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ABSTRACT

Neural ODEs have exhibited remarkable capabilities in continuously modeling
dynamical systems from observational data. However, existing training methods,
often based on adaptive-step-size numerical ODE solvers, are time-consuming and
may introduce additional errors. Despite recent attempts to address these issues,
existing methods rely heavily on numerical ODE solvers and lack efficient solu-
tions. In this work, we propose the Fast-VF Neural ODE, a novel approach based
on variational formulation (VF) to accelerate the training of Neural ODEs for dy-
namical systems. To further mitigate the influence of oscillatory terms in the VF
loss, we incorporate the Filon’s method into our design. Extensive experimental
results show that our method can accelerate the training of Neural ODEs by 10
× to 100 × compared to the baselines while achieving comparable accuracy in
irregularly-sampled dynamical systems.

1 INTRODUCTION

Neural ordinary differential equations (Neural ODEs) (Chen et al., 2018) represent a family of
continuous-depth machine learning models. Inspired by ResNets (He et al., 2016), Neural ODEs
aim to parametrize vector fields of ODEs using neural networks,

ẋ = fθ(t,x), (1)

where fθ : [0, T ]×Rd → Rd is a neural network and θ are model parameters. The continuous nature
and special inductive bias of Neural ODEs make them pretty suitable to model dynamical systems
from irregularly-sampled time series data. (Chen et al., 2018; Rubanova et al., 2019; Kidger et al.,
2020). In existing training frameworks, numerical ODE solvers play a vital role. The forward pass
results are directly calculated using numerical ODE solvers. In the backward pass, there are two
major methods commonly employed to backpropagate through ODE solvers (Kidger, 2022; Onken
& Ruthotto, 2020): (1) discretize-then-optimize, which involves directly backpropagating through
operations of ODE solvers, and (2) optimize-then-discretize, also known as the adjoint sensitivity
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method, as utilized in (Chen et al., 2018), which introduces additional adjoint ODEs. Details of
these training methods are presented in Appendix A.

However, ODE solver-based training methods for Neural ODEs face two main limitations. First,
they are inherently time-consuming. The internal mechanisms within numerical ODEs can incur
significant computational costs in solving Neural ODEs. (Lehtimäki et al., 2022). This is attributed
to the numerous evaluations of neural networks beyond desired time points. For the optimize-
then-discretize approach, the case may worsen due to the additionally introduced adjoint ODEs.
Secondly, existing approaches may suffer from low accuracy for two primary reasons. The auto-
regressive nature of most numerical ODE solvers can lead to error accumulation. On the other hand,
the optimize-then-discretize approach incurs additional numerical discretization error, resulting in
inaccurate gradients, and potentially causing the training process to fail entirely (Gholami et al.,
2019; Kidger, 2022).

Thus far, various approaches have been proposed to address the aforementioned limitations of Neu-
ral ODEs. However, these methods have not fully resolved these problems. To alleviate the com-
putational bottleneck of Neural ODEs, some works attempt to constrain the complexity of learned
dynamics, simplifying tasks for ODE solvers (Finlay et al., 2020; Kelly et al., 2020; Pal et al., 2021;
Lehtimäki et al., 2022). Nevertheless, these approaches are unsuitable for time series tasks, where
capturing the underlying dynamics is crucial. Moreover, they only accelerate the inference process
of trained Neural ODEs, but the training process still remains time-consuming. Some studies also
try to modify existing training methods directly (Daulbaev et al., 2020; Kidger et al., 2021; Djeumou
et al., 2022; Norcliffe & Deisenroth, 2023). However, these approaches are still heavily dependent
on the ODE solvers and the optimize-then-discretize technique, thus cannot effectively address the
computational bottleneck. In certain cases, they may be slower than the discretize-then-optimize
approach. Additionally, simulation-free training methods have emerged for continuous normalizing
flows (Lipman et al., 2022; Ben-Hamu et al., 2022; Rozen et al., 2021). Despite their promise, these
methods are not applicable to dynamical systems. In the domain of irregularly-sampled time series
tasks, several models built upon neural differential equations have been proposed (Chen et al., 2018;
Rubanova et al., 2019; Kidger et al., 2020). However, in essence, numerical ODE solvers are still the
key components of these models, which potentially result in inaccuracies for long-term time series
prediction.

To address these challenges, we strive to mitigate the usage of numerical ODE solvers during the
training of Neural ODEs. To this end, we propose the Fast-VF Neural ODE, a novel approach
for speeding up the training of Neural ODEs using the variational formulation (VF) (Hackbusch,
2017). Specifically, a loss function based on the VF (Qian et al., 2022) is employed in our proposed
method. This VF loss only requires numerical integrations, thus neural networks are only needed
to be evaluated on desired time points. Furthermore, we incorporate Filon’s method (Deaño et al.,
2017) into the loss function to address potential oscillatory integral issues effectively. We conduct
extensive experiments to evaluate our method on various irregularly-sampled dynamical systems.
Evaluation results show that our approach significantly outperforms existing baselines, achieving a
10× to 100× speed increase. In addition, it maintains higher or comparable accuracy levels.

In summary, our contributions include: (1) we developed Fast-VF Neural ODE, a novel training
method using VF for accelerating Neural ODEs for dynamical systems; (2) we incorporate Filon’s
method to alleviate the influence of oscillatory terms in the VF loss for further enhancing model
performance, (3) our approach achieves a significant acceleration, outperforming other baselines by
10 to 100 times in irregularly-sampled dynamical systems while achieving competitive accuracy.

2 METHOD

We first reviewed the basic concepts of VF and the Filon’s method. Then, we elaborate on our
proposed training framework designed to expedite Neural ODEs using these two techniques.

2.1 PRELIMINARIES

First of all, we review the VF of ODEs and Filon’s method that will be used in our work.
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Variational Formulation (VF) (Qian et al., 2022; Hackbusch, 2017). The variational formulation
presented in Theorem 1 establishes a direct connection between the trajectory x and the vector field
f . This method enables Neural ODEs to learn parameters without relying on ODE solvers.
Theorem 1. Consider d ∈ N+, T ∈ R+, continuous functions x : [0, T ] → Rd, f : [0, T ]× Rd →
Rd, and g ∈ C1[0, T ], where C1 is the set of continuously differentiable functions. Here we define
the functionals

Cj(x,f , g) :=

∫ T

0

[fj(t,x(t))g(t) + xj(t)ġ(t)]dt, j = 1, . . . , d. (2)

Then x is the solution to the system ODEs ẋ = f(t,x) if and only if

Cj(x,f , g) = 0, ∀j ∈ {1, . . . , d}, ∀g ∈ C1[0, T ] s.t. g(0) = g(T ) = 0. (3)

The proof of Theorem 1 can be found in (Qian et al., 2022).

Filon’s method for oscillatory integration. Consider the integral
∫ b

a
h(t) sin(ωt)dt and suppose

that only tabular data of h(t) is available. As ω increases, the integrand will become oscillatory.
In such case, it fails to perform Lagrange polynomial interpolation (Press, 2007) on the whole in-
tegrand using the general numerical integration techniques. To address this issue, Filon’s method
only performs Lagrange interpolation on h(t), and then we can approximate h(t) using a polyno-
mial p(t) with closed-form. Subsequently, the integral

∫ b

a
p(t) sin(ωt)dt can be directly computed

to approximate the original integral. In this context, the polynomial is not required to approximate
the oscillatory part in the integrand, thus effectively addressing the main problem that general nu-
merical integration schemes encounter in oscillatory integration tasks. In real-world applications,
Filon’s method can be enhanced by dividing the integration interval into several segments, com-
monly known as the composite version of Filon’s method.

2.2 PROPOSED METHOD

We detail our proposed Fast-VF Neural ODE. Given trajectories {x[i](t)}Ni=1 of the given dynamical
system ẋ = f(t,x). For the Neural ODE in Eq. (1), we aim to solve the following optimization
problem to identify the optimal model parameters. According to (Qian et al., 2022), we have:

θ∗ = argmin
θ

N∑
i=1

d∑
j=1

S∑
s=1

C2
j (x

[i],fθ, gs), (4)

where Cj is defined in Equation (2). Since Theorem 1 specifies an infinite number of constraints,
rendering it impractical for implementation, we employ {gs}Ss=1 to compute the loss function fol-
lowing (Qian et al., 2022). This set represents a collection of Hilbert orthonormal basis for L2[0, T ],
satisfying ∀s ∈ {1, . . . , S}, gs(0) = gs(T ) = 0 and gs ∈ C1[0, T ]. In this work, we set
gs(t) =

√
2/T sin(sπt/T ), which can be viewed as the Fourier basis. However, the Fourier ba-

sis introduces oscillatory terms into the VF loss. As s increases, general numerical integration
techniques will not work well, but this issue has not been addressed in (Qian et al., 2022). In our
approach, we calculate Cj numerically using the composite Filon’s method, as described in Sec-
tion 2.1, in which a second-degree polynomial is interpolated on each segment.

Next, we try to solve the optimization problem in Eq. (4). But the issue is that the functional Cj in
the VF loss is an integral from 0 to T . However, in irregularly-sampled dynamical systems tasks,
sampling time points may not begin at 0, for example, [t0, tN ]. In this scenario, for autonomous
systems, we can map the time interval [t0, tN ] to [0, T ] by defining T = tN − t0. Regarding non-
autonomous systems, we can always transform them into autonomous systems by including t as a
new variable (Brunton et al., 2016). These adaptations allow our method to be applied effectively in
irregularly-sampled dynamical systems.

Now we try to demonstrate how we achieve speed enhancement in our method, which comes from
two aspects: (1) a reduction in the number of function evaluations (NFEs), and (2) improved paral-
lelizability. Consider a trajectory sampled K points. In our approach, the VF loss is calculated by
evaluating the vector field exactly K times in parallel to compute numerical integrals. In contrast,
traditional ODE solver-based training methods often require evaluating the vector field more than
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K times step by step, as they typically need to assess the vector field at additional time points due
to step size settings in numerical ODE solvers to maintain accuracy. Moreover, to perform one-step
forward predictions in ODE solvers, the vector field must be evaluated multiple times in high-order
ODE solvers such as Dopri5, a common choice in practice.

In summary, our method enables the learning of parameters in Neural ODEs without relying on
numerical ODE solvers. Regarding computational efficiency, our approach requires only numeri-
cal integration for each trajectory. In these numerical integrals, vector fields of Neural ODEs are
only evaluated at given time points in the dataset in parallel, significantly reducing the number of
function evaluations and achieving better parallelizability compared with existing training methods.
Additionally, our loss function effectively mitigates error accumulation from auto-regression.

3 EXPERIMENTS

We conduct extensive experiments to evaluate the proposed Fast-VF Neural ODE using irregularly-
sampled data collected from various dynamical systems.

Datasets. We choose three dynamical systems pertinent to various fields such as biology, biochem-
istry, and genetics. These include the Gompertz model (Gompertz, 1825); the glycolytic oscilla-
tor (Sel’Kov, 1968); and the genetic toggle switch (Gardner et al., 2000). For each system, we first
generate 125 trajectories with randomly sampled initial points. Among these trajectories, 100 trajec-
tories are allocated for training, while the remaining 25 trajectories are used for validation. For these
trajectories, we first sample them regularly at 0,∆t, 2∆t, . . . , T . Subsequently, we randomly select
points from the sampled points based on a specific ratio r. Additionally, 25 trajectories sampled at
0, . . . , 2T are generated for testing. Notably, the points at 0,∆t, . . . , T are utilized for interpolation
tasks, while the points at T, T+∆t, . . . , 2T are reserved for extrapolation tasks. In our experiments,
T is set to 10, and ∆t is set to 0.1. In addition, we choose r = 0.8 for our experiments. Details for
datasets can be found in Appendix B.2.

Baselines. To evaluate the acceleration performance, we compare our method with the following
training approaches: (1) the discretize-then-optimize approach (Dis-Opt), (2) the optimize-then-
discretize approach (Opt-Dis) (Chen et al., 2018), and (3) the seminorm approach (Kidger et al.,
2021). Additionally, we also compare our proposed method with following irregularly-sampled
dynamical system tasks: (1) Vanilla Neural ODE (Chen et al., 2018), (2) Latent ODE with RNN
encoder (Chen et al., 2018), (3) ODE-RNN (Rubanova et al., 2019), (4) Latent ODE with ODE-
RNN encoder (Rubanova et al., 2019), (5) Neural CDEs (Kidger et al., 2020). Detailed training
settings are presented in Appendix B.

Evaluation Results. We evaluate the performance of our method on interpolation and extrapolation
tasks respectively. We evaluate the performance of different methods using the Mean Absolute
Percentage Error MAPE = 1

N

∑N
i=1

∣∣∣xi−x̂i

xi

∣∣∣. To evaluate the acceleration performance of our
method, we compute the training time according to prior works (Djeumou et al., 2022; Norcliffe &
Deisenroth, 2023).

First, we compare the acceleration performance of our method against the baselines by considering
an irregularly-sampling ratio of r = 0.8. As shown in Fig. 1, we can observe that our approach
can speed up the training of Neural ODE by 10 × to 100 × compared to the baselines. In addition,
we assess the mean absolute percent error across three dynamical systems for different methods,
as illustrated in Table 1. The results indicate that the proposed approach can achieve competitive
performance yet faster training speed than the best baseline ODE-RNN. Note that the good perfor-
mance of ODE-RNN is attributed to its intricate network structure. In conclusion, our method can
markedly accelerate model training while simultaneously maintaining high accuracy.

4 CONCLUSION

This work proposed a novel variational formulation-based training method to accelerate Neural
ODEs for irregularly-sampled dynamical systems. Our method only required one numerical in-
tegration in the loss without the need of numerical ODE solvers. To address the potential oscillatory
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Figure 1: Training time (minute) for each method. We can see that our method can achieve 10×
to 100× faster than the baselines. Note that Neural ODE denotes the Vanilla Neural ODE, Latent
ODE 1 denotes the Latent ODE with RNN ecnoder, and Latent ODE 2 denotes the Latent ODE with
ODE-RNN encoder.

Table 1: Testing Mean Absolute Percentage Error (MAPE) (×10−2) on three dynamical systems
with r = 0.8. We can see that our method can achieve comparable performance to other baselines.

Gompertz Toggle Glycolytic
Interp Extrap Interp Extrap Interp Extrap

Vanilla Neural ODE 0.430 0.1039 NaN NaN 11.53 7.593
ODE-RNN 0.0829 0.0181 1.476 1.424 0.4593 0.1615
Neural CDE 0.513 4.60 6.397 109.3 1.969 33.39

Latent ODE ( RNN Enc.) 7.191 3.938 59.10 166.0 48.70 90.40
Latent ODE ( ODE-RNN Enc.) 5.856 8.289 37.85 218.9 16.46 78.94

Ours 0.089 0.053 0.398 0.332 0.556 0.843

integral challenge in the VF loss, we incorporated the Filon’s method to enhance model perfor-
mance. Evaluation results on three irregularly-sampled dynamical systems demonstrated that our
method can significantly speed up the training of Neural ODEs while remaining high accuracy.

Limitations of our method. As our model relies on Filon’s method, which uses polynomial inter-
polation for sampled trajectories, there are instances where polynomials may not effectively approx-
imate complex trajectories. In such cases, the method’s ability to capture intricate system dynamics
might be compromised. In addition, extreme measurement settings for dynamical systems still re-
main as open challenges, e.g., extremely sparse noisy observations.
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A GENERAL TRAINING FRAMEWORKS OF NEURAL ODES

In this subsection, we conclude two primary training frameworks for Neural ODEs. Consider the
Neural ODE expressed as Equation (1). In both training frameworks, the results of the forward pass
are directly calculated numerically by ODE solvers, e.g., Runge-Kutta methods (Butcher, 2016):

L(x(t1)) = L
(
x(t0) +

∫ t1

t0

fθ(t,x)dt

)
= L (ODESolve(fθ,x(t0), t0, t1)) , (5)

where L(·) is the loss function. For the backward pass, there are two major approaches to calculate
gradients: discretize-then-optimize and optimize-then-discretize (Kidger, 2022; Onken & Ruthotto,
2020). For the discretize-then-optimize approach, backpropagation is directly performed through the
operations of ODE solvers. On the other hand, the optimize-then-discretize approach, also known as
the adjoint sensitivity method, involves introducing backward-in-time adjoint ODEs,

da

dt
= −a⊤ ∂fθ(t,x)

∂x
, (6)

where a = ∂L
∂z is the adjoint state. Subsequently, the gradients of the loss function L(·) with respect

to parameters θ can be obtained by calculating a integral:
∂L
∂θ

=

∫ t0

t1

a⊤ ∂fθ(t,x)

∂θ
dt. (7)

Above all, numerical ODE solvers play a pivotal role in training models based on neural differential
equations.

B EXPERIMENTAL SETTINGS

B.1 EXPERIMENTAL ENVIRONMENTS

All experiments in this work are implemented using JAX (Bradbury et al., 2018). Specifically, the
implementation of neural differential equation models is based on Equinox (Kidger & Garcia, 2021)
and Diffrax (Kidger, 2022). To optimize models, we use the Optax (DeepMind et al., 2020). All
the experiments are implemented on the same server, equipped with a 40-Core 2.1 GHz Intel Xeon
Gold 5218R CPU, 125GB of RAM, and two NVIDIA GeForce RTX 3090 GPUs, each with 24 GB
of memory.

B.2 SETTINGS OF DYNAMICAL SYSTEMS

In this subsection, we present the generation of datasets. In this work, we choose three dynami-
cal systems, including the Gompertz model, glycolytic oscillator, and genetic toggle switch. The
specific parameters for each dynamical system are provided as follows.

Gompertz model. The Gompertz model is widely applied in medical research and tumor growth
analysis as a kind of growth model. It can be expressed as

ẋ = −θ1x · log(θ2x), (8)
where θ1 = θ2 = 1.5, and x(0) ∈ [0.1, 1.1].

Glycolytic oscillator. The glycolytic oscillator is a fundamental system in biochemistry that models
the glycolysis process. It can be expressed as

ẋ1 = θ1 − θ2x1 − x1x
2
2,

ẋ2 = −x2 + θ3x1 + x1x
2
2,

(9)

where θ1 = 0.75, θ2 = θ3 = 0.1, and x1(0), x2(0) ∈ [0.1, 1.1].

Genetic toggle switch. The genetic toggle switch is a key mechanism in genetic engineering and
synthetic biology for controlling genes. It can be expressed as

ẋ1 =
a1

1 + xn1
2

− x1,

ẋ2 =
a2

1 + xn2
1

− x2,
(10)

where a1 = a2 = 4, n1 = n2 = 3, and x1(0), x2(0) ∈ [0.1, 4.0].
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B.3 TRAINING SETTINGS

In our experiments, each neural differential equation model is trained for 5000 epochs using the
Dopri5 solver. We employ the Adam optimizer (Kingma & Ba, 2014) with an initial learning
rate of 0.001. The learning rate is scheduled using cosine onecycle schedule. All training
data is loaded in one epoch. Data generation involves using the Dopri5 solver in Diffrax for
numerical ODE solutions. In the VF loss, we set the S in Equation (4) to 100. For all RNN models
throughout experiments, we use the Gated Recurrent Unit (GRU) (Cho et al., 2014). To ensure a fair
comparison, the number of parameters across all models is set to be approximately equal. Results
in Table 1 are obtained using the optimize-then-discretize approach, following (Kidger, 2022). With
the same training settings, Vanilla Neural ODEs failed to learn the dynamics of the toggle switch
based on diffrax proposed by (Kidger, 2022).
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