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Blind image watermarking is regarded as a vital technology to provide copyright of digital images. Due to the rapid growth of deep
neural networks, deep learning-based watermarking methods have been widely studied. However, most existing methods which
adopt simple embedding and extraction structures cannot fully utilize the image features. In this paper, we propose a novel Single-
Encoder-Dual-Decoder (SEDD) watermarking architecture to achieve high imperceptibility and strong robustness. Precisely, the single
encoder utilizes normalizing flow to realize watermark embedding, which can effectively fuse the watermark and cover image.
For watermark extraction, we introduce a parallel dual-decoder to improve the imperceptibility and extracting ability. Extensive
experiments demonstrate that better watermark robustness and imperceptibility are obtained by SEDD architecture. Our method
achieves a bit error rate less than 0.1% under most attacks such as JPEG compression, Gaussian blur and crop. Besides, the proposed
method also obtains strong robustness under combined attacks and social platform processing.
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1. INTRODUCTION
With the rapid development of multimedia technology and the
widespread use of online social platforms such as WeChat and
Twitter, it has become increasingly easy and convenient for people
to share various forms of digital media, including images, audio
and videos. However, due to the ease of copying and distributing
digital media, the copyrights of original works are vulnerable
to infringement. For content creators, unauthorized use of digi-
tal media always leads to financial losses and reputation risks.
Therefore, the need for copyright protection has become more
essential than ever. Digital watermarking technology provides an
effective solution by embedding identification information into
digital media to achieve copyright protection and leak source trac-
ing [1–4]. Specifically, digital image watermarking aims to embed
watermark into cover image invisibly, where the watermark can
be correctly extracted under image distortions.

Traditional methods [5–10] usually hide information by mod-
ifying the coefficients in the handcrafted features of the cover
image. Based on different embedding domains, existing research
on traditional watermarking algorithms mainly focused on trans-
form domain watermarking algorithms [5–7] and moment-based
watermarking algorithms [8–10]. Recently, various deep learning-
based methods [11–20] have been proposed to solve watermark-
ing problem, aiming to extract better image features. Zhu et al.
[11] proposed HiDDeN, an end-to-end image watermarking frame-
work that achieves robustness against various attacks by intro-
ducing a noise layer between the encoder and decoder. This
framework also introduced adversarial training to improve the
imperceptibility for the first time. Ahmadi et al. [12] proposed a
watermarking scheme based on residual network, which further
enhanced the robustness. However, the above methods struggle
to resist high-intensity JPEG compression. In order to address

the non-differentiable problem of JPEG compression in the end-
to-end network, Liu et al. [15] proposed a two-stage separable
method that separates the training process of the encoder and the
decoder. This framework is also robust against black-box noises.
Besides, Jia et al. [16] proposed a novel Mini-Batch of Real and Sim-
ulated JPEG Compression method, which significantly enhances
the robustness against JPEG compression. Luo et al. [17] used
convolutional neural networks to generate adversarial samples to
replace the distorted watermarked images attacked by noise layer,
aiming for improving the robustness against unknown attacks.
Fernandez et al. [18] proposed a self-supervised watermarking
algorithm that can achieve watermark embedding in the latent
spaces of any pre-trained network. Ma et al. [19] introduced the
invertible neural network into blind watermarking, and achieved
high imperceptibility and strong robustness at the same time by
combining invertible and non-invertible mechanisms. Fang et al.
[20] proposed a decoder-driven watermarking network called De-
END, which could effectively couple the encoder and decoder. This
architecture can be applied to existing watermarking networks
and improve performance without changing the backbone.

Furthermore, there are works researching deep learning-based
steganography and watermarking [21–23] against cross-media
distortions, such as print-capture and screen-shooting. What is
more, there are methods [24, 25] proposed to apply neural style
transfer to image steganography, which realized information hid-
ing by transferring the secret information as the content to style
transfer images. All these deep learning-based methods achieve
great performance in terms of image quality and robustness, but
their performance is limited by simple watermarking embedding
structures. Besides, most of them do not consider the effect of
decoder on imperceptibility. This paper mainly focuses on the
embedding and extraction schemes of the watermark. For the
encoder, we improve the fusion method of the cover image and
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watermark to achieve deeper information fusion. In addition,
we design a dual-decoder architecture to influence the results
of the encoder in reverse, optimizing the visual quality of the
watermarked image.

The rest of the paper is organized as follows. The research gaps
and contributions are described in Section 2. The details of the
proposed architecture are introduced in Section 3. The results
from experiment are presented in Section 4. Finally, conclusions
are drawn in Section 5.

2. RESEARCH GAPS AND CONTRIBUTIONS
2.1. Research Gaps
Existing deep learning-based image watermarking schemes
have not only achieved end-to-end watermark embedding and
extraction, improving the efficiency of watermark schemes,
but have also obtained robustness against various image
distortions through differentiable noise layer. Although current
deep learning-based robust image watermarking methods have
achieved good performance, there are still two problems that
require further optimization. Firstly, the current watermark fusion
operation which uses a single concatenation for watermark
embedding is so simplistic that lacks the ability to fully fuse the
information of the cover image and the watermark. In addition,
existing methods often improve visual quality by optimizing
the encoder or reducing the embedding strength, while the
architecture of the decoder and the choice of noises in the
noise layer also greatly affect the morphological character of
the watermark information in the watermarked image. Due
to the complexity of image distortion, a combined noise layer
composed of various noises is generally used for training. In this
case, existing decoding methods that only perform downsampling
through convolution layers will inevitably result in corner
artifacts on the watermarked image, which causes the reduction
of visual quality.

Recently, the normalizing flow has been widely used in various
fields, such as image super-resolution [26], image scaling [27] and
image compression [28], and has achieved excellent results. The
normalizing flow was first introduced [29, 30] to transform a
simple probability distribution into a complex distribution by a
sequence of invertible mappings. Subsequently, Dinh et al. [31]
proposed RealNVP, which combines additive and multiplicative
coupling layers to form a generalized affine coupling layer. This
method also introduced convolution layers in the coupling model
to better handle image tasks. Glow [32] introduces 1x1 invert-
ible convolution and actnorm layers on the basis of RealNVP
to achieve better generation results. In addition, many studies
applied normalizing flow to image steganography task [33–35],
achieving outstanding imperceptibility with high payload capac-
ity. HiNet [34] treated hiding and revealing procedure as for-
ward and backward processes of the normalizing-flow model. To
improve hiding capacity and reconstruction quality, Xu et al. [35]
proposed content-aware noise projection based on conditional
flow block, which can provide effective guidance for revealing,
thereby retaining more high-frequency information of the secret
image. The structure of the normalizing flow corresponds to the
process of watermark embedding. Specifically, the normalizing
flow has two inputs, and its process involves the repeated fusion
of features from these inputs. Therefore, we propose to apply
normalizing flow to the watermark network as a fundamental
component for the encoder, enabling better fusion of the cover
image and watermark.

2.2. Contributions
To solve the above problems, we propose a new image water-
marking structure named Single Encoder Dual Decoder (SEDD).
Different from the encoder in existing schemes, we use the flow-
based model to realize the watermark embedding, which fully
fuses the information of the watermark and the cover image
through the combination of coupling layers. The feature reuse
in coupling layers enables the watermark to be embedded into
the cover image in a more redundant form, further enhancing
the robustness of the model. Since the entire network is trained
end-to-end, the gradient information of the decoder can also
influence the encoder, which enables the encoder to learn how
to modify its output to minimize the image loss and message
loss. Therefore, improving the structure of the decoder can also
enhance the imperceptibility. To mitigate the corner artifacts,
we construct a parallel dual-decoder, which introduces global
information through fully connected (FC) layers to break through
the locality of convolution layers. By incorporating FC layers, the
decoder can access and utilize information from a wider context,
prompting the encoder to embed the watermark information in
a more global manner and thereby improving the visual quality
of the watermarked image. What is more, distributing the task of
decoding to two decoders can reduce the burden of each decoder
and improve robustness.

In summary, we list the contributions in this paper as below:

(1) We propose a novel architecture SEDD for image watermark-
ing, which can fully exploit image features to obtain better
watermarked image and extracted watermark.

(2) We present a flow-based encoder that can effectively couple
the watermark and cover image, enabling a more redundant
approach for watermark embedding.

(3) We propose a parallel dual-decoder to improve the visual
quality and extraction ability. It is able to take full advantage
of the global information and local information of the image.

3. METHOD
3.1. Overall Architecture
As shown in Fig. 1, this SEDD architecture includes five compo-
nents: (1) Watermark Processor WP, which receives the water-
mark message M ∈ {0, 1} with length L as input and outputs the
watermark feature Men ∈ R

3×H×W. (2) Encoder E, which is fed with
the cover image Ico ∈ R

3×H×W and the watermark feature Men, and
produces the watermarked image Ien ∈ R

3×H×W. (3) Noise layer N,
which receives Ien as input and distorts the watermarked image
to generate the noised image Ino. (4) Decoders D, consisting of the
convolution decoder Dconv and the FC decoder Dfc. Both Dconv and
Dfc receive the noised image Ino as input and produce the decoded
watermarks Mde1 and Mde2 , respectively. And generating the final
decoded watermark Mde by fusing Mde1 and Mde2 . (5) Adversary
discriminator Ad, which receives the image Ico or Ien to judge
whether the input image is a watermarked image or not.

3.2. Watermark Processor
In order to better realize the fusion of the watermark and cover
image, we propose the watermark processor WP to process the
watermark. The watermark is a binary message M ∈ {0, 1} of
length L. Figure 2 shows the processing of the watermark. To
align the watermark with the number of channels of the cover
image, we first use three different FC layers to generate redundant
watermarks with length L̂ = 256. Subsequently, reshape the
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Figure 1. Overview of our proposed SEDD watermarking framework. The watermark processor diffuses the watermark to the same size of the cover
image. The encoder embeds the watermark feature into the cover image using coupling layers. The noise layer includes a variety of attacks. The
decoder uses two branches for watermark extraction and fuses their outputs as the final extracted watermark. The adversary discriminator is used to
distinguish the cover image and the watermarked image.

Figure 2. The procedure of the watermark processor.

redundant watermarks to size 16×16. Then the three watermarks
are concatenated to produce three-dimensional feature. Finally, it
is upsampled to 3 × H × W by two-dimensional nearest interpola-
tion, where the H, W are the height and width of the cover image.
The watermark feature Men ∈ R

3×H×W is then fed into the encoder
to be embedded in the cover image. For watermark processing
operations:

WP(M) = Oup(Ocat(�fc1 (M), �fc2 (M), �fc3 (M))), (1)

where �fc, Ocat and Oup refer to operations FC, Concatenate and
Upsample, respectively.

3.3. Encoder
Due to the powerful representation ability and the architecture,
normalizing flow is naturally and intuitively suitable for the
image watermarking task. Therefore, we use flow-based encoder

to embed the watermark message M into the cover image in a
more imperceptible and robust way.

In Fig. 3, we build up flow blocks based on IRN [27]. We first
transform the Men and the Ico into frequency domain by Haar
transform, and both outputs’ sizes are 12 × H/2 × W/2. Taking
the feature maps after the Haar transform as input, N coupling
layers are used to fuse the watermark and cover image. For the
i-th coupling layer, the inputs are xi

m and xi
co, and the outputs xi+1

m

and xi+1
co are formulated as

xi+1
co = xi

co + φ(xi+1
m ) (2)

xi+1
m = xi

m � exp(ρ(xi+1
co )) + η(xi+1

co ), (3)

where exp(·) is exponential operator, and � is the element-wise
product. Here, φ(·), ρ(·) and η(·) are arbitrary functions and we
employ dense block in [36] to represent them. After the last
coupling layer, we obtain the outputs xN+1

m and xN+1
co . Finally, the
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Figure 3. The structure diagram of the coupling layer.

watermarked feature xN+1
co go through an inverse Haar transform

to generate the watermarked image Ien ∈ R
3×H×W.

We can regard the operation of the coupling layer as two
interactive branches. On one hand, the watermark is embedded
into the cover image through additive coupling. Meanwhile, the
information of the cover image is also incorporated into the
watermark features through affine coupling [31]. And the corre-
sponding outputs will be fed into the next layer as the new cover
image and watermark. During the coupling progress, the infor-
mation of the watermark and image is fully integrated with each
other.

To make watermarked image and cover image as visually sim-
ilar as possible, the objective of encoder is to minimize the L2

distance between Ico and Ien by updating θE with

LE = ‖Ico − Ien‖2
2 = ‖Ico − E(θE, Ico, M)‖2

2 , (4)

where Ico is the cover image, Ien is the watermarked image, M is the
watermark message and θE ∈ R represents learnable parameters
in the encoder.

3.4. Noise layer
To ensure robustness of the watermark, we utilize a noise layer
to simulate possible distortions in a real scene. Due to the variety
of image distortions, we train with an extensive family of attacks
including identity, real JPEG, JPEG-Mask, crop, Gaussian blur and
Gaussian noise, where JPEG-Mask is the simulated differentiable
JPEG noise [16].

3.5. Decoder
In deep learning-based watermarking architectures, decoder is
also a key component affecting robustness and imperceptibility.

In the watermark processor, we perform diffusion and reshape
operations on the watermark message, which obtain 16 × 16 dif-
fused watermark. In the subsequent upsample process, the near-
est interpolation will lead to a block distribution of the watermark
information. Each watermark block represents 1 bit information
of the diffused watermark. Since there is no direct correlation
between the values of the diffused watermark bits, there are
usually clear boundaries between blocks. When we use several
ConvBNReLU blocks (consist of convolution layer, batch normal-
ization and ReLU activation) to downsample the noised image
to extract the watermark, the convolution operation is mainly
performed within each watermark block because the size of the
convolution kernel is smaller than the size of the watermark
block. Thus, the convolution layer mainly represents the infor-
mation of the local watermark block, resulting in the lack of
global information. Optimizing with the constraint of image loss,
in order to reduce the visual impact of the watermark on the
watermarked image, the network tends to concentrate the infor-

mation of the block into the corner, forming corner artifacts. In
the early stage of training, the watermark is mainly presented in
the form of brightly colored irregular blocks. During the training
progress, the network gradually aggregates this color information
to the corners of watermark blocks to improve invisibility. Figure 4
shows the morphological changes of watermark features during
the training process.

To mitigate the corner artifacts, we construct a second decoder
by fully connected layers to introduce global information. Figure 5
shows the detailed architecture of the two decoders. The convo-
lution decoder Dconv consists of seven ConvBNReLU blocks, where
the downsample operation is carried out three times in the blocks.
For the FC decoder Dfc, corresponding to watermark diffusion,
we process RGB channels through three different FC layers, com-
pressing the image information from size 3 × H × W to 3 × 16 × 16.
Therefore, each input pixel of the noised image is related to the
output watermark bit, and impelling each pixel of the water-
marked image to be related to the global watermark information
as much as possible. As shown in Fig. 1, the two decoders generate
3 × 16 × 16 watermark features, and then fuse the two features
through concatenation and a convolution layer. Finally, a linear
layer is utilized to obtain the extracted watermark message Mde.
Among them, the intervention of the FC layers breaks through
the limitation that the operations of the convolution layer are
concentrated in the block, resulting in better visual quality of
the watermarked image. Besides, dual decoder can reduce the
decoding burden of single decoder, resulting in an improvement in
the extraction capability of the model. For extracting operations in
Decoder:

D(Ino) = �FC(�ConvBlk(Ocat(�Dconv (Ino), �Dfc (Ino))), (5)

where �Dconv , �Dfc and �ConvBlk refer to convolution decoder, FC
decoder and ConvBNReLU, respectively.

To ensure the accuracy of watermark extraction, the object of
decoder training is to minimize the L2 distance between M and Mde

by updating θD with

LD = ‖M − Mde‖2
2 = ‖M, D(θD, Ino)‖2

2 , (6)

where M is the watermark message, Mde is the decoded watermark
and θD ∈ R represents learnable parameters in the decoder.

3.6. Adversary discriminator
To acquire better imperceptibility of watermark, an adversarial
network is adopted in the framework, which consists of several
convolution layers and a global average pooling layer. The discrim-
inator performs as an adversary of encoder and tries to correctly
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Figure 4. Visual quality of the watermarked images generated by convolution decoder-based model. From left to right are the results of different
epochs. Top: the cover image Ico. Second row: the watermarked image Ien. Bottom: the magnified residual |Ico − Ien|.

distinguish between Ico and Ien, which is realized by updating θAd

with

LAdv = log(1 − Ad(θAd, E(Ico, M))) + log(Ad(θAd, Ico)), (7)

where θAd ∈ R denotes the learnable parameters in the adversary
discriminator.

In the meanwhile, the watermarked image attempts to confuse
the discriminator, which will result in a similar image as the cover
image. We use the LAd loss to constrain this process by updating
θE with

LAd = log(Ad(θAd, Ien)) = log(Ad(θAd, E(θE, Ico, M))) (8)

3.7. Loss Function
In total, the target loss L of the whole network consists of image
loss LE, message loss LD and adversarial loss LAd, which can be
formulated as

L = λELE + λDLD + λAdLAd, (9)

where λE, λD and λAd are weight factors (λE, λD and λAd > 0). The
total loss L is for the encoder and decoder, and loss LAdv for the
adversary discriminator.

Table 1. The details of the experimental environment.

Environment Configuration

Operating system Windows 10
RAM 32GB
GPU Nvidia GeForce RTX 2080 Ti
Programming language Python 3.7
Development framework Pytorch 1.10.2

4. EXPERIMENTS
4.1. Implementation Details
To verify the effectiveness of the proposed SEDD, we utilize the
COCO dataset [37] for training and evaluation. All models are
trained on 10 000 image, and evaluated on the other 5000 images.
Images are rescaled to size 128 × 128. Watermark messages are
sampled randomly at each bit. The watermark length is 30 bits.
For the weight factors of the loss function, we choose λE = 2,
λD = 1 and λAd = 0.001. The whole framework is implemented
by PyTorch [38] and executed on NVIDIA RTX 2080ti. Table 1
indicates the details of the experimental environment. The Adam
[39] optimizer is adopted with standard hyperparameters. The
learning rate is set to be 1 × 10−4, and the batch size is set
to be 8.

For the imperceptibility of the watermarked image, we use peak
signal-to-noise ratio (PSNR) [40] and structural similarity (SSIM)
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Figure 5. The dual decoder which consists of the convolution decoder and the fully connected decoder.

[41] as metrics. To measure the robustness of our proposed frame-
work, we utilize bit error ratio (BER) and file-level correctness ratio
(FCR) for evaluation. In practical applications, if errors occur in
the extracted watermark, even if there is only one wrong bit, the
watermark is meaningless to the image. As a result, we define FCR
as the ratio of the number of images that can fully extract the
watermark to the number of all test images:

FCR = NCI
TNI

× 100%, (10)

where NCI is the number of images that can fully extract the
watermark (the 30 bits watermark extracted from the water-
marked image has no errors) and TNI is the total number of test
images.

4.2. Visual Quality
For the combined model of our framework, the average PSNR
and SSIM reach 35.79dB and 0.9074, respectively. To intuitively
illustrate imperceptibility, we show the visual results of the water-
marked image in Fig. 6. The magnified residual |Ien − Ico| is also
shown to more clearly visualize the difference between the cover
image Ico and the watermarked image Ien. We can see that our
model achieves excellent imperceptibility. Furthermore, the resid-
ual signal shows that the watermark is adaptively embedded in
the texture area of the cover image.

4.3. Robustness Comparison with State-of-the-
art Methods
In this section, we compare our method with four SOTA methods:
HiDDeN [11], MBRS [16], SSL [18] and CIN [19]. We test MBRS, SSL
and CIN with the open source pre-trained models. For HiDDeN,
we train combined model with noise layer including JPEG-Mask,

crop, cropout, dropout and Gaussian blur. For a fair comparison,
we adjust the PSNR of all methods to 35.7dB. For SSL, we set the
target PSNR to 35.7dB. For the other three methods, we adjust the
PSNR by the strength factor. All models are trained and evaluated
with the same image size 128 × 128 × 3 and the same watermark
length 30 bits.

4.3.1. Robustness against Individual Attacks
We first show the robustness against individual attacks of the pro-
posed method. Figure 7 shows the visual results against various
distortions. Each column indicates the result against a specific
attack.

Table 2 reports the BER of each method on the individual
attacks. Overall, our model reaches optimal robustness against
most attacks while maintaining high visual quality. Especially for
JPEG compression, our method achieves a significant reduction
in the BER, which is approaching 0%. Besides, under two differ-
ent types of blurring, our model can obtain excellent extraction
results. Table 3 shows the comparison results of FCR. Our method
achieves an FCR above 0.98 on individual attacks except for
median blur, which means that the vast majority of watermarked
images can still fully extract the watermark after being attacked.
Table 4 gives a more comprehensive comparison across a range
of attack intensities. Against JPEG compression, our model outper-
forms other methods at different compression intensities. Against
Gaussian blur, our model reaches comparable performance of CIN
at standard deviation of 2 and below. For Gaussian noise, our
model performs better at high noise intensities. For Brightness,
factors below 1 and above 1 represent dimming and brightening,
respectively. It is evident that our model has a BER of 0% against
dimming, but it is slightly less robust against brightening. It
can also be seen from Table 2 that the BER of all schemes are
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Figure 6. Visual quality of the watermarked images. Top: the cover image Ico. Second row: the watermarked image Ien. Bottom: the magnified residual
|Ico − Ien| between cover image and watermarked image.

Figure 7. Visual results of the noised images with different attacks. Top: the cover image Ico. Second row: the watermarked image Ien. Third row: the
attacked image Ino. Bottom: the magnified residual |Ien − Ino| between watermarked image and attacked image.

increasing under the brightening distortion, which shows that the
image loses more information after brightening than dimming.

4.3.2. Robustness against Combined Attacks
It is an ideal situation that watermarked images are subject to
only one type of attack. In real-world scenarios, images are usually
propagated several times, which means that images are always
subject to more than one attack. In this section, we mainly discuss
the robustness of the proposed method against combined attacks.

To test the application scenarios, we design four groups of com-
bined attacks by combining different types of individual attacks
including compression, crop, noise, blur and brightness. Table 5
and Table 6 show the BER and FCR of each method under differ-
ent combined attacks and intensities, respectively. Under high-
intensity combined attacks, our model maintains an extremely
low BER which is lower than 1%. This is because our model has
strong and balanced robustness against various attacks. In par-
ticular, for combined attacks involving JPEG compression (QF=50),
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Table 2. The BER (%) values of each method against various attacks. The best and second best result are highlighted in bold and
underlined, respectively.

Attack Factor Methods

HiDDeN [11] MBRS [16] SSL [18] CIN [19] Ours

JPEG QF = 50 44.61 6.38 27.39 0.96 0.06
Gaussian Blur σ = 2 26.41 0.08 5.31 0 0.01
Median Blur k = 5 29.89 0.46 25.37 30 0.33
Resize p = 50% 23.54 0 27.72 0 0
Gaussian Noise σ = 0.15 49.46 0.02 38.99 0.01 0
Salt & Pepper p = 10% 50.04 0 44.89 0 0
Crop p = 40% 21.69 0 34.08 0 0
Cropout p = 50% 21.33 0 25.58 0 0
Dropout p = 50% 22.39 0.0007 19.89 0 0
Brightness f = 1.5 21.84 0.04 11.97 0.02 0.13
Contrast f = 1.5 21.55 0 10.91 0 0.0007
Saturation f = 1.5 21.01 0 1.53 0 0
Hue f = 0.1 26.26 0 4.64 0 0

Table 3. The FCR values of each method against various attacks. The best and second best result are highlighted in bold and
underlined, respectively.

Attack Factor Methods

HiDDeN [11] MBRS [16] SSL [18] CIN [19] Ours

JPEG QF = 50 0 0.3158 0.0008 0.8144 0.9826
Gaussian Blur σ = 2 0 0.9796 0.3602 1 0.9976
Median Blur k = 5 0 0.8938 0.0040 0.02 0.9098
Resize p = 50% 0 1 0.0010 1 1
Gaussian Noise σ = 0.15 0 0.9944 0 0.9992 1
Salt & Pepper p = 10% 0 1 0 1 1
Crop p = 40% 0.0002 1 0 1 1
Cropout p = 50% 0.0002 1 0.0010 1 1
Dropout p = 50% 0 0.9998 0.0084 1 1
Brightness f = 1.5 0.0006 0.9958 0.2044 0.9986 0.9890
Contrast f = 1.5 0 1 0.2068 1 0.9998
Saturation f = 1.5 0.0002 1 0.7410 1 1
Hue f = 0.1 0 1 0.3622 1 1

Table 4. The BER (%) values of each method under different attacks and intensities. The best and second best result are highlighted in
bold and underlined, respectively.

Attack Factor Methods

HiDDeN [11] MBRS [16] SSL [18] CIN [19] Ours

JPEG QF = 80 40.89 1.18 12.81 0.27 0.0013
QF = 70 42.33 2.95 18.83 0.47 0.01
QF = 60 43.53 4.71 23.74 0.68 0.04

Gaussian Blur σ = 1.0 21.37 0 2.47 0 0
σ = 1.5 23.55 0.0001 3.32 0 0
σ = 2.5 28.42 0.92 8.11 0.0013 0.21

Gaussian Noise σ = 0.05 31.17 0 17.32 0 0
σ = 0.10 47.85 0 31.15 0 0
σ = 0.20 49.75 0.36 43.29 0.04 0.03

Brightness f = 0.50 20.79 0 3.96 0 0
f = 0.75 20.75 0 1.11 0 0
f = 1.25 21.17 0.01 5.25 0 0.03

compared with CIN [19], the BER of the proposed method is at
least 9% lower. In addition, it can be seen that when the combined
attack strength increases, the BER of our model does not increase

significantly, and remains close to 0%. Besides, Table 6 also indi-
cates the superior performance of the proposed method compare
with other methods.
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Table 5. The BER (%) values of each method under different combined attacks and intensities. JPEG + Crop denotes that image is
attacked by Crop after JPEG compression. The two factors are used as the parameters of the two attacks, respectively. The best and
second best result are highlighted in bold and underlined, respectively.

Attack Factor Methods

HiDDeN [11] MBRS [16] SSL [18] CIN [19] Ours

JPEG + Crop QF = 80, p = 80% 41.38 1.51 30.61 1.17 0.0013
QF = 70, p = 70% 43.65 4.37 35.83 3.32 0.05
QF = 60, p = 60% 45.24 7.98 40.18 5.88 0.24
QF = 50, p = 50% 46.67 12.86 43.62 10 0.75

JPEG + Gaussian Noise QF = 80, σ = 0.04 44.59 7.12 23.55 8.93 0.0039
QF = 70, σ = 0.06 47.53 20.23 30.22 13.73 0.06
QF = 60, σ = 0.08 48.78 29.97 35.11 19.88 0.26
QF = 50, σ = 0.10 49.27 36.54 38.56 26.07 0.79

Gaussian Blur + Crop σ = 1.2, p = 80% 22.11 0.0021 30.55 0 0
σ = 1.3, p = 70% 22.89 0.0033 34.77 0.01 0
σ = 1.4, p = 60% 24.23 0.02 39.18 0.06 0.0013
σ = 1.5, p = 50% 26.22 0.18 43.15 0.33 0.04

Gaussian Blur + Brightness σ = 1.2, f = 1.2 22.28 0.05 7.55 0.09 0.06
σ = 1.3, f = 1.3 23.15 0.17 11.21 0.27 0.12
σ = 1.4, f = 1.4 24.29 0.42 14.92 0.72 0.28
σ = 1.5, f = 1.5 25.38 0.77 18.65 1.35 0.49

Table 6. The FCR values of each method under different combined attacks and intensities. The best and second best result are
highlighted in bold and underlined, respectively.

Attack Factor Methods

HiDDeN [11] MBRS [16] SSL [18] CIN [19] Ours

JPEG + Crop QF = 80, p = 80% 0 0.7342 0 0.8618 0.9996
QF = 70, p = 70% 0 0.4614 0 0.6952 0.9862
QF = 60, p = 60% 0 0.2528 0 0.4828 0.9386
QF = 50, p = 50% 0 0.0982 0 0.2370 0.8290

JPEG + Gaussian Noise QF = 80, σ = 0.04 0 0.1862 0.0076 0.6846 0.9988
QF = 70, σ = 0.06 0 0.0054 0.0004 0.4268 0.9846
QF = 60, σ = 0.08 0 0.0002 0 0.1474 0.9344
QF = 50, σ = 0.10 0 0 0 0.0322 0.8178

Gaussian Blur + Crop σ = 1.2, p = 80% 0.0004 0.9996 0 0.9998 1
σ = 1.3, p = 70% 0 0.9990 0 0.9984 1
σ = 1.4, p = 60% 0 0.9946 0 0.9824 0.9996
σ = 1.5, p = 50% 0 0.9560 0 0.9004 0.9890

Gaussian Blur + Brightness σ = 1.2, f = 1.2 0.0004 0.9968 0.3276 0.9884 0.9952
σ = 1.3, f = 1.3 0 0.9854 0.2012 0.9622 0.9890
σ = 1.4, f = 1.4 0 0.9646 0.1266 0.9150 0.9744
σ = 1.5, f = 1.5 0 0.9350 0.0754 0.8524 0.9542

4.3.3. Robustness against Social Platform Processing
Image is one of the most shared content in social platform.
During the transmission of various social media, images are often
subject to unknown compression. Thus, in this section, we mainly
discuss the effectiveness of the proposed scheme against social
platform processing. We conduct experiments on two different
types of social platforms, Twitter and WeChat. Specifically, we
use the tweet function of Twitter and the non-original image
transmission of WeChat to obtain distorted images. We randomly
select 100 images from the validation set for testing and use a
fixed watermark message for these images.

Tables 7 and 8 report the comparison results on the social
platform processing. Even under the process of unknown com-
pression, the BER and FCR of our model are still close to 0%
and 100%, respectively, which shows that our method achieves

strong robustness against social media transmission evidently.
In addition, we can see that the image compression intensity of
WeChat is stronger than Twitter, and the BER of other methods
has a large increase, but our model can still maintain a low BER.

The performance mainly benefits from the combined noise
layer and the flow-based encoder. The combined noise layer
which contains real JPEG and JPEG-Mask makes the model achieve
strong robustness to JPEG compression and thus resist social
platform processing. Besides, multiple coupling operations in the
flow-based encoder not only embed the watermark into the deep
feature of the cover image, but also greatly increase the redun-
dancy of the watermark, resulting in the improvement of the
robustness against compression. It is proved that improving the
robustness against JPEG compression is of practical significance
to image watermarking.
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Table 7. The BER (%) values of each method against social platform processing. The best and second best result are highlighted in bold
and underlined, respectively.

Social platforms Methods

HiDDeN [11] MBRS [16] SSL [18] CIN [19] Ours

Twitter 25.44 0.17 15.37 10.27 0
WeChat 28.27 7.03 27.03 20.31 0.1

Table 8. The FCR values of each method against social platform processing. The best and second best result are highlighted in bold
and underlined, respectively.

Social platforms Methods

HiDDeN [11] MBRS [16] SSL [18] CIN [19] Ours

Twitter 0 0.95 0.01 0.13 1
WeChat 0 0.17 0 0.04 0.97

Table 9. Model ablation study. Robustness and imperceptibility are measured by BER (%) and PSNR (dB), respectively. The best and
second best result are highlighted in bold and underlined, respectively.

Modules Robustness Imperceptibility

Flow-based Encoder Conv Decoder FC Decoder JPEG (QF = 50) Gaussian Blur (σ = 2) Crop (p = 40%)

� � 0.07 0.16 0.45 35.68
� � 0.09 0 0.003 34.99
� � 5.09 5.03 7.68 34.34
� � � 0.06 0.01 0 35.79

4.4. Ablation Study
Since we propose flow-based encoder and dual-decoder for better
performance, in this section, we conduct ablation experiments to
verify their effectiveness.

Table 9 represents the results of model ablation experiments.
It can be observed that absence of any part in SEDD results in
the decreasing of robustness and imperceptibility. Comparing the
top and bottom row, we can see that flow-based encoder model
outperforms the common encoder model. Especially for crop, the
BER is 0.45% lower. It shows that with flow-based encoder, the
watermark information in the watermarked image is more redun-
dant. Besides, training with dual-decoder gets better performance
than training with any single decoder. Although the second row in
Table 9 shows that the convolution decoder-based model also has
strong robustness, its imperceptibility is unsatisfactory. Figure 8
compares the visual quality of watermarked images generated by
the convolution decoder model and the dual decoder model. From
the locally enlarged image block, it can be noted that training
with convolution decoder will lead to the corner artifacts, that
is, the watermark information will gather at the corners of the
watermark block to form prominent color or dot traces. With dual-
decoder, the watermark information is more evenly distributed
in the image, which mitigates the corner artifacts in the water-
marked images.

5. CONCLUSIONS
In this paper, we propose a novel robust image watermark-
ing framework named SEDD, which effectively enhances the

robustness while ensuring high imperceptibility. To better fuse
the watermark and cover image, we utilize the flow-based model
to couple them and realize watermark embedding. In addition,
we propose a parallel dual-decoder to mitigate the corner
artifacts and improve the visual quality of the watermarked
image. Extensive experiment shows that our method achieves
stronger robustness in not only most individual attacks but
also combined attacks and social platform processing. However,
the corner artifacts on watermarked images have not been
completely eliminated. In the future, our main research will focus
on minimizing the influence of corner artifacts on visual quality
while ensuring robustness.
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Figure 8. Visual comparison of the watermarked image between convolution decoder model and dual-decoder model. The residual image is the
magnified difference between cover image and watermarked image. The symbol ‘∗’ denotes images generated by the convolution decoder-based model.
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