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Abstract
Diffusion models have emerged as a powerful
class of generative models, capable of produc-
ing high-quality images by mapping noise to a
data distribution. However, recent findings sug-
gest that image likelihood does not align with
perceptual quality: high-likelihood samples tend
to be smooth, while lower-likelihood ones are
more detailed. Controlling sample density is thus
crucial for balancing realism and detail. In this
paper, we analyze an existing technique, Prior
Guidance, which scales the latent code to influ-
ence image detail. We introduce score alignment,
a condition that explains why this method works
and show that it can be tractably checked for any
continuous normalizing flow model. We then
propose Density Guidance, a principled modi-
fication of the generative ODE that enables ex-
act log-density control during sampling. Finally,
we extend Density Guidance to stochastic sam-
pling, ensuring precise log-density control while
allowing controlled variation in structure or fine
details. Our experiments demonstrate that these
techniques provide fine-grained control over im-
age detail without compromising sample quality.
Code is available at https://github.com/
Aalto-QuML/density-guidance.

1. Introduction
Diffusion models are a family of generative models that
learn to map noise to a data distribution p0, which allows re-
alistic image sampling (Ho et al., 2020; Song et al., 2021b;a;
Vahdat et al., 2021). In the quest towards high-fidelity sam-
pling it is natural to ask whether perceptual quality of images
aligns with their likelihood p0(x) (Karczewski et al., 2025)?
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Figure 1. Density guidance controls the amount of detail. Im-
ages sampled from the same condition and latent code with differ-
ent strengths of guidance. Top: StableDiffusion v2.1 (Rombach
et al., 2022). Bottom: EDM2 (Karras et al., 2024b).

Remarkably, the density p0 correlates negatively with the
amount of detail: within the typical samples (Nalisnick et al.,
2019) x ∼ p0 higher-density images tend to lack detail and
be smooth, while lower-density images tend to be richly
textured and detailed (Sehwag et al., 2022) (See Fig. 1).
Outside the typical samples, extremely low density leads
to broken images (Karras et al., 2024a), while extremely
high density strips detail to the point of resembling sketch
drawings or blurs (Karczewski et al., 2025).

Somewhat surprisingly the common sampling strategies
in flow models do not optimise for sample density (Karras
et al., 2022). Recently, Karczewski et al. (2025) proposed an
approach towards controlling the sample density by biasing
the sampling towards the extremely high likelihood regions
of p(x0|xt), and demonstrated that these correspond to
unrealistic images. Their work is limited in three ways.
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The approach is only derived for SDE models with linear
drift. The exact procedure is not tractable so the authors
resort to approximations in practice. Finally, it only allows
targeting the highest possible likelihoods, which do not
produce realistic images. This highlights the need for a
more general approach that allows fine-grained control over
sample density while preserving realism.

In this paper, we build upon prior observations that scaling
the latent code affects image detail (Song et al., 2021b). We
refer to this method as Prior Guidance and we provide a
theoretical explanation for this phenomenon by introducing
score alignment, a condition under which Prior Guidance
provably increases or decreases log-density. We show that
this condition often holds in practice.

Beyond this analysis, we introduce Density Guidance, a
novel procedure that allows explicit control over the log-
density of generated samples. Assuming knowledge of the
score function, we derive an alternative ODE that guarantees
the log-density of the trajectory evolves exactly as specified.
Empirically, we show that this method achieves similar
results to Prior Guidance.

Finally, we extend Density Guidance to incorporate stochas-
tic sampling. This enables precise control over the log-
density of generated samples even when randomness is in-
troduced. By injecting noise at different stages of the genera-
tion process, we can selectively influence variations in high-
level structure (e.g., shape and composition) or fine-grained
details. Our experiments demonstrate that this stochastic
extension allows for enhanced diversity while preserving
control over the desired level of detail.

In summary, in this paper we

• introduce Score Alignment, a condition that explains
how latent code scaling affects image detail and can be
tractably checked for any CNF model - section 3;

• derive a modification of the generative ODE that en-
ables exact log-density control during sampling - Den-
sity Guidance - section 4;

• extend Density Guidance to stochastic sampling, retain-
ing exact log-density control while allowing controlled
variation in structure or details - section 5.

2. Background
Let x ∈ RD. We assume spatial gradient ∇ =
( ∂
∂x1

, . . . , ∂
∂xD

)T ∈ RD, divergence div =
∑
d

∂
∂xd
∈ R,

and Laplacian ∆ =
∑
d
∂2

∂x2
d
∈ R operators. We assume

continuous time t ∈ [0, T ] between data p0 and noise pT .

2.1. Continuous normalizing flows

Continuous normalizing flows (CNFs) (Chen et al., 2018)
are probabilistic models specified by a tractable prior dis-
tribution pT at terminal time T and an ordinary differential
equation (ODE)

dxt = ut(xt)dt, (1)

which samples by integrating from xT ∼ pT at t = T to
t = 0 by following the time-varying vector field ut : RD 7→
RD with a solution

xt := xt(xT ) = xT +

∫ t

T

uτ (xτ )dτ. (2)

The flow family encompasses many popular generative
frameworks, including diffusion/score-based models (Song
et al., 2021b), flow matching (Lipman et al., 2023; Tong
et al., 2024), rectified flows (Liu et al., 2023), stochastic in-
terpolants (Albergo & Vanden-Eijnden, 2023), consistency
models (Song et al., 2023), and the denoising probabilistic
models at continuous limit (Kingma et al., 2021): the vector
field ut is the denoiser.

In a CNF we can evaluate the log-likelihood of a sample
moving according to Eq. 1 with (Chen et al., 2018):

d log pt(xt)

dt
= −divut(xt), (3)

where pt is the marginal density of a process defined by
Eq. 1. Karczewski et al. (2025); Skreta et al. (2025) gener-
alized this formula to enable tracking of the marginal pt for
a sample following a different direction dxt = ũt(xt)dt as

d log pt(xt)

dt
= −divut(xt) (4)

+∇ log pt(xt)
T
(
ũt(xt)− ut(xt)

)
.

At ũt = ut, this reduces back to Eq. 3. See Appendix B for
detailed derivations.

2.2. Diffusion models

A notable case of flow models are diffusion models given by
a forward process pt(xt|x0) = N (αtx0, σ

2
t ID), or equiva-

lently, by a stochastic differential equation (SDE)

dxt = f(t)xtdt+ g(t)dWt (5)

with drift f(t) = d logαt

dt , diffusion g2(t) = 2σ2
t

d log
σt
αt

dt ,
and Wiener process Wt. A CNF with drift

uPF-ODE
t (xt) = f(t)xt −

1

2
g2(t)∇ log pt(xt)︸ ︷︷ ︸

score

(6)

shares marginals pt with Eq. 5 when pT are shared (Song
et al., 2021b). This Probability-Flow ODE (PF-ODE) is an
efficient, deterministic, sampler in diffusion models.
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Figure 2. Prior Guidance and Score Alignment (SA). Prior guidance works by moving xT (noise) in the direction of ∇ log pT (xT )
and decoding to x0 (image). The purpose of this is to increase or decrease log p0(x0), which is inversely related to the level of detail
in x0. SA is a condition that ensures prior guidance is effective by requiring the alignment of score vectors across time steps. Red
arrows represent tangents to the curves: ∇ log pT (xT ) is the tangent to the left curve at xT , and its push-forward via ∂x0

∂xT
is the tangent

to the decoded curve at x0. SA states that the transformed tangent vector must align with ∇ log p0(x0) such that the angle α ≤ 90◦

(non-negative dot product).

2.3. Stochastic sampling and likelihood

Eijkelboom et al. (2024) pointed out that any CNF can be
cast as an SDE model via the score function∇ log pt(x):1

dxt =
(
ut(xt)−

1

2
φ2(t)∇ log pt(xt)

)
dt+φ(t)dWt, (7)

where W is the Wiener process going backward in time and
the process defined by Eq. 7 shares marginals with Eq. 1 for
any choice of the variance term φ as long as they share pT .
Karczewski et al. (2025) demonstrated that for SDE models
one can also track the evolution of marginal

d log pt(xt) = F (t,xt)dt+ φ(t)∇ log pt(xt)
T dWt, (8)

where

F (t,x) =− divut(x)−
1

2
φ2(t)∆ log pt(x)

− 1

2
φ2(t)∥∇ log pt(x)∥2.

(9)

2.4. Neural network approximations

In all our experiments, we assume access to pre-trained
neural networks to approximate ut and ∇ log pt. When
estimating Jacobian-vector products such as ∂ut

∂x v, we lever-
age automatic differentiation to compute these efficiently
with a single network pass. To estimate divergence, such

1In Eijkelboom et al. (2024), the drift is: ut(xt) +
1
2
φ2(t)∇ log pt(xt). This is caused by different conventions. We

follow the diffusion literature (Song et al., 2021b), where time
flows backward, i.e. dt < 0 and the Wiener process runs in reverse
during sampling. In Eijkelboom et al. (2024) sampling is from
t = 0 to t = 1 and dt > 0.

as ∆ log pt(x) = div∇ log pt(x), we use the Hutchinson’s
trick (Hutchinson, 1989; Grathwohl et al., 2019) using a
single Rademacher test vector.

3. Scaling the latent code – when and why?
In this section we evaluate whether the simple latent rescal-
ing approach of Song et al. (2021b) is sufficient to control
for sample density, and demonstrate its shortcomings.

Song et al. (2021b) observed that scaling the latent noise
xT ∼ N (0, I) down with β < 1 monotonically decreases
the amount of detail in the decoded images xPF-ODE

0 (βxT ),
while preserving the image semantics (See Fig. 2). Inter-
estingly, Karczewski et al. (2025) recently showed that the
log-density log p0(x0) assigned by a diffusion model corre-
lates with the amount of detail in the generated image. Most
diffusion models use a Gaussian noise pT = N (0, ID),
whose score ∇ log pT (xT ) = −xT simply reduces the la-
tent norm towards zero. Thus (down)scaling at t = T is
equivalent to maximizing log pT .

These two observations suggest a simple hypothesis:

Prior guidance: To increase (decrease) log p0(x0),
it suffices to move xT in the positive (negative)
direction of∇ log pT (xT ), and then decode.

We are interested in studying whether (steepest) log pT in-
crease in latent xT leads to a monotonic increase in log p0
of the decoding x0(xT ) Eq. 2. To formalise this notion, we
assume a latent curve c : [0, 1] → RD at t = T , whose
tangent is given by the score c′(s) = ∇ log pT (c(s)). A
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monotonic curve decoding has

d

ds
log p0

(
x0

(
c(s)

))
≥ 0, ∀s, (10)

which is equivalent to Score Alignment (Appendix C):

SA : ∇ log p0(x0)
T︸ ︷︷ ︸

decoding score

∂x0

∂xT
∇ log pT (xT )︸ ︷︷ ︸

push-forward score v0∈RD

≥ 0, (11)

for all xT ∈ RD, where vt(xT ) :=
∂xt

∂xT
∇ log pT (xT ). In

Appendix C.2 we show that Eq. 11 always holds when ut is
linear in x, as in trivial diffusion models. We also show that
it does not hold in general by providing a counterexample.
See Fig. 2 for a visualisation.

To evaluate the SA Eq. 11 we need to solve for v0. We use
sensitivity equations (i.e. forward differentiation)

d

[
xt
vt

]
=

[
ut(xt)
∂ut(xt)
∂x vt

]
dt, (12)

with vT := ∇ log pT (xT ) to describe the vt evolution, and
specifically, to solve v0(vT ) (Baydin et al., 2018).

Figure 3. Nearly all xT satisfy the positive score alignment of
Eq. 11 across models and datasets.

Empirical demonstration To empirically verify whether
SA holds, one can sample a large batch of xT ∼ pT and
solve Eq. 12 from t = T to t = 02 and check whether
vT0 ∇ log p0(x0) ≥ 0. We demonstrate this on two models,
a VP-SDE model trained on CIFAR-10 (Karczewski et al.,
2025), and EDM2, a conditional latent diffusion trained
on ImageNet512 (Karras et al., 2024b). We find that for
CIFAR 97% of the latent codes satisfy the equation and
100% for EDM2 (Fig. 3). This shows that, in most cases,
scaling the latent code xT impacts∇ log p0(x0) monotoni-
cally, and thus explains the visual effect of low-level feature
manipulation (Fig. 1). See Appendix M for more samples.

Log-density vs FLIPD Kamkari et al. (2024) recently
proposed FLIPD - a method for measuring local intrin-
sic dimension and argued that it correlates strongly with

2In practice, we solve until t = ε for small ε > 0.

Figure 4. Negative log pt(xt) correlates well with image com-
pression size, while the recently proposed intrinsic dimensionality
measure FLIPD (Kamkari et al., 2024) correlates weakly. Exper-
iment performed for a latent diffusion model EDM2 trained on
ImageNet 512× 512 resolution (Karras et al., 2024b).

the amount of detail (or information) in the image as mea-
sured by the size of PNG compression of the decoded image
PNG(x0). In Fig. 4 we show on a high resolution latent dif-
fusion model EDM2 (Karras et al., 2024b) that − log pt(xt)
correlates with PNG(x0) more strongly, reaching a maxi-
mum of 84%, compared to 29% achieved by FLIPD. Fur-
thermore, we observed that the correlation of − log pt(xt)
with PNG(x0) is the strongest not for t ≈ 0, but rather
t ≈ 0.6 corresponding to log SNR(t) = log

α2
t

σ2
t
= 1. This

suggests that for detail manipulation with Prior Guidance,
verification of the SA condition Eq. 11 should be done up
to this value of t rather than t = 0.

What if score is unknown? To verify SA, one needs
to solve Eq. 12 and estimate ∇ log p0(x0). The latter is
straightforward for diffusion models, but not in the general
case of Eq. 1. Remarkably, it is also possible to evalu-
ate vT0 ∇ log p0(x0) for any flow model without estimating
the score itself. Concretely, in Appendix C.1, we show
that for ωt := vTt ∇ log pt(xt), d

dtωt = −div(∂ut

∂x (xt)vt).
Therefore, in absence of the score function, one can es-
timate ω0 by augmenting Eq. 12 with ω̇t initialized at
ωT = ∥∇ log pT (xT )∥2:

d

xtvt
ωt

 =

 ut(xt)
∂ut(xt)
∂x vt

−div
(∂ut(xt)

∂x vt
)
 dt. (13)

In Fig. 6 we present the SA verification algorithm. To em-
pirically validate Eq. 13, we used a VP-SDE CIFAR-10
diffusion model (Karczewski et al., 2025), sampled 256
latent codes xT and solved Eq. 13 from t = T to t corre-
sponding to log SNR(t) = 1. This is a score-based model
and thus we can compare the ground truth vTt ∇ log pt(xt)
with the estimated ωt. We found that their correlation was
at 98.8%. See Fig. 5.
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Figure 5. The augmented sensitivity equations of Eq. 13 accu-
rately tracks the score alignment (SA).

4. Density Guided Sampling
In section 3 we discussed ways to determine whether scaling
the latent code corresponds to changing log p0(x0). In par-
ticular, we showed that the necessary SA condition Eq. 11
does not always hold. Furthermore, the prior guidance does
not allow choosing the desired sample log-density.

We now present an approach for sampling x0 with explicit
control of log p0(x0). Suppose that we require an instanta-
neous density changes over time,

constraint:
d log pt(xt)

dt
= bt(xt) ∈ R (14)

for a predetermined bt. To achieve this, we choose a new
ODE dxt = ũtdt, such that its density change from Eq. 4
satisfies

bt(xt) = ∇ log pt(xt)
T
(
ũt(xt)−ut(xt)

)
− divut(xt).

(15)
Whenever ∇ log pt(xt) ̸= 0, Eq. 15 has multiple solutions
of ũ for any bt. We choose ũ that is closest to u, which
uniquely gives (See Appendix D)

ũt(x) = ut(x) +
divut(x) + bt(x)

∥∇ log pt(x)∥2︸ ︷︷ ︸
score bias sb(x)

∇ log pt(x). (16)

Density guidance: Eq. 16 steers the sample away
from the original trajectory towards desired likeli-
hood.

When bt = −divut, we reduce to the canonical sampler
ũt = ut. Since using Eq. 16 requires knowing the score
function, we assume from this point on that ut is given by
the PF-ODE of a diffusion Eq. 6, which is transformed by

Algorithm 1 Score Alignment verification

1: input: Flow ut, latent xT ∈ RD, step size dt > 0

2: initialize vT = ∇ log pT (xT ), t = T , ωT = ∥vT ∥2
3: while t > 0 do
4: dx← ut(xt)
5: dv ← JVP(ut,xt,vt)

6: ε← Uniform{−1, 1}D Rademacher variables

7: dω ← −εT JVP(dv,xt, ε) Hutchinson’s trick
8: xt ← xt − dt · dx
9: vt ← vt − dt · dv

10: ωt ← ωt − dt · dω
11: t← t− dt
12: end while
13: if∇ log p0(x0) known then
14: return ∇ log p0(x0)

Tv0

15: else
16: return ω0

17: end if

Figure 6. Score Alignment Verification. When the score ∇ log p0
is known, Eq. 12 applies, and the highlighted steps (correspond-
ing to Eq. 13) can be omitted. We provide JAX implementation in
Listing 1.

Eq. 16 into

ũt(xt) = f(t)xt +

(
sb(xt)−

1

2
g2(t)

)
∇ log pt(xt),

(17)

which can readily be used for sampling for any b.

The question is: How to choose bt? Notably, we cannot
simply push bt to be arbitrarily high or low, since it will fall
off the diffusion manifold, leading to nonsense decodings.

4.1. Explicit quantile matching

Suppose that we want x0 to have a pre-defined value of
log-density log p0(x0) = c ∈ R, which is equivalent to∫ T

0

bt(xt)dt = log pT (xT )− c. (18)

If this holds for b, the Eq. 16 will generate a sample x0

with the log-density c. However, not all choices of b are
equally good. In practice, u and ∇ log pt are approximated
with neural networks, and their predictions are only accurate
when xt is in the typical region of pt (Nalisnick et al., 2019).

Suppose that the target value c is the q’th quantile of log p0,
where q ∈ [0, 1]. A simple strategy is to choose bt such that
the sample xt remains on the same quantile q over all times
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Figure 7. Quantiles and typical values of log pt(xt) for a diffusion
model trained on CIFAR10.

Figure 8. Different classes have different likelihoods. Left: Dis-
tributions of log-likelihoods of 16 randomly selected classes from
ImageNet. Right: Distributions of log-likelihoods for “fox” and
“whistle” differ significantly.

t and pt. Let ϕt(q) denote the q-th quantile of log pt. Then

log pt(xt) = log pT (xT )−
∫ T

t

bτ (xτ )dτ = ϕt(q), (19)

which is satisfied for bt(x) := d
dtϕt(q). The quantile func-

tion ϕt(q) can be estimated by sampling K independent
samples xT ∼ pT , estimating log pt(xt) with Eq. 3 and
finding empirical quantiles for target values of q. We visual-
ize ϕt(0.99) and ϕt(0.01) in Fig. 7 estimated for a Variance-
Preserving (VP) SDE diffusion model with linear log-SNR
schedule trained on CIFAR10. We experimentally verify
the accuracy of explicit quantile matching in Appendix E.

4.2. Implicit quantile matching

A considerable drawback of explicit quantile matching is
the need to estimate ϕt. This becomes especially problem-
atic for conditional generation, where the distribution of
log pt can differ significantly for different classes (Fig. 8).
For applications such as text-to-image, this would require
estimating the distribution of log pt for every possible text
prompt, which is not feasible.

The Eq. 15 gives a recipe for altering the flow based on how

we want log pt(xt) to evolve. However, the challenge is
to determine what are the reasonable values of bt so that
log pt does not deviate from what is typical. We tackle
this problem by analyzing the stochastic view of CNFs.
Specifically, for xt ∼ pt, Eq. 7 says that when evaluating
xt−dt, we can add random noise and stay within the typical
region of pt−dt as long as we correct for it by subtracting
the score from the drift. Furthermore, Eq. 8 says how log pt
changes under this stochastic evolution.

Concretely, the average change in log-density, when adding
noise of strength φ(t) is given by

E
[
d log pt(xt)

]
= −

(
divut(xt) +

1

2
φ2(t)h(xt)

)
dt,

(20)
where h(x) = ∆ log pt(x)+∥∇ log pt(x)∥2 ∈ R. Interest-
ingly, in Appendix F, we empirically (and theoretically in
simplified cases) show that in diffusion models σ2

th(xt)√
2D

ap-
proximately follows N (0, 1) when xt ∼ pt and dimension
D is high. A reasonable choice is then

bt(x) = −divut(x)−
1

2
φ2(t)

√
2D

σ2
t

Φ−1(q), (21)

where Φ is the cumulative distribution function of N (0, 1)
and q is the desired quantile. We found that choosing φ to
match the diffusion strength in Eq. 5, i.e. φ ≡ g works well
in practice. Thus, in our experiments we use

bqt (x) = −divut(x)−
1

2
g2(t)

√
2D

σ2
t

Φ−1(q). (22)

After plugging this definition of b to Eq. 16, we get

uDG-ODE
t (xt) = f(t)xt−

1

2
g2(t)ηt(xt)∇ log pt(xt), (23)

which is equivalent to simply rescaling the score by

ηt(x) = 1 +

√
2DΦ−1(q)

∥σt∇ log pt(x)∥2
. (24)

We call Eq. 23 Density-Guided Sampling (DGS). Impor-
tantly, DGS comes at no extra cost since the score is eval-
uated at each sampling step anyway. Note that, as shown
in Fig. 4, the correlation of log pt(xt) with image detail is
the strongest for t∗ ≈ log SNR−1(1) and thus in our ex-
periments we only use guidance in the [T, t∗] interval. In
Fig. 9 we show samples generated with DGS with different
values of q. Interestingly, the samples are perceptually very
similar to those from Prior Guidance (Appendix M). See
Appendix J for more samples and quantitative results.

Conditional generation Whenever a conditional score
function∇ log pt(x|cond) is available, where cond can be
any condition (class, text, etc.), one need only replace the
score function with the conditional one in Eq. 23.
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Figure 9. Density Guidance controls the amount of detail. Samples generated with Eq. 23 using the EDM2 model (Karras et al., 2024b).

5. Stochastic density guidance
In previous sections we discussed two methods for control-
ling log p0(x0) during ODE sampling of form Eq. 1. How-
ever, it has been reported that adding stochasticity during
sampling can improve sample quality (Song et al., 2021b;
Karras et al., 2022). Neither of the previously discussed
methods supports stochastic sampling. Recently Karczewski
et al. (2025) lifted the first roadblock towards this by show-
ing how to evaluate log p0(x0) for an SDE. We now ask:
Is it possible to also control log p0(x0) during stochastic
sampling?

Recall a stochastic CNF sampler with noise strength φ:

dxt =
(
ut(xt)−

1

2
φ2(t)∇ log pt(xt)

)
dt+φ(t)dWt. (7)

In Appendix G, we show that, similarly to density guidance
Eq. 23, it can be altered to enforce the desired evolution
of log-density over time. Specifically, suppose that ut =
uPF-ODE
t and that we require d log pt(xt)

dt = bt(xt) for b
defined in Eq. 22. Then, the stochastic process

dxt = uDG-SDE
t (xt)dt+ φ(t)Pt(xt)dWt (25)

approximately satisfies d log pt(xt)
dt = bt(xt), where

uDG-SDE
t (x) = uDG-ODE

t (x) (26)

+
1

2
φ2(t)

∆ log pt(x)

∥∇ log pt(x)∥2
∇ log pt(x)︸ ︷︷ ︸

correction for added stochasticity

(27)

and

Pt(x) = ID−
(
∇ log pt(x)

∥∇ log pt(x)∥

)(
∇ log pt(x)

∥∇ log pt(x)∥

)T
(28)

is the “score-orthogonal” projection, which ensures that
the log pt(xt) changes deterministically even though xt
is stochastic. In Appendix G we provide the formula
Eq. 120 of the SDE drfit that exactly achieves d log pt(xt) =
bt(xt)dt for any choice of bt and ut, which we omit here
for presentation clarity. In Appendix H we experimentally
demonstrate that we can obtain exact likelihoods even for
stochastic sampling, provided the number of sampling steps
is large enough.

The Eq. 25 allows increasing variation in the samples by
injecting noise to DGS Eq. 23 whilst maintaining the desired
evolution of the log-density. Furthermore, since it is known
that diffusion models first generate high-level features and
then the details (Ho et al., 2020; Deja et al., 2022; Wang
& Vastola, 2023), DGS can be combined with stochasticity
by introducing noise at specific stages of the generation
process, allowing for controlled variation in either high-
or low-level features while preserving the desired level of
detail. We demonstrate this approach in Fig. 10 and provide
more samples in Appendix K.

6. Related Work
Sehwag et al. (2022) proposed a method for generating sam-
ples from low-density regions of diffusion models. However,
due to the intractability of likelihood in diffusion models,
their approach relies on approximations. Subsequent work
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Figure 10. Stochastic density guidance increases variation in generated samples whilst maintaining the desired level of detail.
Samples generated with Eq. 25. Adding stochasticity early in the sampling process changes high-level features, whereas adding noise
later, only affects lower-level detail.

by Karczewski et al. (2025) demonstrated that likelihood is,
in fact, tractable even in stochastic diffusion models, chal-
lenging the need for such approximations. Building on this,
our proposed methods provide explicit likelihood control for
both deterministic sampling—via Prior Guidance (section 3)
and Density Guidance (section 4)—and stochastic sampling
through Stochastic Density Guidance (section 5).

Song et al. (2021b) observed that scaling the latent code
alters the amount of detail in deterministically generated
images. While this phenomenon has been widely acknowl-
edged, we provide a rigorous analysis (section 3) and prove
that it is a direct consequence of Score Alignment Eq. 11,
which guarantees that scaling leads to a monotonic change in
the likelihood of the generated image, log p0(x0). Further-
more, we introduce tractable numerical tools (Fig. 6) that
can verify whether any given CNF model (not necessarily
score-based) exhibits this behavior.

Karras et al. (2024a) proposed auto-guidance as a method
for improving sample quality by targeting high-density re-
gions. However, Karczewski et al. (2025) found that the
highest-density regions in diffusion models contain cartoon-
like or blurry images, which raises concerns about the ef-
fectiveness of purely maximizing likelihood. In contrast,
we introduce multiple cost-free methods for explicitly con-
trolling the likelihood of generated samples. Additionally,
while Karras et al. (2024a) observed that scaling the score
function leads to oversimplified images, we demonstrate
that DGS Eq. 23 enables effective control over image de-
tail—both increasing and decreasing it—when the scaling
is adapted both temporally and spatially Eq. 24.

Yu et al. (2023) introduced Riemannian Langevin Dynam-
ics, an SDE with a non-diagonal diffusion matrix, similar
in structure to our Stochastic Density Guidance (section 5).
However, a key distinction is that our diffusion matrix is
a projection onto the orthogonal complement of the sub-
space spanned by the score function. As a result, it is not
positive definite and cannot serve as a Riemannian metric
tensor, making our approach fundamentally different in its
mathematical formulation and behavior.

Recently, Kamkari et al. (2024) proposed a method for mea-
suring local intrinsic dimension, which, in the case of im-
ages, corresponds to the amount of detail present. However,
we show that negative log p is a more effective measure of
image detail and provide empirical comparisons in Fig. 4.
Moreover, while Kamkari et al. (2024) focus on measuring
image detail, our methods enable direct manipulation of it,
allowing for finer control over generative model outputs.

7. Conclusion
In this paper, we introduced methods for controlling sample
density in flow models, enabling manipulation of image
detail through likelihood-guided sampling. We provided a
theoretical explanation of latent code scaling by introducing
score alignment, a condition that can be tractably checked
for any CNF model. Building on this, we derived Density
Guidance, a principled modification of the generative ODE
that allows for exact log-density control during sampling.
Finally, we extended this approach to stochastic sampling,
demonstrating that it retains precise detail control while
allowing controlled variation in image structure and detail.
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Our findings deepen the understanding of likelihood in flow
models and provide practical tools for better sample control.

Impact Statement
This paper presents work that advances the understanding
and controllability of sample density in diffusion-based gen-
erative models. By introducing techniques for precise log-
density control, our work contributes to improved inter-
pretability and fine-grained control over image generation.
While these advancements could enhance applications in cre-
ative and scientific domains, they also raise considerations
around synthetic media generation and potential misuse.
However, our contributions primarily aim at improving the-
oretical understanding and control in generative modeling,
without introducing new ethical risks beyond those already
associated with generative AI.
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A. Auxiliary results
A.1. Constrained optimization

In multiple sections, we will be solving constrained optimization problems, which can be written in the following way.
Suppose v ∈ RD, v ̸= 0, any y ∈ RD and a ∈ R. The problem we will encounter is

min
x∈RD

1

2
∥x− y∥2

s.t. xTv = a.

(29)

We solve this by introducing the Lagrangian L(x, λ) = 1
2∥x− y∥2 + λ(xTv − a) for λ ∈ R. By setting ∂L

∂x = 0, we get

x− y + λv = 0⇒ x = y − λv. (30)

To find λ we substitute for x in the constraint and find

yTv − λ∥v∥2 = a⇒ λ =
yTv − a
∥v∥2

. (31)

Combining the two, we get that the solution is given by

x = y +
a− vTy

∥v∥2
v. (32)

A.2. Divergence-gradient identity

We will make use of an identity connecting the gradient of the divergence with the divergence of a Jacobian vector product.
Lemma A.1. Let f : RD → RD with continuous 2-nd order derivatives and v ∈ R. Define g(x) := div f(x) =∑D
i=1

∂fi

∂xi
(x) and G(x) := ∂f

∂x (x)v. Then g : RD → R is a scalar function and G : RD → RD is a vector function
satisfying

∇g(x)Tv = divG(x). (33)

Equivalently, we write it as

(∇div f(x))
T
v = div

(
∂f

∂x
(x)v

)
(34)

Proof.

∇g(x)Tv =

D∑
j=1

∂g

∂xj
(x)vj =

D∑
j=1

∂

∂xj

(
D∑
i=1

∂f i

∂xi
(x)

)
vj =

D∑
i=1

∂

∂xi

 D∑
j=1

∂f i

∂xj
vj

 =

D∑
i=1

∂

∂xi

(
∂f

∂x
(x)v

)
i

=

D∑
i=1

∂

∂xi
Gi(x) = divG(x).

A.3. Optimality of projection

In Appendix G we will be interested in finding a linear operator A ∈ RD×D satisfying Av = 0 for some v, so that the
distance between A and the identity ID is minimal. The following lemma provides a solution.
Lemma A.2. Let 0 ̸= v ∈ RD. The solution of

min
A∈RD×D

∥A− ID∥

s.t. Av = 0,
(35)

where ∥ · ∥ can be either the spectral or Frobenius norm, is given by the projection matrix

AOPT = P = ID −
(

v

∥v∥

)(
v

∥v∥

)T
. (36)

11
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Proof. First note that for any A ∈ RD×D satisfying Av = 0, we have

∥A− ID∥F ≥ ∥A− ID∥2 = max
w ̸=0

∣∣∣∣wT (A− ID)w

∥w∥2

∣∣∣∣ ≥ ∣∣∣∣vT (A− ID)v

∥v∥2

∣∣∣∣ = ∣∣∣∣vT (0− v)

∥v∥2

∣∣∣∣ = vTv

∥v∥2
= 1. (37)

On the other hand P − ID =
(

v
∥v∥

)(
v

∥v∥

)T
, which has only a single non-zero eigenvalue λ = 1 and thus

∥P − ID∥F = ∥P − ID∥2 = 1 (38)

and

Pv = v − vTv

∥v∥2
v = 0. (39)

Therefore A = P satisfies Av = 0 and minimizes both ∥A− ID∥2 and ∥A− ID∥F .

B. Derivation of CNF density evolutions
We reproduce the continuous-time normaling flow (CNF) density evolution of Chen et al. (2018),

d log pt(xt)

dt
= −divut(xt), (40)

and the generalised CNF density evolution of Karczewski et al. (2025),

d log pt(xt)

dt
= −divut(xt) +∇ log pt(xt)

T (ũt(xt)− ut(xt)), (41)

with a unified derivation.

We assume a time-dependent particle xt ∈ RD evolving through continuous time t ∈ R governed by an ordinary differential
equation (ODE)

dxt
dt

= ut(xt), (42)

where ut(x) : R× RD 7→ RD is a time-dependent vector field that maps any state vector x to its time derivative vector
ut(xt).

CNF density evolution We are interested in the time evolution of the spatiotemporal log-likelihood log pt(xt) for particles
evolving under the ODE. We write the log density total derivative wrt time by using the chain rule

d log pt(xt)

dt
=

1

pt(xt)

dpt(xt)

dt
(43)

=
1

pt(xt)

(
∂pt(xt)

∂t
+
∂pt(xt)

∂x
· dxt
dt

)
, (44)

which describes the density evolution of a particle moving under a flow. We assume that the ODE is a continuous-time
normalizing flow, where the density is conserved over time. This is described by the continuity equation (Finlay et al., 2020;
Xu et al., 2024)

∂pt(xt)

∂t
+∇ ·

(
pt(xt)ut(xt)

)
= 0, (45)
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which describes the change in particle density as a result of a vector field ut transporting the particles, at location x. By
substitution we obtain

d log pt(xt)

dt
=

1

pt(xt)

(
−∇ · (pt(xt)ut(xt)) +∇pt(xt) · ut(xt)

)
(46)

=
1

pt(xt)

(
− pt(xt)∇ · ut(xt)−∇pt(xt) · ut(xt) +∇pt(xt) · ut(xt)

)
(47)

= − 1

pt(xt)
pt(xt)∇ · ut(xt) (48)

= −∇ · ut(xt) (49)
= −divut(xt). (50)

Generalised CNF density evolution Next, we derive the evolution of log-density log pt of a particle that is moving in
some non-canonical direction, ie. ẋt = ũt(xt) ̸= ut(xt). Notably, the continuity equation remains with the ut as we are
describing the particle density in the marginal induced by the original transport ut. We obtain

d log pt(xt)

dt
=

1

pt(xt)

(
−∇ ·

(
pt(xt)ut(xt)

)
+∇pt(xt) · ũt(xt)

)
(51)

=
1

pt(xt)

(
− pt(xt)∇ · ut(xt)−∇pt(xt) · ut(xt) +∇pt(xt) · ũt(xt)

)
(52)

=
1

pt(xt)

(
− pt(xt)∇ · ut(xt) +∇pt(xt) ·

(
ũt(xt)− ut(xt)

))
(53)

= −∇ · ut(xt) +
1

pt(xt)
∇pt(xt) ·

(
ũt(xt)− ut(xt)

)
(54)

= − divut(xt) +∇ log pt(xt) ·
(
ũt(xt)− ut(xt)

)
, (55)

which is the generalised instantaneous change of density.

C. Derivation of Score Alignment
In this section, we prove the Score Alignment condition, a necessary and sufficient condition for prior guidance to
be effective in controlling log p0. Formally, assume a latent curve c : [0, 1] → RD following the score at t = T ,
c′(s) = ∇ log pT (x0(c(s))). In a Gaussian prior pT the curve becomes a line of scaled latents xT . The log p0 is monotonic
on the decoded curve when

d

ds
log p0(x0(c(s))) ≥ 0, ∀s ∈ (0, 1). (56)

The chain rule gives the derivative

d

ds
log p0(x0(c(s))) = ∇ log p0(x0(c(s)))

T d

ds
x0(c(s)) (57)

= ∇ log p0(x0(c(s)))
T ∂x0

∂xT
(c(s))c′(s) (58)

= ∇ log p0(x0(c(s)))
T ∂x0

∂xT
(c(s))∇ log pT (c(s)) (59)

Therefore, for Eq. 56 to hold for a curve passing through some arbitrary xT ∈ RD at some point s ∈ (0, 1) it must hold

∇ log p0(x0(xT ))
T ∂x0

∂xT
(xT )∇ log pT (xT ) ≥ 0, (60)

where in Eq. 11 we omit the xT in the parentheses for brevity.
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C.1. Score alignment time evolution

In this subsection, we derive Eq. 13, i.e. how the SA condition can be checked without knowing∇ log pt for t < T . Let c be
a latent curve following the score and passing through xT , i.e. c : (−ε, ε)→ RD, c′(s) = ∇ log pT (c(s)) and c(0) = xT .
Define

ψ(t, s) := log pt(xt(c(s))) for t ∈ [0, T ], s ∈ (−ε, ε). (61)

The SA condition at xT (Eq. 60) is given by

∂ψ

∂s
(0, 0) = ∇ log p0(x0(xT ))

T ∂x0

∂xT
(xT )∇ log pT (xT ). (62)

Note that
∂ψ

∂s
(T, 0) =

d

ds
log pT (c(s))

∣∣∣∣
s=0

= ∇ log pT (c(s))
T c′(s)

∣∣∣∣
s=0

= ∥∇ log pT (xT )∥2. (63)

Therefore Eq. 62 can be equivalently written as

∂ψ

∂s
(0, 0) =

∂ψ

∂s
(T, 0) +

(
∂ψ

∂s
(0, 0)− ∂ψ

∂s
(T, 0)

)
= ∥∇ log pT (xT )∥2 +

∫ 0

T

∂2ψ

∂t∂s
(t, 0)dt, (64)

where we applied the fundamental theorem of calculus. We arrived at a seemingly more complex formula. However, we can
now swap the order of the derivatives (assuming that log p ∈ C2(R× RD) and u ∈ C1(R× RD)):

∂2ψ

∂t∂s
(t, s) =

∂2ψ

∂s∂t
(t, s) =

∂

∂s

(
∂ψ

∂t
(t, s)

)
. (65)

∂ψ
∂t is given by Eq. 3:

∂ψ

∂t
(t, s) =

d

dt
log pt(xt(c(s))) = −divut(xt(c(s))) (66)

and by the chain rule and denoting∇ divut the gradient of the scalar function x 7→ divut(x):

∂2ψ

∂s∂t
(t, s) =

d

ds
− divut(xt(c(s))) (67)

= − (∇ divut(xt(c(s))))
T d

ds
(xt(c(s)) (68)

= − (∇ divut(xt(c(s))))
T ∂xt
∂x0

(c(s))c′(s) (69)

= − (∇ divut(xt(c(s))))
T ∂xt
∂x0

(c(s))∇ log pT (c(s)). (70)

After setting s = 0 we get

∂2ψ

∂s∂t
(t, 0) = − (∇divut(xt(xT )))

T ∂xt
∂x0

(xT )∇ log pT (xT )︸ ︷︷ ︸
=vt(xT )

(71)

= − (∇divut(xt(xT )))
T
vt(xT ) (72)

(34)
= −div

(
∂ut
∂x

(xt)vt

)
, (73)

where xt = xt(xT ) and vt = vt(xT ). After plugging into Eq. 64:

∂ψ

∂s
(0, 0) = ∥∇ log pT (xT )∥2 +

∫ 0

T

−div

(
∂ut
∂x

(xt)vt

)
dt (74)

which after plugging into Eq. 62 becomes

∇ log p0(x0)
T ∂x0

∂xT
∇ log pT (xT ) = ∥∇ log pT (xT )∥2 +

∫ 0

T

−div

(
∂ut
∂x

(xt)vt

)
dt (75)

and crucially, the score function for t < T does not appear in the RHS, which can be estimated purely from derivatives of
ut.
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Figure 11. Prior Guidance is ineffective due to unsatisfied SA condition. For some latent codes: xT = σT z1 scaling the latent code by
1.22 increases log p0(x0), while for others the same scaling leads to a decrease in log p0(x0) (xT = σT z1). It can be seen that the blue
lines cross, while the orange lines do not. The same behavior was observed regardless of which SDE was used.

C.2. Score alignment holds in linear models

In this subsection, we show that the score alignment Eq. 11 holds whenever ut(xt) is linear in x. Such models are for
example linear-drift diffusion models with Gaussian data distribution p0. Score alignment is then an immediate consequence
of Eq. 75. Specifically, when ut is linear in x, then ∂ut

∂x vt does not depend on x and thus

div

(
∂ut
∂x

vt

)
= 0 (76)

and

∇ log p0(x0)
T ∂x0

∂xT
∇ log pT (xT ) = ∥∇ log pT (xT )∥2 +

∫ 0

T

0dt = ∥∇ log pT (xT )∥2 ≥ 0. (77)

C.3. SA does not always hold

We provide a simple example, for which the Score Alignment condition fails and thus Prior Guidance does not lead to
monotonic changes in log p0(x0). We study a 2-dimensional Gaussian mixture distribution with three components: p0 =
1
3

∑3
i=1N (µi, 0.005I2), where µ1 = [−0.3502,−0.6207]T , µ2 = [−0.4828, 1.0680]T and µ3 = [−0.7789, 0.7565]T (µi

we randomly chosen).

We found two latent codes z1 = [1.3166,−0.2252]T and z2 = [−0.1504,−0.2165]T exhibiting inconsistent behaviour.
Specifically, when xT = σT z1, scaling up by 1.22 decreases log p0(x0), while for xT = σT z2 the same scaling increases
log p0(x0). We visualize this in Fig. 11 with solid lines corresponding to decoding xT and the dashed lines the decodings
of 1.22xT . This behavior was consistent regardless of which SDE was used.

D. Derivation of Density Guidance
In this section we derive Eq. 16. From Eq. 15, we see that if xt is following a trajectory given by dxt = ũt(xt)dt, then

d log pt(xt)

dt
= bt(xt) ⇔ ∇ log pt(xt)

T (ũt(xt)− ut(xt)) = bt(xt) + divut(xt) (78)

⇔ ũt(xt)
T∇ log pt(xt) = bt(xt) + divut(xt) + ut(xt)

T∇ log pt(xt) (79)

Whenever ∇ log pt(xt) = 0, then RHS is satisfied only when bt(xt) = −divut(xt). In other words, when the score
function vanishes, the infinitesimal change in log pt(xt) is the same and equal to −divut(xt) regardless of the choice of
ũt.

Assume now that ∇ log pt(xt) ̸= 0. For fixed (t,xt), we can treat the condition in Eq. 78 as a linear equation with
w := ũt(xt) being the unknown quantity we want to solve for. It is a single equation with D variables (dimensionality
of w), i.e., it does not have a unique solution. We can choose one that satisfies additional criteria out of all possible
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Figure 12. Explicit Quantile Matching achieves exact likelihoods when step size goes to zero. For all numbers of sampling steps, the
correlation between the desired log p0 and the obtained log p0 is above 99%.

solutions. Specifically, we choose a solution that diverges from the original trajectory ut(xt) the least. We therefore solve
the following constrained optimization problem

min
w∈RD

1

2
∥w − ut(xt)∥2

s.t. wT∇ log pt(xt) = bt(xt) + divut(xt) + ut(xt)
T∇ log pt(xt),

(80)

which is treated in Appendix A.1. The solution is

w = ut(xt) +
bt(xt) + divut(xt) + ut(xt)

T∇ log pt(xt)−∇ log pt(xt)
Tut(xt)

∥∇ log pt(xt)∥2
∇ log pt(xt) (81)

= ut(xt) +
bt(xt) + divut(xt)

∥∇ log pt(xt)∥2
∇ log pt(xt), (82)

which matches Eq. 16.

E. Explicit quantile matching
To demonstrate claims made in Section 4.1, we performed density guidance with explicit quantile matching on CIFAR-10.
Specifically, we estimated the quantile function ϕt as described in Section 4.1 by sampling K3 samples xT ∼ pT and
solving the PF-ODE (Eq. 6) from t = T to t = 0 in 1024 Euler steps. For all samples, we estimated the marginal log-density
at each step log pt(xt) with Eq. 3 and defined the quantile function ϕt as empirical quantiles of log pt(xt). We then define
bt(x) =

d
dtϕt, which we estimate with a moving average of finite difference estimates.

We found that the difference between the desired values of log-density and the obtained ones goes to zero as we decrease
the discretization error (increase the number of sampling steps). Interestingly, for lower number of sampling steps, even
though we do not obtain exact desired values of likelihood, the correlation between the desired values and the obtained ones
remains above 99%, even for as few as 32 Euler sampling steps. This means that for all values of the number of sampling
steps, we saw a monotonic relationship between the target log p0 and the amount of detail (PNG size). Please see Fig. 12.
As “ground truth” log p0(x0) estimate, we used Eq. 3 for encoding x0 to xT with the PF-ODE (Eq. 6) in 1024 Euler steps.

3We tested K = [16, 32, 64, 128, 256, 512, 1024] and found that using K = 128 is enough to ensure a correlation between the
desired value of log-density and the obtained one is above 99%.
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F. Asymptotic behaviour of ∆ log p(x) + ∥∇ log pt(x)∥2

In this section, we discuss an observation that proved useful in determining typical values d log pt(xt)
dt in diffusion models.

Specifically, we observed that for some distributions p0 after diffusing into pt via the forward process p(xt|x0) =
N (αtx0, σ

2
t ID), the following holds

h(x) =
σ2
t

(
∆ log pt(x) + ∥∇ log pt(x)∥2

)
√
2D

d−−−−→
D→∞

N (0, 1), (83)

where D denotes the dimension of the distribution pt and “ d→” denotes convergence in distribution.

F.1. Single data point

We begin by showing Eq. 83 for the simplest possible case, where p0 = δx0
. In that case pt = N (αtx0, σ

2
t ID) and

∇ log pt(x) =
αtx0 − x

σ2
t

∆ log pt(x) = −
D

σ2
t

.

Since x = αtx0 + σtε for ε ∼ N (0, ID) and our expression becomes

h(x) =
σ2
t

(
− D
σ2
t
+ 1

σ2
t
∥ε∥2

)
√
2D

=

∑
j(ε

2
j − 1)
√
2D

. (84)

Since {ε2j}j are i.i.d. random variables with χ2
1 distribution, we have that E[ε2j ] = 1, Var[ε2j ] = 2, and the claim follows

from the central limit theorem.

F.2. Non-isotropic Gaussian distribution

When pt is Gaussian, but with non-diagonal covariance an analogous result holds when the covariance matrix satisfies some
additional conditions. We begin with a useful lemma.
Lemma F.1 (Quadratic CLT (de Jong, 1987)). Suppose A = [aij ] ∈ RD×D is a real symmetric matrix with eigenvalues
λ1, . . . , λD. Let {εj}j=1...D be independent variables such that εj ∼ N (0, 1).

If

lim
D→∞

maxj≤D λ
2
j∑

j≤D λ
2
j

= 0, (85)

then
εTAε− Tr(A)√

2∥A∥F
d−−−−→

D→∞
N (0, 1). (86)

Let pt = N (µ,Σ) for Σ satisfying the following conditions. Denoting Σ = LLT , and Σ̃ = L−1(LT )−1 with λ1, . . . , λD
eigenvalues of Σ̃, we assume

lim
D→∞

maxj≤D λ
2
j∑

j≤D λ
2
j

= 0 (87)

Note that for Σ = σ2
t ID, we have Σ̃ = 1

σ2
t
ID, λk = 1

σ2
t

, and all the above conditions becomes limD→∞
1
D = 0, which of

course holds. Then

h(x) =
∆ log pt(x) + ∥∇ log pt(x)∥2√

2∥∇2 log pt(x)∥F
d−−−−→

D→∞
N (0, 1). (88)

For x ∼ N (µ,Σ), we can represent x = µ+ Lε for Σ = LLT and ε ∼ N (0, ID). In this case, we have

∇ log pt(x) = Σ−1(µ− x) = −(LT )−1ε

∇2 log pt(x) = −Σ−1

∆ log pt(x) = −Tr(Σ−1).

17



Density guidance

Note that ∥∇ log pt(x)∥2 = εT Σ̃ε, where Σ̃ = L−1(LT )−1. Since Σ−1 = (LT )−1L−1 and Tr(AB) = Tr(BA), we have
∆ log pt(x) = −Tr(Σ̃) and ∥Σ̃∥F = ∥Σ−1∥F = ∥∇2 log pt(x)∥F We can now write

h(x) =
∆ log pt(x) + ∥∇ log pt(x)∥2√

2∥∇2 log pt(x)∥F
=

εT Σ̃ε− Tr(Σ̃)√
2∥Σ̃∥F

d−−−−→
D→∞

N (0, 1) (89)

from Lemma F.1.

F.3. Gaussian Mixture

Usually, the distributions we are interested in can be represented as p0 = 1
K

∑K
k=1 δxk

, where {xk}k ⊂ RD is the data set.
We show that in this case Eq. 83 also holds. In that case, pt = 1

K

∑K
k=1N (µk, σ

2
t ID), where µk = αtxk. We will use the

following identity, which holds for any p(x):

∆ log p(x) + ∥∇ log p(x)∥2 =
∆p(x)

p(x)
. (90)

In the Gaussian mixture case (denoting pk = N (µk, σ
2
t ID), we have

∂

∂xi
pt(x) =

1

K

∑
k

pk(x)
µik − xi

σ2
t

=
1

Kσ2
t

∑
k

pk(x)(µ
i
k − xi)

and
∂2

∂(xi)2
pt(x) =

1

Kσ2
t

∑
k

∂

∂xi
pk(x)(µ

i
k − xi)−

1

σ2
t

pt(x) =
1

Kσ4
t

∑
k

pk(x)(µ
i
k − xi)2 −

1

σ2
t

pt(x).

Therefore, we have

h(x) =
σ2
t

(
∆ log pt(x) + ∥∇ log pt(x)∥2

)
√
2D

=
σ2
t∆pt(x)

pt(x)
√
2D

=

∑
k wk(x)∥

x−µk

σt
∥2 −D

√
2D

, (91)

where wk(x) :=
pk(x)
p(x) . In Theorem 1 we show that h(x) d−→ N(0, 1). We additionally verify this hypothesis numerically.

Specifically, we set the number of components toK = 128 and sample {µk} fromN (0, σ2
t ID). We then sampleN = 16384

samples xj ∼ pt(x) and evaluate corresponding values of h(x) with Eq. 91. We repeat this experiment for three values of
σt ∈ {0.5, 1, 10}. To test whether the distribution of h(x) approaches N (0, 1) for larger D, we repeat this experiment for
D = 2m for m = 6, 7, . . . , 12 and evaluate the p-value of a normality test on h(x) 4. We see that for D greater than≈ 1000,
the distribution of h(x) is close to N (0, 1) as evidenced by p-value being greater than the commonly used significance
threshold α = 0.05. Please see Fig. 13.

F.4. Image data

In this section we study p0 being CIFAR-10 image data distribution and ∇ log pt(x) being approximated with a neural
network. Specifically, we uniformly sample different times t ∈ (0, T ] and corresponding noisy samples xt ∼ pt(x). Then,
we estimate ∇ log pt(x) using a model and ∆ log pt(x) ≈ div∇ log pt(x) using the Hutchinson’s trick. Finally, we plot
Φ−1(h(xt)) for h(xt) estimated using Eq. 83, where Φ is the cumulative density function of N (0, 1). If h(xt) ∼ N (0, 1),
then Φ−1(h(xt)) ∼ U(0, 1) for all t ∈ (0, T ]. Indeed, this is precisely the observed behaviour for two different choices
of the forward process: α2

t + σ2
t = 1 (VP-SDE) and αt + σt = 1 (CFM) confirming that this finding also holds for high

dimensional image data. See Fig. 14.

G. Stochastic density guidance
In this section, we derive the stochastic density guidance method. A central tool in this section is Itô’s lemma (Itô, 1951), a
generalization of the total derivative to stochastic processes.

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html
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Figure 13. h(x) approaches N (0, 1) for larger D.

Figure 14. h(xt) approximately follows N (0, 1) for various definitions of the diffusion process.
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Lemma G.1 (Itô’s Lemma). Let dxt = µ(t,xt)dt+G(t,xt)dWt be a D-dimensional Itô process with µ : R×RD → RD,
G : R× RD → RD×D and W the Wiener process in RD. For a smooth function h : R× RD → R, it holds that h(t,xt) is
also an Itô process with the following dynamics

dh(t,xt) =
(∂h
∂t

(t,xt) + µ(t,xt)
T ∂h

∂x
(t,xt) +

1

2
Tr
(
G(t,xt)

T∇2h(t,xt)G(t,xt)
))
dt

+
∂h

∂x
(t,xt)

TG(t,xt)dWt,

(92)

where ∇2h is the Hessian matrix of h w.r.t x. In the case when G(t,x) = φ(t)ID, the dynamics simplify to

dh(t,xt) =
(∂h
∂t

(t,xt) + µ(t,xt)
T ∂h

∂x
(t,xt) +

1

2
φ2(t)∆xh(t,xt)

)
ds+ φ(t)

∂h

∂x
(t,xt)

T dWt (93)

In contrast to the total derivative for deterministic processes, the forward and reverse-time dynamics are not the same for
stochastic processes. We now prove the reverse-time Itô’s lemma, which will be useful in our derivation as our convention is
that sampling happens backward in time, from t = T to t = 0.

Corollary 1 (Reverse-time Itô’s lemma). Let dxt = µ(t,xt)dt +G(t,xt)dWt, dt < 0, W the Wiener process running
backwards in time from t = T to t = 0 and µ and G are as in Lemma G.1. Then

dh(t,xt) =
(∂h
∂t

(t,xt) + µ(t,xt)
T ∂h

∂x
(t,xt)−

1

2
Tr
(
G(t,xt)

T∇2h(t,xt)G(t,xt)
) )
dt

+
∂h

∂x
(t,xt)

TG(t,xt)dWt,

(94)

with the modifications coming from time-reversal highlighted in blue.

Proof. Let s = T − t. Since ds = −dt, the dynamics of x can be equivalently written as (Dockhorn et al., 2022):

dxs = −µ(T − s,xs)ds+G(T − s,xs)dWs (95)

for the standard Wiener process W and ds > 0. Now let h̃(s,x) := h(T − s,x). Applying Itô’s lemma to h̃ yields

dh̃(s,xs) =
(∂h̃
∂s

(s,xs)− µ(T − s,xs)T
∂h̃

∂x
(s,xs) +

1

2
Tr
(
G(T − s,xs)T∇2h̃(s,xs)G(T − s,xs)

))
ds

+
∂h̃

∂x
(s,xs)

TG(T − s,xs)dWs

=
(
− ∂h

∂t
(T − s,xs)− µ(T − s,xs)T

∂h

∂x
(T − s,xs) +

1

2
Tr
(
G(T − s,xs)T∇2h(T − s,xs)G(T − s,xs)

) )
ds

+
∂h

∂x
(T − s,xs)TG(T − s,xs)dWs.

(96)

The claim follows from switching back to running backward in time t← T − s

Recall Eq. 7 which describes stochastic sampling from a CNF model

dxt =
(
ut(xt)−

1

2
φ2(t)∇ log pt(xt)

)
dt+ φ(t)dWt (7)

for which, we know how the log-density evolves (Eq. 8):

d log pt(xt) =

(
−divut(x)−

1

2
φ2(t)

(
∆ log pt(x) +

1

2
φ2(t)∥∇ log pt(x)∥2

))
dt+ φ(t)∇ log pt(xt)

T dWt. (8)

We now ask: how can modify the stochastic dynamics (Eq. 7) so that

d log pt(xt) = bt(xt) (97)
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for some given bt. Suppose that x is following

dxt = ũt(xt)dt+G(t,xt)dWt (98)

for some ũ and G. To evaluate the change log-density we will use Corollary 1 applied to h(t,x) = log pt(x):

d log pt(xt) =
(∂ log pt

∂t
(xt) + ũt(xt)

T∇ log pt(xt)−
1

2
Tr
(
G(t,xt)

T∇2 log pt(xt)G(t,xt)
) )
dt

+∇ log pt(xt)
TG(t,xt)dWt.

(99)

Since we assumed that d log pt(xt) = bt(xt)dt, the stochastic component of d log pt(xt) must vanish, i.e.
∇ log pt(x)

TG(t,x) = 0. There are many G that satisfy this condition including a trivial G ≡ 0. However, stan-
dard stochastic sampling (Eq. 7) assumes isotropic noise, i.e. G(t,x) = φ(t)ID and we want to match that as closely as
possible. An optimal solution (Lemma A.2) to this problem is the projection G(t,x) = φ(t)Pt(x) for:

Pt(x) = ID −
(
∇ log pt(x)

∥∇ log pt(x)∥

)(
∇ log pt(x)

∥∇ log pt(x)∥

)T
. (100)

Clearly Pt(x)
T = Pt(x). Furthermore, since Pt is a projection matrix, it also holds that Pt(x)Pt(x) = Pt(x). Now we

can plug this into Eq. 99 and we obtain

d log pt(xt) =
(∂ log pt

∂t
(xt) + ũt(xt)

T∇ log pt(xt)−
1

2
φ2(t)Tr

(
Pt(xt)

T∇2 log pt(xt)Pt(xt)
) )
dt. (101)

Using the symmetry and idempotency of Pt, and properties of the trace (linearity and Tr(AB) = Tr(BA)), we have

Tr
(
Pt(x)

T∇2 log pt(x)Pt(x)
)
= Tr

(
Pt(x)∇2 log pt(x)

)
(102)

= Tr
(
∇2 log pt(x)

)
− 1

∥∇ log pt(x)∥2
Tr
(
∇ log pt(x)∇ log pt(x)

T∇2 log pt(x)
)

(103)

= ∆ log pt(x)−
∇ log pt(x)

T∇2 log pt(x)∇ log pt(x)

∥∇ log pt(x)∥2
(104)

= ∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x)), (105)

where

R(∇2 log pt(x),∇ log pt(x)) =
∇ log pt(x)

T∇2 log pt(x)∇ log pt(x)

∥∇ log pt(x)∥2
(106)

represents the Rayleigh quotient of the Hessian evaluated at∇ log pt(x). Furthermore, from Eq. 45, we have

∂ log pt
∂t

(x) = −divut(x)−∇ log pt(x)
Tut(x). (107)

Combining these, we get

bt(xt) =
d log pt(xt)

dt
=− divut(xt) +∇ log pt(xt)

T (ũt(xt)− ut(xt))

− 1

2
φ2(t)

(
∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x))

)
.

(108)

Any ũt(x) satisfying Eq. 108 guarantees the desired evolution of log-density. However, we wish to minimize the discrepancy
from the new drift ũt(xt) and the one from Eq. 7, which guarantees sampling from the correct distribution: ut(xt) −
1
2φ

2(t)∇ log pt(xt). Therefore, we solve the constrained optimization problem:

min
ũ∈RD

1

2
∥ũ− ut(xt) +

1

2
φ2(t)∇ log pt(xt)∥2

s.t. ũ is a solution of Eq. 108.
(109)
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This is a problem setting discussed and solved in Appendix A.1 with
x = ũ

y = ut(xt)− 1
2φ

2(t)∇ log pt(xt)

v = ∇ log pt(xt)

a = bt(xt) + divut(xt) + ut(xt)
T∇ log pt(xt) +

1
2φ

2(t)
(
∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x))

) (110)

After substituting

ũt(xt) = y +
a− vTy

∥v∥2
v (111)

= ut(xt)−
1

2
φ2(t)∇ log pt(xt) (112)

+
bt(xt) + divut(xt) +(((((((((

ut(xt)
T∇ log pt(xt)−∇ log pt(xt)

T (����ut(xt)− 1
2φ

2(t)∇ log pt(xt))

∥∇ log pt(xt)∥2
∇ log pt(xt)

(113)

+
1

2
φ2(t)

∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x))

∥∇ log pt(xt)∥2
∇ log pt(xt) (114)

= ut(xt)−
1

2
φ2(t)∇ log pt(xt) +

bt(xt) + divut(xt) +
1
2φ

2(t)∥∇ log pt(xt)∥2

∥∇ log pt(xt)∥2
∇ log pt(xt) (115)

+
1

2
φ2(t)

∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x))

∥∇ log pt(xt)∥2
∇ log pt(xt) (116)

= ut(xt)−
���������1

2
φ2(t)∇ log pt(xt) +

bt(xt) + divut(xt)

∥∇ log pt(xt)∥2
∇ log pt(xt) +

���������1

2
φ2(t)∇ log pt(xt) (117)

+
1

2
φ2(t)

∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x))

∥∇ log pt(xt)∥2
∇ log pt(xt) (118)

= ut(xt) +
bt(xt) + divut(xt) +

1
2φ

2(t)
(
∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x))

)
∥∇ log pt(xt)∥2

∇ log pt(xt). (119)

The solution is

ũt(xt) = ut(xt) +
bt(xt) + divut(xt) +

1
2φ

2(t)
(
∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x))

)
∥∇ log pt(xt)∥2

∇ log pt(xt), (120)

which exactly matches Eq. 15 when φ ≡ 0 as expected. Now suppose that ut = uPF-ODE
t and b is defined as in Eq. 22.

bqt (x) = −divut(x)−
1

2
g2(t)

√
2D

σ2
t

Φ−1(q). (22)

Then the drift becomes

ũt(x) = uDG-ODE
t (x) +

1

2
φ2(t)

∆ log pt(x)−R(∇2 log pt(x),∇ log pt(x))

∥∇ log pt(xt)∥2
∇ log pt(xt). (121)

Practical approximation The Laplacian, ∆ log pt(x), is given by the trace of the Hessian ∇2 log pt(x), which corre-
sponds to the sum of its eigenvalues. In contrast,

R(∇2 log pt(x),∇ log pt(x)) =
∇ log pt(x)

T∇2 log pt(x)∇ log pt(x)

∥∇ log pt(x)∥2

represents the Rayleigh quotient of the Hessian evaluated at ∇ log pt(x). This quantity is bounded in absolute value by
the largest absolute eigenvalue of the Hessian, i.e., its spectral norm. Intuitively, when the eigenvalues of the Hessian are
relatively uniform—such as when it is close to a scaled identity matrix—the Laplacian scales linearly with the dimension,
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Figure 15. Explicit Quantile Matching obtains exact likelihoods even for stochastic sampling. Top row: small amount of noise;
Middle row: medium amount of noise; Bottom row: large amount of noise. The higher the amount of noise in sampling, the more steps
need to be taken for the difference between desired log p0 and obtained log p0 to go to zero.

whereas the Rayleigh quotient remains bounded by a constant. This suggests that in high-dimensional settings, the Laplacian
dominates.

Empirically, we verified this intuition by estimating both quantities on real data. Specifically, we used a VP-SDE model
trained on CIFAR-10 (32× 32 resolution, D = 3072) (Karczewski et al., 2025) and a VE-SDE model trained on ImageNet
(64 × 64 resolution, D = 12288) (Karras et al., 2022) and sampled uniformly values of t ∈ [0, T ] and corresponding
xt ∼ pt (used 8192 and 16384 samples respectively) and found that the ratio was negligibly small in practice∣∣∣∣R(∇2 log pt(xt),∇ log pt(xt))

∆ log pt(xt)

∣∣∣∣ ≈
{

0.0003 ± 0.00006 for CIFAR-10
0.00006 ± 0.00003 for ImageNet64

(122)

This confirms that, in practice,R(∇2 log pt(x),∇ log pt(x)) is negligible compared to ∆ log pt(x). Therefore, in practice,
we use

uDG-SDE
t (x) := uDG-ODE

t (x) +
1

2
φ2(t)

∆ log pt(x)

∥∇ log pt(x)∥2
∇ log pt(x)︸ ︷︷ ︸

correction for added stochasticity

. (123)

H. Explicit quantile matching with stochastic sampling
In this section, we repeat the experiment from Appendix E, where we define the desired log-density evolution bt(x) = d

dtϕt,
where ϕt is the empirical quantile function (see Section 4.1). However, instead of density guidance, we perform stochastic
density guidance, i.e. we sample with the density guided SDE:

dxt = ũt(xt)dt+ φ(t)Pt(xt)dWt, (124)

where ũt is defined in Eq. 120, with the exception that we setR(∇2 log pt(x),∇ log pt(x)) to zero as explained in Eq. 122.
We experimented with different definitions of φ, which controls the strength of the noise injection, specifically, we tested
φ(t) = rg(t) for r = [0.1, 0.5, 0.9], where g is the diffusion strength of the forward process Eq. 5. As expected, as the
amount of noise increases, the required number of steps to take to achieve exact likelihoods increases. Please see Fig. 15.
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I. JAX implementation of Score Alignment verification
1 import jax
2 import jax.random as jr
3 import jax.numpy as jnp
4

5 def aug_drift(u, x, v, t, key):
6 model_key, eps_key = jr.split(key, 2)
7 eps = jr.rademacher(eps_key, (x.size,), dtype=jnp.float32)
8 def u(x_):
9 return u(t, x_.reshape(x.shape), key=model_key).flatten()

10 def du_dv(x_):
11 u_pred, du_dv_pred = jax.jvp(u, (x_,), (v,))
12 return u_pred.reshape(x.shape), du_dv_pred
13 return du_dv(x.flatten())
14

15 def aug_drift_w_omega(u, x, v, t, key):
16 model_key, eps_key = jr.split(key, 2)
17 eps = jr.rademacher(eps_key, (x.size,), dtype=jnp.float32)
18 def u(x_):
19 return u(t, x_.reshape(x.shape), key=model_key).flatten()
20 def du_dv(x_):
21 u_pred, du_dv_pred = jax.jvp(u, (x_,), (v,))
22 return du_dv_pred, u_pred.reshape(x.shape)
23 def div_du_dv(x_):
24 du_dv_pred, du_dv_eps, u_pred = jax.jvp(du_dv, (x_,), (eps,), has_aux=True)
25 return u_pred, du_dv_pred, -jnp.sum(eps * du_dv_eps)
26 return div_du_dv(x.flatten())
27

28 def score_alignment_verification(u, x_T, v_T, T, dt, key, eps=1e-2, use_omega=False):
29 t = T
30 x = x_T
31 v = v_T
32 omega = jnp.sum(v_T **2) if use_omega else None
33 while t > eps:
34 key, subkey = jr.split(key)
35 if use_omega:
36 dx, dv, domega = aug_drift_w_omega(u, x, v, t, subkey)
37 omega -= dt * domega
38 else:
39 dx, dv = aug_drift(u, x, v, t, subkey)
40 x -= dt * dx
41 v -= dt * dv
42 t -= dt
43 if use_omega:
44 return omega
45 else:
46 return jnp.dot(v, score_fn(eps, x, key)) # Assuming score_fn is known

Listing 1. JAX Implementation of Score Alignment Verification

J. Quantitative analysis of prior and density guidance
In this section we provide more samples and a quantitative analysis showing that we can reliably control log-density of
generated samples and thus amount of detail as measured by PNG file size. Please see: Fig. 16 for results for StableDiffusion,
Fig. 17 for EDM2, and Fig. 18 for EDM2 with classifier-free guidance.

K. More Stochastic Density Guidance samples
We generate more samples using Eq. 25 with the EDM2 model in two scenarios: adding noise early: φ(t) = 0.2g(t)
for log SNR(t) < −4 and φ(t) = 0 otherwise; and adding noise late: φ(t) = 0.3g(t) for log SNR(t) > −3 and
φ(t) = 0 otherwise. To demonstrate that we have fine-grained control over image detail, we do it for various values of the
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Figure 16. Stable Diffusion v2.1 samples. PG and DG can monotonically control the amount of detail as measured by PNG file size.

Figure 17. EDM2 samples. PG and DG monotonically control log-density and amount of detail.

Figure 18. EDM2 samples with classifier-free guidance. Both PG and DG are effective when CFG is used.
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Figure 19. Density guided samples in stochastic sampling. We chose two starting random seeds and for each of them generated 4
random samples with two strategies: adding noise early in the generation (altering high-level detail), or late (low-level detail). For the
inner sampling loop, we used the same random seeds across all runs.

Figure 20. Density and Prior Guidance can improve perceptual quality as measured by NIQE score. Left: NIQE scores (lower is
better) for both Density and Prior Guidance on the EDM2 model for various values of the hyperparameters (q and ∥xT ∥ respectively)
with regular samples as reference in grey. Right: Representative examples of best-scoring hyperparameters. NIQE score seems to favor
lower-detail images.

hyperparameters. See Fig. 19 for a visualization. We compare this for Prior Guidance, which is not principled for stochastic
sampling, because the larger the amount of noise, the less information xT carries about the final generated sample x0.

L. Connection with perceptual metrics
There exist various metrics measuring the perceptual quality of image generation models. Most popular include LPIPS
(Zhang et al., 2018) and SSIM (Wang et al., 2004). However, these are reference-based quality measures, meaning that
they require the ground truth to compare to, which is not available in unconditional image generation. We therefore used
NIQE (Mittal et al., 2012), which is a non-reference perceptual quality measure, reported to strongly correlate with human
judgement. It provides a single number per image, which indicates whether an image has been distorted (a lower number -
higher quality). It was used, e.g., by Sami et al. (2024) to evaluate super-resolution diffusion models.

M. Prior Guidance samples
In Fig. 21 we show samples generated with the EDM2 ImageNet 512 × 512 model (Karras et al., 2024b). Specifically,
we randomly sampled a latent code xT = σTε for ε ∼ N (0, ID) and scaled it to have specific values of the norm. Since
log pT (xT ) = C− 1

2∥ε∥
2 and ∥ε∥2 ∼ χ2(D), we choose the values of the target squared norm to be quantiles of χ2(D) for

q ∈ [0.001, 0.999] for xT to remain in the typical region of pT . Higher values of q mean higher norm, i.e. lower log pT (xT ),
and are thus decoding produces more detailed images.
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Given that the Score Alignment holds for the EDM2 model (Fig. 3), we can see that scaling the latent code (Prior Guidance)
is effective in controlling log p0(x0) and thus the image detail. We additionally include samples for StableDiffusion v2.1
(Rombach et al., 2022) in Fig. 22.

N. Gaussian Mixture asymptotics
Lemma N.1. Let f : R→ R, f(x) = exp(− 1

2x)x. Then for all x ∈ R

f(x) ≤ 1 (125)

Proof.

f ′(x) = −1

2
exp

(
−1

2
x

)
x+ exp

(
−1

2
x

)
= exp

(
−1

2
x

)(
1− 1

2
x

)
.

f ′(x) > 0 for x < 2 and f ′(x) < 0 for x > 2. Therefore for all x ∈ R

f(x) ≤ f(2) = exp(−1)2 =
2

e
< 1.

Lemma N.2. For any a > 0 and x > 0 (a
x
+ x
)2
≥ 4a. (126)

Proof.

0 ≤
(a
x
− x
)2

=
a2

x2
− 2a+ x2 =

(a
x
+ x
)2
− 4a

Theorem 1. Let X ∈ RD be drawn from a mixture of K Gaussian components:

Pr(Y = k) = πk, X | (Y = k) ∼ N (µk, σ
2ID), (127)

where µj ̸= µi for i ̸= j (note that this assumption is not restrictive, because when different components share the mean,
the mixture can be rewritten with distinct µ and updated π). Define

h(X) =
1√
2D

 K∑
j=1

wj(X)
∥X − µj∥2

σ2
−D

 , (128)

where

wj(x) =
πj exp

[
− 1

2σ2 ∥x− µj∥2
]∑K

m=1 πm exp
[
− 1

2σ2 ∥x− µm∥2
] . (129)

Then h(X)
d−→ N(0, 1) as D →∞.

Proof. Step 1: It suffices to show h(X) | (Y = k)→ N(0, 1). Indeed,

φh(X)(t) = E
[
eith(X)

]
=

K∑
k=1

πkE
[
eith(X) | Y = k

]
=

K∑
k=1

πkφh(X)|Y=k(t).

Thus if each conditional law converges to N(0, 1) (point-wise convergence of characteristic functions), so does the
unconditional mixture.

Step 2: Rewrite X = µk + σε. Conditioning on Y = k, we have X = µk + σε, ε ∼ N (0, ID). Thus

∥X − µk∥2

σ2
= ∥ε∥2 ∼ χ2

D,
∥ε∥2 −D√

2D

d−→ N(0, 1)
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Step 3: Define remainderRD. Set
K∑
j=1

wj(X)
∥X − µj∥2

σ2
= ∥ε∥2 +RD,

so

h(X) =
∥ε∥2 −D√

2D
+
RD√
2D

.

Using Slutsky’s theorem, it suffices to showRD/
√
2D

d−→ 0, which is a weaker condition than convergence in probability.
It thus suffices to show

RD√
2D

P−→ 0 (130)

Step 4: ShowingRD/
√
2D

P−→ 0. Let

∆j,k :=
µk − µj

σ
̸= 0.

Note
∥X − µj∥2

σ2
= ∥ε+∆j,k∥2 = ∥ε∥2 + 2εT∆j,k + ∥∆j,k∥2 = ∥ε∥2 + bj

for bj = 2εT∆j,k + ∥∆j,k∥2 and bk = 0 since ∆k,k = 0. Hence

RD =

K∑
j=1

wj(X)
[
2εT∆j,k + ∥∆j,k∥2

]
=
∑
j ̸=k

wj(X)bj .

Also:

wj(X) =
πj exp

[
− 1

2σ2 ∥x− µj∥2
]∑K

m=1 πm exp
[
− 1

2σ2 ∥x− µm∥2
] = πj exp

[
− 1

2 (∥ε∥
2 + bj)

]∑K
m=1 πm exp

[
− 1

2 (∥ε∥2 + bm)
] = πj exp(− 1

2bj)∑K
m=1 πm exp(− 1

2bm)
.

Then

RD =

∑
j ̸=k πj exp(−

1
2bj)bj

πk +
∑
m̸=k πm exp(− 1

2bm)
.

We will now separate the sum in the numerator of RD into positive and negative bj . Define J+ = {j ̸= k|bj ≥ 0} and
J− = {j ̸= k|bj < 0}:

RD =

∑
j∈J+ πj exp(− 1

2bj)bj

πk +
∑
m̸=k πm exp(− 1

2bm)
+

∑
j∈J− πj exp(− 1

2bj)bj

πk +
∑
m ̸=k πm exp(− 1

2bm)
.

From Lemma N.1, exp(− 1
2bj)bj ≤ 1 and thus

∑
j∈J+ πj exp(− 1

2bj)bj ≤ 1. Therefore (note shrinking denominators to
achieve upper bounds):

|RD| ≤

∣∣∣∣∣
∑
j∈J+ πj exp(− 1

2bj)bj

πk +
∑
m ̸=k πm exp(− 1

2bm)

∣∣∣∣∣+
∣∣∣∣∣
∑
j∈J− πj exp(− 1

2bj)bj

πk +
∑
m ̸=k πm exp(− 1

2bm)

∣∣∣∣∣
≤ 1

πk +
∑
m ̸=k πm exp(− 1

2bm)
+

∑
j∈J− πj exp(− 1

2bj)|bj |
πk +

∑
m̸=k πm exp(− 1

2bm)

≤ 1

πk
+

∑
j∈J− πj exp(− 1

2bj)|bj |
πk +

∑
m∈J− πm exp(− 1

2bm)

≤ 1

πk
+

∑
j∈J− πj exp(− 1

2bj)|bj |
πk +

∑
m∈J− πm exp(− 1

2bm)
=

1

πk
+
∑
j∈J−

w̃j |bj |,
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where w̃j =
πj exp(− 1

2 bj)

πk+
∑

m∈J− πm exp(− 1
2 bm)

and
∑
j∈J− w̃j =

∑
j∈J− πj exp(− 1

2 bj)

πk+
∑

m∈J− πm exp(− 1
2 bm)

≤ 1. Thus

∑
j∈J−

w̃j |bj | ≤
∑
j∈J−

w̃j max
j∈J−

|bj | ≤ max
j∈J−

|bj | = max(−min
j ̸=k

bj , 0),

where the last equality comes from the definition of J−. In summary

|RD| ≤
1

πk
+max(−min

j ̸=k
bj , 0).

Now, for any δ > 0:

Pr

(
|RD|√
2D

> δ

)
= Pr

(
|RD| > δ

√
2D
)
≤ Pr

(
max(−min

j ̸=k
bj , 0) > δ

√
2D − 1

πk

)
.

Now choose D large enough so that a = δ
√
2D − 1

πk
> 0. Then

Pr

(
max(−min

j ̸=k
bj , 0) > a

)
= Pr (∃j ̸=k bj < −a) ≤

∑
j ̸=k

Pr (bj < −a) .

Now plugging in the definition of bj and using the fact that Z =
εT∆k,j

∥∆k,j∥ ∼ N (0, 1).

Pr (bj < −a) = Pr
(
2εT∆j,k + ∥∆j,k∥2 < −a

)
= Pr

(
Z < −1

2

(
a

∥∆j,k∥
+ ∥∆j,k∥

))
.

And using the standard Gaussian tail bound Pr(Z < −t) = Pr(Z > t) ≤ exp(− 1
2 t

2) for t > 0:

Pr (bj < −a) ≤ exp

(
−1

8

(
a

∥∆j,k∥
+ ∥∆j,k∥

)2
)
≤ exp

(
−1

2
a

)
,

where the last inequality comes from Lemma N.2. Therefore

Pr

(
|RD|√
2D

> δ

)
≤
∑
j ̸=k

Pr(bj < −a) ≤
∑
j ̸=k

exp

(
−1

2
a

)
= (K − 1) exp

(
−1

2

(
δ
√
2D − 1

πk

))
−−−−→
D→∞

0

We have shown that for all δ > 0

lim
D→∞

Pr

(∣∣∣∣ RD√2D
∣∣∣∣ > δ

)
= 0, (131)

which means
RD√
2D

P−−−−→
D→∞

0.
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Figure 21. Prior Guidance controls the detail when Score Alignment holds. Samples generated with the EDM2 latent diffusion model
(Karras et al., 2024b) for different values of quantiles q for the χ2 distribution. See Appendix M for details.

Figure 22. Samples with Prior Guidance on StableDiffusion v2.1 (Rombach et al., 2022)
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