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Figure 1: How robust are computational models to 3D object transformations compared to humans? We evaluate 169
models across six identity-preserving 3D transformations: object rotation, scaling, translation, and background change on 176
3D objects. We benchmark these models against humans, analyzing 281,600 trials collected from over 220 participants.

Abstract

Recent work at the intersection of psychology, neuro-
science, and computer vision has advocated for the use
of more realistic visual tasks in modeling human vision.
Deep neural networks have become leading models of
the primate visual system. However, their behavior un-
der identity-preserving 3D object transformations, such
as translation, scaling, and rotation, has not been thor-
oughly compared to humans. Here, we evaluate both
humans and image-based deep neural networks, includ-
ing vision-only and vision-language models trained with
supervised, self-supervised, or weakly supervised ob-

jectives, on their ability to recognize objects undergo-
ing such transformations. Humans (n=220 ) and mod-
els (n=169 ) were asked to categorize images of 3D ob-
jects, generated with a custom pipeline, into 16 object
categories recognizable by both. Humans were time-
limited to reduce reliance on recurrent processing. We
find that both humans and models are robust to transla-
tion and scaling, but models struggle more with object
rotation and are more sensitive to contextual changes.
Humans and models agree on which in-depth object ro-
tations are most challenging – when humans struggle,
models do too – but humans are more robust and show



Table 1: Comparison with existing benchmarks. Unlike prior work, our dataset provides human data and ensures controlled
variation across transformations while maintaining a large number of objects.

Benchmark
Human

Data
Controlled
Variation

Number of
Transformations

Number of
3D Objects Task

ObjectNet (Barbu et al., 2019) ✗ ✗ 3 ∼ Categorization
NVD (Ruiz et al., 2022) ✗ ✗ 5 92 Categorization
PUG: ImageNet (Bordes et al., 2023) ✗ ✗ 10 724 Categorization
MOCHI(Bonnen et al., 2024) 35k trials ✗ 3 ∼ Identification
ORBIT 281k trials ✓ 6 176 Categorization

more consistent category confusions with one another
than with any model. By testing model families trained
on different amounts of data and with different learn-
ing objectives, we show that data richness plays a sub-
stantial role in supporting robustness – potentially more
so than vision-language alignment. Our benchmark ex-
cludes models trained on video, multiview, or 3D data,
but is in principle compatible with such models and may
support their evaluation in future work. This study under-
scores the importance of using naturalistic visual tasks
to model human object perception in complex, real-world
scenarios, and introduces a benchmark - ORBIT (Ob-
ject Recognition Benchmark for Invariance to Transfor-
mations) - for evaluating and developing computational
models of human object recognition. Code and data
for ORBIT are available at: https://github.com/
haideraltahan/ORBIT.

Keywords: invariant object recognition; 3D object transforma-
tions; robustness; model-to-human alignment; deep neural net-
works; human behavior

Introduction
To develop accurate models of the primate visual system, it
is essential to evaluate models on naturalistic visual tasks
that reflect the complexity of object perception (Peters &
Kriegeskorte, 2021; Bowers et al., 2022). One such task is
image categorization across 3D object transformations, which
is central to primate vision (Marr, 2010; DiCarlo & Cox, 2007)
and presents a more naturalistic challenge than standard
benchmarks (Deng et al., 2009). Recognizing objects across
transformations like rotation, scaling, and translation is funda-
mental to human visual processing, yet remains challenging
for artificial models to replicate. By focusing on these trans-
formations, we bring models closer to real-world visual chal-
lenges.

Recent work has begun to systematically compare hu-
man and neural network performance on view-invariant object
recognition, revealing important differences in how each sys-
tem handles this task (O’Connell et al., 2023; Bonnen et al.,
2024; Ollikka et al., 2025). Even when models achieve high
accuracy, their behavior may not match human perceptual
strategies (Geirhos et al., 2020). Often, models rely on sim-
pler or alternative processing shortcuts that diverge from the

more complex, dynamic strategies humans use to recognize
objects across different views (Bonnen et al., 2024). These
findings highlight the need for closer alignment between how
models and humans process visual information.

To better understand this alignment, we introduce ORBIT
(Object Recognition Benchmark for Invariance to Transforma-
tions), a new benchmark that evaluates both models and hu-
mans on object categorization under 3D transformations (Fig-
ure 1). Unlike previous datasets (Table 1), ORBIT provides
controlled variation across six transformations, a large set of
3D objects, and 281k human response trials from 220 individ-
uals, enabling rigorous comparison of model robustness and
human perception. We focus on deep neural networks that
take a single static image as input and support object cat-
egorization, including vision-only and vision-language models
trained with (weakly) supervised or self-supervised objectives.
By systematically varying transformation parameters, we in-
vestigate where models succeed, where they fail, and how
their errors compare to humans, offering new insights into the
alignment between artificial and biological vision.

Methods

Task

Humans and models performed the same task: a forced-
choice categorization task on object images. While DNNs,
typically trained on the ImageNet dataset (Deng et al., 2009),
classify objects into a large set of fine-grained categories, hu-
man perception tends to favor broader, more intuitive ”basic-
level” categories (Rosch et al., 1976; Geirhos, Janssen, et al.,
2018). To align human and model label spaces, we employed
a mapping approach proposed by (Geirhos, Temme, et al.,
2018), where the 1,000 fine-grained ImageNet categories are
consolidated into 16 broader categories using the WordNet hi-
erarchy (Fellbaum, 2010). These categories include airplane,
bear, bicycle, bird, boat, bottle, car, cat, chair, clock, dog, ele-
phant, keyboard, knife, oven, and truck.

Stimuli

3D object stimuli. The stimuli used in ORBIT are ren-
dered images of 3D objects shown under a range of identity-
preserving transformations. The images were generated us-
ing 176 3D objects sourced from prominent online repositories

https://github.com/haideraltahan/ORBIT
https://github.com/haideraltahan/ORBIT


(Tables 6 to 9). Object selection was guided by two key crite-
ria: relevance to the 16 predefined categories and high visual
realism. Only models that clearly fit the broader category la-
bels were included to ensure consistency across the dataset.
Each object was required to be high-resolution and visually
detailed (e.g., with a high number of polygons). To standard-
ize the stimulus set for consistent evaluation, we applied two
preprocessing steps to each 3D object. First, we performed
uniform scaling by resizing models based on their largest
bounding-box dimension, ensuring consistent size while pre-
serving proportions. Second, we applied object centering by
translating each model to the center of the camera’s coordi-
nate frame, standardizing position across renderings. Figure 6
provides a mosaic of all objects in their canonical views.

Identity-preserving transformations. To generate the full
image set, we used Unity, a 3D game engine, to render each
object under a controlled set of transformations designed to
probe robustness in object recognition. To facilitate stimulus
generation, we developed augment3D, an open-source pack-
age to create image datasets for human and model experi-
ments on object vision, which we plan to release later this
year. The transformations we applied included: object trans-
lation, scaling, rotation, and background changes. Transla-
tion was implemented by repositioning objects on a polar grid,
varying direction and distance from the image center. Scale
was varied by adjusting the camera distance, simulating zoom
effects from 12.5% to 200% of baseline object size. Rota-
tion was applied around each world axis in 45° steps, keep-
ing the object centered and camera fixed. Backgrounds were
changed using six natural scene images categorized as con-
gruent or incongruent with each object class, alongside a col-
ored noise control and a neutral gray baseline matched to Ima-
geNet’s average pixel values. To illustrate the range of applied
transformations, Figure 7 shows an example object rendered
under each transformation.

Evaluation images. Each transformation was applied in-
dependently to all objects, resulting in a balanced and fully
crossed stimulus set. A single canonical view was used as the
baseline across all transformations, accompanied by seven
transformed views per object for each transformation condi-
tion, yielding 1,280 images per transformation (16 categories
× 10 objects × 8 images). Across all transformations, this re-
sulted in a total of 7,680 images, each rendered at a resolution
of 224 × 224 pixels. Further implementation details are pro-
vided in the Appendix. This systematic and diverse synthetic
image dataset forms a comprehensive benchmark for evalu-
ating both human and model performance on invariant object
recognition.

Human experiment
Participants. A total of 226 participants completed the exper-
iment. Participants were recruited via Prolific, an online partic-
ipant recruitment platform. Eligible individuals were between
18 and 35 years of age, had normal or corrected-to-normal vi-
sion, and reported no history of neurological disorders. Prior
to participating in the study, all individuals provided implied

consent through a questionnaire administered on Qualtrics
(Qualtrics, Provo, UT). Participants were compensated at a
rate of $15 per hour. All procedures were approved by the
Office for Research and Ethics at Western University.

To ensure data quality, we included an ImageNet test block
prior to the main experimental blocks. Participants who did not
reach at least 80% accuracy on this test were not invited to
continue and are not included in the final sample. Additionally,
six participants were excluded from the analysis because their
performance fell more than 1.5 times the interquartile range
below the median.

Experimental design. Each trial began with a gray screen
displaying a central white fixation cross. Participants initiated
the trial by clicking on the fixation cross. Following this action,
a stimulus image was presented for 200 ms, immediately fol-
lowed by a colored mask lasting 200 ms. The mask served
to increase task difficulty and reduce the influence of recur-
rent processing on performance. Next, a response screen
appeared, displaying multiple category buttons arranged in a
circular configuration around the fixation point. This screen
remained visible for up to 1500 ms or until the participant
responded, whichever occurred first. The circular layout en-
sured equal distance from the fixation cross to each button,
minimizing potential spatial biases in decision making. To
avoid anticipatory movements, the mouse cursor was locked
during image and mask presentation. During the response
phase, participants selected the category they deemed most
congruent with the stimulus (Figure 8). More details on the
human experiment can be found in the Appendix.

Neural network models

We conducted a systematic analysis of 169 models and dis-
tilled this set to a representative subset of 31 models for fo-
cused comparison with human behavior. This subset was
selected to span a broad range of architectures, training ob-
jectives, and dataset scales, while minimizing redundancy in
the main figures. We selected models that (1) have been
widely used in cognitive computational neuroscience, (2) rep-
resent distinct trends in modern model development (e.g.,
transformer-based vision models, vision-language pretrain-
ing), and (3) span meaningful variation in architecture, learn-
ing objective, and data scale. While these dimensions are
not fully disentangled – model families, as defined below, rep-
resent generational shifts that co-vary along multiple axes –
they nonetheless offer insight into which aspects of model
design may contribute to human-like robustness. All model
evaluations, including those for the full set of 169 models, are
available in the supplementary codebase: https://github
.com/haideraltahan/ORBIT. The 31 selected models fall
into four families:

1. Vision-only: This category comprises early convolutional
neural networks (CNNs), including AlexNet (Krizhevsky
et al., 2012), VGG-16 (Simonyan & Zisserman, 2015),
ResNet50 (He et al., 2015), and SqueezeNet (Iandola et
al., 2016), along with early vision transformers (ViT-B/32)

https://github.com/haideraltahan/ORBIT
https://github.com/haideraltahan/ORBIT
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Figure 2: Human and model performance averaged across transformations. Human performance is shown using red
dotted lines, with shaded areas indicating 95% confidence intervals. (A) Accuracy at object categorization for canonical views
(light bars) and transformed views (dark bars). (B) Robustness, computed by expressing accuracy for transformed views as a
proportion of accuracy for canonical views. (C) Error consistency. Bars show the average consistency between each model and
individual human participants. The red dotted line indicates average consistency between individual human participants.

(Dosovitskiy et al., 2021). These models were trained on
ImageNet-1K using either categorical supervision or self-
supervised learning objectives such as contrastive learn-
ing. Self-supervised models within this category underwent
linear probing on ImageNet-1K. Additionally, we included
implementations of ResNet50 designed to enhance robust-
ness, although they do not explicitly account for transforma-
tions in 3D object space (Salman et al., 2020).

2. Vision-only+: This category comprises more advanced vi-
sion architectures, including ConvNext (Liu, Mao, et al.,
2022), EfficientNet (Tan & Le, 2021, 2019), and DeiT III
(Touvron et al., 2022), trained on the ImageNet-21K (Ridnik
et al., 2021) dataset. These models employ categorical su-
pervision or self-supervised methodologies, frequently in-
corporating knowledge distillation (Touvron et al., 2022) and
masked image modeling with semantic targets (Peng et al.,
2022). Self-supervised models in this category were further
fine-tuned on ImageNet-1K. Both vision-only and vision-
only+ models are widely utilized in computational neuro-
science due to their alignment with hierarchical visual pro-
cessing in biological systems (Conwell et al., 2024).

3. Vision-only++: This category encompasses large-scale
vision models trained on datasets exceeding 100 million
images through weakly supervised learning paradigms.
These models leverage noisy supervisory signals, such as
human-generated hashtags Singh et al. (2022) or teacher-
generated labels (Q. Xie et al., 2020), to optimize feature
representations at scale. These models offer insight into
the role of large-scale data exposure in supporting robust-
ness to 3D transformations

4. Vision-Language Models (VLMs): This category in-
cludes multimodal architectures trained using contrastive

language-image pretraining (CLIP) (Radford et al., 2021),
which enables them to learn rich, cross-modal represen-
tations that bridge visual and linguistic information. Re-
cent studies suggest that VLMs exhibit strong alignment
with neural activity in high-level visual cortex (Wang et al.,
2023), a region crucial for forming abstract, invariant rep-
resentations of objects across diverse transformations (Di-
Carlo & Cox, 2007; Rust & DiCarlo, 2010). Given their ex-
posure to large-scale image-text data, VLMs may develop
more flexible object representations, supporting robustness
to identity-preserving transformations. However, whether
their improved performance is driven by semantic enrich-
ment from language supervision or simply greater dataset
scale remains an open question, motivating comparisons
with vision-only models trained on similarly large datasets.

Evaluation metrics
To assess performance across humans and DNNs, we em-
ployed three evaluation metrics:

1. Accuracy: Proportion of correctly categorized stimuli. For
human participants, accuracy corresponds to the propor-
tion of trials in which the selected category matched the
ground truth (one of the 16 predefined categories). For
models trained or linearly probed on ImageNet, we mapped
their 1,000-class predictions to the 16 target categories
(Geirhos, Temme, et al., 2018). Similarly, for VLMs, we
computed zero-shot accuracy by first acquiring predictions
on the 1,000 ImageNet classes, then mapping to the 16-
category scheme.

2. Robustness: Measure of the ability to maintain perfor-
mance across transformations, reflecting generalization ca-
pacity under changes in object appearance. Robustness
is computed as the ratio of accuracy on transformed views
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to accuracy on canonical views of the same objects. A ro-
bustness score close to 1 indicates strong invariance, while
lower/higher values indicate sensitivity to transformations.
This metric captures how well models and human partici-
pants maintain recognition performance across changes in
viewpoint, scale, position, and background context.

3. Error consistency: The similarity of misclassification pat-
terns between two decision makers (e.g., different models
or human participants). High overall accuracy can lead to
high observed consistency even if the errors occur on differ-
ent images. To account for this, we used a chance-adjusted
measure (Geirhos et al., 2021, 2020) to evaluate whether
the observed consistency exceeds what would be expected
from independent decision makers with matched accuracy.

Results

Data-rich models are closing the gap with
time-limited humans

We computed categorization performance for humans and
models for canonical and transformed views of the objects.
Canonical views were a priori determined by the experi-
menters and shown in Figure 6 for an example object. Fig-
ure 2A shows performance averaged across all identity-
preserving transformations. While vision-only models are be-
low human performance on canonical as well as transformed
views, vision-only+ models reach human-level performance
on canonical views, and some vision-only++ models and most
VLMs reach human-level performance on transformed views.
However, the relative drop in performance when moving from
canonical to transformed views appears smaller for humans
than models, i.e. humans appear more robust. We next com-
puted robustness for humans and models by expressing per-
formance for transformed views as a ratio of the performance
for canonical views. Figure 2B confirms our observation that



models are approaching human-level robustness, with VLMs
leading. VLMs are also leading on error consistency with hu-
mans (Figure 2C), suggesting that these models may use sim-
ilar strategies as humans when categorizing objects across
identity-preserving transformations.

VLMs are the top-ranked models on all measures shown in
Figure 2. However, it is important to note that the included
vision-language models are data-rich models trained on mil-
lions or billions of images. To assess the impact of visual diet,
we evaluated a subset of vision-language models with identi-
cal architectures trained with CLIP using varying amounts of
data. The amount of training data has a considerable impact
on accuracy (Figure 4). Accuracy monotonically increases
with the amount of training data, in a similar fashion as ob-
served for the vision-only models in Figure 2.

Beyond dataset size, model complexity also plays a signif-
icant role in performance. As shown in Figure 4, increasing
model size – measured by the number of parameters – im-
proves categorization accuracy, with larger architectures (e.g.,
Eva-01 G/14 1012M) approaching human-level performance.
This pattern is observed across both vision-language mod-
els and vision-only++ models, suggesting that both larger-
scale training and more complex architectures contribute to
improvements in object recognition under transformations.

Consistent with these observations, vision-only++ models,
which are trained on similarly large amounts of images as
the VLMs, show accuracy and robustness comparable to their
vision-language-trained counterparts (Figure 2AB). These re-
sults suggest that data richness is a stronger determinant of
robustness to identity-preserving object transformations than
vision-language alignment, and model complexity further en-
hances performance.

While the gap is closing, models do not fully achieve
human-level robustness to identity-preserving transforma-
tions. We next investigated which transformations are con-
tributing to this gap. Accuracy, robustness, and error consis-
tency metrics for individual transformations suggest that ob-
ject rotation and changes in background are driving the ro-
bustness gap (Figures 9 to 11).

Object rotation is challenging for both humans and
models, but humans are more robust

To get a more detailed picture of model-to-human alignment,
we plotted performance at object categorization as a func-
tion of transformation level, for each transformation separately
(Figure 3). These plots confirm that humans and models are
robust to object translation and, to a large extent, object scal-
ing, but are challenged by object rotation.

For in-plane object rotation, models exhibit a decline in ac-
curacy as rotation increases, with performance dipping most
strongly around 180 degrees away from the canonical orien-
tation. In contrast, humans maintain high accuracy across all
rotation angles, suggesting that they are robust to this trans-
formation. The data-rich vision-only++ models and VLMs get
closest to humans, while the earlier generations of vision-only

models do noticeably worse. Despite the differences in robust-
ness across model families, they do agree on which rotations
are most challenging.

In-depth object rotation is challenging for both humans and
models (Figure 3). Their accuracy decreases notably at 90
and 270 degrees away from the canonical orientation, where
an object is seen from the front and back, or bottom and
top. Interestingly, the data-rich vision-only++ models and
VLMs reach human-level performance when an object is ro-
tated about its vertical axis (y; front-back) but not its horizontal
axis (x; bottom-top). Performance differences between model
families are also larger for rotation about the horizontal axis.
These observations suggest that models struggle more with
occlusion and perspective changes introduced by this trans-
formation. We speculate that the models’ visual diet may con-
tain more images of objects rotated about their vertical than
their horizontal axis. In sum, humans and models are chal-
lenged by object rotation in-depth and agree on which rota-
tions are most difficult, but humans are more robust.

While these results highlight the overall robustness advan-
tage of humans, closer inspection reveals that the perfor-
mance gap may narrow under certain conditions. Figure 12
shows that for in-depth rotation about the horizontal axis (x),
the top-performing models closely approach human perfor-
mance, while a consistent gap remains for in-plane rotation.
To better understand the source of the remaining performance
gap, we analyzed human accuracy over the course of the ex-
periment. Accuracy improved across blocks, particularly for
these two challenging transformations. Notably, during the
first block of trials, human accuracy was comparable to that
of the best-performing models for both in-plane and in-depth
rotation, suggesting that part of the human advantage may re-
flect memory or learning effects accumulating over time (see
Figure 13).

Humans are less context dependent than models
Humans demonstrate greater robustness to background
changes than models, which exhibit a noticeable drop in accu-
racy when objects appear in incongruent backgrounds (e.g., a
car placed in an indoor setting) (Figure 3). This suggests that
models – particularly vision-only models – rely on background
context for object categorization, likely due to strong statistical
correlations in their training data between objects and their
typical environments.

This context dependence is most pronounced in vision-only
models, which show the largest performance drop when back-
ground variations are introduced. As seen in Figure 5, mod-
els exhibit greater variability across object categories than
humans, with certain categories being disproportionately af-
fected by background changes. This suggests that these mod-
els may incorporate spurious background cues into their pre-
dictions rather than relying purely on object-intrinsic features,
making them vulnerable to shifts in contextual information.

In contrast, data-rich models, including vision-only++ mod-
els and VLMs, exhibit improved robustness to background
changes. Several top-performing models even approach
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human accuracy under background change conditions, as
shown in Figure 12. These results suggest that exposure to
large, diverse datasets helps mitigate context dependence.

Humans and models do not fully agree on which
categories are challenging
To assess the alignment between human and model perfor-
mance at the category level, we analyzed robustness scores
for each object category and transformation type (Figure 5).
Humans tend to show less variability in robustness across cat-
egories than models, indicating more consistent performance.
However, more challenging transformations, such as in-depth
object rotations, are associated with greater variability across
categories for both humans and models. Humans and models
also exhibit the highest agreement for in-depth object rotations
(Figures 5 and 14), where both struggle with keyboards and
perform well on airplanes and bicycles. This suggests that
certain intrinsic object properties (e.g., elongated structures
or symmetric features) affect recognition across viewpoints in
a similar way for both.

For background changes, models and humans show partial
agreement, with some object categories, e.g., birds, boats,
and airplanes, being more strongly affected by background
change than others, e.g., dogs and cats. The former cat-
egories may be more tightly associated with specific back-
grounds in everyday experience, making them more sensitive
to contextual shifts. Among the models, vision-only models
exhibit the greatest variability across categories, likely reflect-
ing a stronger reliance on background context for categoriza-

tion. In contrast, humans show higher and more consistent ro-
bustness, suggesting that human perception more effectively
isolates object identity from its surrounding context.

The greatest divergence occurs in in-plane object rotation,
where models struggle more than humans. For example,
while humans easily recognize boats across in-plane rota-
tions, models display significant variability in robustness (Fig-
ure 5). This suggests that models may depend more on spe-
cific object viewpoints or texture cues, whereas humans can
generalize more effectively across rotated perspectives.

Beyond overall category difficulty, we also examined cate-
gory confusions – that is, which object categories humans and
models selected when making an error. Across all transfor-
mations, human participants showed greater agreement with
one another in their category confusions than with any of the
models, while models tended to correlate more strongly with
each other (Figures 15 and 16). This suggests that although
some models approximate human accuracy, they may rely on
different representational strategies for categorization.

Discussion
Implications for modeling human vision. Our results high-
light the substantial progress that data-rich models have made
toward human-like object recognition, while also revealing re-
maining differences in robustness and error patterns under
3D object transformations. Although top-performing models
match or approach human accuracy for moderate transforma-
tions like translation and scaling, a performance gap remains
for more challenging conditions, especially in-plane and in-
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depth object rotations, where models exhibit reduced invari-
ance relative to humans. In these regimes, models not only
show larger drops in accuracy but also diverge from human
error patterns. These discrepancies suggest that current mod-
els may rely on different cues or strategies, and that human ro-
bustness under 3D transformations likely reflects a combina-
tion of visual experience, learning during the task, and mech-
anisms of viewpoint-invariant representation that models have
yet to fully capture.

Importantly, we find that larger training datasets are strongly
associated with improved robustness, even when holding ar-
chitecture and learning objective constant. In particular, our
analyses of vision-language models with identical architec-
tures show a clear, monotonic relationship between data scale
and accuracy, mirroring trends observed in vision-only mod-
els. Model complexity further amplifies these gains, with larger
architectures achieving near-human performance. While our
study was not designed to fully disentangle these dimensions,
the evidence suggests that data richness and architectural
scale play a substantial and interacting role in bridging the

gap with human perception.

Our results motivate future research aimed at evaluating
and developing models with stronger inductive biases, such
as explicit 3D representations, temporal context, or embodied
interaction (Marr, 2010; Földiák, 1991; Becker, 1992; Smith
et al., 2018), which may reflect priors shaped by evolution
or experience and support learning of the generative causes
of images and scenes (Yuille & Kersten, 2006; Lake et al.,
2016). While we focused on models trained to process single
static images, recent advances in 3D representation methods
– such as point-cloud and generative shape methods and neu-
ral radiance fields (NeRFs) – as well as video-based models
and agents interacting with 3D environments, offer promising
new directions for improving model-to-human alignment in ob-
ject vision (Mildenhall et al., 2020; Zhang et al., 2023; Z. Chen
et al., 2024; Yang et al., 2019). Although these models were
not evaluated here, several could, in principle, be adapted to
our benchmark using extracted features and linear probing.
Their inclusion will be important for testing whether remain-
ing human-model differences reflect architectural limitations,



training exposure, or representational format. At the same
time, more challenging tasks, finer-grained behavioral mea-
sures, or ambiguous categories could help surface differences
that may be obscured in high-performing conditions.

Implications for theories of human vision. Our findings
also speak to long-standing debates about the nature of hu-
man object recognition. The parallel between humans and
data-rich models – especially under in-depth rotation – sug-
gests that exposure to a rich and varied set of 2D views may
be sufficient to support some aspects of robust recognition.
This aligns with view-based theories (Tarr & Bülthoff, 1995;
Serre et al., 2007), in which recognition emerges from inter-
polation or pooling across stored, view-tuned representations.
However, the sharp divergence in model performance un-
der in-plane object rotation highlights the limits of view-based
training alone. Despite likely limited exposure to such transfor-
mations, humans remain nearly invariant, suggesting the in-
volvement of abstract priors, such as assumptions about sym-
metry or canonical object orientation—consistent with object-
centered accounts (Marr, 2010; Biederman, 1987).

Taken together, our results suggest that human 3D object
recognition is unlikely to be explained by visual experience
alone. A hybrid account, combining extensive exposure to 2D
views with structural priors or learned invariances, may bet-
ter capture the strategies underlying human robustness. Test-
ing this idea will require experiments that better match the vi-
sual diet between humans and models, or that systematically
vary object-centered structure and symmetry across transfor-
mations.

Limitations. Our model set spans a wide range of archi-
tectures and training regimes, but is limited to deep neural
networks that process single static images and support object
categorization. This excludes models trained on multiview,
temporal, or 3D input, such as video transformers, NeRF-
based systems, and point-cloud models. While many of these
models were developed for tasks other than categorization,
several could be adapted for evaluation on our benchmark us-
ing linear probing. Their inclusion in future work will be impor-
tant for assessing the generality of our findings.

Our behavioral task – a 16-way categorization design us-
ing common object categories – was chosen to enable control
and large-scale data collection. However, this set captures
only a small subset of object categories and may not reflect
the full range of visual and semantic variability encountered in
everyday vision. Some object categories also varied in visual
or semantic variability (e.g., “clock” vs. “bear”), which could
limit generalizability to broader recognition contexts. Human
accuracy was high across most transformations, which may
have reduced sensitivity to fine-grained differences in error
consistency. Additionally, humans viewed each object multi-
ple times during the experiment, whereas models are mem-
oryless. Our analysis shows that accuracy for humans in-
creased over blocks, particularly for object rotations where
human-model gaps were largest, suggesting that learning or
memory effects may contribute to human robustness. Future

work using more diverse, fine-grained, or memory-controlled
designs may help clarify the origins of remaining discrepan-
cies.

Lastly, our model comparisons do not fully disentangle the
effects of data scale, architecture, and supervision type. While
we observe that models with larger training datasets per-
form better, this pattern co-occurs with changes in architec-
ture complexity and learning objective (e.g., vision-language
contrastive learning). More in-depth controlled comparisons
along these dimensions will be needed to identify which prop-
erties are most critical for achieving human-like robustness to
3D transformations.

Conclusion. Despite the progress observed, aligning artifi-
cial systems with the flexibility and invariance of human vision
remains an open challenge. While our findings shed light on
the capabilities of models trained on single static images, we
did not evaluate models explicitly designed for 3D object un-
derstanding. Incorporating such models will be essential for
testing whether richer structural priors and training signals can
further narrow the gap. With continued progress and broader
model evaluation, models may come closer to capturing the
core computational principles that support robust human ob-
ject recognition across the complexity of the real world.
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(2025, February). A comparison between humans and AI
at recognizing objects in unusual poses. arXiv. Retrieved
2025-02-05, from http://arxiv.org/abs/2402.03973
(arXiv:2402.03973 [cs]) doi: 10.48550/arXiv.2402.03973

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec,
M., Khalidov, V., . . . Bojanowski, P. (2024, February). DI-
NOv2: Learning Robust Visual Features without Supervi-
sion. arXiv. Retrieved 2025-04-14, from http://arxiv
.org/abs/2304.07193 (arXiv:2304.07193 [cs]) doi:
10.48550/arXiv.2304.07193

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M.,
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Appendix
Stimulus generation: additional details
We constructed a synthetic image dataset by rendering 3D ob-
jects under controlled transformations. This process yielded
a diverse set of images designed to probe robustness to
identity-preserving variation in both humans and models dur-
ing object categorization. All images were rendered at a res-
olution of 224 × 224 pixels. For a visual overview, Figure 6
shows all objects in their canonical views, while Figure 7 illus-
trates the full range of transformations for an example object.
Below, we provide a detailed description of the 3D object pre-
processing and transformation procedures used to generate
the image dataset.

Preprocessing of 3D objects. Each 3D object underwent
two key preprocessing steps to standardize appearance and
positioning:

1. Uniform scaling: To ensure consistent object size across
the dataset, each 3D object was enclosed in a bounding
box defined by its extent along the x, y, and z axes. The
largest dimension of this bounding box was used as a refer-
ence for scaling. Models larger than the standard size were
scaled down; smaller models were scaled up. Importantly,
scaling was applied uniformly across all three dimensions
to preserve the object’s proportions.

2. Object centering: Each object was translated such that its
center aligned with the origin of the 3D scene, correspond-
ing to the camera’s focal point. This ensured consistent
object placement across renderings and minimized spatial
biases.

Identity-preserving transformations. Stimuli were ren-
dered using Unity, applying the following naturalistic transfor-
mations:

• Object translation: Objects were shifted from the center of
the 3D scene along a polar grid, using orthographic projec-
tion to avoid perspective-induced distortion during transla-
tion. The translation radius r was incremented in fixed steps
of 0.1 from 0 to 0.7 Unity world units, and for each radius,
the direction (angle θ) was randomly sampled from a uni-
form distribution over [0,360]◦. This method results in ren-
dered images where objects progressively move away from
the center of the image in various random directions. By
sampling angles randomly and stepping through radius val-
ues uniformly, we ensured a balanced and comprehensive
distribution of object placements within the image space,
simulating natural spatial variability while keeping most ob-
jects within view.

• Object scaling: Size variation was introduced by changing
the camera’s distance from the object, simulating zoom ef-
fects under Unity’s default perspective projection. The cam-
era was positioned at distances ranging from 0.3 to 3 Unity

world units, with the canonical view defined at a distance
of 1 unit. Decreasing the camera distance below 1 unit
resulted in zooming in, while increasing it led to zooming
out. As a consequence, the rendered object size in the
image varied from 200% to 12.5% of the canonical size,
where size was defined as the maximum of the object’s
height or width in image space. We used eight scale levels:
12.5%, 25%, 50%, 75%, 100% (canonical), 125%, 150%,
and 200%.

• Object rotation: Objects were placed with their centers at
the world origin and rotated a full 360° around each of the
three world axes, one axis at a time. We applied in-plane
rotations around the z-axis, in-depth rotations from side to
side around the y-axis, and in-depth rotations from top to
bottom around the x-axis. For each axis, we captured im-
ages at 45° increments, resulting in eight views per axis,
including the canonical (unrotated) view. Images were ren-
dered using Unity’s default perspective projection, from a
fixed camera positioned 1 Unity world unit from the object,
with 0° elevation from the xz-plane and 0° azimuth from the
yz-plane.

• Background change: Background variation was intro-
duced using a set of six distinct images per object cate-
gory. We used a gray default background with RGB val-
ues of (0.485, 0.456, 0.406) Ollikka et al. (2025), match-
ing the average pixel color of ImageNet images. This
background was applied by default in all other augmen-
tations. To introduce contextual variation, the gray back-
ground was replaced with either a colored 1/f noise con-
trol or one of six naturalistic scenes selected for each cate-
gory. These naturalistic scenes were divided into two types
– three congruent and three incongruent – based on their
typical relevance to each object category. For instance, if
the object was a car, congruent backgrounds included high-
ways or outdoor scenes typical for cars, while incongruent
backgrounds featured indoor environments. Unlike the 3D
transformations, background change leaves the object un-
changed and varies only the surrounding context, providing
a complementary test of robustness to identity-preserving
variations. The 1/f noise background was included as a
control to introduce structured variation without recogniz-
able content, in contrast to the scene-like content of natu-
ralistic backgrounds.

Human experiment: additional details

After providing informed consent, participants completed the
experiment remotely on their personal computers. We de-
signed the experiment in PsychoPy Peirce et al. (2019) and
ran it online via Pavlovia (Open Science Tools, Nottingham,
UK). To estimate screen size and viewing distance, we used
a credit card scaling procedure and blind spot estimation
method, respectively (Brascamp, 2021). Participants were
given detailed instructions on the categorization task, includ-
ing how to respond using a mouse click, and were advised to



familiarize themselves with the 16 object categories presented
on the response screen. They were encouraged to answer as
accurately as possible and to rely on their best judgment when
uncertain.

Practice blocks. The experiment began with two practice
blocks of 128 trials each, using randomly selected ImageNet
validation images, i.e., photos of real-world objects belonging
to one of the 16 categories. These blocks served two pur-
poses: to familiarize participants with the task and to identify
inattentive participants. The first block included visual feed-
back (a green checkmark for correct responses, a red cross
for incorrect or missed responses, and a highlight on the cor-
rect category), while the second block did not. Participants
who scored below 80% accuracy on the second block were ex-
cluded from the study and were not invited to continue with the
main experiment. Those who passed the accuracy threshold
completed a third practice block of 128 trials, using synthetic
images generated via our stimulus generation pipeline, which
applied naturalistic transformations to 3D object models using
the Unity game engine. These images were drawn from the
same distribution as those used in the main experiment but
featured a separate set of 3D object exemplars not included
in the test set (see Figure 6); this block also included visual
feedback.

For ImageNet blocks, we used Python to preprocess the
images. From the pool of ImageNet images representing
the 16 basic-level categories, we excluded grayscale images
(approximately 1%), images smaller than 256 × 256 pixels,
and images depicting multiple objects from the target cate-
gories. Each image was cropped to the largest possible cen-
tral square and then resized to 224 × 224 pixels using the
PIL.Image.thumbnail((224, 224)) method.

Experimental blocks. The main experiment consisted of
10 blocks of 128 trials each, using synthetic images from
the same generation pipeline introduced in the third practice
block. These images were produced by applying naturalis-
tic transformations to 3D object models using the Unity game
engine (see Figures 6 and 7). To help maintain participant en-
gagement throughout the session, a performance summary
was shown at the end of each block. After each block, par-
ticipants were given a mandatory 30-second break and could
resume the task at their own pace with a mouse click. The en-
tire experiment lasted approximately 1.5 hours (see Figure 8
for an overview of the experimental design and block struc-
ture).

Risks. There are no known risks associated with the
computer-based visual tasks used in this study. Participants
were informed that they could take breaks between blocks or
terminate the session at any time if they felt tired or uncom-
fortable.
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Figure 6: Overview of 3D object models used in the ORBIT benchmark. Objects are shown in their canonical view, organized
by category (columns) and exemplar (rows). The top panel shows objects used in both human and model evaluation; the bottom
panel shows objects used during practice in the human experiment.
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Figure 7: Illustration of the six 3D transformations applied to objects in the ORBIT benchmark. The leftmost column shows
the canonical view, while subsequent columns display variations introduced by each transformation: object translation (shifting
object position within the frame), object scale (changing object size), background change (altering the background while keeping
the object unchanged), object rotation z (in-plane rotation), object rotation y (rotation around the vertical axis), and object rotation
x (rotation around the horizontal axis).
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Figure 8: Overview of the human experiment. Participants were instructed to categorize object images in a forced-choice
paradigm. (A) Participants initiated each trial by clicking on the fixation cross, which started the presentation of a stimulus
followed by a noise mask, each presented for 200 ms, and a response screen that was presented for 1500 ms or until the
participant clicked on one of the category icons, whichever came earlier. Stimuli and masks were presented at 5 degrees
of visual angle. (B) Schematic of the experiment, which consisted of three practice blocks and 10 experimental task blocks.
Unknown to the participants, the second practice block served as a test: only participants with an accuracy of 80 percent or
higher were included in the experiment and invited to continue.
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Figure 9: Performance across different transformations in a 16-way object categorization task. Each panel shows accuracy
for a specific transformation: object translation, object scale, background change, object rotation z (in-plane), object rotation y
(front-back), and object rotation x (top-bottom). Human accuracy is represented by the red dashed lines (with 95% confidence
intervals), while the gray dashed lines indicate chance-level performance. Lighter colors indicate accuracy for canonical views;
darker colors indicate accuracy for transformed views.
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Figure 10: Robustness across different transformations in a 16-way object categorization task. Each panel shows ro-
bustness for a specific transformation: object translation, object scale, background change, object rotation z (in-plane), object
rotation y (front-back), and object rotation x (top-bottom). Human robustness is represented by the red dashed line (with 95%
confidence intervals).



0.0

0.1

0.2

0.3

Er
ro

r C
on

si
st

en
cy

[w
ith

 H
um

an
s]

Object Translation Object Scale Background Change

cl
ip

 L
/1

4 
40

0M
vi

ta
m

in
 L

 1
28

0M
SW

AG
 R

eg
N

et
y 

12
8g

f 3
60

0M
vi

ta
m

in
 L

2 
12

80
M

O
pe

nC
LI

P 
Vi

T 
L/

14
 M

et
aC

LI
P 

40
0M

Al
ex

N
et

 1
.2

8M
O

pe
nC

LI
P 

Vi
T 

H
/1

4 
D

FN
5B

 5
00

0M
Ef

fic
ie

nt
N

et
v2

 M
 1

4M
Sq

ue
ez

eN
et

1_
1 

1.
28

M
Be

itV
2 

B/
16

 1
.2

8M
N

S 
Ef

fic
ie

nt
N

et
 L

2 
80

0 
30

0M
R

es
N

et
50

 L
2 

ep
s0

.1
 1

.2
8M

D
IN

O
 B

/1
6 

1.
28

M
Si

m
C

LR
: R

es
N

et
 5

0x
1 

1.
28

M
Ev

a0
2 

L/
14

 2
00

0M
Vi

T 
B/

16
 1

.2
8M

D
IN

O
v2

 L
/1

4 
14

2M
SW

AG
 V

iT
 L

/1
6 

36
00

M
D

ei
t3

 B
/1

6 
14

M
VG

G
16

 1
.2

8M
D

IN
O

: r
es

ne
t5

0 
1.

28
M

R
es

N
et

 5
0 

1.
28

M
O

pe
nC

LI
P 

Vi
T 

H
/1

4 
M

et
aC

LI
P 

25
00

M
O

pe
nC

LI
P 

Vi
T 

L/
14

 M
et

aC
LI

P 
25

00
M

M
oC

oV
3:

 V
iT

 B
/1

6 
1.

28
M

M
oC

oV
3:

 R
es

N
et

 5
0 

1.
28

M
Vi

T 
B/

16
 1

4M
C

on
vN

ex
t B

  1
4M

O
pe

nC
LI

P 
Vi

T 
L/

14
 D

FN
2B

 2
00

0M
R

es
N

et
 5

0 
SI

N
 &

 IN
 1

.2
8M

Ev
a0

1 
G

/1
4 

pl
us

 2
00

0M

Models

0.0

0.1

0.2

0.3

Er
ro

r C
on

si
st

en
cy

[w
ith

 H
um

an
s]

Object Rotation Z

cl
ip

 L
/1

4 
40

0M
vi

ta
m

in
 L

 1
28

0M
SW

AG
 R

eg
N

et
y 

12
8g

f 3
60

0M
vi

ta
m

in
 L

2 
12

80
M

O
pe

nC
LI

P 
Vi

T 
L/

14
 M

et
aC

LI
P 

40
0M

Al
ex

N
et

 1
.2

8M
O

pe
nC

LI
P 

Vi
T 

H
/1

4 
D

FN
5B

 5
00

0M
Ef

fic
ie

nt
N

et
v2

 M
 1

4M
Sq

ue
ez

eN
et

1_
1 

1.
28

M
Be

itV
2 

B/
16

 1
.2

8M
N

S 
Ef

fic
ie

nt
N

et
 L

2 
80

0 
30

0M
R

es
N

et
50

 L
2 

ep
s0

.1
 1

.2
8M

D
IN

O
 B

/1
6 

1.
28

M
Si

m
C

LR
: R

es
N

et
 5

0x
1 

1.
28

M
Ev

a0
2 

L/
14

 2
00

0M
Vi

T 
B/

16
 1

.2
8M

D
IN

O
v2

 L
/1

4 
14

2M
SW

AG
 V

iT
 L

/1
6 

36
00

M
D

ei
t3

 B
/1

6 
14

M
VG

G
16

 1
.2

8M
D

IN
O

: r
es

ne
t5

0 
1.

28
M

R
es

N
et

 5
0 

1.
28

M
O

pe
nC

LI
P 

Vi
T 

H
/1

4 
M

et
aC

LI
P 

25
00

M
O

pe
nC

LI
P 

Vi
T 

L/
14

 M
et

aC
LI

P 
25

00
M

M
oC

oV
3:

 V
iT

 B
/1

6 
1.

28
M

M
oC

oV
3:

 R
es

N
et

 5
0 

1.
28

M
Vi

T 
B/

16
 1

4M
C

on
vN

ex
t B

  1
4M

O
pe

nC
LI

P 
Vi

T 
L/

14
 D

FN
2B

 2
00

0M
R

es
N

et
 5

0 
SI

N
 &

 IN
 1

.2
8M

Ev
a0

1 
G

/1
4 

pl
us

 2
00

0M

Models

Object Rotation Y

cl
ip

 L
/1

4 
40

0M
vi

ta
m

in
 L

 1
28

0M
SW

AG
 R

eg
N

et
y 

12
8g

f 3
60

0M
vi

ta
m

in
 L

2 
12

80
M

O
pe

nC
LI

P 
Vi

T 
L/

14
 M

et
aC

LI
P 

40
0M

Al
ex

N
et

 1
.2

8M
O

pe
nC

LI
P 

Vi
T 

H
/1

4 
D

FN
5B

 5
00

0M
Ef

fic
ie

nt
N

et
v2

 M
 1

4M
Sq

ue
ez

eN
et

1_
1 

1.
28

M
Be

itV
2 

B/
16

 1
.2

8M
N

S 
Ef

fic
ie

nt
N

et
 L

2 
80

0 
30

0M
R

es
N

et
50

 L
2 

ep
s0

.1
 1

.2
8M

D
IN

O
 B

/1
6 

1.
28

M
Si

m
C

LR
: R

es
N

et
 5

0x
1 

1.
28

M
Ev

a0
2 

L/
14

 2
00

0M
Vi

T 
B/

16
 1

.2
8M

D
IN

O
v2

 L
/1

4 
14

2M
SW

AG
 V

iT
 L

/1
6 

36
00

M
D

ei
t3

 B
/1

6 
14

M
VG

G
16

 1
.2

8M
D

IN
O

: r
es

ne
t5

0 
1.

28
M

R
es

N
et

 5
0 

1.
28

M
O

pe
nC

LI
P 

Vi
T 

H
/1

4 
M

et
aC

LI
P 

25
00

M
O

pe
nC

LI
P 

Vi
T 

L/
14

 M
et

aC
LI

P 
25

00
M

M
oC

oV
3:

 V
iT

 B
/1

6 
1.

28
M

M
oC

oV
3:

 R
es

N
et

 5
0 

1.
28

M
Vi

T 
B/

16
 1

4M
C

on
vN

ex
t B

  1
4M

O
pe

nC
LI

P 
Vi

T 
L/

14
 D

FN
2B

 2
00

0M
R

es
N

et
 5

0 
SI

N
 &

 IN
 1

.2
8M

Ev
a0

1 
G

/1
4 

pl
us

 2
00

0M

Models

Object Rotation X

Model Class
Humans VLM Vision Only++ Vision Only+ Vision Only

Figure 11: Model-to-human error consistency across different transformations in a 16-way object categorization task.
Error consistency measures the likelihood that models make the same classification errors as human participants when objects
undergo transformations. Each panel shows error consistency for a specific transformation: object translation, object scale,
background change, object rotation z (in-plane), object rotation y (front-back), and object rotation x (top-bottom). Human error
consistency is represented by the red dashed lines (with 95% confidence intervals).
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Figure 12: Human and model performance as a function of transformation level across different transformations. Each
panel shows accuracy at 16-way categorization for a specific transformation: object translation, object scale, background change,
in-plane object rotation (z), in-depth object rotation (y), and in-depth object rotation (x). The dashed gray line represents chance
performance. The thick colored lines show mean performance across humans (red, with 95% confidence intervals) or models in
a family (blues and greens). The thin colored lines show performance for individual models.
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Figure 13: Human and model performance as a function of experimental test block. The colored lines show accuracy at
the task (canonical and transformed views together) for humans (red, with 95% confidence intervals) and the best-performing
model of each family (blues and greens).
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Figure 14: Model-to-human category-level alignment across different transformations. We computed robustness scores
across object categories (16-element vectors) and correlated these scores between individual models and individual humans.
Bars show the average model-to-human correlations (Pearson r) for individual models. The red dashed lines indicate average
human-to-human correlations, with shaded areas indicating the 95% confidence intervals. Stronger positive correlations indicate
stronger agreement on which categories are challenging.
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Figure 15: Alignment on category confusions, within and between humans and models, across different transforma-
tions. We computed category confusion matrices for models and humans, whose off-diagonal entries indicate how often each
true category is confused with other categories. We correlated the off-diagonal entries of these matrices between individual
models and individual humans, and summarized the results – averaging across humans and across models within a family – in
the displayed correlation matrices. Stronger positive correlations indicate stronger agreement on category confusions.
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Figure 16: Model-to-human alignment on category confusions across different transformations. We computed category
confusion matrices for models and humans, whose off-diagonal entries indicate how often each true category is confused with
other categories. We correlated the off-diagonal entries of these matrices between individual models and individual humans. We
show alignment between humans and individual models (first row/column of the matrices shown in Figure 15, but not averaged
across models within a family). Bars show the average model-to-human correlations (Pearson r) for individual models. The
red dashed line indicates the average human-to-human correlation, with shaded areas indicating the 95% confidence interval.
Stronger positive correlations indicate stronger agreement on category confusions.



Figure 17: Performance on the 16-way object categorization task for the full model set (n = 169 ). Performance was
evaluated across canonical (gray bars) and transformed (black bars) views, and averaged across transformations. Each bar
represents a distinct computational model ordered by their performance on transformed views. Human performance is indicated
by the red dashed line (mean accuracy) with the surrounding shaded area denoting the 95% confidence interval.

Figure 18: Robustness on the 16-way object categorization task for the full model set (n = 169 ). Each bar corresponds
to an individual model, ordered by robustness scores. Human robustness is represented by the red dashed line, with shaded
regions indicating the 95% confidence interval. Values close to 1 indicate high robustness, with transformed-view accuracy
comparable to canonical-view accuracy.
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Figure 19: Model-to-human error consistency on the 16-way object categorization task for the full model set (n = 169 ).
Error consistency measures the likelihood that models make the same classification errors as human participants when objects
undergo transformations. Error consistency was averaged across transformations. Human error consistency is represented by
the red dashed line with the surrounding shaded area denoting the 95% confidence interval.



Table 2: List of all 169 Neural Network Models Evaluated.

Model
CLIP ViT L/14 400M (Schuhmann et al., 2022; Radford et
al., 2021)
CLIP-A ViT H/14 (Schuhmann et al., 2022; Radford et al.,
2021)
CLIP RN50 YFCC15M (Schuhmann et al., 2022; Radford
et al., 2021)
CLIP RN50 CC12M (Schuhmann et al., 2022; Radford et
al., 2021)
CLIP RN101 YFCC15M (Schuhmann et al., 2022; Radford
et al., 2021)
CLIP ViT B/32 DataComp-S (Schuhmann et al., 2022; Rad-
ford et al., 2021)
CLIP ViT B/32 DataComp-M (Schuhmann et al., 2022;
Radford et al., 2021)
CLIP ViT B/32 CommonPool-S (Schuhmann et al., 2022;
Radford et al., 2021)
CLIP ViT B/32 CommonPool-M (Schuhmann et al., 2022;
Radford et al., 2021)
CLIP ConvNeXt Base (Schuhmann et al., 2022; Radford et
al., 2021)
CLIP ViT B/32 400M (Schuhmann et al., 2022; Radford et
al., 2021)
CLIP ViT H/14 DFN5B (Schuhmann et al., 2022; Radford
et al., 2021)
CLIP ViT H/14 MetaCLIP (Schuhmann et al., 2022; Rad-
ford et al., 2021)
CLIP ViT L/14 MetaCLIP (Schuhmann et al., 2022; Radford
et al., 2021)
CLIP ViT L/14 MetaCLIP-400 (Schuhmann et al., 2022;
Radford et al., 2021)
CLIP ViT L/14 DFN2B (Schuhmann et al., 2022; Radford
et al., 2021)
CLIP ViT B/16 MetaCLIP (Schuhmann et al., 2022; Rad-
ford et al., 2021)
CLIP ViT B/32 QuickGELU-OpenAI (Schuhmann et al.,
2022; Radford et al., 2021)
CLIP ViT B/32 QuickGELU-400M (Schuhmann et al., 2022;
Radford et al., 2021)
CLIP ViT B/32 MetaCLIP-400M (Schuhmann et al., 2022;
Radford et al., 2021)
CLIP ViT B/16 MetaCLIP-400M (Schuhmann et al., 2022;
Radford et al., 2021)
CLIP ViT B/32 MetaCLIP (Schuhmann et al., 2022; Rad-
ford et al., 2021)
SigLIP ViT B/16 Zhai et al. (2023)
Vitamin L 336 1B J. Chen et al. (2024)
Vitamin L 256 1B J. Chen et al. (2024)
Vitamin XL 384 1B J. Chen et al. (2024)
Vitamin XL 336 1B J. Chen et al. (2024)
Vitamin XL 256 1B J. Chen et al. (2024)
Vitamin L2 336 1B J. Chen et al. (2024)
Vitamin L2 256 1B J. Chen et al. (2024)

Table 3: List of all 169 Neural Network Models Evaluated.

Model
Vitamin L2 1B J. Chen et al. (2024)
Vitamin L 1B J. Chen et al. (2024)
Vitamin B LTT 1B J. Chen et al. (2024)
Vitamin B 1B J. Chen et al. (2024)
Vitamin S LTT 1B J. Chen et al. (2024)
Vitamin S 1B J. Chen et al. (2024)
EVA01 ViT G/14 400M Fang et al. (2022)
EVA01 ViT G/14 Plus 2B Fang et al. (2022)
EVA02 ViT L/14 2B Fang et al. (2022)
EVA02 ViT B/16 2B Fang et al. (2022)
CLIP L/14 336 (Radford et al., 2021)
CLIP RN50x64 (Radford et al., 2021)
CLIP RN50x16 (Radford et al., 2021)
CLIP RN50x4 (Radford et al., 2021)
CLIP L/14 (Radford et al., 2021)
CLIP RN101 (Radford et al., 2021)
CLIP B/32 (Radford et al., 2021)
CLIP B/16 (Radford et al., 2021)
CLIP RN50 (Radford et al., 2021)
BEiT Base Patch16 224 Bao et al. (2022)
BEiT Large Patch16 224 Bao et al. (2022)
BEiTv2 Base Patch16 224 Peng et al. (2022)
BEiTv2 Large Patch16 224 Peng et al. (2022)
ConvNeXt Small Liu, Mao, et al. (2022)
ConvNeXt Large Liu, Mao, et al. (2022)
ConvNeXt Base Liu, Mao, et al. (2022)
ConvNeXt Base ImageNet-22K FT1K Liu, Mao, et al.
(2022)
ConvNeXt Large ImageNet-22K FT1K Liu, Mao, et al.
(2022)
ConvNeXt Small ImageNet-22K FT1K Liu, Mao, et al.
(2022)
ConvNeXt Large v2
ConvNeXt Base v2
ConvNeXt Tiny v2
MAE ViT Huge FT1K He et al. (2021)
MAE ViT Large FT1K He et al. (2021)
MAE ViT Base FT1K He et al. (2021)
MAE ViT Base He et al. (2021)
MAE ViT Large He et al. (2021)
MAE ViT Huge He et al. (2021)
EfficientNet B0 Q. Xie et al. (2020)
EfficientNet B0 Noisy Student Q. Xie et al. (2020)
EfficientNet L2 Noisy Student Q. Xie et al. (2020)
EfficientNet L2 Noisy Student 475 Q. Xie et al. (2020)
EfficientNetV2 L ImageNet-21K FT1K Tan & Le (2021)
EfficientNetV2 M ImageNet-21K FT1K Tan & Le (2021)
EfficientNetV2 S ImageNet-21K FT1K Tan & Le (2021)
EfficientNetV2 S Tan & Le (2021)
EfficientNetV2 M Tan & Le (2021)
EfficientNetV2 L Tan & Le (2021)
SWAG ViT B/16 ImageNet-1K Singh et al. (2022)



Table 4: List of all 169 Neural Network Models Evaluated.

Model
SWAG ViT L/16 ImageNet-1K Singh et al. (2022)
SWAG ViT H/14 ImageNet-1K Singh et al. (2022)
SWAG RegNetY 16GF ImageNet-1K Singh et al. (2022)
SWAG RegNetY 32GF ImageNet-1K Singh et al. (2022)
SWAG RegNetY 128GF ImageNet-1K Singh et al. (2022)
BiT-M ResNetV2 50x1 ImageNet-21K Kolesnikov et al.
(2020)
BiT-M ResNetV2 50x3 ImageNet-21K Kolesnikov et al.
(2020)
BiT-M ResNetV2 101x1 ImageNet-21K Kolesnikov et al.
(2020)
BiT-M ResNetV2 101x3 ImageNet-21K Kolesnikov et al.
(2020)
BiT-M ResNetV2 152x2 ImageNet-21K Kolesnikov et al.
(2020)
InsDis Caron et al. (2021)
MoCo He et al. (2020)
PIRL Misra & Maaten (2019)
MoCoV2 X. Chen et al. (2020)
MoCoV3 ResNet50 X. Chen et al. (2021)
InfoMin Y. Chen et al. (2023)
MoCoV3 ViT-S X. Chen et al. (2021)
MoCoV3 ViT-B X. Chen et al. (2021)
ResNet50 L2 eps0 Salman et al. (2020)
ResNet50 L2 eps0.25 Salman et al. (2020)
ResNet50 L2 eps0.1 Salman et al. (2020)
ResNet50 L2 eps0.05 Salman et al. (2020)
ResNet50 L2 eps0.03 Salman et al. (2020)
ResNet50 L2 eps0.01 Salman et al. (2020)
ResNet50 L2 eps0.5 Salman et al. (2020)
ResNet50 L2 eps1 Salman et al. (2020)
ResNet50 L2 eps3 Salman et al. (2020)
ResNet50 L2 eps5 Salman et al. (2020)
SwinV2 Tiny Window8 256 Liu, Hu, et al. (2022)
SwinV2 Small Window8 256 Liu, Hu, et al. (2022)
SwinV2 Base Window8 256 Liu, Hu, et al. (2022)
Swin Tiny Window7 FT21K Liu et al. (2021)
Swin Small Window7 FT21K Liu et al. (2021)
Swin Base Window7 FT21K Liu et al. (2021)
Swin Tiny Window7 Liu et al. (2021)
Swin Small Window7 Liu et al. (2021)
Swin Base Window7 Liu et al. (2021)
MLP-Mixer B/16 224 Tolstikhin et al. (2021)
MLP-Mixer L/16 224 Tolstikhin et al. (2021)
ResNet50 SWSL Yalniz et al. (2019)
ResNeXt50 32x4d SWSL Yalniz et al. (2019)
ResNeXt101 32x16d SWSL Yalniz et al. (2019)
ConViT Base d’Ascoli et al. (2022)
ConViT Small d’Ascoli et al. (2022)
ConViT Tiny d’Ascoli et al. (2022)
DINOv2 ViT S/14 Oquab et al. (2024)
DINOv2 ViT B/14 Oquab et al. (2024)
DINOv2 ViT G/14 Oquab et al. (2024)

Table 5: List of all 169 Neural Network Models Evaluated.

Model
DINOv2 ViT L/14 Oquab et al. (2024)
DINO ViT S/16 Caron et al. (2021)
DINO ViT S/8 Caron et al. (2021)
DINO ViT B/8 Caron et al. (2021)
DINO ViT B/16 Caron et al. (2021)
DINO ResNet50 Caron et al. (2021)
ViT S/16 Dosovitskiy et al. (2021)
ViT B/16 Dosovitskiy et al. (2021)
ViT L/16 224 Dosovitskiy et al. (2021)
ViT L/16 ImageNet-21K Dosovitskiy et al. (2021)
ViT B/16 ImageNet-21K Dosovitskiy et al. (2021)
ViT S/16 ImageNet-21K Dosovitskiy et al. (2021)
DeiT3 S/16 224 Touvron et al. (2022)
DeiT3 B/16 224 Touvron et al. (2022)
DeiT3 L/16 224 Touvron et al. (2022)
DeiT3 B/16 FT1K Touvron et al. (2022)
DeiT3 L/16 FT1K Touvron et al. (2022)
DeiT3 S/16 FT1K Touvron et al. (2022)
AlexNet Krizhevsky et al. (2012)
VGG11 BN Simonyan & Zisserman (2015)
VGG13 BN Simonyan & Zisserman (2015)
VGG16 BN Simonyan & Zisserman (2015)
VGG19 BN Simonyan & Zisserman (2015)
SqueezeNet 1.0 Iandola et al. (2016)
SqueezeNet 1.1 Iandola et al. (2016)
DenseNet121 Huang et al. (2018)
DenseNet169 Huang et al. (2018)
DenseNet201 Huang et al. (2018)
Inception v3
ResNet18 He et al. (2015)
ResNet34 He et al. (2015)
ResNet50 He et al. (2015)
ResNet101 He et al. (2015)
ResNet152 He et al. (2015)
ShuffleNet v2 x0.5 Ma et al. (2018)
MobileNet v2 Sandler et al. (2019)
ResNeXt50 32x4d S. Xie et al. (2017)
ResNeXt101 32x8d S. Xie et al. (2017)
Wide ResNet50-2
Wide ResNet101-2
MNASNet 0.5 Tan et al. (2019)
MNASNet 1.0 Tan et al. (2019)
BagNet9 Brendel & Bethge (2019)
BagNet17 Brendel & Bethge (2019)
BagNet33 Brendel & Bethge (2019)
ResNet50 trained on SIN Geirhos et al. (2022)
ResNet50 trained on SIN and IN Geirhos et al. (2022)
ResNet50 trained on SIN and IN, finetuned on IN Geirhos
et al. (2022)
SimCLR ResNet50 x1 T. Chen et al. (2020)
SimCLR ResNet50 x2 T. Chen et al. (2020)
SimCLR ResNet50 x4 T. Chen et al. (2020)



Table 6: List of all 169 3D Object Models utilized in constructing benchmark.

Model Name Model Class License URL
Airplane 1 Airplane CC BY Source URL
Airplane 10 Airplane CC BY Source URL
Airplane 11 Airplane CC BY Source URL
Airplane 2 Airplane CC BY Source URL
Airplane 3 Airplane CC BY Source URL
Airplane 4 Airplane CC BY Source URL
Airplane 5 Airplane CC BY-NC-SA Source URL
Airplane 6 Airplane CC BY Source URL
Airplane 7 Airplane Sketchfab Standard Source URL
Airplane 8 Airplane CC BY Source URL
Airplane 9 Airplane CC BY-NC Source URL
Bear 1 Bear CC BY Source URL
Bear 10 Bear TurboSquid Source URL
Bear 11 Bear CC BY Source URL
Bear 2 Bear TurboSquid Source URL
Bear 3 Bear TurboSquid Source URL
Bear 4 Bear Sketchfab Standard Source URL
Bear 5 Bear CC BY Source URL
Bear 6 Bear CC BY Source URL
Bear 7 Bear Sketchfab Standard Source URL
Bear 8 Bear TurboSquid Source URL
Bear 9 Bear TurboSquid Source URL
Bicycle 1 Bicycle Sketchfab Standard Source URL
Bicycle 10 Bicycle CC BY Source URL
Bicycle 11 Bicycle CC BY Source URL
Bicycle 2 Bicycle CC BY-SA Source URL
Bicycle 3 Bicycle BlenderKit Royalty Free Source URL
Bicycle 4 Bicycle CC BY Source URL
Bicycle 5 Bicycle CC BY Source URL
Bicycle 6 Bicycle CC BY Source URL
Bicycle 7 Bicycle CC BY Source URL
Bicycle 8 Bicycle CC BY Source URL
Bicycle 9 Bicycle CC BY-NC-SA Source URL
Bird 1 Bird CC BY-NC Source URL
Bird 10 Bird Sketchfab Standard Source URL
Bird 11 Bird TurboSquid Source URL
Bird 2 Bird CC BY Source URL
Bird 3 Bird CC BY Source URL
Bird 4 Bird CC BY-NC Source URL
Bird 5 Bird CC BY Source URL
Bird 6 Bird TurboSquid Source URL
Bird 7 Bird TurboSquid Source URL
Bird 8 Bird CC BY Source URL
Bird 9 Bird TurboSquid Source URL
Boat 1 Boat CC BY-NC-ND Source URL
Boat 10 Boat Sketchfab Editorial Source URL
Boat 11 Boat Sketchfab Editorial Source URL
Boat 2 Boat Sketchfab Editorial Source URL
Boat 3 Boat TurboSquid Source URL
Boat 4 Boat Sketchfab Standard Source URL

https://sketchfab.com/3d-models/tupolev-tu-134-725ba7f81f494f4ebf7117056bfb69fc
https://sketchfab.com/3d-models/boeing-737-100-28e201042a8441f1bd4403578eda1231
https://sketchfab.com/3d-models/boeing737-259de41be0c7410e86b7e79be33d6b3a
https://sketchfab.com/3d-models/airbus-a320-indonesian-presidential-livery-548d038ab9774d079d8d4e7e560a69bd
https://sketchfab.com/3d-models/boeing-787-9-singapore-airlines-d383b7e3b858407e8cff7365820cc4dd
https://sketchfab.com/3d-models/dc-10-30-fedex-b71df28e7cf1464dadd04b6f0e076c77
https://sketchfab.com/3d-models/air-force-one-boeing-747-vc-25ab-327154ad78154f8f9c0ec7169fd4820c
https://sketchfab.com/3d-models/rossiya-boeing-747-71c4624fa9384329be3950987d86aa75
https://sketchfab.com/3d-models/airplane-e3349b7fb56c40cc9da3816a3fb9ae8d
https://sketchfab.com/3d-models/boeing767-cc2c62f56cd94a7c8b2c586515b378e7
https://sketchfab.com/3d-models/boeing-787-dreamliner-3ba8a5275d0e41968b34d367c34e8f0f
https://sketchfab.com/3d-models/grizzly-bear-95baabcbc8634f6dace4376767a6024e
https://www.turbosquid.com/3d-models/black-bear-2115426
https://sketchfab.com/3d-models/bear-da9b588f7a7346519f391c3eb9532226
https://www.turbosquid.com/3d-models/grizzly-bear-max/980115
https://www.turbosquid.com/3d-models/black-bear-3d-model-1396818
https://sketchfab.com/3d-models/furry-bear-8cec0e6615574edf9ffd4ef45338e0da
https://sketchfab.com/3d-models/bear-ce0d5eb86cf5459bb6bd20244cb44b27
https://sketchfab.com/3d-models/polar-bear-8c12dafa63ab470a8c2196a66052a0df
https://sketchfab.com/3d-models/bear-family-90974a8e21e44c8a8110311c8a91fe3e
https://www.turbosquid.com/3d-models/3d-wild-bear-pack-animation-1394429
https://www.turbosquid.com/3d-models/3d-wild-bear-pack-animation-1394429
https://sketchfab.com/3d-models/tandem-23a6dfbcf8d047e88b44a3a1aad26f13
https://sketchfab.com/3d-models/santa-cruz-v10-downhill-mountain-bicycle-65e16e9785de4a019e35f599e47c9ee6
https://sketchfab.com/3d-models/bicycle-4saPxqRTOLETE9TlL5iZkKd9zI1
https://sketchfab.com/3d-models/carbon-frame-bike-398999b3360b4e6997a9aae253d6acbd
https://www.blenderkit.com/asset-gallery-detail/8e6fd0ca-0eb8-4794-843a-0e506e65f041/
https://sketchfab.com/3d-models/mountain-bike-1d9270f82a34460e928709bbf7709d56
https://sketchfab.com/3d-models/mtb-mongoose-tyax-d5c7ab157aa84eb08e2deaee6165e764
https://sketchfab.com/3d-models/afterburner-downhill-mountainbike-e3cd36c670cd4d19ab630a8468906667
https://sketchfab.com/3d-models/sports-bike-f1d8d0ba41be4fa7884e7b02c978668a
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/stark-temper-cross-country-mountain-bike
https://sketchfab.com/3d-models/mens-bicycle-b9e3066a446a497a9072ae9be12e920a
https://sketchfab.com/3d-models/emperor-penguin-310f1d21cf534fd0bcf073aa9b08a740
https://sketchfab.com/3d-models/toco-toucan-b057677b9d57491dad99b11cda5c9aa5
https://www.turbosquid.com/3d-models/realistic-rigged-high-detailed-low-poly-pelican-1611944
https://sketchfab.com/3d-models/chicken-98830a78e8c54354a7fbe5ca8346fbf9
https://sketchfab.com/3d-models/parrot-92e36afa506e492eabc12b6fd34c45c9
https://sketchfab.com/3d-models/black-swan-nhmw-zoo1-vs-63420-c6259ae5a9d34d99b9fa337d90694fab
https://sketchfab.com/3d-models/bird-animations-alex-081fa7f0cfd649b9b07babb4c619acc7
https://www.turbosquid.com/3d-models/3d-model-bald-eagle-bird-1595854
https://www.turbosquid.com/3d-models/flamingo-model-1917074
https://sketchfab.com/3d-models/seagull-dd79fddb754f47caa3145e7d184e3e58
https://www.turbosquid.com/3d-models/white-stork-3d-model-1463861
https://sketchfab.com/3d-models/j-80-sailboat-681513987f464be48add6cb69580f9c5
https://sketchfab.com/3d-models/speed-boats-pack-bb5543de0a6e41feb22013b7f7352ad5
https://sketchfab.com/3d-models/speed-boats-pack-bb5543de0a6e41feb22013b7f7352ad5
https://sketchfab.com/3d-models/lifeboat-sea-free-rescue-e6686bfe94a446e1b18d2aad8eb60f0a
https://www.turbosquid.com/3d-models/3d-strazak-3-firefighting-ship-1798063
https://sketchfab.com/3d-models/sailing-yacht-with-interior-a046c02ffd7043d0a6d9f3d1681e89b4


Table 7: List of all 169 3D Object Models utilized in constructing benchmark.

Model Name Model Class License URL
Boat 5 Boat Sketchfab Standard Source URL
Boat 6 Boat CC BY Source URL
Boat 7 Boat CC BY Source URL
Boat 8 Boat Sketchfab Standard Source URL
Boat 9 Boat Sketchfab Editorial Source URL
Bottle 1 Bottle CC0 Source URL
Bottle 10 Bottle BlenderKit Royalty Free Source URL
Bottle 11 Bottle CC BY Source URL
Bottle 2 Bottle CC BY Source URL
Bottle 3 Bottle Sketchfab Standard Source URL
Bottle 4 Bottle CC BY Source URL
Bottle 5 Bottle BlenderKit Royalty Free Source URL
Bottle 6 Bottle BlenderKit Royalty Free Source URL
Bottle 7 Bottle Sketchfab Standard Source URL
Bottle 8 Bottle BlenderKit Royalty Free Source URL
Bottle 9 Bottle CC BY Source URL
Car 1 Car CC BY Source URL
Car 10 Car CC BY Source URL
Car 11 Car CC BY Source URL
Car 2 Car CC BY-NC-ND Source URL
Car 3 Car CC BY Source URL
Car 4 Car CC BY Source URL
Car 5 Car CC BY-NC Source URL
Car 6 Car CC BY-NC Source URL
Car 7 Car CC BY Source URL
Car 8 Car CC BY Source URL
Car 9 Car CC BY Source URL
Cat 1 Cat CC BY Source URL
Cat 10 Cat TurboSquid Source URL
Cat 11 Cat CC BY Source URL
Cat 2 Cat CC BY Source URL
Cat 3 Cat CC BY Source URL
Cat 4 Cat TurboSquid Source URL
Cat 5 Cat CC BY Source URL
Cat 6 Cat Sketchfab Standard Source URL
Cat 7 Cat TurboSquid Source URL
Cat 8 Cat TurboSquid Source URL
Cat 9 Cat CC BY Source URL
Chair 1 Chair CC BY Source URL
Chair 10 Chair CC0 Source URL
Chair 11 Chair CC BY Source URL
Chair 2 Chair CC BY Source URL
Chair 3 Chair CC BY Source URL
Chair 4 Chair CC BY Source URL
Chair 5 Chair CC BY Source URL
Chair 6 Chair CC BY Source URL
Chair 7 Chair CC BY Source URL
Chair 8 Chair CC BY Source URL
Chair 9 Chair CC BY Source URL
Clock 1 Clock CC0 Source URL
Clock 10 Clock BlenderKit Royalty Free Source URL
Clock 11 Clock BlenderKit Royalty Free Source URL
Clock 2 Clock CC0 Source URL
Clock 3 Clock BlenderKit Royalty Free Source URL

https://sketchfab.com/3d-models/plastic-canoe-bob-31e1972d44bf41619a49a79c54b30d49
https://sketchfab.com/3d-models/red-canoe-7a3bae8253074931a05d45788dee5852
https://sketchfab.com/3d-models/canoe-b2e32f87f5cc4d728404a62d6000f9ae
https://sketchfab.com/3d-models/sailing-yacht-296d3f6517874cf58dc40fd74e3349e0
https://sketchfab.com/3d-models/speed-boats-pack-bb5543de0a6e41feb22013b7f7352ad5
https://www.blenderkit.com/asset-gallery-detail/aea96d00-dff9-4069-a823-2778f47de1d7/
https://www.blenderkit.com/asset-gallery-detail/7eda91d5-1e02-41ac-a61a-4843e6d94eaf/
https://sketchfab.com/3d-models/dusty-beer-bottle-03d9062085214988b2e984470c7c0d28
https://sketchfab.com/3d-models/pill-bottle-c5bfdf003ead4c4793f4e9b93a9b1b79
https://sketchfab.com/3d-models/civil-war-era-whiskey-jar-stoneware-pottery-9909238268a64d23a3b0a595b717d809
https://sketchfab.com/3d-models/water-bottleflask-da564f6e99d244508d8ef3401c1204aa
https://www.blenderkit.com/asset-gallery-detail/51e820d6-a463-4187-b858-95714223a987/
https://www.blenderkit.com/asset-gallery-detail/f6452df0-52bb-460c-a014-aab61b652ba6/
https://sketchfab.com/3d-models/jug-and-mug-e287d294083c44e19c1d65a667903bb8
https://www.blenderkit.com/asset-gallery-detail/c1d9f693-96bd-4a18-a195-2af33c63a873/
https://sketchfab.com/3d-models/beer-heineken-bottle-3427a5294f384aea9fe0dffa05b09d1b
https://sketchfab.com/3d-models/zis-101a-sport-1938-a361c0f7b7e041fc8f3437a5cbec681a
https://sketchfab.com/3d-models/free-1975-porsche-911-930-turbo-8568d9d14a994b9cae59499f0dbed21e
https://sketchfab.com/3d-models/maserati-ghibli-hybrid-ce8a31151aa54518a804076a2e7071c9
https://sketchfab.com/3d-models/mclaren-f1-1993-by-alexka-294df724d96241cdbe0e0f3c91ad7fce
https://sketchfab.com/3d-models/chevrolet-corvette-c7-2b509d1bce104224b147c81757f6f43a
https://sketchfab.com/3d-models/free-bmw-m3-e30-ac3c7013434e403e8faff87948caf422
https://sketchfab.com/3d-models/nissan-fairlady-z-s30240z-1978-0d9286ebb8cc426e993e1d398b874a34
https://sketchfab.com/3d-models/bmw-i8-4b143b95aec045bf8912d99662f8d580
https://sketchfab.com/3d-models/fiat-850-spider-8ea03b3cbb9f439ea82a68ddbeb5f6ae
https://sketchfab.com/3d-models/1963-volkswagen-beetle-f03e5ba5e81b4562958645fe27565f3a
https://sketchfab.com/3d-models/volkswagen-beetle-83276f21bd9c41e196c474350b43efb0
https://sketchfab.com/3d-models/cat-043794629a474896be25c2f6b06599d1
https://www.turbosquid.com/3d-models/3d-realistic-cat---1638411
https://sketchfab.com/3d-models/white-tiger-rigged-animated-9dd099d283e54f99b7cbd40b531b1a29
https://sketchfab.com/3d-models/cat-a7add72acfd54016af7681ff3d938803#download
https://sketchfab.com/3d-models/bengal-cat-non-commercial-ad99670274254e4aa539a90a5dbdb24e
https://www.turbosquid.com/3d-models/red-cat-rigged-3d-max/995579
https://sketchfab.com/3d-models/jaguar-91c61c329d2a4668816f81f08dfcd492
https://sketchfab.com/3d-models/cat-25-c38722c1a3dc40c39dbb13635c783a0b
https://www.turbosquid.com/3d-models/3d-model-cat-fur/1017319
https://www.turbosquid.com/3d-models/3d-mountain-lion-cougar-rigged-model-1580462
https://sketchfab.com/3d-models/forest-cat-3d-model-free-34214b4cc4814b0a93b9ff4d19c02f3f
https://sketchfab.com/3d-models/throne-bfc6d2989bb0411d9572733d35c3e6d1
https://polyhaven.com/a/Rockingchair_01
https://sketchfab.com/3d-models/stylish-throne-chairs-bd1f0e360ae64926b58143af2e5171d2
https://sketchfab.com/3d-models/western-rocking-chair-d5e784aa92464572af37264c3b3d2fa6
https://sketchfab.com/3d-models/barber-chair-b608436ca02d40c6a914fca72f7b3619
https://sketchfab.com/3d-models/rusty-folding-chair-e2dfcf8ed2884f3baa1c54af2886a2f0
https://sketchfab.com/3d-models/ikea-poang-rocking-chair-f74c8e97e8514d8fac6b4860272b1a76
https://sketchfab.com/3d-models/chair-c5f49f97856c461a8192fb950ce23540
https://sketchfab.com/3d-models/barber-chair-6458816e73534df0a26ddc6567395d2c
https://sketchfab.com/3d-models/pool-chairs-pack-e80af9999cd24a3aa66a32adead8f8b9
https://sketchfab.com/3d-models/pool-chairs-pack-e80af9999cd24a3aa66a32adead8f8b9
https://www.blenderkit.com/asset-gallery-detail/0bc63f7e-8445-4bb5-a906-47360aa87534/
https://www.blenderkit.com/asset-gallery-detail/3319184a-3046-4838-969c-49e9ca79e16e/
https://www.blenderkit.com/asset-gallery-detail/74265890-c4b0-4fb0-85ed-dc5c45239891/
https://polyhaven.com/a/alarm_clock_01
https://www.blenderkit.com/asset-gallery-detail/53862f5d-8d35-4808-98cc-3809286df0d5/


Table 8: List of all 169 3D Object Models utilized in constructing benchmark.

Model Name Model Class License URL
Clock 7 Clock BlenderKit Royalty Free Source URL
Clock 8 Clock CC0 Source URL
Clock 9 Clock BlenderKit Royalty Free Source URL
Clock 4 Clock BlenderKit Royalty Free Source URL
Clock 5 Clock BlenderKit Royalty Free Source URL
Clock 6 Clock CC BY Source URL
Dog 1 Dog CC BY Source URL
Dog 10 Dog Sketchfab Standard Source URL
Dog 11 Dog CC BY Source URL
Dog 2 Dog CC BY Source URL
Dog 3 Dog Sketchfab Standard Source URL
Dog 4 Dog TurboSquid Source URL
Dog 5 Dog CC BY Source URL
Dog 6 Dog TurboSquid Source URL
Dog 7 Dog TurboSquid Source URL
Dog 8 Dog TurboSquid Source URL
Dog 9 Dog TurboSquid Source URL
Elephant 1 Elephant Sketchfab Standard Source URL
Elephant 10 Elephant CC BY Source URL
Elephant 11 Elephant Sketchfab Editorial Source URL
Elephant 2 Elephant Sketchfab Standard Source URL
Elephant 3 Elephant CC BY Source URL
Elephant 4 Elephant CC BY Source URL
Elephant 5 Elephant CGTrader Royalty Free Source URL
Elephant 6 Elephant Sketchfab Standard Source URL
Elephant 7 Elephant Sketchfab Standard Source URL
Elephant 8 Elephant CC BY Source URL
Elephant 9 Elephant Sketchfab Standard Source URL
Keyboard 1 Keyboard CC BY Source URL
Keyboard 10 Keyboard CC BY Source URL
Keyboard 11 Keyboard CC BY Source URL
Keyboard 2 Keyboard BlenderKit Royalty Free Source URL
Keyboard 3 Keyboard CC BY Source URL
Keyboard 4 Keyboard CC BY Source URL
Keyboard 5 Keyboard BlenderKit Royalty Free Source URL
Keyboard 6 Keyboard BlenderKit Royalty Free Source URL
Keyboard 7 Keyboard CC BY Source URL
Keyboard 8 Keyboard CC BY Source URL
Keyboard 9 Keyboard BlenderKit Royalty Free Source URL
Knife 1 Knife CC BY Source URL
Knife 10 Knife CC BY Source URL
Knife 11 Knife CC BY Source URL
Knife 2 Knife CC BY Source URL
Knife 3 Knife Sketchfab Standard Source URL
Knife 4 Knife Sketchfab Standard Source URL
Knife 5 Knife CC BY Source URL
Knife 6 Knife CC BY Source URL
Knife 7 Knife CC BY Source URL
Knife 8 Knife CC BY Source URL
Knife 9 Knife CC BY Source URL
Oven 1 Oven TurboSquid Source URL
Oven 10 Oven TurboSquid Source URL
Oven 11 Oven TurboSquid Source URL

https://www.blenderkit.com/asset-gallery-detail/7128f71d-a632-4f91-bab8-c42d42268ad2/
https://www.blenderkit.com/asset-gallery-detail/bffa7150-712e-4d07-af33-3cedd06c7ae1/
https://www.blenderkit.com/asset-gallery-detail/db4be081-f824-4a92-a9b3-3256c6cca57f/
https://www.blenderkit.com/asset-gallery-detail/9550e175-8e1f-4d76-a3e1-572d994d4e80/
https://www.blenderkit.com/asset-gallery-detail/21914c3f-36de-4b36-a436-ee1c3cd62ba2/
https://sketchfab.com/3d-models/kitchen-clock-by-max-bill-3e13e1a8c7194eb19458b3d8f405196e
https://sketchfab.com/3d-models/dog-3207e243f9bb42ffa33ee8a2c67eaeb4
https://sketchfab.com/3d-models/dog-637c31ebcff84eb58113723cd51fd402
https://sketchfab.com/3d-models/dog-e395f26615ca445ab32f01ded17ff3bf
https://sketchfab.com/3d-models/riley-8aedf051c5714409a1171ceed6543644
https://sketchfab.com/3d-models/dog-a-6of6-fb8cf640a5744115b13f101203818886
https://www.turbosquid.com/3d-models/dog-ridgeback-3d-1313497
https://sketchfab.com/3d-models/bull-terrier-fc42060cb96643b0aba79094766c7d22
https://www.turbosquid.com/3d-models/3d-model-rottweiler-dog-1380642
https://www.turbosquid.com/3d-models/3d-american-bulldog-1374175
https://www.turbosquid.com/3d-models/vizsla-dog-3d-model-1164896
https://sketchfab.com/3d-models/elephant-4112845e36214ace84f86c2bb6dee431
https://sketchfab.com/3d-models/asian-elephant-005e3725b8d9484e94a71aeb9495aea6
https://sketchfab.com/3d-models/asian-elephants-family-game-ready-2ae2fce8797b4d91a7d01468749f3610
https://sketchfab.com/3d-models/realistic-elephant-266cd1bdcdbb4386b5ff53af2ebd4761
https://sketchfab.com/3d-models/elephant-animation-idle-a8e7e10f005f4baab0a2f5079d759fcd
https://sketchfab.com/3d-models/elephant-cycle-50e17ba5c2dc4e3d9ed0effc7d2f9fd5
https://www.cgtrader.com/3d-models/animals/mammal/asian-elephant-207ee4cc-5fc2-43ef-b972-a96f5e042f7b
https://sketchfab.com/3d-models/african-elephant-pbr-low-poly-78ce17c0b1f84563967bfbd3fc68d85c
https://sketchfab.com/3d-models/realistic-elephant-266cd1bdcdbb4386b5ff53af2ebd4761
https://sketchfab.com/3d-models/elephant-e0755e38063b4de0b152be78c6da99b5
https://sketchfab.com/3d-models/elephant-animations-eefb25fe88e4486dac7b272c19742cf7
https://sketchfab.com/3d-models/typewriter-eternal-40cc72ae63c94ef7bda1610610942a0f
https://sketchfab.com/3d-models/mechanical-keyboard-aesthetic-44bb12d306864e2cb4256a61d4168942
https://sketchfab.com/3d-models/razer-huntsman-mini-keyboard-d5a3d193b5f343e69eaa1a4d061b66f7
https://www.blenderkit.com/asset-gallery-detail/b91ac7f0-cc21-40c5-890e-8e8a7f26a52e/
https://sketchfab.com/3d-models/custom-mechanical-keyboard-90d61eec0c484332ab562c5f4eda6f52
https://sketchfab.com/3d-models/gaming-keyboard-c1e5e07153d84978a1ad7256d720220a
https://www.blenderkit.com/asset-gallery-detail/b7a9cd2d-fe70-44b8-9950-de7815728e63/
https://www.blenderkit.com/asset-gallery-detail/56c441ae-7eb0-433e-8bc5-c7e8f42af272/
https://sketchfab.com/3d-models/1930s-style-typewriter-wo-branding-1d6009449fe84fd79454c4081eb743bf
https://sketchfab.com/3d-models/typewriter-0b6766c2df0e4901b8c387283d544027
https://www.blenderkit.com/asset-gallery-detail/4d2e7e2f-ffd7-4921-9e92-9ee5ca8c167d/
https://sketchfab.com/3d-models/cleaver-butchers-best-friend-8b3a394b1e6741e187e15b8dc5075b54
https://sketchfab.com/3d-models/knife-collection-7f6df3818e5544c982e8cbbbbcb6305c
https://sketchfab.com/3d-models/butcher-knife-ee837629269c4b7e89aaa6aa1e65e938
https://sketchfab.com/3d-models/meat-cleaver-06cb3638e2c9467b9090bf3144021a17
https://sketchfab.com/3d-models/meat-cleaver-7901018a2efb44ee8001eb12065e7ca4
https://sketchfab.com/3d-models/cleaver-knife-rusty-8562fbcb8e0344bea6d7f54117d9b74b
https://sketchfab.com/3d-models/cleaver-08eef79633cf4fa78b2112b7e70b61b0
https://sketchfab.com/3d-models/pb60-cleaver-md-9d67854ca4254751a88e9e2c4b46a9a1
https://sketchfab.com/3d-models/kitchen-knife-set-asset-pack-c55d34d4f1974b16a8a8cb6cd4ee49f3
https://sketchfab.com/3d-models/kitchen-cleaver-93d395fa7cf04811a7cc56f5169c30d5
https://sketchfab.com/3d-models/kitchen-knifecleaver-f27d88b1904b4ed485287cdee3ff09ee
https://www.turbosquid.com/3d-models/pit-pig-roast-3d-model-1623182
https://www.turbosquid.com/3d-models/3ds-rotisserie/936183
https://www.turbosquid.com/3d-models/3d-model-rotisserie-oven/1093483


Table 9: List of all 169 3D Object Models utilized in constructing benchmark.

Model Name Model Class License URL
Oven 2 Oven TurboSquid Source URL
Oven 3 Oven TurboSquid Source URL
Oven 4 Oven TurboSquid Source URL
Oven 5 Oven TurboSquid Source URL
Oven 6 Oven TurboSquid Source URL
Oven 7 Oven TurboSquid Source URL
Oven 8 Oven TurboSquid Source URL
Oven 9 Oven TurboSquid Source URL
Truck 1 Truck Sketchfab Editorial Source URL
Truck 10 Truck CC BY Source URL
Truck 11 Truck CC BY Source URL
Truck 2 Truck Sketchfab Editorial Source URL
Truck 3 Truck CC BY-ND Source URL
Truck 4 Truck Sketchfab Editorial Source URL
Truck 5 Truck TurboSquid Source URL
Truck 6 Truck Sketchfab Standard Source URL
Truck 7 Truck CC BY Source URL
Truck 8 Truck CC BY Source URL
Truck 9 Truck CC BY Source URL

https://www.turbosquid.com/3d-models/obj-electrical-rotisserie/540022
https://www.turbosquid.com/3d-models/vertical-doner-kebab-shawarma-3d-model-1632174
https://www.turbosquid.com/3d-models/real-doner-machine-3d-1646976
https://www.turbosquid.com/3d-models/real-machine-3d-model-1646735
https://www.turbosquid.com/3d-models/roasted-pig-3d-model-1424007
https://www.turbosquid.com/3d-models/3d-model-roast-meat-barbecue/1026282
https://www.turbosquid.com/3d-models/3d-grill-1259313
https://www.turbosquid.com/3d-models/3d-roast-meat-with-rotisserie-model-1955106
https://sketchfab.com/3d-models/fire-truck-f13488df4f0242a9b95634a75ba78260
https://sketchfab.com/3d-models/free-gmc-motorhome-reimagined-low-poly-6hiH0iyDqXqtdD9wbqSbyLLhKmz
https://sketchfab.com/3d-models/carrier-truck-renault-premium-dxi-440-b63d1888fde442ffab2c6534abcee647
https://sketchfab.com/3d-models/fire-truck-vehicle-fd2c1728eb7d41e7a0d6ab7b8affa10f
https://sketchfab.com/3d-models/saia-ltl-freight-truck-half-trailer-e9974dbdee1647e3a9da473643549348
https://sketchfab.com/3d-models/industrial-garbage-truck-62fa2c484c054b79be6e40cbdbd45f1d
https://www.turbosquid.com/3d-models/low-poly-garbage-truck-3d-3ds/828233
https://sketchfab.com/3d-models/city-garbage-truck-87daaa72b09a4875bfcccf60d46675d0
https://sketchfab.com/3d-models/scania-s730-2-axle-2016-891ee120d3734b439a9a5e63eaa10a4c
https://sketchfab.com/3d-models/90-light-commercial-truck-low-poly-model-663a0953c038434a918cb85725c88ffa
https://sketchfab.com/3d-models/lightbody-pickup-85-low-poly-model-67beae18c3d24be68f9c8f0ec382d8e3
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