view adjustment. The view adjustment agent generates suitable extrinsic camera
parameters. The LLM in the agent translates the natural language instructions for viewpoint adjust-
ment into movement parameters to the target viewpoint’s position and angle. In role functions, these
movement parameters are turned into transformation matrices required by the extrinsic, which are
then multiplied by the original parameters to yield a new viewpoint.
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Tech agent for background rendering. The background rendering agent renders the scene back-
ground based on multi-camera images. The LLM receives the rendering command and then operates
the role functions for rendering. Notably, in role functions, we specifically integrate a novel neural
radiance field method (McNeRF) taking multi-camera inputs and considering exposure time, solving
the problem of blurring and brightness inconsistency in multi-camera rendering, see more details in
Section 4.1.

Tech agent for vehicle deleting. The vehicle deleting agent removes specified vehicles from the
background. It first identifies current vehicle attributes like 3D bounding boxes and colors from given
scene information or results from a scene perception model like Liu et al. (2023). The LLM gathers
attributes of the vehicles and performs matching with user requests. Upon confirming the targeted
vehicles, it employs a per-frame inpainting model as the role functions, such as latent diffusion
methods Rombach et al. (2021), to effectively delete them from the scene.

Tech agent for 3D asset management. The 3D asset management agent selects and modifies 3D
digital assets according to user specifications. It constructs and maintains a 3D digital asset bank; see
our bank details in the Appendix.E. To facilitate the addition of various objects, the agent first uses
LLM to select the most suitable asset by key attributes matching with the requirements, such as color
and type. If the matching is not perfect, the agent could modify the asset through its role functions
like changing the color.

Tech agent for vehicle motion. The vehicle motion agent creates the initial places and subsequent
motions of vehicles following the requests. Existing vehicle motion generation methods cannot
directly generate motion purely from text and the scene map. To solve the problem, here we propose
a novel text-to-motion method. The key idea is linking a placement and planning module as role
functions with LLMs to extract and turn motion attributes into coordinates. Motion attributes include
position attributes (e.g., distance, direction) and movement attributes (e.g., speed, action). For the
placement module, we endow each lane node in the lane map with its attributes to match with the
position attributes. The planning module plans the vehicle’s approximate destination lane node and
then plans the intermediate trajectory by fitting the Bezier curves. We also add trajectory tracking to
fit vehicle dynamics; see more details in the Appendix.G.

Tech agent for foreground rendering. The foreground rendering agent integrates camera extrinsic
infomation, 3D assets, and motion information to render foreground objects in the scene. Notably, to
seamlessly integrate the external assets with the current scene, we design a multi-camera lighting
estimation method (McLight) into the role functions, coupling with McNeRF. The estimated illumi-
nation is then utilized by Blender API to generate foreground images. The detailed technical aspects
will be elaborated in Section 4.2.

3.2 AGENT COLLABORATION WORKFLOW

Agents with tailored functions collaboratively work together to edit based on user commands.
The project manager orchestrates and dispatches instructions to editing agents. The editing agents
form two teams: background generation and foreground generation. For background generation, the
background rendering agent generates rendered images using the extrinsic parameters from the view
adjustment agent, followed by inpainting by the vehicle deleting agent. For foreground generation,
the foreground rendering agent renders the images using the extrinsic parameters from the view
adjustment agent, selected 3D assets from 3D asset management agent, and generated motions from
vehicle motion agent. Finally, the foreground and background images are composed to create and
deliver a video to the user. The editing information in each agent’s configuration is recorded by the
project manager agent for possible multi-round editings.

4 NOVEL RENDERING METHODS

Based on the collaborative LLM agents framework introduced in Section 3, this section presents
two novel rendering techniques to enhance photo-realism in simulations. To tackle the rendering
challenges caused by multiple cameras, we propose multi-camera neural radiance field (McNeRF), a
novel NeRF model considering the varied camera exposure times for visual consistency. To render
realistic external digital assets with location-specific lighting and accurate shadows, we propose
McLight, a novel hybrid lighting estimation method combined with our McNeRF. Note that McNeRF
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and McLight are leveraged by the background rendering agent and the foreground rendering agent,
respectively.

4.1 MCNERF FOR BACKGROUND RENDERING

An autonomous vehicle typically equips multiple cameras to achieve a comprehensive perception
view. However, this poses challenges for NeRF training due to the misaligned multi-camera poses
from asynchronized camera trigger times and the brightness inconsistency originating from different
exposure times. To address these challenges, the proposed McNeRF uses two techniques: multi-
camera alignment and brightness-consistent rendering.

Multi-camera alignment. Autonomous vehicles, despite having a localization module for accurate
camera poses, face challenges with asynchronous trigger times across multiple cameras. To align
camera extrinsics for NeRF training, our core idea is to leverage a consistent spatial coordinate system
provided by Agisoft Metashape Agisoft (2019) to align the images captured by multiple cameras at
different timestamps.

Specifically, let I(i,k) and ξ(i,k) be the image captured by the ith camera at the kth trigger and the
corresponding camera pose in the vehicle’s global coordinate space, respectively. We first input all
images into Metashape for recalibration. The aligned camera pose is then obtained as:

ξ̂(i,k) = TM→G · ξ(i,k)M ,

where ξ
(i,k)
M denotes the recalibrated camera pose in the Metashape’s unified spatial coordinate

space, and TM→G is the transformation from the Metashape’s coordinate space to the vehicle’s
global coordinate space. After alignment, the pose noise can be significantly reduced. Then, the
aligned camera pose ξ̂(i,t) can be used to generate the origins and directions of rays for McNeRF,
enabling high-fidelity rendering. The aligned pose can also facilitate the foreground rendering agent’s
operations.
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Figure 4: Rendering framework. The main components include
McNeRF and McLight. Background rendering uses McNeRF to
predict HDR pixel value and convert it to LDR with sRGB OETF.
McLight includes a skydome lighting estimation network and adopts
McNeRF to generate surrounding lighting.

Brightness-consistent rendering.
The exposure times of cameras can
differ substantially, causing signif-
icant brightness differences across
images, hindering the NeRF training.
As shown in Figure 4, McNeRF,
addresses this by incorporating expo-
sure times into HDR radiance fields,
prompting brightness consistency.

We adopt F2-NeRF Wang et al.
(2023a) as our backbone model to han-
dle the unbounded scene, sampling
K points along the ray r and estimat-
ing each point’s HDR radiance ek and
density σk. The HDR light intensity
is then calculated as:

ÎHDR(r) = f(∆t) ·
K∑

k=1

Tkαkek,

(1)
where αk = 1 − exp(−σkδi) is the
opacity, δi is the point sampling in-
terval, Tk =

∏k−1
i=0 (1 − αi) is the accumulated transmittance and ∆t is the exposure time. The

normalization function f(∆t) = 1 + ϵ(∆t − µ)/σ is designed to stabilize training, where ϵ is a
hyperparameter for scaling, µ and σ are the mean and standard deviation of the exposure times of all
images, respectively.

By predicting scene radiance in HDR and multiplying it by the exposure time, we recover the light
intensity received by the sensor and tackle the inconsistent color supervision at the intersections
of two camera images with distinct exposure times. Moreover, the HDR light intensity outputted
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by McNeRF can provide scene-level illumination for foreground object rendering, a topic further
discussed in Section 4.2.

To train the rendering network, we enforce the consistency of radiance between the rendered image
and the captured image (ground-truth). Given the ground-truth image I, the loss function is then:

L =
1

|R|
∑
r∈R

(
OETF

(
ÎHDR(r)

)
− I(r)

)2

,

where R represents the ray set and OETF(·) is the sRGB opto-electronic transfer function (gamma
correction) Commission et al. (1999) that converts HDR light intensity to LDR colors.

4.2 MCLIGHT FOR FOREGROUND RENDERING

To enrich the scene’s content with substantial digital 3D assets, we employ Blender Community
(2018) foreground virtual objects’ rendering. A seamless insertion critically depends on accurately
estimating the scene’s illumination conditions. Thus, as shown in Figure 4, we propose McLight, a
novel hybrid lighting estimation consisting of skydome lighting and surrounding lighting.

Skydome lighting estimation. Estimating skydome lighting from images is challenging for restoring
accurate sun behavior. To achieve this, we propose a novel residual connection from the estimated
peak intensity to the HDR reconstruction to address over-smoothing output. Further, we adopt a
self-attention mechanism to fuse multi-camera inputs, capturing complementary visual cues.

Here we employ a two-stage process. In the first stage, we train an autoencoder to reconstruct the
corresponding HDR panorama from an LDR panorama. Following Wang et al. (2022), the encoder
transforms the LDR skydome panorama into three intermediate vectors, including the peak direction
vector fdir ∈ R3, the intensity vector fint ∈ R3

+, and the sky content vector fcontent ∈ R64. However,
as HDR intensity behaves like an impulse response at its peak position, with pixel values thousands of
times higher than its neighbors, it is difficult for the decoder to recover such patterns. To tackle this,
we design a residual connection that injects fint into the decoded HDR panorama with a spherical
Gaussian lobe attenuation. This explicitly restores the peak intensity of the sun in the reconstructed
HDR panorama, allowing us to render strong shadows for virtual objects.

In the second stage, we train an image encoder and a multi-camera fusion module built upon the
pretrained decoder from the first stage. Specifically, for images from each camera, a shared image
encoder predicts the peak direction vector f (i)dir , the intensity vector f (i)int , and the sky content vector
f
(i)
content for each image I(i), where i is the camera index. We design the latent vector fusion across

the multiple camera views as follows: all f (i)dir are aligned to the front-facing view using their extrinsic
parameters and averaged to form f̄dir; all f (i)int are averaged to yield f̄int; all f (i)content are integrated
into f̄content through a self-attention module. Finally, the pretrained decoder reconstructs the HDR
skydome image Iskydome from f̄dir, f̄int and f̄content.

Compared to alternative approaches Wang et al. (2022); Hold-Geoffroy et al. (2019), our multi-camera
sky dome estimation technique accurately reproduces the sun’s intensity response behavior at its
peak with our residual designs, significantly improving the accuracy and fidelity of the skydome
reconstruction.

Surrounding lighting estimation. Merely modeling the skydome cannot replicate the complex
location-specific lighting effects, like those in the shade with sunlight blocked by trees or buildings.
Our McNeRF is capable of storing precise 3D scene information, enabling us to capture the sur-
rounding scene’s impact on lighting. This approach facilitates the achievement of spatially-varying
lighting estimation. Specifically, we sample the hemisphere rays at the virtual object’s position o.
The rays’ directions, di, i = 0, 1, · · · , h × w, are aligned with pixel coordinates on a unit sphere
using equirectangular projection from an environment map, where h and w are map’s height and
width. With the ray r = o+ tdi, we query our McNeRF as Equation 1 to obtain HDR surrounding
lighting Isurround(o,di). The surrounding lighting estimation reconstructs complex environmental
lighting, achieving a spatially varying effect and high consistency with the background.

Blending. We blend the HDR intensity value from the skydome and surrounding lighting by
transmittance of the final sampling point from McNeRF. The idea is that the rays emitted outside
the radiance fields will definitely hit the skydome. Given the direction di, we retrieve the skydome’s
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Figure 5: Editing result under complex command. Figure 6: Editing result under abstract command.

intensity Iskydome(di) with equirectangular projection. The final HDR light intensity Ienv(o,di) is a
combination of scene and skydome:

Ienv(o,di) = Isurround(o,di) + TKIskydome(di),

where TK is the last sampling point’s transmittance.

McLight offers two main advantages: i) it explicitly recovers the illuminance behavior at the peak
and use complementary information from multiple cameras to restore accurate skydome; and ii) it
enables location-specific lighting with consideration of complex scene structures.

5 EXPERIMENTAL RESULTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

We demonstrate a variety of results mainly on the Waymo Open Dataset Sun et al. (2020a), which
contains high-quality multi-camera images and the corresponding calibrations. For McLight skydome
estimation, we collect 449 HDRIs from online HDRI databases for the autoencoder training and use
HoliCity Zhou et al. (2020), a street view panorama dataset for the second stage.

In our experiment, we use front, left front, and right front cameras in each frame. During the
rendering process, we choose 40 frames per scene at a 10Hz sampling rate, totaling 120 images. We
evenly select 1/8 of these as the test set, with the remainder used for training. The input images are
used at the dataset’s initial resolution of 1920× 1280; we employ GPT-4 as the LLMs in all of our
experiments; see more experiment details in the Appendix.A.

5.2 SYSTEM RESULTS

Editing via language commands. We select three representative commands to demonstrate the
editing results. All of the results demonstrate we achieve photo-realistic wide angle results, thanks to
McNeRF and McLight.

Mixed and complex command. We send the system with a mixed and complex command, implying
that a police car is chasing a wrong-way racer. The target scene, command and the result are shown in
Figure 5. We see that i) every requirement in the complex command is accurately executed thanks to
our multi-agent collaboration design; ii) this command successfully simulates one rare but dangerous
driving condition, which is significant in accident testing.

Highly abstract command. The second type is a highly abstract command. The inputs and results are
presented in Figure 6. We see that i) this highly abstract command is hard to decompose by sentence
division but still can be correctly executed by our method, and ii) our 3D asset bank offers a large
variety of objects for addition.

Multi-round command. We also perform a multi-round chat with our system, and the commands in
different rounds exist context dependencies. The final results are shown in Figure 7. We see that i)
our system is well-equipped to handle multi-round commands and execute the commands in each

8
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Figure 8: Comparison of detection performance w/o and with our simulated data under different amounts of
real data during training.

round precisely; ii) our system can handle the context dependencies across different rounds thanks to
the recording ability of the project manager agent.

Figure 7: Editing result under multi-round commands.

3D detection with simulation data. We vali-
date the benefits of our simulation as data aug-
mentation for a downstream 3D object detection
task on Waymo Open Dataset Sun et al. (2020b).
We simulate 1960 frames, derived from scenes
in the training dataset. In the simulation, cars
with various types, locations, and orientations
are incorporated. The detection model adopts
Lift-Splat Philion & Fidler (2020). Figure 8
shows detection performances with and without
fixed augmentation under various amounts of
real data. We see that i) a significant and consis-
tent improvement across different data sizes is
achieved; ii) when real data is limited, our sim-
ulation notably aids in rough detection (AP30);
iii) when the amount of real data increases, our
simulation further significantly improves fine-
grained detection (AP70), reflecting the high-
quality of our simulation.

5.3 MULTI-AGENT COLLABORATION.

We evaluated the effectiveness of the multi-agent collaboration by checking whether the command is
successfully executed in Table 2.

In scenarios without multi-agent collaboration, all operations are executed by a single LLM agent.
We see that a single LLM agent leads to notably lower execution accuracy across all categories due to
process limitations. In contrast, the collaborative multi-agent approach can manage most commands,
attributed to its task division and agent role specificity.

Multi-agent
collaboration

Language command category
Deletion Addition View change Revision Abstract

0.617 0.383 0.717 0.367 0.216
✓ 0.983 0.867 0.967 0.917 0.883

Table 2: The accuracy (%) of task completion by LLM without and with multi-agent collaboration.

6 CONCLUSIONS AND LIMITATIONS

This paper introduces ChatSim, the first system for editing 3D driving scene simulations via
language commands and realistic rendering with import of external digital assets. To effectively
execute user commands, ChatSim adopts an LLM-agent collaboration workflow. To promote photo-
realistic simulation, we propose McNeRF and McLight for background and foreground rendering,
respectively, accommodating multi-camera inputs. Experiments show that ChatSim successfully
simulates customized data via multiple kinds of language commands, achieving high-quality, photo-
realistic outcomes. In future, we plan to integrate more background editing functionalities to ChatSim,
such as weather changes.
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A MORE EXPERIMENTS RESULTS

A.1 RENDERING RESULTS

Background rendering. We compare our McNeRF with several other state-of-the-art methods on
the background novel view synthesis task. We perform reconstruction and rendering on 32 selected
scenes. Table 3 shows the quantitative results comparison on three metrics: PSNR, SSIM, and LPIPS.
We see that i) McNeRF achieves SoTA performance on all three metrics, significantly outperforming
other baselines; ii) McNeRF has a fast inference speed, enabling quick responses to image rendering.

Methods PSNR↑ SSIM↑ LPIPS↓ Inf. time (s)↓
DVGO Sun et al. (2022) 23.57 0.770 0.508 7.7

Mip-NeRF360 Barron et al. (2022) 24.40 0.754 0.528 101.8
S-NeRF Xie et al. (2023) 24.71 0.759 0.519 114.5

F2NeRF Wang et al. (2023a) 23.26 0.773 0.439 2.4

Ours w/o alignment 23.32 0.776 0.437 2.5
Ours w/o exposure 25.18 0.819 0.381 2.4
McNeRF (Ours) 25.82 0.822 0.378 2.5

Table 3: Background rendering performance evaluation.

Figure 9 in Appendix demonstrates qualitative
comparisons between other methods and ours.
We see that existing NeRF methods do not con-
sider the exposure time, leading to noticeable
changes in brightness at the junctions of differ-
ent cameras in the image, as well as an overall
inconsistency in exposure across the wide-angle
view. Our method can make the brightness of
the entire image more consistent.

Method Peak Intensity(log10) Error Peak Angular Error (deg) User study(%) ↑Mean ↓ Median ↓ Mean ↓ Median ↓

Hold-Geoffroy et al. Hold-Geoffroy et al. (2019) 0.899 0.975 48.4 51.6 19.5
Wang et al. Wang et al. (2022) 0.590 0.628 33.5 29.4 37.3

McLight (Ours) 0.449 0.270 32.3 26.5 43.1

Table 4: Lighting estimation comparison.

Foreground rendering. We compare our
McLight with the other two SoTA meth-
ods Wang et al. (2022); Hold-Geoffroy et al.
(2019). Table 4 shows the comparison of rela-
tive intensity(log 10) error on our HDRI dataset,
angular error on HoliCity Zhou et al. (2020), and user study. We see that McLight achieves more
accurate peak behavior and receives noticeably higher user preferences.

Figure 10 in Appendix shows the visualizations of vehicle insertion. The vehicles added through
McLight feature significantly more realistic reflections and strong shadows consistent with the scene.

A.2 VEHICLE MOTION.

As shown in Table 5, we compare the motion generation method from user commands with two of
our designed baselines: 1. GPT2Motion, which directly uses LLM to return the motion coordinates;
2. GPT2Code, which first generates code using LLM and executes it to obtain the vehicle motion.
We validate multiple actions in multiple scenarios and report the user study result. The user study
is to determine if the generated motions matched the command intents and fitted with the lane
map. We see that our method demonstrated a significant advantage in generating motions from
language commands. Additionally, it maintained a high rate of keeping the trajectories within the
lane boundaries.

Methods Straight Left Turn Right Turn Speed Within-road
GPT2Code 0.738 0.559 0.536 0.893 0.214

GPT2Motion 0.595 0.119 0.167 0.345 0.277
Ours 0.988 0.940 0.976 0.952 1.000

Table 5: Comparison with motion generation from text methods.

Our motion generation design returns accurate and compliant results which can not be easily com-
pleted with direct methods.

B EXPLANATION OF TABLE 2 IN MAIN TEXT

Table 2 evaluates the execution success rate of commands of 5 instruction categories across 4 different
driving sequences. For each category, the accuracy is measured as the average success rate across
3 trials of 15 commands that are specifically designed for this category. Each trial is deemed
successfully executed if the LLM-agent(s) accurately perform the required operations, including
setting correct configurations and parameter values.
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Figure 9: Comparisons of wide-angle images generation. (a) S-NeRF.(b) F2NeRF. (c) McNeRF (Ours). Last
row: target images.

Figure 10: Comparison with different lighting estimation methods.

C LLM-AGENTS DETAILS

C.1 AGENT IMPLEMENT DETAILS

LLM-Agents consist of their LLM (Large Language Model) component and corresponding func-
tionalities. All experiments utilize the GPT-4 APIOpenAI (2023) to implement the LLM part. In
each agent’s prompt, there are elements involving the agent’s function, the definition of actions that
the agent needs to perform, the definition of information inputted to the agent, and the definition
of outputs required from the agent. To facilitate the integration of Python code and ensure stable
calls, the LLM part is required to return information in the format of a JSON dictionary. Additionally,
each LLM part’s prompt includes some examples, which contain inputs for certain scenarios and the
corresponding expected outputs. If the input command does not contain the information of the keys
of the output JSON dictionary, a default one will be filled in the dictionary. The parameters related to
the GPT-4 API are all set to the official default values.

Note that, for supporting modification operations during multi-round commands, the 3D asset
management agent, the vehicle motion agent, and the vehicle deleting agent have the ability to modify
the information of already added or deleted cars.

C.2 REASONING PROCESSES

This section describes the natural language reasoning processes for the three cases presented in
Section 5.2 of the main text.

Mixed and complex command. The initial input command is: "Remove all cars in the scene and
add a Porsche driving the wrong way toward me fast. Additionally, add a police car also driving
the wrong way and chasing behind the Porsche. The view should be moved 5 meters ahead and 0.5
meters above." The command is decoupled by the project manager agent as following commands:
1."Remove all cars."; 2. "Add a Porsche driving the wrong way toward me fast."; 3. "Add a police
car also driving the wrong way and chasing behind the Porsche."; 4. "The view should be moved 5
meters ahead and 0.5 meters above.". The "Remove all cars." command is distributed to the vehicle
deleting agent, and then the agent finds the 3D boxes of all cars and applies the inpainting function
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Figure 11: LDR to HDR reconstruction network. We add an explicit spherical Gaussian lobe encoded
attenuation to overcome the over-smoothness in the decoded HDR panorama. It effectively ensures
that the sun’s intensity significantly exceeds that of surrounding pixels, rendering strong shadow
effects for inserted objects.

for the removal operation. "Add a Porsche driving the wrong way toward me fast." command is
distributed to the 3D asset management agent for selecting the proper 3D asset. This command will
also be distributed to the vehicle motion agent, which utilizes the key information in the command
including "wrong way", "toward me" and "fast" to choose the appropriate start and end points and
generate the motion with the motion generation function. "Add a police car also driving the wrong
way and chasing behind the Porsche." command will also be executed in the same way as the former
operation. This command mentions the information of the added car, and the added car’s information
has been memorized by the project manager. This information is offered to the vehicle motion agent
for determining the added police car’s location. "The view should be moved 5 meters ahead and 0.5
meters above." command is distributed to the view adjustment agent. The view adjustment agent
returns the adjustment information of extrinsic as configuration, and calls the function to change
the extrinsics to achieve view adjustment. Finally, background rendering and foreground rendering
agents are required to generate the background and foreground results according to the information
returned by the other agents, and the results are composed as the final outputs.

Highly abstract command. The initial input command is: "Create a traffic jam." The project
manager agent analyzes the command and decouples it as multiple repeats of car addition. These
addition commands are processed by the 3D asset management agent and vehicle motion agent
successively and are rendered by the foreground rendering agent. Combined with the rendered results
from the background rendering agent, we can get the final outputs.

Multi-round command. The first initial command is: "Ego vehicle drives ahead slowly. Add a car
to the close front that is moving ahead.” The command is decoupled by the project manager agent as
1: "Ego vehicle drives ahead slowly."; 2: "Add a car to the close front that is moving ahead.". The
first sub-command is distributed to view the adjustment agent, and the agent generates the extrinsics
that represent moving ahead slowly. The second sub-command is executed as the process introduced
above.

The second initial command is: "Modify the added car to turn left. Add a Chevrolet to the front of
the added car. Add another vehicle to the left of the added Mini driving toward me." The command
is decoupled by the project manager agent as 1: "Modify the added car to turn left."; 2: "Add a
Chevrolet to the front of the added car."; 3: "Add another vehicle to the left of the added Mini driving
toward me." The first sub-command is distributed to the vehicle motion agent, which generates new
motion based on the command for the determined added car. The following two sub-commands
are executed in the same way as mentioned in the paragraphs above. Compositing the outputs of
background rendering and foreground rendering agents can get the final outputs.

D SKYDOME LIGHTING ESTIMATION DETAILS

D.1 HDRI DATASET

We collect 449 high-quality outdoor panorama HDRIs from Poly Heaven Website. These HDRIs are
all licensed as CC0. We randomly selected 357 HDRIs for the training set and the remaining for the
test set. A script for downloading these HDRIs will be available.
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Figure 12: Reconstructing HDR skydome from multi-camera images. Training on HoliCity Zhou
et al. (2020) dataset.

D.2 LDR TO HDR SKYDOME RECONSTRUCTION

In this step, we utilize our HDRI dataset to train an LDR to HDR autoencoder with the aim of
converting the skydome into a compact feature representation. We use the sRGB opto-electronic
transfer function (also known as gamma correction) to get the LDR sky panorama, and follow Wang
et al. (2022) to transform the LDR sky panorama to 3 intermediate vectors, including the sky content
vector fcontent ∈ R64, the peak direction vector fdir ∈ R3 and the intensity vector fint ∈ R3

+. In the
process of converting intermediate vectors into a reconstructed HDR sky panorama, we construct the
peak direction map Mdir, the peak intensity map Mint and the positional encoding map Mpe.

Peak direction map (Mdir): For each pixel in Mdir, we calculate the peak direction embedding. This
calculation utilizes a spherical Gaussian lobe, formulated as Mdir(u) = e100∗(u·fdir−1), where fdir
denotes the peak direction vector. This map is represented in RH×W×1.

Peak intensity map (Mint): Each pixel in this map is determined based on its corresponding value
in the peak direction map. Specifically, for a given direction u, if Mdir(u) > 0.9, then Mint(u) is
assigned the value of fint. If not, Mint(u) is set to zero. This map is represented in RH×W×3

+ .

Positional encoding map (Mpe): This map encodes the direction vector of each pixel, determined
through equirectangular projection, thus contributing to the accurate reconstruction of the HDR sky
panorama. It is defined in RH×W×3.

The input of the decoder Minput is a concatenation of Mpe,Mdir and Mint. We use a 2D UNet to
decode the concatenated input map to the HDR sky panorama. For sky content vector fcontent, we
use an MLP to increase its feature dimension, reshape it to a 2D feature map, and concatenate it with
the intermediate features at the bottleneck of the UNet. This concatenated feature will be further
decoded to the HDR sky panorama.

In the context of HDR imaging, the intensity of the peak often exhibits characteristics akin to an
impulse response, displaying pixel values that are significantly elevated by orders of magnitude in
comparison to adjacent pixels. This presents a substantial challenge for the decoder in accurately
recovering these patterns. Thus, we design a residual connection to explicitly inject the peak
intensity information into the final HDR sky panorama. Let Mpeak be the product of Mdir and Mint,
representing an attenuation encoded by a spherical Gaussian lobe. In our design, we specifically
substitute the decoded HDR sky panorama at the peak position with Mpeak. This substitution is
applied where the value of Mint(u) is non-zero, ensuring that the peak position in the HDR sky
panorama is accurately represented by Mpeak. This makes a significant difference between us and
Wang et al. (2022). Accurate and strong peak intensity can generate very strong shadow effects,
resulting in better rendering realism. See Figure 11.

To train the LDR to HDR skydome reconstruction, we computer the ground truth peak direction
fgtdir and peak intensity fgtint from the HDR ground-truth. During the network training process, we
employ four losses for supervision. These losses are as follows: peak direction loss Ldir, which
measures the L1 angular error of the peak direction vectors; peak intensity loss Lint, which quantifies
the log-encoded L2 error of the peak intensity vectors; HDR reconstruction loss Lhdr−recon, which
evaluates the log-encoded L2 error between the reconstructed HDR output and the ground truth HDR
data; LDR reconstruction loss Lldr−recon, which is calculated as the L1 error between the input LDR
sky panorama and the gamma-corrected HDR reconstruction.

The total loss is Ltotal = λ1Ldir + λ2Lint + λ3Lhdr−recon + λ4Lldr−recon, where λ1 = 1, λ2 =
0.1, λ3 = 2 and λ4 = 0.2.
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Data augmentation methods, including rotation, flipping, exposure adjustment and white balance
adjustment, are implemented to enrich the training data. Noticing a strong white balance inaccuracy
(the color temperature is too high) in the image data from Waymo Open Dataset Sun et al. (2020b),
we augment the HDRI with corresponding white balance adjustment. The blue channel is randomly
enlarged by 1.2-1.3 times, and the red channel is randomly reduced by 1.2-1.3 times.

D.3 PREDICT HDR SKYDOME FROM MULTI-CAMERA IMAGES

This step involves estimating skydome lighting from multi-camera images collected by the vehicle.
The core idea is to estimate intermediate features from multiple views and restore the skydome
lighting using the well-trained HDR reconstruction decoding module. We emphasize the fusion of
intermediate features from multiple cameras to get a complementary and comprehensive prediction
for the skydome lighting.

Multi-camera image data will first go through a shared image encoder to predict the peak direction
vector f (i)dir , the intensity vector f (i)int , and the sky content vector f (i)content for each image I(i), where
i is the camera index. For those vectors from N cameras, we fuse all the features in the following
strategy:

We transform f
(i)
dir , i = 1, 2, ..., N to the front-facing view using their extrinsic parameters and

averaged the rotated direction vector to f̄dir; we average f
(i)
int , i = 1, 2, ..., N to f̄int; we utilize

the attention mechanism to fuse sky content vectors as f̄content = Attn(q, k, v), where q =

f
(0)
content, k = v = stack({f icontent}i=0,1,...,N−1). Here index 0 refers to the first (front-facing)

view image and Attn(·, ·, ·) the standard attention operator. Given f̄dir, f̄int, f̄content, we use the
pre-trained decoding module from the previous stage to recover the fused intermediate vectors to
HDR panorama. See Figure 12.

Since there is no relevant panoramic data in the autonomous driving dataset for supervision, We
use HoliCity Zhou et al. (2020) to simulate multi-camera images. Based on the arrangement and
FOV of the three forward-facing cameras on the Waymo vehicle Sun et al. (2020b), we cropped the
corresponding image from the HoliCity panorama as the model inputs. To supervise the learning
of the image encoder, we use the LDR to HDR reconstruction network from the previous stage to
generate pseudo peak intensity vector GT, peak direction vector GT, sky content vector GT, and HDR
skydome GT.

We apply five losses to supervise the network during training. These losses are as follows: the peak
direction loss Ldir, which measures the L1 angular error of the fused peak direction vector; the peak
intensity loss Lint, which calculates the log-encoded L2 error of the fused peak intensity vectors; the
sky content loss Lcontent, which evaluates the L1 error of the fused sky content vectors; the HDR
reconstruction loss Lhdr−recon with log-encoded L2 error; the LDR reconstruction Lldr−recon with
L1 error.

The total loss is Ltotal = λ1Ldir + λ2Lint + λ3Lcontent + λ4Lhdr−recon + λ5Lldr−recon, where
λ1 = 0.5, λ2 = 0.25, λ3 = 0.005, λ4 = 0.1 and λ5 = 0.2.

E 3D ASSET BANK

To ensure ease of access and modification of 3D assets, we normalize our Blender models within
their Blender files using the following procedure:

1. We ensure that the model has accurate physical dimensions in the unit of meter.

2. The origin of the car model is set at the middle of the bottom of the car. We position the
model at the center of the world coordinate system, ensuring that the car model’s origin
aligns with the origin of the world coordinate system. The car is oriented to face the positive
direction of the x-axis.

3. We uniformly apply the Principled BSDF material to the car body, and name the
material "car_paint". Prompt that changes the asset’s color will affect the "Base Color"
attribute of the Principled BSDF node.
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Figure 13: Compositing node graph design in Blender Community (2018)

4. We use the Join operator to merge all meshes into one object.

Following the aforementioned approach, we normalize the Blender models collected from the Internet
to continuously expand our 3D Asset Bank.

F BLENDER RENDERING DETAILS

We fully implement the Blender rendering workflow using Python scripting, incorporating features
such as alpha channel, depth channel, and shadow effect, all achieved within a single rendering
pass.

1. To get a transparent background, we first enable the Render Properties - Film -
Transparent option.

2. To get multiple rendering output, we enable the Combined pass, Z pass and Shadow
Catcher pass in View Layer Properties panel.

3. To render the shadow, we add a very large plane under the car and enable the plane’s
Object Properties - Visibility - Mask - Shadow Catcher option.

4. To obtain scene-related colored shadows, we construct the compositing node graph as Figure
13. This configuration generates the rendered image overlaid on the scene image, along with
the accompanying depth information and mask of the vehicle and its corresponding shadow.

5. Using depth information and mask, we can handle the occlusion relationship with the
original objects in the scene. We also added a moderate amount of motion blur to the
rendered car to match the background.

G MOTION GENERATION DETAILS

The vehicle motion agent creates the initial places and subsequent motions of vehicles following the
requests commands. Existing vehicle motion generation methods cannot directly generate motion
purely from text and the scene map. Here we elaborate on the details of our text-to-motion methods.
Our method consists of two parts: vehicle placement to generate the starting points and vehicle
motion planning to generate the subsequent motions.
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Figure 14: The neighboring area division for vehicle placement.

G.1 VEHICLE PLACEMENT

We use the language command and the scene map to generate the initial position. The scene map
M follows the lane map form M = {ni, i = 1, 2, · · · ,m}, where m is the number of lane nodes
and the ith lane node ni = (xs, ys, xe, ye, ctype) consists of lane starting position (xs, ys), ending
position (xe, ye) and the lane type ctype. The map range is cropped with the range of front 80m, left
20m and right 20m. Generally, we use the lane map from the ground-truth data. If the lane map does
not exist, it is applicable to use a lane map estimation method like Liao et al. (2022; 2023) to obtain
the lane map.

Given the language command, the LLM first extracts key placement attributes, including vehicle
number, distance range, relative direction with the observer and direction of driving, and crazy mode.
With these attributes, the role function of placement begins to find suitable lane nodes from the
scene map. Here we assume all the placed vehicles are on the centerline of the road. If the distance
range (dmin, dmax) is identified, the role function selects the lane centerline nodes according to their
distance with the ego location. For the relative direction, we divide the ego neighboring area into 6
categories: front, left front, right front, left, right, and back, see Figure 14 for illustration. For the
direction of driving, we consider two types: driving close to the ego and driving away from the ego,
which determines the left/right side of the vehicle on the road. The crazy mode, which is designed
for non-compliant inverse driving behavior, is a bool variable. When it is true, we will inverse the
direction of the map (swap the starting and ending point of each lane) for that vehicle to represent
inverse driving. We select the matched lane node set and randomly select one lane node from the
set. We also consider the conflict of placing vehicles by an iterative approach that incoming vehicles
should not overlap with the existing vehicles. After obtaining lane nodes for every vehicle, we set the
midpoint of the lane node to be the initial position of a vehicle and the direction of the lane to be the
initial heading of the vehicle.

G.2 VEHICLE MOTION PLANNING

After obtaining the initial positions, we generate motions in two steps: plan the destination and plan
the middle trajectory. We first extract movement attributes including speed, action, interval and time
length. Notably, we divide actions into 5 categories: straightforward, turn left, turn right, park, and
backward. To obtain the destination, if the action category is straightforward or park, and backward,
we directly calculate a raw destination by assuming the car driving following a line with the target
speed. Then we find the closest lane node with the raw destination to be the final destination. If the
action category is turning left or turning right, we select a set of nodes whose vertical distance with
the initial line of heading is in a range (5m-30m) and fit the driving directions (the direction of the
line should be away from the starting point). We randomly pick a lane node to be the destination.

To plan the middle trajectory, we use an iterative adjustment approach to make the trajectory match
with the map and avoid off-road driving. We first use one cubic Bezier curve to fit the overall
trajectory with the condition of starting point, starting direction, ending point and ending direction.
The cubic Bezier curve is formulated by

B(t) =(1− t)3P0 + 3t(1− t)2P1

+ 3t2(1− t)P2 + t3P3, t ∈ [0, 1],
(2)

where P0, P1, P2, P3 ∈ R2 is the control points that can be solved by given starting point, starting
direction, ending point and ending direction. Then to avoid off-road driving of the intermediate
trajectory, we adjust the middle coordinate by replacing it with the closest lane node. We split the
whole trajectory into two parts with the boundary of the middle coordinate and use one cubic Bezier
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Sequence Start Frame

segment-10247954040621004675_2180_000_2200_000 0
segment-13469905891836363794_4429_660_4449_660 40
segment-14333744981238305769_5658_260_5678_260 40
segment-1172406780360799916_1660_000_1680_000 50
segment-4058410353286511411_3980_000_4000_000 90
segment-10061305430875486848_1080_000_1100_000 30
segment-14869732972903148657_2420_000_2440_000 0
segment-16646360389507147817_3320_000_3340_000 0
segment-13238419657658219864_4630_850_4650_850 0
segment-14424804287031718399_1281_030_1301_030 60
segment-15270638100874320175_2720_000_2740_000 60
segment-15349503153813328111_2160_000_2180_000 100
segment-15868625208244306149_4340_000_4360_000 110
segment-16608525782988721413_100_000_120_000 10

segment-17761959194352517553_5448_420_5468_420 0
segment-3425716115468765803_977_756_997_756 0

segment-3988957004231180266_5566_500_5586_500 0
segment-9385013624094020582_2547_650_2567_650 130
segment-8811210064692949185_3066_770_3086_770 30
segment-10275144660749673822_5755_561_5775_561 0

segment-10676267326664322837_311_180_331_180 100
segment-12879640240483815315_5852_605_5872_605 20
segment-13142190313715360621_3888_090_3908_090 0
segment-13196796799137805454_3036_940_3056_940 70
segment-14348136031422182645_3360_000_3380_000 140
segment-15365821471737026848_1160_000_1180_000 0
segment-16470190748368943792_4369_490_4389_490 0
segment-11379226583756500423_6230_810_6250_810 0
segment-13085453465864374565_2040_000_2060_000 110
segment-14004546003548947884_2331_861_2351_861 0
segment-15221704733958986648_1400_000_1420_000 70
segment-16345319168590318167_1420_000_1440_000 0

Table 6: Information on the selected and trimmed Waymo Open Dataset Sun et al. (2020b). For each sequence,
we select 40 frames starting from the Start Frame.

curve to fit each split trajectory. We iteratively repeat the process to represent the planned trajectory
by multiple cubic Bezier curves. Finally, to make the planned trajectory fit with vehicle dynamics,
we use a trajectory tracking method in Xu & Yu (2023) as post-processing to revise the planned
trajectory.

H BACKGROUND RENDERING DETAILS

H.1 DATASET SELECTION

For all Waymo Open Dataset Sun et al. (2020b) experiments, we use images captured from three
frontal cameras. The details of selection are shown in Table 6. There are 120 images in total for each
scenerio.

H.2 MULTI-CAMERA ALIGNMENT

This section will introduce the details of our multi-camera alignment algorithm. Let RCi,t and TCi,t

represents the camera Ci’s extrinsic matrix that aligned to vehicle’s coordinates at timestamp t. C0

is the front camera. The superscript (V ) and (M) represents the original vehicle’s coordinates in
autonomous driving dataset and the coordinates under Metashape’s unified space. Then the rotation
RCi,t and translation TCi,t can be calculated as:

RCi,t = R
(V )
C0,0

(R
(M)
C0,0

)−1R
(M)
Ci,t

TCi,t =
R

(V )
C0,0

(R
(M)
C0,0

)−1(T
(M)
Ci,t

− T
(M)
C0,0

)

S
+ T

(V )
C0,0

,

where S =
T

(M)
C0,1−T

(M)
C0,0

T
(V )
C0,1−T

(V )
C0,0

is a scaling factor that ensures the aligned space has the same unit length as

the real world.

22



Under review as a conference paper at ICLR 2024

Figure 15: Qualitative ablation of background rendering. (a) McNeRF w/o pose alignment.(b) McNeRF w/o
exposure. (c) Full McNeRF. Last row: target images.
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Figure 16: Qualitative result of occlusion postprocess and the color control for added car.

Figure 17: Qualitative results of rare cases simulation.

I SUPPLYMENTARY EXPERIMENTS

I.1 QUALITATIVE ABLATION STUDY OF BACKGROUND RENDERING

Figure 15 illustrates the effects of the ablation study on background rendering. It is evident that in the
absence of pose adjustment, the rendered results exhibit significant blur and anomalies. Without the
intervention of exposure adjustments, there are noticeable changes in brightness at the junctions of
different cameras, particularly in the sky. McNeRF, however, successfully avoids these two issues
and achieves the optimal rendering outcomes.

I.2 OCCLUSION WITH DEPTH TEST

During the process of adding vehicles, there may be instances of occlusion. For occlusions among
multiple vehicles to be added, Blender considers this issue during the rendering process. Therefore, we
only need to focus on the occlusion between the foreground vehicles and the background objects. The
most straightforward method to handle occlusion is determined by the depth map of the foreground
and background, respectively. The depth maps of both the foreground and background could be
used to choose for each pixel with the lesser depth to be displayed in the front, while the one with
greater depth is occluded. However, accurately estimating the background’s depth map directly is
challenging. The point cloud data in autonomous driving datasets is too sparse, and the depth maps
obtained through depth completion are also sparse and excessively noisy, making them unsuitable for
pixel-level accuracy in practical use. Here, we combine the sparse depth data from point clouds with
the object segmentation method SAMKirillov et al. (2023). SAM can achieve pixel-level accuracy
in segmentation results at the image level, without extra finetuning. We first use SAM to obtain
different patches in the background image, then identify patches that overlap with the foreground
objects. Using the sparse depth map derived from the point clouds, we calculate the average sparse
depth within these patches as the depth of each patch. Since the segmentation results of patches often
represent a complete instance, and occlusion occurs between instances, it is reasonable to calculate
the depth for the entire instance represented by a patch. Subsequently, we create the background’s
depth map from the depths of these patches and perform occlusion calculations with the depth map
rendered for the foreground, presenting each pixel with the lesser depth to finalize the occlusion
computation. The results of the occlusion calculation, as shown in Fig. 16, illustrate that the added
vehicles are occluded by those with shallower depths. This figure also displays the adjustment of the
added vehicles’ colors.
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Simulation data AP30 AP50 AP70
0 0.1263 0.0366 0.0034

600 0.1910 0.0878 0.0153
1000 0.2074 0.0930 0.0189
2200 0.2064 0.0900 0.0182

Table 7: Comparison of detection model’s performance with different number of data simulated by
ChatSim

I.3 RARE CASES SIMULATION

Leveraging diverse external digital assets, ChatSim can simulate rare and challenging-to-collect real-
world scenarios within reconstructed existing scenes. Figure 17 demonstrates ChatSim’s ability to
emulate rare cases by placing uncommon elements like bulldozers, isolation piers, fences, excavators,
and other infrequently encountered situations in reconstructed scenes. This capability enables
ChatSim to create rare digital twins for existing collected data, thus fulfilling the need for these
specific scenarios.

I.4 SUPPLEMENTARY 3D DETECTION AUGMENTATION EXPERIMENT

We conducted 3D detection augmentation experiments under a new setting: we fixed the real
data amount from the original dataset at 4200 frames and augmented it with varying quantities of
simulation data generated by ChatSim. We continued to use Lift-Splat Philion & Fidler (2020) as
the detection model, with results shown in Table 7. It is observed that the use of simulation data
significantly enhances the performance of the 3D detection task. As the amount of simulation data
increases, the final performance tends to stabilize after a certain point of improvement.
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