
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Modeling the Impact of Timeline Algorithms on Opinion
Dynamics Using Low-rank Updates

ABSTRACT
Timeline algorithms are key parts of online social networks, but

during recent years they have been blamed for increasing the po-

larization and disagreement in popular social networks. One of the

key obstacles to explaining these phenomena is that polarization

and disagreement appear in a global network-level, whereas timeline

algorithms operate on a local user-level. Bridging between these

two levels of abstraction is a major challenge. In particular, while

network-level polarization and disagreement have been success-

fully studied using opinion-formation models, it has remained an

open question of how these models can be augmented to take into

account the fine-grained impact of user-level timeline algorithms.

We make progress on this question by providing a way to model

the impact of timeline algorithms on opinion dynamics. Specifically,

we show how the popular Friedkin–Johnsen opinion-formation

model can be augmented based on aggregate information, extracted
from timeline data. Our idea is to combine the underlying follow-

graph of the online social network with a graph that is induced by

data from a timeline algorithm. The aggregate information that we

consider are the topics that are discussed in the social network, as

well as the users’ interests and influence on these topics. To the

best of our knowledge, this is the first work that allows to obtain

theoretical guarantees for combining an opinion-formation model

with a graph induced by a timeline algorithm.

We use our model to study the problem of minimizing the polar-

ization and disagreement; we assume that we are allowed to make

small changes to the users’ timeline compositions by strengthening

some topics of discussion and penalizing some others. We present

a gradient descent-based algorithm for this problem, and show

that under realistic parameter settings, our algorithm computes

a (1 + 𝜖)-approximate solution in time Õ(𝑚
√
𝑛 log(1/𝜖)), where

𝑚 is the number of edges in the graph and 𝑛 is the number of

vertices. We also present an algorithm that provably computes

an 𝜖-approximation of our model in near-linear time. We evalu-

ate our method on real-world data and show that it effectively

reduces the polarization and disagreement in the network. We also

show that our algorithm is orders of magnitude faster than a non-

optimized black-box optimization approach. Finally, we release an

anonymized graph dataset with ground-truth opinions and more

than 27 000 nodes (the previously largest publicly available dataset

contains less than 550 nodes).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW’24, May 13–17, 2024, Singapore
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Information systems→ Social networks; • Theory of com-
putation→ Graph algorithms analysis; Approximation algo-
rithms analysis.

KEYWORDS
Opinion dynamics, social-network analysis, polarization, disagree-

ment

ACM Reference Format:
. 2023. Modeling the Impact of Timeline Algorithms on Opinion Dynamics

Using Low-rank Updates. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation email (WWW’24). ACM, New

York, NY, USA, 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Online social networks are used by millions of people on a daily

basis and they are integral parts of modern societies. However,

during the last decade there has been growing criticism that timeline

algorithms, employed in online social networks, create filter bubbles

and increase the polarization and disagreement in societies.

Despite significant research effort, our understanding of these

phenomena is still insufficient. One of the main challenges here

is that polarization and disagreement appear at a global network-
level, whereas timeline algorithms operate on a local user-level. So,
on the one hand, opinion dynamics are commonly studied in the

context of the graph structure of the social network. On the other

hand, timeline algorithms provide a personalized ranking of content

(such as posts on Facebook or Twitter) and only consider users’ local

neighborhoods in the graph (e.g., 𝑘-hop neighborhoods), without

considering the global polarization and disagreement. Providing

models that bridge the gap between these two levels of abstraction is

a major challenge to facilitate our understanding of the underlying

phenomena.

A popular way to study the network-level polarization and dis-

agreement is using opinion-formation models, and one of the most

popular abstractions is the Friedkin–Johnsen (FJ) model [14]. The

vanilla version of the FJ model, however, is not sufficient to model

real-world online social networks, since it assumes that the under-

lying graph is static, based only on friendship relations, and not

taking into account additional relations and interactions based on

recommendations from timeline algorithms.

To address these limitations a lot of attention has been devoted

to augmenting the FJ model to understand phenomena that are

more closely aligned with the real world [10, 11, 30, 34, 36, 39].

However, existing augmentations are rather simplistic: they either

study a small number of edge additions or deletions [34, 39] or they

directly perform global changes to the graph structure to minimize

the polarization and disagreement [10, 11, 30] (see Section 2 for

a more detailed description of existing approaches). Most impor-

tantly, these papers assume that the graph structure is manipulated

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

directly, which does not align with how timeline algorithms inter-

act with the underlying graph structure. Hence, the augmentations

studied in existing papers provide no way of incorporating the

properties of timeline algorithms into opinion-formation models.

They also provide no means of updating a timeline algorithm’s

recommendations to reduce polarization and disagreement.

Our contributions. In this paper, wemake progress on these issues

by introducing an augmentation of the FJ model that combines a
fixed underlying graph and a network that is based on aggregate
information of a timeline algorithm.

In particular, we obtain our aggregate information by aggregating
along the topics that are discussed in the social network. First, for

each user we consider how many posts of its timeline are from each

topic. This provides us with the topic distribution on the timeline of

each user. Second, for each topic we consider how frequently posts

by the users are displayed by the timeline algorithm. This provides

us with a distribution for each topic, indicating how influential each

user is for this topic. We argue that this is a realistic way to obtain

aggregate information for a large range of timeline algorithms in

real-world platforms, e.g., on Twitter/X or Reddit.

Based on the aggregate information, we introduce a low-rank

graph update, which encodes the social-network connections cre-

ated by the timeline algorithm’s recommendations. In other words,

we use the aggregate information and the low-rank graph to bridge

between the network-level opinion dynamics and the user-level

recommendations of a timeline algorithm. Our model is the first

that allows to quantify how timeline algorithms impact polarization

and disagreement; we also show that our model can be computed

in nearly-linear time. Details are presented in Section 4.

Next, we use our model to study how a timeline algorithm’s

recommendations need to be adapted to reduce polarization and

disagreement, by allowing small changes to the aggregate informa-

tion. More concretely, we allow small changes to the timelines of

the users, such as reducing a user’s interest in a highly polarizing

topic and slightly strengthening a less controversial topic in the

user’s timeline. We believe that incorporating these types of the

changes into real-world timeline algorithm is practical.

For this problem, we provide a gradient descent-based algorithm,

called GDPM, and show that under realistic parameter settings it

computes a (1 + 𝜖)-approximate solution in time Õ(𝑚
√
𝑛 log(1/𝜖)),

where 𝑛 is the number of vertices and𝑚 is the number of edges in

the original graph. The details are presented in Section 5.2.

To obtain our efficient optimization algorithm, we have to over-

come significant computational challenges. In particular, since it

is possible that the number of edges introduced by the low-rank

graph is much larger than in the original graph, even writing down

the edges introduced by the recommender system may be infeasible

in practice. Therefore, in Section 5.1 we show that we can efficiently

approximate the opinions, the polarization, and the disagreement

in time that is near-linear in the size of the original graph.
Furthermore, we experimentally evaluate our algorithm on 27 real-

world datasets. Our results show that GDPM can efficiently reduce

the disagreement–polarization index proposed by Musco et al. [30].

We also qualitatively evaluate which topics are favored and which

topics are penalized when reducing the polarization and the dis-

agreement. Additionally, our experiments show that our algorithms

are orders of magnitude faster than baseline algorithms and that

they scale to graphs with millions of nodes and edges.

Finally, we make our code and two anonymized Twitter datasets

available for research purposes in an anonymized repository [1].

Our anonymized graph datasets contain ground-truth opinions and

the graph structure for more than 27 000 nodes. The previoulsy

largest publicly available dataset contains less than 550 nodes [13].

We include all omitted proofs and our implementation in the

appendix.

2 RELATEDWORK
Over the past few years, researchers have studied the phenomena

of political polarization on social media [20, 33]. The work includes

understanding the impact of polarized discussions [3, 26] as well

as developing mitigation strategies [2, 28].

From a practical point of view, there have been various attempts

to develop algorithmic solutions to reduce polarization. Several

works propose approaches that expose users to opposing view-

points on online social networks [16, 17, 19]. Munson and Resnick

[29] design a browser extension that visualizes the bias of a user’s

content consumption.

To study polarization in online social networks theoretically,

researchers resorted to opinion formation models and in recent

years the most popular model in this context is the the Friedkin–

Johnsen (FJ) model [14]. It has been popular to augment the FJmodel

with abstractions of algorithmic interventions [5, 10, 38, 39]. Other

works in this research area study the impact of adversaries [9, 15, 37]

and viral content [36], as well basic properties of the FJ model [6].

Several works in this area dealt with the question of minimizing

the polarization and disagreement using small updates to the under-

lying graph [27, 30, 39]. Zhu et al. [39] and Rácz and Rigobon [34]

allow 𝑘 edge updates to the underlying graph. Musco et al. [30]

allow to redistribute all edge weights arbitrarily, whereas Cinus et

al. [11] allow edge updates under the constraints that the vertex

degrees must stay the same and that no new edges are added to the

graph. The main limitation of these works is that the graph updates

performed in their algorithms have no clear correspondence with

operations of timeline algorithms; for instance, it is unclear how

the graph updates proposed in [11, 30] should be incorporated into

a timeline algorithm. In contrast, we believe that incorporating the

changes to the aggregate information that we study in this paper as

feasible in practice. We believe that this is a significant contribution

to this line of work.

3 PRELIMINARIES
Linear algebra. Let 𝐺 = (𝑉 , 𝐸,𝑤) be an undirected, connected,

weighted graph with 𝑛 = |𝑉 | vertices and𝑚 = |𝐸 | edges. We set

L = D − A to the Laplacian of 𝐺 , where D is the diagonal matrix

with D𝑖𝑖 =
∑

𝑗 : (𝑖, 𝑗) ∈𝐸 𝑤𝑖 𝑗 and A is the weighted adjacency matrix

with A𝑖 𝑗 = 𝑤𝑖 𝑗 .

For X ∈ R𝑛×𝑘 , we denote the Frobenius norm by ∥X∥𝐹 =

(∑𝑖, 𝑗 X2

𝑖 𝑗
)1/2. The spectral norm of X is ∥X∥

2
= 𝜎max (𝐴), where

𝜎max (A) is the largest singular value of A. We also use the 1-norm

of a matrix, which is given by ∥X∥
1,1 =

∑
𝑖 𝑗

��X𝑖 𝑗

��
. We write X𝑖 to

denote the 𝑖-th row of X.
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Wewrite I to denote the identitymatrix and 1 to denote the vector
with all entries equal to 1; the dimension will typically be clear

from the context. Given a vector v, we write diag(v) to denote the

diagonal matrix with diag(v)𝑖𝑖 = v𝑖 . For vectors u, v ∈ R𝑛 , we write
u ⊙ v ∈ R𝑛 to denote their Hadamard product, i.e., (u ⊙ v)𝑖 = u𝑖v𝑖 .
We define ∥v∥

2
= (∑𝑖 v2

𝑖
)1/2 to be the Euclidean norm of v. For

a vector v and a convex set 𝑄 , Proj𝑄 (v) denotes the orthogonal
projection of v onto 𝑄 .

We write sgn(𝑥) : R→ {−, 0, +} to denote the sign of 𝑥 . We use

the notation Õ(𝑇) to denote running times of the form𝑇 log
O(1) (𝑛).

We write poly(𝑛) to denote numbers bounded by 𝑛O(1) .

Friedkin–Johnsen (FJ) model. Let 𝐺 and L be as defined above.

In the FJ model [14], each node 𝑖 has a fixed innate opinion s𝑖 and
an expressed opinion z(𝑡)

𝑖
at time 𝑡 . Initially, z(0)

𝑖
= s𝑖 , and at time

𝑡 + 1 every node 𝑖 updates their expressed opinion as the weighted

average of its own innate opinion and the expressed opinions of its

neighbors:

z(𝑡+1)
𝑖

=
s𝑖 +

∑
𝑗 : (𝑖, 𝑗) ∈𝐸 𝑤𝑖 𝑗 z

(𝑡)
𝑖

1 +∑
𝑗 : (𝑖, 𝑗) ∈𝐸 𝑤𝑖 𝑗

. (1)

We write s ∈ R𝑛 and z(𝑡) ∈ R𝑛 to denote the vectors of innate and

expressed opinions, respectively. It is known that in the limit, the

expressed opinions converge to z = lim𝑡→∞ z(𝑡) = (I + L)−1s.
We assume that the innate opinions are mean-centered and in the

interval [−1, 1], i.e., ∑𝑖∈𝑉 s𝑖 = 0 and s𝑖 ∈ [−1, 1] for all 𝑖 ∈ 𝑉 . The

latter implies that z(𝑡)
𝑖
∈ [−1, 1]. We note that these assumptions

are made without loss of generality as they can always be achieved

by rescaling the opinions s.
For mean-centered opinions, the polarization index 𝑃 (𝐺) mea-

sures the variance of the opinions and is given by 𝑃 (𝐺) = ∑
𝑖∈𝑉 z2

𝑖
.

The disagreement index 𝐷 (𝐺) describes the tension along edges in

the network and is given by 𝐷 (𝐺) = ∑
(𝑖, 𝑗) ∈𝐸 𝑤𝑖 𝑗 (z𝑖 − z𝑗)2. Finally,

the disagreement–polarization index 𝐼 (𝐺), on which we will focus

for the rest of the paper, is given by

𝐼 (𝐺) = 𝑃 (𝐺) + 𝐷 (𝐺) = s⊤ (I + L)−1s, (2)

where the last equality was shown by Musco et al. [30]. They also

observe that the function 𝑓 (L) = s⊤ (I + L)−1s is convex if L ∈ L is

from a convex set of Laplacians L [32].

4 PROBLEM FORMULATION
In this section, we formally introduce our augmented version of

the FJ model. In particular, we show how we use a timeline algo-

rithm’s aggregate information to obtain a low-rank graph update

for the FJ model. At a high level, we start with the initial adjacency

matrix A, which only contains interaction-information (such as

who follows whom) and add an adjacency matrix AX based on the

aggregate information. We also state the optimization problem we

study for minimizing the disagreement–polarization index.

The aggregate information that we consider is as follows. We

consider 𝑘 different topics and two row-stochastic matrices X ∈
[0, 1]𝑛×𝑘 and Y ∈ [0, 1]𝑘×𝑛 , i.e., ∑𝑘

𝑗=1
X𝑖 𝑗 = 1, for all 𝑖 = 1, . . . , 𝑛,

and

∑𝑛
𝑟=1

Y𝑗𝑟 = 1, for all 𝑗 = 1, . . . , 𝑘 , and we assume 𝑘 ≤ 𝑛. Here,

X models how user timelines are formed based on various topics;

more concretely, we assume that X𝑖 𝑗 is the fraction of posts in

Table 1: Summary of our notation

Variable Meaning

𝐺 = (𝑉 , 𝐸) Original graph, vertex set, edge set

𝑛 Number of vertices in the original graph

𝑚 Number of edges in the original graph

𝑘 Number of topics

X User–topic matrix (variable of our algorithm)

Y Influence–topic matrix (fixed)

A Adjacency matrix of the original graph

AX Low-rank adjacency matrix based on aggregate information

L Laplacian of the original graph

LX Laplacian of the low-rank graph

s Innate opinions

z Expressed opinions for the original graph

zX Expressed opinions after adding the low-rank

update to the original graph

z̃X Approximation of zX
𝑓 (X) Objective function value for X
X(𝐿) Entry-wise lower bound for X′ in Problem 2

X(𝑈) Entry-wise upper bound for X′ in Problem 2

\ Parameter used to define X(𝐿) and X(𝑈)

𝑄 Feasible set of matrices X with X(𝐿) ≤ X ≤ X(𝑈)

𝐶 Percentage of extra edge weight added by low-rank update

user 𝑖’s timeline from topic 𝑗 . The matrix Y models which users

are recommended by the timeline algorithm for each topic; that

is, when the algorithm recommends contents for topic 𝑗 , then a

fraction of Y𝑗𝑟 of the contents was composed by user 𝑟 .

Observe that if we consider the product XY, a (XY)𝑖 𝑗 -fraction
of the recommended contents in the timeline of user 𝑖 is composed

by user 𝑗 . This can also be viewed as the impact that a user 𝑗 has

on another user 𝑖 . Since in general XY is a non-symmetric matrix,

we also add the transposed term Y⊤X⊤, which ensures symmetry

of the adjacency matrix. This can be interpreted as the impact of

users’ audience to them, for instance, users want to create content

that is liked by their audience.

Thus, we will consider a scaled version of XY + Y𝑇X𝑇
. In the

following lemma, we show that this matrix adds (weighted) edges

of total weight 2𝑛.

Lemma 1. It holds that
XY + Y𝑇X𝑇

1,1

= 2𝑛.

To obtain a more fine-grained control over how many edges we

add to the original graph, we consider a scaled version ofXY+Y𝑇X𝑇 .
More concretely, based on the result from Lemma 1, we add the

low-rank adjacency matrix given by

AX =
𝐶𝑊

2𝑛

(
XY + Y𝑇X𝑇

)
,

where 𝐶 > 0 is a parameter that is fixed throughout the paper

and𝑊 =
∑
(𝑖, 𝑗) ∈𝐸 𝑤𝑖 𝑗 is the total weight of edges in the original

graph 𝐺 . Observe that Lemma 1 implies that ∥AX∥1,1 = 𝐶𝑊 and

thus if we add the edges in AX to the graph, the total weight of

edges increases by a 𝐶-fraction.1 In practice, it may be realistic to

think of 𝐶 = 10% or 𝐶 = 50%.

1
We note that while here we only guarantee that the global increase of edges is a

𝐶-fraction, in Figure 8 we show that also on a local user-level, the increase does not
deviate a lot from 10%.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

After adding the edges AX, which are based on the aggregate

information, the new adjacency matrix becomes

A + AX = A + 𝐶𝑊
2𝑛

(
XY + Y𝑇X𝑇

)
,

where A is the adjacency matrix of the original graph and AX is the

adjacency matrix of the edges that are introduced by the low-rank

update. Next, we write

LX = diag(AX1) − AX

to denote the Laplacian associated with the adjacency matrix AX.
Note that the Laplacian of the combined graph is given by L + LX,
where L is the Laplacian of the original graph that only contains

the follow-information.

Now, after adding the edges from the low-rank update, the ex-

pressed equilibrium opinions that are produced by the FJ opinion

dynamics are given by zX = (I + L + LX)−1s.
Next, we formally introduce the optimization problem that we

study. Intuitively, the problem states that we wish to minimize the

disagreement–polarization index (Eq. (2)), while allowing small

changes to the aggregate information. In particular, we allow to

make changes to how the users’ timelines are composed of different

topics. The formal definition is as follows.

Problem 2. Given a graph𝐺 = (𝑉 , 𝐸) with adjacency matrix A and
Laplacian L, user–topic matrix X ∈ [0, 1]𝑘×𝑛 , influence–topic matrix
Y ∈ [0, 1]𝑘×𝑛 , and lower and upper bound matrices X(𝐿) and X(𝑈),
respectively, find a matrix X′ ∈ [0, 1]𝑛×𝑘 to satisfy

min

X′
𝑓 (X′) = s𝑇 (I + L + LX′)−1 s,

such that
X′𝑖1

= 1, for all 𝑖 = 1, . . . , 𝑛, and

X(𝐿) ≤ X′ ≤ X(𝑈) .

(3)

In Problem 2, we write X′
𝑖
to denote the 𝑖-th row of the matrix-

valued variable X′. The first constraint ensures that X′ is a row-
stochastic matrix. Furthermore, the matrices X(𝐿) ∈ [0, 1]𝑛×𝑘 and

X(𝑈) ∈ [0, 1]𝑛×𝑘 are part of the input and they give entry-wise

lower and upper bounds for the entries in X′, i.e., we require 0 ≤
X(𝐿)
𝑖 𝑗
≤ X′

𝑖 𝑗
≤ X(𝑈)

𝑖 𝑗
≤ 1 for all 𝑖, 𝑗 . This constraint can be interpreted

as a quantification of how much we can increase/decrease the

attention of user 𝑖 to topic 𝑗 without the risk of making non-relevant

recommendations and without violating ethical considerations. We

further assume that X(𝐿) ≤ X ≤ X(𝑈), which corresponds to the

assumption that the initial matrix X is a feasible solution to our

optimization problem.

In the following, we let 𝑄 denote the set of all matrices X′ that
satisfy the constraints of Problem 2. Observe that 𝑄 is a convex

set, since it is the intersection of a box and a hyperplane (the first

constraint is equivalent to the hyperplane constraint ⟨X′
𝑖
, 1⟩ = 1,

since all entries inX′ are in the interval [0, 1]; the second constraint
is a box constraint). Furthermore, observe that the constraints are

independent across different rows X′
𝑖
, which we will exploit later.

Since the objective function and 𝑄 are convex, Problem 2 can be

solved optimally in polynomial time. However, if we use a blackbox

solver for this purpose, its running time will be prohibitively high

in practice (see Section 6). Even more, already a single computation

of the gradient is impractical when done naïvely (see Section 6).

We address these challenges in the following section.

5 OPTIMIZATION ALGORITHM
In this section, we present a gradient-descent algorithm, which con-

verges to an optimal solution for Problem 2. We present bounds for

its running time and its approximation error after a given number

of iterations. We also show that we can approximate the expressed

opinions zX highly efficiently. We conclude the section by present-

ing two greedy baseline algorithms.

5.1 Efficient estimation of expressed opinions
To understand the impact of the low-rank update on the user opin-

ions, it is highly interesting to inspect the expressed opinions zX:
comparing them with the original expressed opinions zwill offer us
insights into the impact of the timeline algorithm. However, even

though in Lemma 1 we bound the total weight of edges that are
added, their number could still be Ω(𝑛2), since the matrixAX might

be dense. Thus, even writing down AX would result in running

times of Ω(𝑛2) and would be prohibitively expensive. Therefore,

one challenge is to show how to compute zX efficiently.

In the following proposition, we show that since AX has small

rank, we can exploit the Woodbury identity to obtain an approxi-

mation z̃X via Algorithm 1 (see Appendix 1 for the pseudocode). By

using such an approximation we can achieve much faster running

times, while still obtaining provably small errors. In the following

proposition we use U =
(
X Y⊤

)
and V =

(
Y
X⊤

)
.

Proposition 3. Let 𝜖 > 0. Suppose
(
− 2𝑛
𝐶𝑊

I + VM−1U
)−1

exists andVM−1U

2
≤ 0.99

2𝑛
𝐶𝑊

. Algorithm 1 computes z̃X with ∥̃zX − zX∥2 ≤
𝜖 in expected time Õ((𝑚𝑘 + 𝑛𝑘2 + 𝑘3) log(𝑊 /𝜖)).

Proof sketch. The algorithm is based on the observation that

using the Woodbury matrix identity withM = I + L + diag(AX1),
and U and V as before, we get that

zX = M−1s + 𝐶𝑊
2𝑛

M−1U
(
I − 𝐶𝑊

2𝑛
VM−1U

)−1

VM−1s.

Now Algorithm 1 (pseudocode in the appendix) basically computes

this quantity from right to left. Our main insight here is that we

can compute the quantitiesM−1s andM−1U using the Laplacian

solver from Lemma 10. Here, we approximate M−1U column-by-

column using the call Solve(M,w𝑗 , 𝜖R), wherew𝑗 is the 𝑗 ’th column

of U and 𝜖R is a suitable error parameter. The remaining matrix

multiplications are efficient since U has only 2𝑘 columns and since

matrix V has only 2𝑘 rows.

To obtain our guarantees for the approximation error, we have to

perform an intricate error analysis to ensure that errors do not com-

pound too much. This is a challenge since we solve I − 𝐶𝑊
2𝑛 VM−1U

only approximately but then we have to compute an inverse of this

approximate quantity. In the proposition we used the assumptions

that VM−1U exists and that

VM−1U

2
≤ 0.99 · 2𝑛

𝐶𝑊
, to ensure that

this can be done without obtaining too much error. In the proof

we will also show that these assumptions imply that the inverse

S−1
used in the algorithm exists. See Appendix C.4 for details. □

The input of Algorithm 1 are the innate opinions s, the user–topic
matrix X, the influence–topic matrix Y, the fraction of weight pa-

rameter𝐶 , and the approximation error parameter 𝜖 . The algorithm

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

returns the approximated expressed opinions z̃X. Note that if we
consider the practical scenario of 𝑘 = poly log(𝑛) and𝑊 ≤ poly(𝑛),
the running time of Algorithm 1 is Õ(𝑚 log(1/𝜖)).

Proposition 3 also allows us to efficiently evaluate the disagreement–

polarization index after adding the edges in AX. More concretely,

in the following corollary we show that we can efficiently evaluate

our objective function 𝑓 (X) = s𝑇 (I + L + LX)−1s with small error.

Corollary 4. Let 𝜖 > 0. Suppose
(
− 2𝑛
𝐶𝑊

I + VM−1U
)−1

exists andVM−1U

2
≤ 0.99

2𝑛
𝐶𝑊

. We can compute a value 𝑓 such that
���𝑓 − 𝑓 (X)

��� ≤
𝜖 in expected time Õ((𝑚𝑘 + 𝑛𝑘2 + 𝑘3) log(𝑊 /𝜖)).

5.2 Gradient descent-based polarization
minimization

Next, we present our gradient descent-based polarization minimiza-

tion (GDPM) algorithm. We start by presenting basic facts about

the gradient of our problem in the following proposition.

Proposition 5. The following three facts hold for the gradient of
𝑓 (X) with respect to X:
(1) The gradient ∇X 𝑓 (X) is given by

∇X 𝑓 (X) =
𝐶𝑊

2𝑛
(2 · zX · z⊤X · Y

⊤ − (zX ⊙ zX) · 1⊤𝑘 − 1𝑛 · (z
⊤
X ⊙ z⊤X) · Y

⊤).
(4)

(2) The function 𝑓 (X) is 𝐿-smooth with 𝐿 = 8𝐶𝑊√
𝑛
· ∥s∥

2
· ∥Y∥2

2
, i.e.,

for all X1,X2 ∈ 𝑄 it holds that

∥∇X 𝑓 (X1) − ∇X 𝑓 (X2)∥𝐹 ≤
8𝐶𝑊
√
𝑛
· ∥s∥

2
· ∥Y∥2

2
· ∥X1 − X2∥𝐹 .

(3) Let 𝜖 > 0. Suppose the conditions of Proposition 3 hold, then
we can compute an approximate gradient ∇̃X 𝑓 (X) such that∇̃X 𝑓 (X) − ∇X 𝑓 (X)

𝐹
≤ 𝜖 in expected time Õ((𝑚𝑘 + 𝑛𝑘2 +

𝑘3) log(𝑊 /𝜖)).

The gradient of our problem is given in Eq. (4) and in the second

point we show that it is Lipschitz continuous. Computing the gradi-

ent exactly involves computing zX exactly; however, this requires

to compute the matrix inverse (I + L)−1
, which is expensive for

large graphs. Hence, in the third point we show that an approxi-

mate gradient can be computed highly efficiently and with error

guarantees.

Since we only have an approximate gradient, GDPM is an im-

plementation of the gradient descent method by d’Aspremont [12],

who analyzed a method of Nesterov [31] with approximate gradi-

ent. We use Kiwiel’s algorithm [21] to compute the orthogonal

projections Proj𝑄 (·) on our set of feasible solutions𝑄 in linear time,

where we exploit that our constraints are independent across dif-

ferent rows of X. The pseudocode of GDPM is given in Algorithm 2

in the appendix.

Algorithm 2 takes as input the innate opinions s, the user–topic
matrix X, the influence–topic matrix Y, the budget \ , and the extra

weight parameter 𝐶 . It returns X(𝑇) after a number of iterations 𝑇 .

In the following theorem we present error and running-time

guarantees for GDPM, which show that it converges to the optimal

solution given enough iterations.

Theorem 6. Let 𝜖 > 0. Suppose at each iteration of GDPM the
conditions of Proposition 3 are satisfied. Then GDPM computes a
solution X(𝑇) such that 𝑓 (X) − 𝑓 (X∗) ≤ 𝜖 in expected time

Õ
(√︁

𝜖−1 ·𝐶𝑊𝑘𝑛 · (𝑚𝑘 + 𝑛𝑘2 + 𝑘3) log(𝑊 /𝜖)
)
,

where X∗ is the optimal solution for Problem 2.

We note that in parameter settings that are realistic in prac-

tice, GDPM computes a solution with multiplicative error at most

(1+𝜖′) in time Õ(𝑚
√
𝑛 log(1/𝜖′)). More concretely, this is the case

when the number of topics 𝑘 = poly log(𝑛) is small, the fraction

of additional edges 𝐶 = O(1) is small, and the network is sparse

with 𝑊 = Õ(𝑛). Additionally, it is realistic to assume that the

optimal solution still has a large amount of polarization and dis-

agreement since at least a constant fraction of the users will differ

from the average opinion by at least 0.01; this argument implies

that the polarization is at least LB = Ω(𝑛), which in turn implies

that 𝑓 (X∗) ≥ LB = Ω(𝑛). Hence, if in the theorem we set 𝜖 = 𝜖′ LB,
we get the bound above.

5.3 Baselines
Next, we introduce two greedy baseline algorithms. The baselines

proceed in iterations and, intuitively, in each iteration they update

the user timelines such that some topics are penalized and others

are favored; the choice of these topics depends on the baseline.

More concretely, the baselines obtain as input the original graph

and the matrices X, X(𝐿), X(𝑈) , Y and a number 𝑇max of iterations

to perform. First, we set X(0) ← X. Now the algorithm performs

𝑇max iterations. In each iteration 𝑇 , we initialize X(𝑇) ← X(𝑇−1)
.

Then wemanipulate the timeline of each user 𝑖 by redistributing the

weights in row 𝑖 ofX(𝑇) . We pick two topics 𝑗 and 𝑗 ′ and transfer as
much weight as possible from topic 𝑗 ′ to topic 𝑗 . Intuitively, one can
think of 𝑗 as a topic that we want to strengthen and 𝑗 ′ as a topic that
we want to penalize; how these topics are picked depends on the

implementation of the baseline (see below). To denote how much

weight we can transfer, we set 𝛿 ← min{X(𝑈)
𝑖 𝑗
−X(𝑇)

𝑖 𝑗
,X(𝑇)

𝑖 𝑗 ′ −X
(𝐿)
𝑖 𝑗 ′ },

i.e., 𝛿 corresponds to the weight that we can transfer from topic 𝑗 ′

to 𝑗 without violating the constraints of Problem 2. Then we set

X(𝑇)
𝑖 𝑗
← X(𝑇)

𝑖 𝑗
+ 𝛿 and X(𝑇)

𝑖 𝑗 ′ ← X(𝑇)
𝑖 𝑗 ′ − 𝛿 . As stated before, we do

this for each user 𝑖 . Then the next iteration 𝑇 + 1 starts.

Baseline 1: Strengthening non-controversial topics (BL-1). We intro-

duce our first baseline (BL-1), which aims to penalize controversial

topics and to strengthen non-controversial topics. We build upon

the meta-algorithm above and state how to pick the topics 𝑗 and 𝑗 ′

for the current user 𝑖 . First, we compute z̃X(𝑇) using Algorithm 1

and set 𝑧 = 1

𝑛

∑
𝑢∈𝑉 z̃X(𝑇) (𝑢) to the average user opinion. Also,

for each topic 𝑗 we set 𝜏 𝑗 =
∑
𝑢∈𝑉 Y𝑗𝑢 z̃X(𝑇) (𝑢) to the weighted

average of the opinions of influential users for topic 𝑗 . Since this

does not depend on the user 𝑖 , this can be done at the beginning of

each iteration 𝑇 . In BL-1, we set 𝑗 to a controversial topic that is

“far away” from the average opinion and 𝑗 ′ to a non-controversial

topics which is “close” to the average opinion. More concretely, we

let 𝑗 be the topic with X(𝑇)
𝑖 𝑗

< X(𝑈)
𝑖 𝑗

that minimizes

��𝜏 𝑗 − 𝑧��; and we
let 𝑗 ′ be the topic with X(𝑇)

𝑖 𝑗 ′ > X(𝐿)
𝑖 𝑗 ′ that maximizes

��𝜏 𝑗 ′ − 𝑧��.
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Baseline 2: Strengthening opposing topics (BL-2). Our second base-

line (BL-2) can be viewed as a reverse of the above strategy and

is inspired by the experimental outputs that we observed from

GDPM: it penalizes non-controversial topics and strengthens topics

that are opposing to user 𝑖’s opinion. More concretely, we compute

z̃X(𝑇) and 𝑧 as before. However, then we strengthen the topic 𝑗

with X′
𝑖 𝑗

< X(𝑈)
𝑖 𝑗

that maximizes −̃zX(𝑇) (𝑖)𝜏 𝑗 . For instance, if

z̃X(𝑇) (𝑖) > 0 then the algorithm will pick the topic 𝜏 𝑗 < 0 of largest

absolute value; note that since z̃X(𝑇) and 𝜏 𝑗 must have different

signs, this corresponds to connecting user 𝑖 to a topic that opposes

its own opinion. Also, we let 𝑗 ′ be the topic with X′
𝑖 𝑗 ′ > X(𝐿)

𝑖 𝑗 ′

and z̃X(𝑇) (𝑖)𝜏 𝑗 > 0 that minimizes

��𝜏 𝑗 ′ − 𝑧��; this corresponds to our

choice of non-controversial topics in BL-1 assuming that 𝜏 𝑗 has the

same sign as z̃X(𝑇) (𝑖).
The pseudocode for BL-1 and BL-2 is presented in Algorithm 3

in the appendix.

6 EXPERIMENTAL EVALUATION
We evaluate our algorithms on 27 real-world datasets. To conduct

realistic experiments, we collect two novel real-world datasets from

Twitter, which we denote TwitterSmall (𝑛 = 1 011,𝑚 = 1 960) and

TwitterLarge (𝑛 = 27 058,𝑚 = 268 860); these two datasets contain

ground-truth opinions and we use retweet-information to obtain

the aggregate information for the interest- and influencer-matrices

X and Y. Wemake our novel datasets available in the supplementary

material [1] and we will make them public in the non-anonymized

version of the paper; we note that TwitterLarge contains more than

27 000 nodes and is thus almost 50 times larger than the previoulsy

largest publicly available dataset with ground-truth opinions (which

contains less than 550 nodes) [13]. See Appendix B.1 for details on

all datasets and on how our new Twitter datasets were collected.

We experimentally compare GDPM against the greedy baselines

BL-1 and BL-2. We also compare our gradient-descent algorithm

against the black-box solver Convex.jl. In our experiments, given

X and a parameter \ ∈ [0, 1], we set X(𝑈)
𝑖 𝑗

= min{1,X𝑖 𝑗 + \ } and
X(𝐿)
𝑖 𝑗

= max{0,X𝑖 𝑗 − \ }, when not mentioned otherwise.

We conduct our experiments on a Linux workstation with a

2.90GHz Intel Core i7-10700 CPU and 32GB of RAM. Our code is

written in Julia v1.7.2 and available in the supplementary [1].

Impact of learning rate.We first study the impact of the learning

rate on the convergence of GDPM. Our theoretical analysis suggests

using learning rate 𝐿 = (8𝐶𝑊 /
√
𝑛) ∥s∥

2
∥Y∥2

2
, which is very large

in practice and will result in slow convergence. Thus, we study the

convergence of GDPM for different learning rates, in particular, we

test 𝐿 = 10, 10
2, 10

3, 10
4
. The results for TwitterSmall and TwitterLarge

are shown in Figures 2(a) and 2(b), respectively. We observe that

even with 𝐿 = 10, GDPM converges to the same objective function

value as for much larger values of 𝐿, and it converges much faster.

Therefore, for the rest of our experiments we will use 𝐿 = 10.

Understanding the behavior of GDPM. Next, we perform ex-

periments to obtain further insights into which topics are favored

by GDPM and which ones are penalized.

To answer this question, we consider the initial interest matrix X
and the matrix X(𝑇) obtained after GDPM converged. To quantify

the behavior of GDPM, we consider the column changes among

X and X(𝑇) . Specifically, for each topic 𝑗 , we measure the change

of its weight given by 𝛿 𝑗 =
∑
𝑖 X
(𝑇)
𝑖 𝑗
− ∑

𝑖 X𝑖 𝑗 . Note that 𝛿 𝑗 > 0

indicates that topic 𝑗 has more weight inX(𝑇)
𝑗

than inX, i.e., GDPM
“favors” it; similarly, 𝛿 𝑗 < 0 indicates that topic 𝑗 has less weight in

X(𝑇)
𝑗

than in X, i.e., GDPM “penalizes” it.

In Fig. 1(a) we plot tuples (𝜏 𝑗,s, 𝛿 𝑗) for each topic 𝑗 , where 𝛿 𝑗 is

the change in importance for topic 𝑗 , as defined in the previous

paragraph, and 𝜏 𝑗,s =
∑
𝑢∈𝑉 Y𝑗𝑢s(𝑢) is the weighted average of

the innate opinions of the influencers for topic 𝑗 . We also color-

code the topics based on their content. We observe that GDPM

clearly favors topics with large absolute values

��𝜏 𝑗,s�� and it penal-

izes non-controversial topics with

��𝜏 𝑗,s�� close to 0. We explain this

behavior as a consequence of the FJ model opinion dynamics: more

controversial topics have a larger impact on the polarization, and

to reduce the polarization one has to bring together people from

opposing sides.

We note that in all plots, the most favored topics are political.

This is surprising, as the algorithm is not aware of the topic labeling.

However, we believe this is a consequence of the fact that political

topics are among the most controversial (see also below).

In Figures 1(b) and 1(c), we again show the 𝛿 𝑗 values but this

time plotted against 𝜏 𝑗,zX using the original expressed opinions zX
(before optimization) and 𝜏 𝑗,zX(𝑇) using the final expressed opin-

ions zX(𝑇) (after optimization). Qualitatively, we observe the same

behavior as before, so that more controversial topics are favored

and non-controversial topics are penalized. Observe that now the

𝑥-axes have smaller scales, since the expressed opinions are con-

tractions of the innate opinions. Here, it is important to observe

that before the optimization (Fig. 1(b)) the average topic opinions

were in [−0.066, 0.118] and after the optimization (Fig. 1(c)) they

are in [−0.028, 0.076]. Thus, the algorithm clearly brought all topics

closer together.

Next, we study the behavior of GDPM when we do not allow to

make any changes on the accounts’ interests in political topics, i.e.,

we set X(𝑈)
𝑖 𝑗

= X𝑖 𝑗 and X(𝐿)
𝑖 𝑗

= X𝑖 𝑗 for all political topics 𝑗 and all

accounts 𝑖 . In Fig. 1(d)–(f) we show the same plots as in Fig. 1(a)–(c),

when weight changes for political topics are not allowed. We obtain

the same qualitative outcome as before: controversial topics are

favored and non-controversial topics are penalized. We use these

qualitative insights to develop the second baseline algorithm BL-2.

As expected, when weight changes for political topics are not

allowed, we obtain a restricted version of the problem which lim-

its the disagreement-polarization reduction. For reference, in the

setting of Fig. 1(a)–(c), when weight changes for all topics are al-

lowed, the disagreement-polarization index is reduced to 93.44% of

its original value. In contrast, in the setting of Fig. 1(d)–(f), with no

changes on political topics, the disagreement-polarization index is

reduced to only 97.69% of its original value.

We stress that the above fine-grained analysis of which topics

are penalized and favored in the FJ model has only become possible

due to the introduction of our model from Section 4.

Comparison with black-box convex solver. Since Problem 3 is

convex, we compare our gradient-descent based algorithm GDPM

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) (b) (c)

(d) (e) (f)

Figure 1: Behavior of GDPM on TwitterLarge (\ = 0.1, 𝐶 = 0.1, 𝐿 = 10). We report the change of topic importance (𝑦-axis) and the
weighted average of the opinions of influential users for each topic (𝑥-axis): (a) weighted innate opinions 𝜏 𝑗,s; (b) weighted
expressed opinions before optimization 𝜏 𝑗 ; (c) weighted expressed opinions after optimization 𝜏 𝑗 . (d)—(f) repeat the same plots
when the algorithm must not change interest in political topics. For reference, the results are fitted with a quadratic function.

Table 2: Comparison of reduction ratio 𝑓 (X(𝑇))
𝑓 (X) (%) of GDPM, BL-1, and BL-2 on real-world graphs. In the experiments we set

\ = 0.1 and 𝐶 = 0.1. We used 𝐿 = 10 and 𝑇 = 100 for GDPM and we set 𝑇 = 10 for the greedy baselines.

Graph GDPM BL-1 BL-2 Graph GDPM BL-1 BL-2

Erdos992 94.34 100 94.97 Themarker 85.62 100 89.30

Advogato 91.36 100 92.59 Slashdot 92.23 100 93.43

PagesGovernment 87.82 100 88.62 BlogCatalog 85.59 100 89.77

WikiElec 87.30 100 89.72 WikiTalk 92.82 100 93.47

HepPh 86.13 100 88.69 Gowalla 91.79 100 92.63

Anybeat 92.17 100 93.21 Academia 92.04 100 93.37

PagesCompany 92.41 100 93.28 GooglePlus 86.43 100 88.28

AstroPh 88.20 100 89.74 Citeseer 90.53 100 91.48

CondMat 91.75 100 94.36 MathSciNet 93.55 100 93.93

Gplus 93.91 100 94.48 TwitterFollows 94.22 100 95.59

Brightkite 93.02 100 93.99 YoutubeSnap 93.58 100 94.76

against Convex.jl. Convex.jl is a popular black-box convex opti-

mization tool written in Julia. Our experiments show that GDPM

is orders of magnitude more efficient than Convex.jl. In particular,

even though for this experiment we used 102 GB of RAM, running

Convex.jl on graphs with more than 500 nodes exceeds the memory

constraint. In contrast, GDPM scales up to graphs with millions of

nodes and edges (see Tables 3 and 2). For the details of these experi-

ments, see Section B.2. Here, one of the bottlenecks for Convex.jl is

that it cannot access our efficient opinion estimation routine from

Proposition 3. In Table 3 we show the routine from the proposition

is indeed orders of magnitude more efficient than estimating the

opinions using naïve matrix inversion.

Comparison with greedy baselines and varying parameters.
Next, we compare GDPM against the baselines BL-1 and BL-2, and

vary the parameters \ and 𝐶 . Note that since GDPM is guaranteed

to converge to an optimal solution, we expect it to outperform both

baselines.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) TwitterSmall (b) TwitterLarge

Figure 2: Convergence of GDPM for different learning rates
on two Twitter datasets (\ = 0.1, 𝐶 = 0.1). The 𝑦-axis shows
the reduction ratio 𝑓 (XALG)/𝑓 (X).

(a) TwitterSmall (b) TwitterLarge

(c) TwitterSmall (d) TwitterLarge

Figure 3: Reduction of the disagreement–polarization index
on two datasets for all of our algorithms (𝐿 = 10). The 𝑦-
axis shows the reduction ratio 𝑓 (XALG)/𝑓 (X). In (a)-(b) we set
𝐶 = 0.1 and vary \ ∈ {0.05, 0.1, 0.15, 0.2}. In (c)-(d) we set \ = 0.1

and vary 𝐶 ∈ {0.1, 0.2, 0.3, 0.4}.
We report the results of all algorithmswith varying\ ∈ {0.05, 0.1,

0.15, 0.2} in Figures 3(a)–(b) for TwitterSmall and TwitterLarge. As
expected, GDPM obtains the largest reduction of the objective. Fur-

thermore, BL-2 outperforms BL-1 by a large margin. This is not

surprising, since we design BL-2 based on the insights that we

get from analyzing the behavior of GDPM; the observed behavior

thus suggests that our intuition about GDPM is correct. In addition,

we observe that the reduction in disagreement and polarization

increases with \ . This behavior is also well-aligned with our expec-

tation, as larger values of \ enlarge the feasible space and allow for

more flexibility in recommending interesting topics to all Twitter

accounts.

In addition, in Figures 3(c)–(d) we report the results of all al-

gorithms with varying 𝐶 ∈ {0.1, 0.2, 0.3, 0.4} for TwitterSmall and
TwitterLarge. The behavior of all algorithms remains consistent:

GDPM achieves the largest reduction, while BL-2 outperforms BL-1.

As expected, the reduction in disagreement and polarization in-

creases with 𝐶 , since larger values of 𝐶 allow for more impact of

the timeline algorithm.

Finally, we note that GDPM achieves a larger reduction on Twit-
terLarge than on TwitterSmall throughout all experiments. This is

perhaps a bit surprising since on both datasets we increase the

total edge weight by a 𝐶-fraction. However, the average node de-

gree of TwitterLarge is larger than for TwitterSmall. Furthermore, the

user–topic matrix X and influenc–topic matrix Y have different

structure for TwitterSmall and TwitterLarge, which results in the low-

rank adjacency matrix AX containing 25% and 33% of non-zero

entries, respectively. We believe that both of these characteristics

of the datasets lead to higher connectivity in TwitterLarge, which
results in better averaging of the opinions and thus ultimately in

less polarization and disagreement.

Performance of the optimization algorithms. We report the

optimization results of GDPM, BL-1, and BL-2 in Table 2. We used

different real-world graphs with synthetically generated polarized

opinions and synethically generated matrices X and Y. We run the

greedy baselines 10 iterations due to the high computation cost and

choose the best X(𝑇) as output in our experiments.

We observe that GDPM outperforms the two baselines on all

graphs. This is the expected behavior, since GDPM guarantees

decreasing the objective function constantly and converges to the

optimal solution; the two baselines have no such property. Across

all datasets, GDPM decreases the polarization and disagreement by

at least 5.6% and by up to 14.4%. Furthermore, BL-2 outperforms BL-

1 by a large margin and its results are often not much worse than

those of GDPM. Interestingly, BL-1 cannot reduce the polarization

and disagreement on all graphs.

We include additional experiments, including a running-time

analysis, in the appendix.

7 CONCLUSION
We showed how to augment the popular FJ model to take into ac-

count aggregate information of timeline algorithms. This allows us

to bridge between network-level opinion dynamics and user-level

recommendations. For our model, we presented an algorithm that

provably approximates the measures of polarization and disagree-

ment in near-linear time. We also considered the problem of opti-

mizing the timeline algorithm, so as to minimize polarization and

disagreement in the network, and developed an efficient gradient-

descent algorithm, GDPM, which computes an (1 + 𝜖)-approximate

solution in time Õ(𝑚
√
𝑛 log(1/𝜖)) under realistic parameter set-

tings. Our experiments confirm the efficiency and effectiveness

of the proposed methods and showed that our gradient-descent

algorithm is orders of magnitude faster than a black-box solver. We

also released the largest graph datasets with ground-truth opinions.

We believe that our work provides several directions for future

research. First, extensions to the non-symmetric setting are highly

interesting. Second, it will be valuable to consider other opinion-

formation models, beyond the FJ model, and compare the results.

Third, it will be intriguing to design more complex models, captur-

ing real-world nuances, that allow us to bridge between opinion

dynamics and properties of present-day timeline algorithms.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Anonymous authors. Code and dataset. https://anonymous.4open.science/r/

GDPM-BE6C/.

[2] Stefano Balietti, Lise Getoor, Daniel G Goldstein, and Duncan J Watts. Reducing

opinion polarization: Effects of exposure to similar people with differing political

views. Proceedings of the National Academy of Sciences, 118(52):e2112552118,
2021.

[3] Michael Barber, Nolan McCarty, Jane Mansbridge, and Cathie Jo Martin. Causes

and consequences of polarization. Political negotiation: A handbook, 37:39–43,
2015.

[4] Pablo Barberá. Birds of the same feather tweet together: Bayesian ideal point

estimation using twitter data. Political analysis, 23(1):76–91, 2015.
[5] Nikita Bhalla, Adam Lechowicz, and Cameron Musco. Local edge dynamics and

opinion polarization. InWSDM, pages 6–14, 2023.

[6] David Bindel, Jon M. Kleinberg, and Sigal Oren. How bad is forming your own

opinion? Games Econ. Behav., 92:248–265, 2015.
[7] Andrei Boutyline and RobbWiller. The social structure of political echo chambers:

Variation in ideological homophily in online networks. Political psychology, 38
(3):551–569, 2017.

[8] William J Brady, Julian AWills, John T Jost, Joshua A Tucker, and Jay J Van Bavel.

Emotion shapes the diffusion of moralized content in social networks. Proceedings
of the National Academy of Sciences, 114(28):7313–7318, 2017.

[9] Mayee F Chen and Miklós Z Rácz. An adversarial model of network disruption:

Maximizing disagreement and polarization in social networks. IEEE Transactions
on Network Science and Engineering, 9(2):728–739, 2021.

[10] Uthsav Chitra and Christopher Musco. Analyzing the impact of filter bubbles on

social network polarization. In WSDM, pages 115–123, 2020.

[11] Federico Cinus, Aristides Gionis, and Francesco Bonchi. Rebalancing social feed

to minimize polarization and disagreement. CoRR, abs/2308.14486, 2023. doi:
10.48550/arXiv.2308.14486. URL https://doi.org/10.48550/arXiv.2308.14486.

[12] Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM
Journal on Optimization, 19(3):1171–1183, 2008.

[13] Abir De, Sourangshu Bhattacharya, Parantapa Bhattacharya, Niloy Ganguly, and

Soumen Chakrabarti. Learning linear influence models in social networks from

transient opinion dynamics. ACM Trans. Web, 13(3):16:1–16:33, 2019.
[14] Noah E Friedkin and Eugene C Johnsen. Social influence and opinions. Journal

of Mathematical Sociology, 15(3-4):193–206, 1990.
[15] Jason Gaitonde, Jon Kleinberg, and Eva Tardos. Adversarial perturbations of

opinion dynamics in networks. In EC, pages 471–472, 2020.
[16] Kiran Garimella, Gianmarco De Francisc iMorales, Aristides Gionis, and Michael

Mathioudakis. Mary, mary, quite contrary: Exposing twitter users to contrarian

news. InWWW, pages 201–205, 2017.

[17] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael

Mathioudakis. Reducing controversy by connecting opposing views. In WSDM,

pages 81–90, 2017.

[18] Venkata Rama Kiran Garimella and Ingmar Weber. A long-term analysis of

polarization on twitter. In ICWSM, 2017.

[19] Eduardo Graells-Garrido, Mounia Lalmas, and Ricardo Baeza-Yates. Data por-

traits and intermediary topics: Encouraging exploration of politically diverse

profiles. In IUI, pages 228–240, 2016.
[20] Shanto Iyengar and Sean J Westwood. Fear and loathing across party lines:

New evidence on group polarization. American Journal of Political Science, 59(3):
690–707, 2015.

[21] Krzysztof Kiwiel. Breakpoint searching algorithms for the continuous quadratic

knapsack problem. Mathematical Programming, 112(2):473–491, 2008.
[22] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for

solving SDD linear systems. SIAM J. Comput., 43(1):337–354, 2014.
[23] Da Kuang, Jaegul Choo, and Haesun Park. Nonnegative matrix factorization

for interactive topic modeling and document clustering. Partitional clustering
algorithms, pages 215–243, 2015.

[24] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. Computing higher order

derivatives of matrix and tensor expressions. In NeurIPS. 2018.
[25] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. A simple and efficient

tensor calculus. In AAAI. 2020.
[26] Simon A Levin, Helen V Milner, and Charles Perrings. The dynamics of political

polarization, 2021.

[27] Antonis Matakos, Evimaria Terzi, and Panayiotis Tsaparas. Measuring and

moderating opinion polarization in social networks. Data Mining and Knowledge
Discovery, 31:1480–1505, 2017.

[28] Nolan McCarty. Reducing polarization by making parties stronger. Solutions to
political polarization in America, pages 136–45, 2015.

[29] Sean A Munson and Paul Resnick. Presenting diverse political opinions: how

and how much. In CHI, pages 1457–1466, 2010.
[30] Cameron Musco, Christopher Musco, and Charalampos E. Tsourakakis. Minimiz-

ing polarization and disagreement in social networks. In WWW, pages 369–378.

ACM, 2018.

[31] Yu E Nesterov. A method for solving the convex programming problem with

convergence rate𝑂 (1

𝑘2
) . In Dokl. Akad. Nauk SSSR,, volume 269, pages 543–547,

1983.

[32] Kenneth Nordström. Convexity of the inverse and moore–penrose inverse.

Linear algebra and its applications, 434(6):1489–1512, 2011.
[33] Eli Pariser. The filter bubble: How the new personalized web is changing what we

read and how we think. Penguin, 2011.
[34] Miklós Z. Rácz and Daniel E Rigobon. Towards consensus: Reducing polariza-

tion by perturbing social networks. IEEE Transactions on Network Science and
Engineering, 2023.

[35] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with inter-

active graph analytics and visualization. In Blai Bonet and Sven Koenig, editors,

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Janu-
ary 25-30, 2015, Austin, Texas, USA, pages 4292–4293. AAAI, 2015.

[36] Sijing Tu and Stefan Neumann. A viral marketing-based model for opinion

dynamics in online social networks. InWWW, pages 1570–1578. ACM, 2022.

[37] Sijing Tu, Stefan Neumann, and Aristides Gionis. Adversaries with limited

information in the friedkin-johnsen model. In KDD, pages 2201–2210, 2023.
[38] Wanyue Xu, Qi Bao, and Zhongzhi Zhang. Fast evaluation for relevant quantities

of opinion dynamics. In WebConf, pages 2037–2045, 2021.
[39] Liwang Zhu, Qi Bao, and Zhongzhi Zhang. Minimizing polarization and dis-

agreement in social networks via link recommendation. NeurIPS, 34, 2021.

9

https://anonymous.4open.science/r/GDPM-BE6C/
https://anonymous.4open.science/r/GDPM-BE6C/
https://doi.org/10.48550/arXiv.2308.14486

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A OMITTED PSEUDOCODE
In this section, we present the pseudocode of Algorithms 1, 2 and 3.

Algorithm 1: Compute an approximation z̃X of zX
Input: Innate opinion s, user–topic matrix X, influence–topic matrix Y, fraction of weight 𝐶 , error parameter 𝜖

Output: Approximated expressed opinion z̃X
1 𝜖z1

= 𝜖
4
·min

{
1, 2𝑛

200·𝐶𝑊 · ∥U∥
2
· ∥V∥

2

}
2 𝜖R = 1

2𝑘
min

{
0.009

2𝑛
𝐶𝑊 · ∥V∥𝐹

, 2𝑛
10

5 ·𝐶𝑊 · ∥V∥
2

·min

{
100, 2𝑛

𝐶𝑊
· 𝜖/4
∥U∥

2
· ∥V∥

2
· ∥s∥

2

}}
3 𝜖z2

= 2𝑛
𝐶𝑊
· 𝜖

4

4 M← I + L + diag(AX1)

5 U←
(
X Y⊤

)
, V←

(
Y
X⊤

)
6 z1 ← Solve(M, s, 𝜖z1

)
7 y1 ← Vz1

8 R← the 𝑛 × (2𝑘) matrix, where the 𝑗-th column is given by Solve(M,w𝑗 , 𝜖R) with w𝑗 denoting the 𝑗-th column of U for all 𝑗

9 S← I − 𝐶𝑊
2𝑛 VR

10 T← S−1

11 y2 ← Ty1

12 y3 ← Uy2

13 z2 ← Solve(M, y3, 𝜖z2
)

14 return z̃X ← z1 + 𝐶𝑊
2𝑛 z2

Algorithm 2: GDPM
Input: Innate opinion s, user–topic matrix X, influence–topic matrix Y, budget \ , fraction of weight 𝐶
Output: User–topic matrix X(𝑇) after optimization

1 𝐿 ← 8𝐶𝑊√
𝑛
· ∥s∥

2
· ∥Y∥2

2

2 X(0) ← X

3 for 𝑇 = 1, . . . ,𝑂

(√︃
𝐶𝑊𝑘𝑛

𝜖

)
do

4 Compute z̃X(𝑇) using Algorithm 1

5 ∇̃X 𝑓 (X(𝑇)) ← 𝐶𝑊
2𝑛 (2 · z̃X(𝑇) · z̃

⊤
X(𝑇)
· Y⊤ − z̃X(𝑇) ⊙ z̃X(𝑇) · 1⊤𝑘 − 1𝑛 · (̃z

⊤
X(𝑇)
⊙ z̃⊤

X(𝑇)
) · Y⊤)

6 V(𝑇) ← the matrix where the 𝑖-th row is given by Proj𝑄

(
X(𝑇)
𝑖
− 1

𝐿
(∇̃X 𝑓 (X(𝑇)))𝑖

)
7 𝛼𝑇 ← 𝑇+1

2

8 W(𝑇) ← the matrix where the 𝑖-th row is given by Proj𝑄

(
(X(0))𝑖 − 1

2𝐿

∑𝑇
𝑡=1

𝛼𝑡 (∇̃X 𝑓 (X(𝑡)))𝑖
)

9 𝐴𝑇 ←
∑𝑇
𝑖=0

𝛼𝑖

10 𝜏𝑇 ← 𝛼𝑇
𝐴𝑇

11 X(𝑇+1) ← 𝜏𝑇V(𝑇) + (1 − 𝜏𝑇)W(𝑇)

12 return X(𝑇)

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Algorithm 3: Baselines BL-1 and BL-2

Input: Innate opinion s, user–topic matrix X, influence–topic matrix Y, lower-bound matrix X(𝐿) , upper-bound matrix X(𝑈) ,
maximum iterations 𝑇𝑚𝑎𝑥

Output: User–topic matrix X(𝑇) after optimization

1 X(0) ← X
2 for 𝑇 = 1, . . . ,𝑇max do
3 X(𝑇) ← X(𝑇−1)

4 Compute z̃X(𝑇) using Algorithm 1

5 𝑧 = 1

𝑛

∑
𝑢∈𝑉 z̃X(𝑇) (𝑢)

6 𝜏 𝑗 =
∑
𝑢∈𝑉 Y𝑗𝑢 z̃X(𝑇) (𝑢)

7 for each row 𝑖 do
8 if (BL-1) then
9 𝑗 ← topic with X(𝑇)

𝑖 𝑗
< X(𝑈)

𝑖 𝑗
minimizing

��𝜏 𝑗 − 𝑧��
10 𝑗 ′←topic with X(𝑇)

𝑖 𝑗 ′ > X(𝐿)
𝑖 𝑗 ′ minimizing

��𝜏 𝑗 ′ − 𝑧��
11 if (BL-2) then
12 𝑗 ← topic with X′

𝑖 𝑗
< X(𝑈)

𝑖 𝑗
minimizing −̃zX(𝑇) (𝑖)𝜏 𝑗

13 𝑗 ′ ← topic with X′
𝑖 𝑗 ′ > X(𝐿)

𝑖 𝑗 ′ and z̃X(𝑇) (𝑖)𝜏 𝑗 > 0 minimizing

��𝜏 𝑗 ′ − 𝑧��
14 𝛿 ← min{X(𝑈)

𝑖 𝑗
− X(𝑇)

𝑖 𝑗
,X(𝑇)

𝑖 𝑗 ′ − X
(𝐿)
𝑖 𝑗 ′ }

15 X(𝑇)
𝑖 𝑗
← X(𝑇)

𝑖 𝑗
+ 𝛿

16 X(𝑇)
𝑖 𝑗 ′ ← X(𝑇)

𝑖 𝑗 ′ − 𝛿
17 return X(𝑇)

B OMITTED EXPERIMENTS
B.1 Data Collection and Parameter Settings

Datasets. We begin by describing our data-collection process. Starting from a list of Twitter accounts who actively engage in political

discussions in the US, which was compiled by Garimella and Weber [18], we randomly sample two smaller subsets of 5 000 and 50 000

accounts, respectively. Since the dataset was more than 6 years old, only approximately 30-50% of the accounts are still active or publicly

accessible. For these accounts, we obtained the entire list of followers, except for users with more than 100 000 followers for whom we got

only the 100 000 most recent followers (users with more than 100 000 followers account for less than 2% of our dataset). We also obtained the

last 3 200 tweets they posted on their own timeline. We use multiple Twitter-API keys and parallelize the data collection. The data collection

was started in March 2022 and took over a week to finish.

Based on this obtained information, we construct two graphs in which the nodes correspond to Twitter accounts and the edges correspond

to the accounts’ following relationships. Then we consider only the largest connected component in each network and denote the resulting

datasets TwitterSmall and TwitterLarge respectively. In the end, TwitterSmall contains 1 011 nodes and 1 960 edges. TwitterLarge contains

27 058 nodes and 268 860 edges.

To obtain the innate opinions of the nodes in the graphs, we proceed as follows. First, we compute the political polarity score for each

account using the method proposed by Barberá [4], which has been used widely in the literature [7, 8]. The polarity scores range from -2 to

2 and are computed based on following known political accounts. To obtain the innate opinions s of the retrieved accounts, we center the

political scores to 0 and rescale them into the interval [−1, 1]. We visualize the innate opinions of the accounts of TwitterSmall in Fig. 4(a) and

of TwitterLarge in Fig. 4(b). We observe that the distribution of the opinions is relatively similar in both datasets, and that the opinion scores

are significantly polarized. A plausible explanation of this phenomenon is that our seed set consists of politically active accounts in the US,

which are more likely to support one of the two extremes of the political spectrum than having moderate opinions.

User–topic and influence–topic matrices. Next, we explain how we obtained the user–topic matrix X and the influence–topic matrix Y.
We note that in an academic environment, it is impossible to obtain these matrices exactly, since we cannot obtain data on how the timelines

of different users are composed and how the posts for each topic are picked by the timeline algorithms that are deployed by online social

networks. Therefore, we obtain X and Y by using retweet-data as a surrogate, which indicates the users’ interest and impact on different

topics. We now describe this process in detail.

We use textual information and hashtags in the tweets dataset to estimate the interest of accounts and influential accounts in different

topics. More concretely, we start by finding all hashtags that are used in the historical tweets, and collect the hashtags used by each account.

We then apply tf-idf on this data, where the documents correspond to accounts and the terms correspond to hashtags. The result gives

a matrix B, in which each entry B𝑢𝑣 corresponds to the tf-idf score of account 𝑢 for hashtag 𝑣 . Next, we apply non-negative matrix

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW’24, May 13–17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

(a) TwitterSmall (b) TwitterLarge

Figure 4: Innate opinion distributions on our two real-world Twitter datasets.

factorization (NMF) on B to obtain topics from this matrix. NMF on a tf-idf matrix has been shown to produce coherent topics in the

past [23]. The NMF procedure produces two matrices:W ∈ R𝑛×𝑘 and H ∈ R𝑘×ℎ , such that B ≈WH. Here, 𝑛 is the number of accounts in

the dataset, ℎ is the number of distinct hashtags, and the latent dimension 𝑘 is the number of topics that we wish to find. We systematically

test different values of 𝑘 from 50–100 and find that for our data, 𝑘 = 100 produces the most reasonable topics. Therefore, in our experiments

we use 𝑘 = 100.

By the semantics of matrix factors in NMF, we interpretW𝑖 𝑗 as an indicator of the interest of account 𝑖 in topic 𝑗 . Therefore, we set the

𝑖-th row of the interest matrix X to X𝑖 = W𝑖/
∑𝑘

𝑗=1
W𝑖 𝑗 , so as to satisfy the row-stochastic constraint, i.e.,

∑
𝑗 X𝑖 𝑗 = 1, for all 𝑖 .

Similarly, we interpret H𝑗ℎ as the importance of hashtag ℎ in topic 𝑗 . To avoid using hashtags that are too noisy, we consider only the

most frequent hashtags that make up for the 60% of the volume of all hashtags. We then set the influence–topic matrix Y to the percentage

of retweets that an account receives for each topic. More concretely, we let 𝑟𝑖ℎ denote the number of retweets for tweets posted by account 𝑖

that contain hashtag ℎ. We set Y′ to the matrix with Y′
𝑗𝑖
=

∑
ℎ∈𝑆 𝑗

𝑟𝑖ℎ , i.e., Y′𝑗𝑖 is the number of retweets for tweets posted by account 𝑖 that

contain hashtags assigned to topic 𝑗 . We then compute Y by normalizing the rows of Y′, i.e., we set Y𝑗𝑖 = Y′
𝑗𝑖
/∑𝑛

𝑖=1
Y′
𝑗𝑖
to ensure that Y is

row stochastic.

Upper and lower bounds X(𝑈) and X(𝐿). Given a matrix X and a parameter \ ∈ [0, 1], in our experiments (unless mentioned otherwise)

we construct the element-wise upper-bound matrix X(𝑈) and the lower-bound matrix X(𝐿) by setting X(𝑈)
𝑖 𝑗

= min{1,X𝑖 𝑗 + \ } and
X(𝐿)
𝑖 𝑗

= max{0,X𝑖 𝑗 − \ }. Intuitively, we can consider \ as a budget that the algorithm has to redistribute for each entry of X. Note, however,

that in the presence of topic label information, we can set topic-specific bounds. For example, if we set X(𝑈)
𝑖 𝑗

= X𝑖 𝑗 , we then forbid the

algorithm to increase account 𝑖’s interest in topic 𝑗 . We apply this idea in some of our experiments, by setting different bounds for political

topics. See Figures 1 (d)–(f) for details.

Additional datasets. To compare our algorithms across more datasets, we also consider several real-world graphs for which we synthetically

generate the innate opinions, the user–topic matrix X, and the influenc–topic matrix Y.
The real-world graphs that we consider are publicly available from the Network Repository [35]. Our experiments were conducted on the

largest connected component of each dataset. Table 3 lists the networks that we consider in increasing order of the number of nodes. The

largest network has more than two million nodes, while the smallest one has 4 991 nodes.

Next, we consider four distributions to generate the innate opinions: uniform, power-law, exponential, and a custom “polarized” distribution.

For the first three distributions, we use the same parameter setting as Xu et al. [38]. Note that they compute innate opinion 𝑠 ∈ [0, 1] and
here we rescale the innate opinions to [−1, 1]. In the “polarized” distribution, we mimic the opinion distribution from TwitterSmall and
TwitterLarge in Figure 4, where the innate opinions tend to be concentrated at the two opposite extremes, while sparsely distributed around

the middle. Thus, here we generate “polarized” opinions as follows. For each node 𝑖 , we generate a value 𝑥𝑖 based on the exponential opinion

distribution from above. Now for the first 𝑛/2 nodes we set their innate opinion to s𝑖 = 𝑥𝑖 and for the remaining 𝑛/2 nodes we set their

opinion to s𝑖 = 1 − 𝑥𝑖 . Then we rescale s such that all opinion are in [−1, 1].
We also compute synthetic user–topic matrices X and influence–topic matrices Y by simulating properties of TwitterSmall and TwitterLarge.

More concretely, for TwitterLarge we visualize the distribution of elements in X and Y in Fig. 5. It shows that the entries in X and Y follow a

power-law distribution.

To generate X we proceed as follows. For each row X𝑖 that we generate synthetically, we sample the entries X𝑖 𝑗 from a power-law

distribution with 𝛼 = 2.5 (this value of 𝛼 was also used in [38]). We control the sparsity of the matrix by removing elements with a value

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 3: Results of Algorithm 1 for computing z̃X on real-world graphs. We report graph statistics, comparison of running
times (in seconds) and approximation errors for computing z̃X exactly and computing z̃X approximately using Algorithm 1. We
use four innate opinion distributions (uniform, power-law, exponential, and a custom “polarized” distribution). The synthetic
user–topic and influence–topic matrices X and Y were drawn from the distributions described in the text. We set 𝐶 = 0.1. This
experiment was conducted in a Linux server with E5-2630 V4 processor (2.2GHz) and 128GB memory.

Graph 𝑛 𝑚

Running time (s) of evaluating zX (Exact) and z̃X (Approx) with Algorithm 1, and approximation error (Error, ×10
−8)

Uniform Power-law Exponential Polarized

Exact Approx Error Exact Approx Error Exact Approx Error Exact Approx Error
Erdos992 4,991 7,428 10.08 0.58 0.0108 9.57 0.49 0.0794 9.71 0.51 0.0794 9.71 0.51 0.0876

Advogato 5,054 39,374 10.26 1.02 0.0180 10.26 1.12 0.1134 10.16 1.15 0.1134 10.16 1.15 0.2462

PagesGovernment 7,057 89,429 26.17 1.76 0.0040 25.72 1.77 0.1553 25.94 1.71 0.1553 25.94 1.71 0.0597

WikiElec 7,066 100,727 26.41 1.78 0.0057 26.12 1.53 0.0064 26.12 1.62 0.0064 26.12 1.62 1.0133

HepPh 11,204 117,619 98.00 2.56 0.0095 97.89 2.73 0.1245 98.04 2.61 0.1245 98.04 2.61 0.0138

Anybeat 12,645 49,132 140.91 1.82 0.0010 140.96 1.87 0.0132 141.75 2.07 0.0132 141.75 2.07 0.0073

PagesCompany 14,113 52,126 195.51 2.45 0.0099 195.93 2.52 0.0154 194.27 2.46 0.0154 194.27 2.46 0.0473

AstroPh 17,903 196,972 400.09 4.53 0.0282 398.54 4.86 0.0017 402.21 4.78 0.0017 402.21 4.78 0.0075

CondMat 21,363 91,286 674.03 4.04 0.0011 669.62 4.05 0.1119 672.78 4.28 0.1119 672.78 4.28 0.0189

Gplus 23,613 39,182 902.86 3.06 0.0002 919.68 2.62 0.0047 905.09 2.59 0.0047 905.09 2.59 0.0102

Brightkite 56,739 212,945 13864.33 14.71 0.0007 13366.60 14.04 0.0119 14012.49 16.03 0.0119 14012.49 16.03 0.0720

Themarker 69,317 1,644,794 — 37.06 — — 36.34 — — 37.81 — — 36.84 —

Slashdot 70,068 358,647 — 16.01 — — 14.76 — — 14.45 — — 14.47 —

BlogCatalog 88,784 2,093,195 — 43.20 — — 41.67 — — 43.90 — — 43.39 —

WikiTalk 92,117 360,767 — 16.53 — — 16.23 — — 15.89 — — 16.78 —

Gowalla 196,591 950,327 — 56.87 — — 51.58 — — 53.04 — — 53.13 —

Academia 200,167 1,022,440 — 63.00 — — 63.95 — — 60.47 — — 61.90 —

GooglePlus 201,949 1,133,956 — 47.89 — — 48.57 — — 47.38 — — 48.10 —

Citeseer 227,320 814,134 — 46.57 — — 47.23 — — 46.45 — — 46.76 —

MathSciNet 332,689 820,644 — 68.91 — — 62.26 — — 67.23 — — 61.37 —

TwitterFollows 404,719 713,319 — 44.10 — — 41.91 — — 42.19 — — 43.16 —

Delicious 536,108 1,365,961 — 108.95 — — 112.19 — — 115.72 — — 126.50 —

YoutubeSnap 1,134,890 2,987,624 — 273.09 — — 271.67 — — 262.28 — — 262.05 —

Flickr-und 1,624,992 15,476,835 — 858.09 — — 857.98 — — 858.73 — — 904.29 —

Flixster 2,523,386 7,918,801 — 663.40 — — 674.12 — — 644.32 — — 653.05 —

10 3 10 2 10 1 100

Element value

101

102

103

104

105

106

Fr
eq

ue
nc

y

10 3 10 2 10 1 100

Element value

100

101

102

103

104

105

106

Fr
eq

ue
nc

y

(a) User–topic matrix X (b) Influence–topic matrix Y

Figure 5: Distribution of elements in X and Y in TwitterLarge.

smaller than 0.25 and rescaling the result such that X𝑖 is row-stochastic; we chose the value 0.25 to match the sparsity of of our real-world

matrices from TwitterLarge.
To generate Y, we first observe from Fig. 1 that 𝜏 𝑗,s, the weighted average of the innate opinions for each topic 𝑗 , ranges from -0.65 to

0.65 and the majority of topics are located around 0. Inspired by this fact, we construct the topic–influence matrix Y such that the value

𝜏 𝑗,s are spread across the opinion spectrum (similar to the real-world behavior). More concretely, we equally divide the opinion spectrum

[−1, 1] into 𝑑 chunks and we assign a weight𝑤𝑖 to each chunk 𝑖 . Now, for each topic 𝑗 we first sample its bias. That is, we sample a chunk 𝑖

with probability proportional to the weight𝑤𝑖 and then all users of topic 𝑗 have their innate opinion from chunk 𝑖 . If 𝑉𝑖 denotes the set of

users with innate opinion in chunk 𝑖 and 𝑛 is the number of all users, then we pick 0.02𝑛 users from 𝑉𝑖 uniformly at random and for each

𝑢 ∈ 𝑉𝑖 , we set 𝑌𝑗𝑢 using a power-law distribution with 𝛼 = 2.5. Finally, we rescale the result such that Y𝑖 is row-stochastic. In our synthetic

experiments we used 𝑑 = 3 and𝑤 = [0.3, 0.4, 0.3].
13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW’24, May 13–17, 2024, Singapore Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

104 105 106

Number of nodes

100

101

102

103

Ru
nn

in
g

tim
e

of
 A

pp
ro

xi
m

at
io

n

104 105 106

Number of nodes

100

101

102

103

104

Ru
nn

in
g

tim
e

(s
)

GDPM
BL1
BL2

104 105 106

Number of nodes

101

102

103

104

105

Ru
nn

in
g

tim
e

(s
)

GDPM
BL1
BL2

(a) (b) (c)

Figure 6: Running time of algorithms in seconds. Each marker corresponds to one of the datasets from Table 3. We fit a linear
regression to indicate trends. Plot (a) shows the running time of Algorithm 1 for computing z̃X. Plot (b) shows the running
time for a single iteration of GDPM, BL-1 and BL-2. Plot (c) shows the total running times for 100 iterations of GDPM and 10
iterations of BL-1 and BL-2.

Table 4: Running times of the algorithms. We report the time (in seconds) required for a single iteration with approximate
expressed opinions z̃X and with exact expressed opinions zX. We also report the total running time over 150 iterations when
using the approximate solver. Here, we set 𝐿 = 10, 𝐶 = 0.1, \ = 0.1 and 𝑇 = 150.

Algorithm TwitterSmall TwitterLarge

Approx Exact Total Approx Exact Total
(1 iter.) (1 iter.) (150 iter.) (1 iter.) (1 iter.) (150 iter.)

GDPM 0.21 0.15 31.95 7.67 1530.02 1150.06

BL 1 0.09 0.12 13.51 4.76 1501.21 713.97
BL 2 0.08 0.13 12.67 4.98 1485.77 747.07

We note that this way of Y was crucial to obtain our experimental results on synthetic data. Initially, we simply picked 0.02𝑛 users for each

topic uniformly at random. However, this resulted in all 𝜏 𝑗,s being very close to 0, which is not the behavior that we saw in our real-world

datasets. This also had the side-effect hat our optimization algorithms could not reduce the polarization and disagreement significantly.

B.2 Additional experiment results
Now we report additional experimental results, including a running time analysis.

Approximating Expressed Opinions z̃X. Table 3 reports running time and approximation error of Algorithm 1 for computing z̃X on

different real-world graphs. We compare against the exact solution zX and note that we cannot compute zX for the 14 largest graphs due to

the high running time of computing the exact solution. We observe that Algorithm 1 is orders of magnitude faster than the naïve computation

of zX and its error is negliglible in practice (note that errors are typically less than 10
−8
).

We also visualize the running times from Table 3 for uniformly distributed innate opinions in Fig. 6(a). We observe that the running time

grows linearly with the number of nodes.

We also note that in our experiments the error incurred on our objective function by the approximate opinions was very small, with

typically

���𝑓 − 𝑓 (X)
��� /𝑓 (X) < 10

−8
, where 𝑓 is as in Corollary 4.

Running time analysis of the optimization algorithms. We start by comparing the running times of GDPM, BL-1, and BL-2, which use

Algorithm 1 as a subroutine to compute approximate opinions z̃X, with an implementation that computes exact opinions zX. We report

our results in Table 4. While on TwitterSmall, the exact methods are still relatively fast, on TwitterLarge we observe that the algorithms with

approximate opinions are faster by a factor of 300. In other words, running all 150 iterations of GDPM with approximate opinions is faster

than running a single iteration with exact opinions.

Furthermore, in Fig. 6(b) we visualize the running time of a single iteration of GDPM, BL-1, and BL-2 and in Fig. 6(c) we plot the total

time for 100 iterations of GDPM and 10 iterations of BL-1 and BL-2. The figures show that for all algorithms their running time grows

linearly in the number of nodes. However, note that a single iteration of GDPM is faster than the baselines, particularly on large graphs. The

reason is that for each row, BL-1 and BL-2 need to compute the topic indices 𝑗 and 𝑗 ′ which shall be favored and penalized (see Algorithm 3),

which is costly; on the other hand, GDPM computes the gradient only once and the projection operation in GDPM for updating each row is

highly efficient. This has the effect that as the size of the graphs increases, GDPM becomes more efficient than the baselines in terms of total

running time, even though it performs 10 times more iterations.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Figure 7: Running time comparison of Convex.jl and GDPM on random graphs with synthetic opinions. We set GDPM to run
2,000 iterations and Convex.jl to run until the problem is solved. The objective value returned by both methods coincides with
a precision of 10

−4. We set 𝐶 = 0.1, \ = 0.1 for all experiments.

Comparison with black-box convex solver. Figure 7 reports the comparison of the running time between GDPM and Convex.jl to solve

Problem 3. Convex.jl is a popular black-box convex optimization tool written in Julia. It shows that GDPM outperforms the black-box solver

in every experiment. Experiments are conducted on random graphs and the probability of creating an edge in the random graph is set to 0.5.

We set the available memory resource for the experiments to be 102 GB. Running Convex.jl on a graph with nodes larger than 500 exceeds

the memory constraint. So we only report the results of graphs with node sizes between 50 and 500. We generate synthetic opinions and

user-to-topic matrix X and influence–topic matrix Y following the same method described in section B.1. The number of topics is set to 10

for all matrices. We set the learning rate 𝐿 = 100 and run 2, 000 iterations for GDPM. In the Convex.jl experiment, the algorithm runs until

the problem is solved or reaches the maximum iteration limit. In all experiments, Convex.jl and GDPM return the same objective value on

the same setting after optimization with a precision of 10
−4
.

Node degree changes after optimization. In order to understand the node degree increase with intervention, we report node degree

increase rate after optimization in TwitterSmall and TwitterLarge in Figure 8,. It shows that node degree increase rates are concentrated

around 10% which is the same value of parameter 𝐶 we set. In Figure 8 (a)-(b), users are ranked in descending order by their corresponding

summation of influence score among all topics, it shows that the user group with the highest influence scores has the largest standard

deviation and higher mean. In Figure 8 (c)-(d), users are ranked in descending order by their node degree in the original graph, it shows that

the mean of increase rate in groups with large node degrees is less than 10% (until group 12 in TwitterSmall and group 9 in TwitterLarge). One
explanation is that we set the constraint to add 10% degree of the original graph. A small increase rate in nodes with large degrees will

introduce a large absolute value into degrees, and a large increase rate in nodes with small degrees only introduces a small absolute value.

And user groups with small degrees tend to have a larger standard deviation.

C OMITTED PROOFS
C.1 Preliminaries on linear algebra and optimization
We start by defining additional notation and recalling some basic facts from linear algebra and optimization.

We write _𝑖 (X) to denote the 𝑖-th eigenvalue of A. Similarly, 𝜎𝑖 (X) denotes the 𝑖-th singular value of X. We will sometimes also write

_min (X), _max (X), 𝜎min (X) and 𝜎max (X) to denote the smallest and largest eigenvalues and singular values of X, respectively.
Next, let us recall basic facts about matrix norms, where we let X ∈ R𝑚×𝑘 , Y ∈ R𝑘×𝑛 and v ∈ R𝑘 . Then we have that ∥X∥

2
≤ ∥X∥𝐹 .

Furthermore, it holds that ∥XY∥
2
≤ ∥X∥

2
· ∥Y∥

2
, as well as ∥XY∥𝐹 ≤ ∥X∥2 · ∥Y∥𝐹 . We also have ∥Xv∥

2
≤ ∥X∥

2
· ∥v∥

2
. Furthermore, we

denote the Frobenius scalar product by ⟨X,Y⟩𝐹 =
∑
𝑖 𝑗 X𝑖 𝑗Y𝑖 𝑗 .

If X,Y ∈ R𝑛×𝑛 are invertible then observe that X−1 − Y−1 = X−1 (Y − X)Y−1
, which based on the previous matrix inequalities implies

that

X−1 − Y−1

𝐹
≤

X−1

2
·
Y−1

2
· ∥X − Y∥𝐹 . Next, the Neumann series states that if ∥X∥

2
< 1 then (I − X)−1 =

∑∞
𝑖=0

X𝑖
.

The prox-operator is given by

prox𝑓 (𝑥) = arg min

𝑢

{
𝑓 (𝑢) + 1

2

∥𝑢 − 𝑥 ∥2
}
. (5)

Given a convex set 𝑄 , we write 𝛿𝑄 (𝑥) ∈ {0,∞} to denote its indicator function, i.e.,

𝛿𝑄 (𝑥) =
{

0, 𝑥 ∈ 𝑄,
∞, 𝑥 ∉ 𝑄.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

WWW’24, May 13–17, 2024, Singapore Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

(a) TwitterSmall (b) TwitterLarge

(c) TwitterSmall (d) TwitterLarge

Figure 8: Mean and standard deviation of node degree increase rate after optimization. The x-axis is user groups consisting of
consecutive users in ranked lists in descending order, the y-axis is the node degree increase rate after adding the recommendation
AX with optimal X. We set 𝐶 = 0.1 in all experiments. In (a)-(b) users are ranked by influence scores among all topics. In (c)-(d)
users are ranked by node degree in the original graph.

C.2 Useful facts
Lemma 7. LetM = D + L, where D ∈ R𝑛×𝑛 is a diagonal matrix with diagonal entries D𝑖𝑖 ≥ 1 and L is the Laplacian of a connected undirected
weighted graph. Then all eigenvalues of M are at least 1. Furthermore, for all 𝑘 ∈ N, the eigenvalues of M−𝑘 are most 1 and

∑𝑛
𝑖=1

_𝑖 (M−𝑘) ≤ 𝑛.

Proof. Observe that all eigenvalues of D are at least 1 since D is diagonal and D𝑖𝑖 ≥ 1 for all 𝑖 . Furthermore, L is positive semidefinite

and thus all eigenvalues of L are non-negative. Thus, Weyl’s inequality implies that all eigenvalues of D are at least 1.

The claim about the eigenvalues ofM−𝑘 follows from the fact that the eigenvalues ofM−𝑘 are given by _1 (M)−𝑘 , . . . , _𝑛 (M)−𝑘 and the

above argument implies that all of these numbers are at most 1. Summing over these eigenvalues gives their third claim of the lemma. □

Lemma 8. Suppose y, z ∈ [−1, 1]𝑛 then ∥(y ⊙ y) − (z ⊙ z)∥
2
≤ 2 ∥y − z∥

2
.

Proof. First, we note that for 𝑎, 𝑏 ∈ [−1, 1] it holds that (𝑎2 −𝑏2)2 ≤ 4(𝑎 −𝑏)2 since if 𝑎 = 𝑏 the inequality clearly holds and if 𝑎 ≠ 𝑏 then

(𝑎2 − 𝑏2)2
(𝑎 − 𝑏)2

=

(
𝑎2 − 𝑏2

𝑎 − 𝑏

)
2

=

(
(𝑎 + 𝑏) (𝑎 − 𝑏)

𝑎 − 𝑏

)
2

= (𝑎 + 𝑏)2 ≤ 4.

Using this inequality we get that

∥(y ⊙ y) − (z ⊙ z)∥2
2
=

𝑛∑︁
𝑖=1

(y2

𝑖 − z
2

𝑖)
2

≤ 4

𝑛∑︁
𝑖=1

(y𝑖 − z𝑖)2

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

= 4 ∥y − z∥2
2
.

We obtain the result by taking square roots. □

Lemma 9. Suppose y, z ∈ [−1, 1]𝑛 then
y · y⊤ − z · z⊤

𝐹
≤ 2

√
𝑛 ∥y − z∥

2
.

Proof. We have that y · y⊤ − z · z⊤
𝐹
=

(y − z) · y⊤ + z · (y⊤ − z⊤)
𝐹

≤
(y − z) · y⊤

𝐹
+

z · (y⊤ − z⊤)
𝐹

≤ (∥y∥
2
+ ∥z∥

2
) · ∥y − z∥

2
.

Since the entries of y and z are in [−1, 1], we get that ∥y∥
2
+ ∥z∥

2
≤ 2

√
𝑛, which implies the lemma. □

The following lemma is a corollary of the Laplacian-solver technique by Koutis, Miller and Peng [22] and allows us to efficiently solve

linear systems approximately.

Lemma 10. Let D ∈ R𝑛×𝑛 be a diagonal matrix with entries D𝑖𝑖 ≥ 1, let L be the Laplacian of an undirected, connected, weighted graph,
let b ∈ R𝑛 with ∥b∥

2
≤ poly(𝑛) and let 𝜖 > 0. Then there exists a function Solve(D + L, b, 𝜖) that returns a vector x̃ ∈ R𝑛 such that̃x − (D + L)−1b

2
≤ 𝜖 in time Õ(𝑚 log(1/𝜖)).

Proof. For a symmetric matrix A ∈ R𝑛×𝑛 , we write A+ to denote the Moore–Penrose pseudoinverse. We say that A is diagonally
dominant if for all 𝑖 , A𝑖𝑖 ≥

∑
𝑗≠𝑖

��A𝑖 𝑗

��
. For a vector x ∈ R𝑛 we set ∥x∥A =

√
x⊤Ax. We will use the following result by Koutis, Miller and

Peng [22].

Lemma 11 (Koutis, Miller, Peng [22]). Let A ∈ R𝑛×𝑛 be a symmetric, diagonally dominant matrix with𝑚 non-zero entries, let b ∈ R𝑛 and
let 𝜖 > 0. Then there exists a function Solve(A, b, 𝜖), which returns a vector x̃ ∈ R𝑛×𝑛 such that

̃x − A+bA ≤ 𝜖
A+bA in expected time

Õ(𝑚 log(1/𝜖)).

We start with an observation about the norm ∥v∥A, where we use that diagonally dominant matrices are positive semidefinite:

∥v∥A =
√
v⊤Av

=

√︁
v⊤A1/2A1/2v

=

A1/2v

2

≥ 𝜎min (A1/2) ∥v∥
2
.

By rearranging terms we get that ∥v∥
2
≤ 1

𝜎min (A1/2) ∥v∥A if 𝜎min (A1/2) > 0.

We use the algorithm from Lemma 11 with A = D + L, b = b and 𝜖′ = 𝜖
∥b∥

2

to obtain a vector x̃. Note that since we assume that

∥b∥
2
≤ poly(𝑛), we get that this algorithm runs in time Õ(𝑚 log(1/𝜖′)) = Õ(𝑚 log(1/𝜖)), since this only adds additional O(log𝑛)-term,

which is hidden in the Õ(·)-notation.
Now we observe that by Lemma 7, D + L is positive definite with all eigenvalues at least 1. Thus (D + L)+ = (D + L)−1

. Furthermore, the

lemma implies that 𝜎min ((D + L)1/2) = _min (D + L) ≥ 1 and that all eigenvalues of (D + L)−1
are in the interval (0, 1].

Now we use our previous result about ∥v∥A to get that̃x − (D + L)−1b

2

≤ 1

𝜎min ((D + L)1/2)
·
̃x − (D + L)−1b

D+L

≤ 1

𝜎min ((D + L)1/2)
· 𝜖′

(D + L)−1b

D+L

=
1

𝜎min ((D + L)1/2)
· 𝜖′

√︁
b⊤ (D + L)−1b

≤ 1

𝜎min ((D + L)1/2)
· 𝜖′_max ((D + L)−1) ∥b∥

2

≤ 𝜖′ · ∥b∥
2

= 𝜖.

□

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

WWW’24, May 13–17, 2024, Singapore Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

C.3 Proof of Lemma 1
First, recall that since X and Y are row-stochastic matrices with non-negative entries. Thus, we get that

XY + Y𝑇X𝑇

1,1
= ∥XY∥

1,1 +Y𝑇X𝑇

1,1
.

Next, we have that

∥XY1∥
1,1 = 1⊤XY1

= 1⊤X1

= 1⊤1
= 𝑛.

Similarly, since Y⊤ and X⊤ are column-stochastic, we get thatY⊤X⊤
1,1

= 1⊤Y⊤X⊤1

= 1⊤X⊤1

= 1⊤1
= 𝑛.

Summing over these two quantities proves the lemma.

C.4 Proof of Proposition 3
Since this proof is rather involved, we first present a short proof sketch before giving the full details.

C.4.1 Proof sketch. Algorithm 1 is based on the observation that using the Woodbury matrix identity withM = I + L + diag(AX1), and U
and V as before, we get that

zX = M−1s + 𝐶𝑊
2𝑛

M−1U
(
I − 𝐶𝑊

2𝑛
VM−1U

)−1

VM−1s.

Now Algorithm 1 basically computes this quantity from right to left. Our main insight here is that we can compute the quantitiesM−1s
and M−1U using the Laplacian solver from Lemma 10. Here, we approximate M−1U column-by-column using the call Solve(M,w𝑗 , 𝜖R),
where w𝑗 is the 𝑗-th column of U and 𝜖R is a suitable error parameter. The remaining matrix multiplications are efficient since U has only

2𝑘 columns and since V has only 2𝑘 rows.

To obtain our guarantees for the approximation error, we have to perform an intricate error analysis to ensure that errors do not compound

too much. This is a challenge since we solve I − 𝐶𝑊
2𝑛 VM−1U only approximately but then we have to compute an inverse of this approximate

quantity. In the proposition we use the assumptions that VM−1U exists and that

VM−1U

2
≤ 0.99

2𝑛
𝐶𝑊

, to ensure that this can be done

without obtaining too much error. In the proof we will also show that these assumptions imply that the inverse S−1
used in the algorithm

exists.

C.4.2 Formal proof. We state the pseudocode of the algorithm in Algorithm 1.

Set U =
(
X Y⊤

)
and V =

(
Y
X⊤

)
. Now observe that

𝐶𝑊
2𝑛 UV = AX.

Recall that the Woodbury matrix identity states that

(M + UCV)−1 = M−1 −M−1U(C−1 + VM−1U)−1VM−1 .

Using the Woodbury matrix identity withM = I + L + diag(AX1), C = −𝐶𝑊
2𝑛 I, and U and V as before, we obtain that

zX = (I + L + LX)−1s

= (I + L + diag(AX1) − AX)−1s

=

(
M − U · 𝐶𝑊

2𝑛
I · V

)−1

s

= M−1s −M−1U
(
− 2𝑛

𝐶𝑊
I + VM−1U

)−1

VM−1s

= M−1s + 𝐶𝑊
2𝑛

M−1U
(
I − 𝐶𝑊

2𝑛
VM−1U

)−1

VM−1s,

where we use that C−1 = − 2𝑛
𝐶𝑊

I.
18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

We start by giving some intuition why Algorithm 1 computes an approximate version of zX. We present the running time analysis and

the formal error analysis below.

First, observe thatM is a symmetric, diagonally dominant matrix with O(𝑚) entries and diagonal entriesM𝑖𝑖 ≥ 1. Thus, whenever we

wish to solveM−1v, we can use the Laplacian solver from Lemma 10.

Next, note that z1 is an approximation ofM−1s. Then y1 becomes an approximation of VM−1s. Now R is an efficient approximation of

M−1U by using Lemma 10. Hence, S is an approximation of I− 𝐶𝑊
2𝑛 VM−1U and T approximates (I− 𝐶𝑊

2𝑛 VM−1U)−1
; we note that in the proof

of Claim 13 we also point out why this inverse exists under the assumptions of the lemma. Continuing this approach, we obtain that y2 approx-

imates

(
I − 𝐶𝑊

2𝑛 VM−1U
)−1

VM−1s, y3 approximates U
(
I − 𝐶𝑊

2𝑛 VM−1U
)−1

VM−1s, z2 approximates M−1U⊤
(
I − 𝐶𝑊

2𝑛 VM−1U
)−1

VM−1s,

and hence z̃X = z1 + 𝐶𝑊
2𝑛 z2 approximates zX.

Running time analysis. Now let us consider the running time. Let us start by observing that to obtain our running time bounds we can

only apply the Laplacian solvers on vectors b with ∥b∥
2
≤ poly(𝑛). Note that for Solve(M, s, 𝜖z1

) and Solve(M,w𝑖 , 𝜖R), 𝑖 = 1, . . . , 2𝑘 , this

is clear since the entries in s and w𝑖 are bounded by [−1, 1] and [0, 1], respectively. For Solve(M, y3, 𝜖z2
), we note that one can show that

∥y3∥ ≤ poly(𝑛) similar to the proofs of Claims 14 and 15 below.

First, note that diag(AX1) can be computed in time O(𝑛𝑘). Given diag(AX1), we can computeM in time O(𝑚) because it is the sum of

L and two diagonal matrices. Next, z1 can be computed in time Õ(𝑚 log(1/𝜖z1
)) = Õ(𝑚 log(𝑊 /𝜖)) using the guarantee from Lemma 10.

In the next step, y1 = Vz1 ∈ R2𝑘
can be computed in time O(𝑛𝑘) since V is a (2𝑘) × 𝑛 matrix. Then by Lemma 10,R can be computed in

time Õ(𝑚𝑘 log(1/𝜖R)) = Õ(𝑚𝑘 log(𝑊 /𝜖)) since we need 2𝑘 calls Solve(M,w𝑗 , 𝜖R). As I has only O(𝑘) non-zero entries and V and R are

matrices of sizes (2𝑘) × 𝑛 and 𝑛 × (2𝑘), respectively, we can compute S ∈ R(2𝑘)×(2𝑘) in time O(𝑛𝑘2). Due to size of S, we can compute

T = S−1
in time O(𝑘3) using Gaussian elimination and thus we obtain y2 ∈ R2𝑘

in time O(𝑘2). Then we can compute y3 in time O(𝑛𝑘)
since U ∈ R𝑛×(2𝑘) and we need time Õ(𝑚 log(1/𝜖z2

)) = Õ(𝑚 log(𝑊 /𝜖)) for the call to Solve(M, y3, 𝜖z2
) by Lemma 10. Summing over all

terms above, we obtain our desired running time bound.

Analysis of approximation error. Let z∗
2
denote the error-free version of z2, i.e.,

z∗
2
= M−1U

(
I − 𝐶𝑊

2𝑛
VM−1U

)−1

VM−1s.

Observe that the difference between z2 and z∗
2
will be our main source of error when approximating zX with z̃X. Hence, next we write down

z2 to understand where we get inaccuracies compared to z∗
2
.

First, we set z∗
1
= M−1𝑠 , i.e., it is the exact solution ofMz∗

1
= s. Hence, we get that z1 = z∗

1
+ ez1

where ez1
is the error vector introduced by

the Laplacian solver. Thus, we get that y1 = Vz1 = VM−1s + Vez1
. Next, let ET be the error matrix such that T =

(
I − 𝐶𝑊

2𝑛 VM−1U
)−1

+ ET.
Then we have that

y2 = Ty1 =

(
I − 𝐶𝑊

2𝑛
VM−1U

)−1

VM−1s +
((
I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

)
Vez1
+ ETVM−1s.

Next,

y3 = Uy2 = U
(
I − 𝐶𝑊

2𝑛
VM−1U

)−1

VM−1s + U
((
I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

)
Vez1
+ UETVM−1s.

Finally, let ez2
be such that z2 = M−1y3 + ez2

. Then we get that

z2 = M−1y3 + ez2

= M−1U
(
I − 𝐶𝑊

2𝑛
VM−1U

)−1

VM−1s +M−1U

((
I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

)
Vez1

+M−1UETVM−1s + ez2

= z∗
2
+M−1U

((
I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

)
Vez1
+M−1UETVM−1s + ez2

.

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

WWW’24, May 13–17, 2024, Singapore Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

The above implies that we return an approximation z̃X such that

∥̃zX − zX∥2

=

z1 +
𝐶𝑊

2𝑛
z2 − z∗1 −

𝐶𝑊

2𝑛
z∗

2

2

=

ez1
+ 𝐶𝑊

2𝑛

(
M−1U

((
I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

)
Vez1
+M−1UETVM−1s + ez2

2

)
≤

ez1

2
+ 𝐶𝑊

2𝑛

(M−1U

((
I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

)
Vez1

2

+
M−1UETVM−1s

2
+

ez2

2

)
.

(6)

Thus, for the remainder of the proof, we bound these four error terms.

Claim 12.
(I − 𝐶𝑊

2𝑛 VM−1U
)−1

2

≤ 100.

Proof. Using our assumption that

VM−1U

2
≤ 0.99

2𝑛
𝐶𝑊

, the Neumann series, triangle inequality and the geometric series, we obtain

that (I − 𝐶𝑊

2𝑛
VM−1U

)−1

2

=

 ∞∑︁
𝑖=0

(
𝐶𝑊

2𝑛
VM−1U

)𝑖
2

≤
∞∑︁
𝑖=0

(
𝐶𝑊

2𝑛

)𝑖 VM−1U
𝑖

2

≤
∞∑︁
𝑖=0

0.99
𝑖

=
1

1 − 0.99

= 100. □

Claim 13. ∥ET∥2 ≤ min

{
100, 2𝑛

𝐶𝑊
· 𝜖/4
∥U∥

2
· ∥V∥

2
· ∥s∥

2

}
.

Proof. Let ER be the error matrix such that R = M−1U + ER and recall that T =

(
I − 𝐶𝑊

2𝑛 VM−1U
)−1

+ ET. Observe that S = I − 𝐶𝑊
2𝑛 VR =

I − 𝐶𝑊
2𝑛 V(M−1U + ER). Then we have that

∥ET∥2 =

T − (
I − 𝐶𝑊

2𝑛
VM−1U

)−1

2

=

S−1 −
(
I + 𝐶𝑊

2𝑛
VM−1U

)−1

2

≤
S−1

2
·
(I − 𝐶𝑊

2𝑛
VM−1U

)−1

2

·
S − (

I − 𝐶𝑊

2𝑛
VM−1U

)
2

=
S−1

2
·
(I − 𝐶𝑊

2𝑛
VM−1U

)−1

2

·
𝐶𝑊

2𝑛
VER

2

≤ 𝐶𝑊

2𝑛

S−1

2
·
(I − 𝐶𝑊

2𝑛
VM−1U

)−1

2

· ∥V∥
2
· ∥ER∥2 .

Next, let ew𝑗
denote the error in the 𝑗-th column of R, i.e., ew𝑗

is the 𝑗-th column of ER. Observe that by Lemma 10 and our choice of

𝜖R = 1

2𝑘
min

{
0.009

2𝑛
𝐶𝑊 · ∥V∥𝐹

, 2𝑛
10

5 ·𝐶𝑊 · ∥V∥
2

·min

{
100, 2𝑛

𝐶𝑊
· 𝜖/4
∥U∥

2
· ∥V∥

2
· ∥s∥

2

}}
, we get that

ew𝑗

2
≤ 𝜖R for all 𝑗 . Then we get that

∥ER∥2 ≤ ∥ER∥𝐹

=

√︄∑︁
𝑗

∑︁
𝑖

(ER)2𝑖 𝑗

20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

=

√︄∑︁
𝑗

ew𝑗

2

2

≤
∑︁
𝑗

ew𝑗

2

≤ 2𝑘 · 𝜖R

≤ min

{
0.009

2𝑛

𝐶𝑊 · ∥V∥𝐹
,

2𝑛

10
5 ·𝐶𝑊 · ∥V∥

2

·min

{
100,

2𝑛

𝐶𝑊
· 𝜖/4
∥U∥

2
· ∥V∥

2
· ∥s∥

2

}}
,

where the fourth step holds since ∥v∥
2
≤ ∥v∥

1
for any vector v ∈ R𝑛 .

Thus, similar to the proof of Claim 12 we obtain thatS−1

2
=

(I − 𝐶𝑊

2𝑛
V(M−1U + ER)

)−1

2

≤
∞∑︁
𝑖=0

(
𝐶𝑊

2𝑛

)𝑖 VM−1U + VER
𝑖

2

≤
∞∑︁
𝑖=0

(
𝐶𝑊

2𝑛

)𝑖 (VM−1U

2
+ ∥V∥𝐹 ∥ER∥𝐹

)𝑖
≤
∞∑︁
𝑖=0

(
𝐶𝑊

2𝑛

)𝑖 (
0.999

2𝑛

𝐶𝑊

)𝑖
=

∞∑︁
𝑖=0

0.999
𝑖

= 10
3 .

Note that this implies that S−1
exists.

Now combining the above results with Claim 12, we get that

∥ET∥2 ≤
𝐶𝑊

2𝑛

S−1

2
·
(I − 𝐶𝑊

2𝑛
VM−1U

)−1

2

· ∥V∥
2
· ∥ER∥2

≤ 𝐶𝑊

2𝑛
· 10

3 · 10
2 · ∥V∥

2
· 2𝑛

10
5 ·𝐶𝑊 · ∥V∥

2

·min

{
100,

2𝑛

𝐶𝑊
· 𝜖/4
∥U∥

2
· ∥V∥

2
· ∥s∥

2

}
≤ min

{
100,

2𝑛

𝐶𝑊
· 𝜖/4
∥U∥

2
· ∥V∥

2
· ∥s∥

2

}
. □

Claim 14. 𝐶𝑊
2𝑛

M−1UETVM−1s

2
≤ 𝜖/4.

Proof. First, observe that

M−1

2
≤ 1 by Lemma 7. Now using Claim 13 we get that

𝐶𝑊

2𝑛

M−1UETVM−1s

2
≤ 𝐶𝑊

2𝑛
·
M−1

2

2
· ∥U∥

2
· ∥V∥

2
· ∥s∥

2
· ∥ET∥2

≤ 𝐶𝑊

2𝑛
· ∥U∥

2
· ∥V∥

2
· ∥s∥

2
· ∥ET∥2

≤ 𝜖/4. □

Claim 15. 𝐶𝑊
2𝑛

M−1U
((
I − 𝐶𝑊

2𝑛 VM−1U
)−1

+ ET
)
Vez1

2

≤ 𝜖/4.

Proof. First, observe that by Claims 12 and 13 and the triangle inequality,(I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

2

≤
(I − 𝐶𝑊

2𝑛
VM−1U

)−1

2

+ ∥ET∥2 ≤ 200.

Using the inequality from above and Lemma 7 and our choice of 𝜖z1
= 𝜖

4
·min

{
1, 2𝑛

200·𝐶𝑊 · ∥U∥
2
· ∥V∥

2

}
, we obtain that

𝐶𝑊

2𝑛

M−1U

((
I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

)
Vez1

2

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

WWW’24, May 13–17, 2024, Singapore Anon.

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

≤ 𝐶𝑊

2𝑛
·
M−1

2
· ∥U∥

2
·
(I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

2

· ∥V∥
2
·
ez1

2

≤ 𝐶𝑊

2𝑛
· ∥U∥

2
· 200 · ∥V∥

2
·
ez1

2

≤ 𝜖/4. □

Now continuing Eq. (6), using Claims 15 and 14, and our choices 𝜖z1
= 𝜖

4
·min

{
1, 2𝑛

200·𝐶𝑊 · ∥U∥
2
· ∥V∥

2

}
and 𝜖z2

= 2𝑛
𝐶𝑊
· 𝜖

4
, we get that

∥̃zX − zX∥2

≤
ez1

2
+ 𝐶𝑊

2𝑛

(M−1U

((
I − 𝐶𝑊

2𝑛
VM−1U

)−1

+ ET

)
Vez1

2

+
M−1UETVM−1s

2
+

ez2

2

)
≤ 𝜖/4 + 𝜖/4 + 𝜖/4 + 𝜖/4
= 𝜖.

C.5 Proof of Corollary 4
We compute z̃X using Proposition 3 with 𝜖′ = 𝜖√

𝑛
. Then we set 𝑓 = s⊤z̃X. Using the Cauchy–Schwarz inequality, we obtain that���𝑓 − 𝑓 (X)

��� = ��s⊤z̃X − s⊤zX��
=

��s⊤ (̃zX − zX)��
≤ ∥s∥

2
· ∥̃zX − zX∥2

≤
√
𝑛 · 𝜖
√
𝑛

= 𝜖,

where we use that all entries in s are in the interval [−1, 1].

C.6 Proof of Proposition 5
C.6.1 Derivation of the gradient.

Matrixcalculus. We use matrixcalculus.org [24, 25] to obtain the gradient. We set 𝐹 = I + L, 𝑐 = 𝐶𝑊
2𝑛 , 𝑣 = 1 and use the input s’*inv(F +

diag (c*(X*Y + Y’*X’)*v) - c*(X*Y + Y’*X’)) * s.
We obtain:

𝜕

𝜕𝑋

(
𝑠⊤ · inv(𝐹 + diag(𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤) · 𝑣) − 𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤)) · 𝑠

)
=

−(𝑐 · 𝑡5 ⊙ 𝑡7 · (𝑌 · 𝑣)⊤ + 𝑐 · 𝑣 · ((𝑡8 ⊙ 𝑡6) · 𝑌⊤) − (𝑐 · 𝑡5 · (𝑡6 · 𝑌⊤) + 𝑐 · 𝑡7 · (𝑡8 · 𝑌⊤)))

where

• 𝑇0 = 𝑋 · 𝑌
• 𝑇1 = 𝑇⊤

0
+𝑇0

• 𝑇2 = 𝑇⊤
0
+𝑇0

• 𝑇3 = inv(𝐹 + 𝑐 · diag(𝑇2 · 𝑣) − 𝑐 ·𝑇2)
• 𝑇4 = inv(𝐹⊤ + 𝑐 · diag(𝑣⊤ ·𝑇1) − 𝑐 ·𝑇1)
• 𝑡5 = 𝑇4 · 𝑠
• 𝑡6 = 𝑠⊤ ·𝑇4

• 𝑡7 = 𝑇3 · 𝑠
• 𝑡8 = 𝑠⊤ ·𝑇3

and

• 𝐹 is a symmetric matrix

• 𝑋 is a matrix

• 𝑌 is a matrix

• 𝑐 is a scalar

• 𝑠 is a vector

• 𝑣 is a vector

22

matrixcalculus.org

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

Simplification 1. We note above that 𝑇1 = 𝑇2, hence we replace ever occurence of 𝑇2 with 𝑇1. Furthermore, in our setting we have that 𝐹

and 𝑇1 are symmetric 𝑛 × 𝑛 matrices, which implies that 𝑇3 = 𝑇4; hence, we replace every occurence of 𝑇4 with 𝑇3.

Then we get:

𝜕

𝜕𝑋

(
s⊤ · inv(𝐹 + diag(𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤) · 𝑣) − 𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤)) · s

)
=

−(𝑐 · 𝑡5 ⊙ 𝑡7 · (𝑌 · 𝑣)⊤ + 𝑐 · 𝑣 · ((𝑡8 ⊙ 𝑡6) · 𝑌⊤) − (𝑐 · 𝑡5 · (𝑡6 · 𝑌⊤) + 𝑐 · 𝑡7 · (𝑡8 · 𝑌⊤)))

where

• 𝑇0 = 𝑋 · 𝑌
• 𝑇1 = 𝑇⊤

0
+𝑇0

• 𝑇3 = inv(𝐹 + 𝑐 · diag(𝑇1 · 𝑣) − 𝑐 ·𝑇1)
• 𝑡5 = 𝑇3 · 𝑠
• 𝑡6 = 𝑠⊤ ·𝑇3

• 𝑡7 = 𝑇3 · 𝑠
• 𝑡8 = 𝑠⊤ ·𝑇3

Simplification 2. Next, observe that 𝑡5 = 𝑡7 and 𝑡6 = 𝑡8. Hence, we only use 𝑡5 and 𝑡6.

Then we get:

𝜕

𝜕𝑋

(
𝑠⊤ · inv(𝐹 + diag(𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤) · 𝑣) − 𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤)) · 𝑠

)
=

−(𝑐 · 𝑡5 ⊙ 𝑡5 · (𝑌 · 𝑣)⊤ + 𝑐 · 𝑣 · ((𝑡6 ⊙ 𝑡6) · 𝑌⊤) − (𝑐 · 𝑡5 · (𝑡6 · 𝑌⊤) + 𝑐 · 𝑡5 · (𝑡6 · 𝑌⊤)))

where

• 𝑇0 = 𝑋 · 𝑌
• 𝑇1 = 𝑇⊤

0
+𝑇0

• 𝑇3 = inv(𝐹 + 𝑐 · diag(𝑇1 · 𝑣) − 𝑐 ·𝑇1)
• 𝑡5 = 𝑇3 · 𝑠
• 𝑡6 = 𝑠⊤ ·𝑇3

Simplification 3. Next, we remove the leading minus sign by multiplying it inside. We also observe that 𝑡5 = 𝑡⊤
6
since 𝑇3 is symmetric.

Hence, we only use 𝑡5 and 𝑡⊤
5
.

Then we get:

𝜕

𝜕𝑋

(
𝑠⊤ · inv(𝐹 + diag(𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤) · 𝑣) − 𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤)) · 𝑠

)
=

−𝑐 · 𝑡5 ⊙ 𝑡5 · (𝑌 · 𝑣)⊤ − 𝑐 · 𝑣 · ((𝑡⊤5 ⊙ 𝑡
⊤
5
) · 𝑌⊤) + 𝑐 · 𝑡5 · (𝑡⊤5 · 𝑌

⊤) + 𝑐 · 𝑡5 · (𝑡⊤5 · 𝑌
⊤)

where

• 𝑇0 = 𝑋 · 𝑌
• 𝑇1 = 𝑇⊤

0
+𝑇0

• 𝑇3 = inv(𝐹 + 𝑐 · diag(𝑇1 · 𝑣) − 𝑐 ·𝑇1)
• 𝑡5 = 𝑇3 · 𝑠

Simplification 4. Next, we first observe that the final two terms above are the same. Also, recall that we set 𝑣 = 1 and that 𝑌 is a

row-stochastic 𝑘 × 𝑛 matrix. Hence, we get that 𝑌𝑣 = 𝑌1 = 1𝑘 , where 1𝑘 ∈ R𝑘 is a row-vector in which all entries are set to 1. We also

substitute our notation from above and observe that 𝑇3 = inv(𝐹 + 𝑐 · diag(𝑇1 · 𝑣) − 𝑐 ·𝑇1) = (I + L + LX)−1
.

Then we get:

𝜕

𝜕𝑋

(
𝑠⊤ · inv(𝐹 + diag(𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤) · 𝑣) − 𝑐 · (𝑋 · 𝑌 + 𝑌⊤ · 𝑋⊤)) · 𝑠

)
=

−𝑐 · 𝑡5 ⊙ 𝑡5 · 1⊤𝑘 − 𝑐 · 1 · ((𝑡
⊤
5
⊙ 𝑡⊤

5
) · 𝑌⊤) + 2𝑐 · 𝑡5 · (𝑡⊤5 · 𝑌

⊤)

where

• 𝑡5 = (I + L + LX)−1 · 𝑠

Simplification 5. Observing that 𝑡5 = zX, we obtain at our final gradient.

Then we get:

∇X
(
𝑠⊤ (I + L + LX)−1𝑠

)
=
𝐶𝑊

2𝑛
(2 · zX · (z⊤X · Y

⊤) − zX ⊙ zX · 1⊤𝑘 − 1((z
⊤
X ⊙ z⊤X) · Y

⊤))
23

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

WWW’24, May 13–17, 2024, Singapore Anon.

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

C.6.2 The gradient is Lipschitz. We need to show that ∥∇X 𝑓 (X1) − ∇X 𝑓 (X2)∥𝐹 ≤ 𝐿 ∥X1 − X2∥𝐹 for all X1,X2 ∈ 𝑄 .
Using the previously derived gradient and the triangle inequality, we get that

∥∇X 𝑓 (X1) − ∇X 𝑓 (X2)∥𝐹 ≤
𝐶𝑊

2𝑛
[
2 · zX1

· (z⊤X1

· Y⊤) − 2 · zX2
· (z⊤X2

· Y⊤)

𝐹

+
zX1

⊙ zX1
· 1⊤

𝑘
− zX2

⊙ zX2
· 1⊤

𝑘

𝐹

+
1𝑛 ((z⊤X1

⊙ z⊤X1

) · Y⊤) − 1𝑛 ((z⊤X2

⊙ z⊤X2

) · Y⊤))

𝐹
]

=
𝐶𝑊

2𝑛
[
2 · (zX1

· z⊤X1

− zX2
· z⊤X2

)Y⊤)

𝐹

+
(zX1

⊙ zX1
− zX2

⊙ zX2
)1⊤

𝑘
)

𝐹

+
1𝑛 (z⊤X1

⊙ z⊤X1

− z⊤X2

⊙ z⊤X2

) · Y⊤

𝐹
]

Next, we will now bound each of these terms invidually.

We start by making a crucial observation about the difference of zX1
and zX2

, where we use Lemma 7 in the final step:zX1
− zX2

𝐹

=
(I + L + LX1

)−1s − (I + L + LX2
)−1s

𝐹

≤ ∥s∥
2
·
(I + L + LX1

)−1 − (I + L + LX2
)−1

𝐹

≤ ∥s∥
2
·
(I + L + LX1

)−1

2
·
(I + L + LX2

)−1

2
·
(I + L + LX1

) − (I + L + LX2
)

𝐹

= 2 ∥s∥
2
·
(I + L + LX1

)−1

2
·
(I + L + LX2

)−1

2
· ∥ (X1 − X2)Y∥𝐹

≤ 2 ∥s∥
2
· ∥Y∥

2
· ∥X1 − X2∥𝐹 .

Next, observe that for all X we have that ∥zX∥2 ≤
√
𝑛 since ∥zX∥2 ≤

(I + L + LX1
)−1

2
· ∥s∥

2
≤ ∥s∥

2
≤
√
𝑛, where we use Lemma 7 and

the fact that the entries in s are in [−1, 1]. In particular, this implies that

zX1

2
+

zX2

2
≤ 2

√
𝑛.

Now using Lemma 9 together with

zX1

2
+

zX2

2
≤ 2

√
𝑛 and our inequalty from above, we obtain that2 · (zX1
· z⊤X1

− zX2
· z⊤X2

)Y⊤

𝐹

≤ 2 ∥Y∥
2
·
zX1

· z⊤X1

− zX2
· z⊤X2

𝐹

≤ 4

√
𝑛 · ∥Y∥

2
·
zX1

− zX2

𝐹

≤ 8

√
𝑛 · ∥s∥

2
· ∥Y∥2

2
· ∥X1 − X2∥𝐹 .

Next, we show a fact about zX1
⊙ zX1

− zX2
⊙ zX2

. Using Lemma 8 and our inequality from above, we get thatzX1
⊙ zX1

− zX2
⊙ zX2

2

≤ 2

zX1
− zX2

2

≤ 4 ∥s∥
2
· ∥Y∥

2
· ∥X1 − X2∥𝐹 .

Using the inequality from above, we get that (zX1
⊙ zX1

− zX2
⊙ zX2

)1⊤
𝑘

𝐹

=
√
𝑘 ·

zX1
⊙ zX1

− zX2
⊙ zX2

2

≤ 4

√
𝑘 · ∥s∥

2
· ∥Y∥

2
· ∥X1 − X2∥𝐹 .

Furthermore, we again use the inequality from above to obtain that1𝑛 (z⊤X1

⊙ z⊤X1

− z⊤X2

⊙ z⊤X2

) · Y⊤

𝐹

≤ ∥Y∥
2
·
1𝑛 (z⊤X1

⊙ z⊤X1

− z⊤X2

⊙ z⊤X2

)

𝐹

= ∥Y∥
2
·
√
𝑛 ·

z⊤X1

⊙ z⊤X1

− z⊤X2

⊙ z⊤X2

2

≤ 4

√
𝑛 · ∥s∥

2
· ∥Y∥2

2
· ∥X1 − X2∥𝐹 .

By combining the results from above and using our assumption that 𝑘 ≤ 𝑛, we get that the gradient is Lipschitz with 𝐿 = 8𝐶𝑊√
𝑛
· ∥s∥

2
· ∥Y∥2

2
.

24

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

C.6.3 Approximate gradient. We use Proposition 3 with 𝜖′ = 1

8
· min{𝜖,

√
𝜖 } ·
√
𝑛

(1+𝐶𝑊) (1+∥Y∥𝐹)
to obtain z̃X. Note that in the numerator we use min{𝜖,

√
𝜖}

since it might be that

√
𝜖 > 𝜖 for 𝜖 < 1; in denominator we use the terms 1 +𝐶𝑊 and 1 + ∥Y∥𝐹 because it is possible that 𝐶𝑊 < 1 and also

∥Y∥𝐹 < 1. Observe that with this choice of 𝜖′, Proposition 3 guarantees a running time of Õ((𝑚𝑘 + 𝑛𝑘2 + 𝑘3) log(𝑊 /𝜖)).
Now we consider the approximate gradient

∇̃X 𝑓 (X,𝐶) =
𝐶𝑊

2𝑛
(2 · z̃X(𝑇) · z̃

⊤
X(𝑇) · Y

⊤ − (̃zX(𝑇) ⊙ z̃X(𝑇)) · 1
⊤
𝑘
− 1𝑛 (̃z⊤X(𝑇) ⊙ z̃⊤X(𝑇)) · Y

⊤ .

Let ∇X 𝑓 (X) denote the exact gradient. Then we get that∇̃X 𝑓 (X) − ∇X 𝑓 (X)
𝐹
≤ 𝐶𝑊

2𝑛
[
2 · (̃zX(𝑇) · z̃

⊤
X(𝑇) − zX · z

⊤
X) · Y

⊤

𝐹

+
 (̃zX(𝑇) ⊙ z̃X(𝑇) − zX ⊙ zX) · 1⊤𝑘

𝐹

+
1𝑛 (̃z⊤X(𝑇) ⊙ z̃⊤X(𝑇) − z

⊤
X ⊙ z⊤X) · Y

⊤

𝐹
]

≤ 𝐶𝑊

2𝑛
[2 ∥Y∥𝐹 ·

̃zX(𝑇) · z̃⊤X(𝑇) − zX · z⊤X
2

+
√
𝑘 ·

̃zX(𝑇) ⊙ z̃X(𝑇) − zX ⊙ zX

2

+
√
𝑛 ∥Y∥𝐹 ·

̃z⊤X(𝑇) ⊙ z̃⊤X(𝑇) − z
⊤
X ⊙ z⊤X

2

] .

Now let e be the error vector such that z̃X = zX + e and recall that by Proposition 3 we have that ∥̃zX − zX∥2 = ∥e∥
2
≤ 𝜖′. TheñzX(𝑇) · z̃⊤X(𝑇) − zX · z⊤X

2

=
(zX + e) · (zX + e)⊤ − zX · z⊤X

2

≤
e · e⊤

2
+ 2

zX · e⊤
2

≤ ∥e∥2
2
+ 2 ∥zX∥2 · ∥e∥2

≤ ∥e∥2
2
+ 2

√
𝑛 · ∥e∥

2

≤ 3

8

· 𝜖 · 𝑛
(1 +𝐶𝑊) · (1 + ∥Y∥𝐹)

.

Next, using Lemma 8 we get that ̃zX(𝑇) ⊙ z̃X(𝑇) − zX ⊙ zX

2
≤ 2

̃zX(𝑇) − zX
2

≤ 2 ∥e∥

≤ 1

4

· min{𝜖,
√
𝜖} ·
√
𝑛

(1 +𝐶𝑊) · (1 + ∥Y∥𝐹)
.

Now continuing our inequalities from above and using that 𝑘 ≤ 𝑛, we obtain that∇̃X 𝑓 (X) − ∇X 𝑓 (X)
𝐹
≤ 𝐶𝑊

2𝑛
[2 ∥Y∥𝐹 ·

̃zX(𝑇) · z̃⊤X(𝑇) − zX · z⊤X
2

+
√
𝑘 ·

̃zX(𝑇) ⊙ z̃X(𝑇) − zX ⊙ zX

2

+
√
𝑛 ∥Y∥𝐹 ·

̃z⊤X(𝑇) ⊙ z̃⊤X(𝑇) − z
⊤
X ⊙ z⊤X

2

]

≤ 𝐶𝑊

2𝑛

(
6

8

· 𝜖 · 𝑛
1 +𝐶𝑊 +

1

4

· min{𝜖,
√
𝜖} · 𝑛

(1 +𝐶𝑊) (1 + ∥Y∥𝐹)
+ 1

4

· min{𝜖,
√
𝜖} · 𝑛

1 +𝐶𝑊

)
≤ 5

8

𝜖.

C.7 Proof of Theorem 6
C.7.1 Recap of d’Aspremont’s Algorithm. We start by formally stating the result by D’Aspremont [12] for gradient descent with approximate

gradient.

Suppose we wish to solve the convex optimization problem min𝑥∈𝑄 𝑓 (𝑥), where 𝑓 is a convex function mapping to R and 𝑄 is a convex

set of feasible solutions. D’Aspremont [12] gave an algorithm which approximately solves this problem using gradient descent, where the

gradient contains some amount of noise. This algorithm is based on a method by Nesterov [31].

We state the pseudocode in Algorithm 4, where we let 𝑇𝑄 = arg min𝑦∈𝑄
{
⟨∇̃X 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝐿

2
∥𝑦 − 𝑥 ∥2

}
and 𝑑 (𝑥) is a prox-function for

the set 𝑄 , i.e., 𝑑 is continuous and strongly convex with parameter ^. We state the guarantees for the algorithm in the lemma below, where

∥·∥∗ is the dual norm of ∥·∥.
25

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

WWW’24, May 13–17, 2024, Singapore Anon.

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

Algorithm 4: Gradient-descent algorithm with noisy gradient

1 𝑥0 ← arg min𝑥∈𝑄 𝑑 (𝑥)
2 for 𝑘 = 1, . . . ,𝑇 do
3 Compute the approximate gradient ∇̃X 𝑓 (𝑥𝑘)
4 𝑦𝑘 ← 𝑇 (𝑥𝑘)
5 𝑧𝑘 ← arg min𝑥∈𝑄 { 𝐿^𝑑 (𝑥) +

∑𝑘
𝑖=0

𝛼𝑖 [𝑓 (𝑥𝑖) + ⟨∇̃X 𝑓 (𝑥𝑖), 𝑥 − 𝑥𝑖 ⟩}
6 𝐴𝑘 ←

∑𝑘
𝑖=0

𝛼𝑖

7 𝜏𝑘 ← 𝛼𝑘+1/𝐴𝑘+1
8 𝑥𝑘+1 ← 𝜏𝑘𝑧𝑘 + (1 − 𝜏𝑘)𝑦𝑘

Lemma 16 (d’Aspremont [12]). Let 𝐿,^, 𝜖 > 0. Suppose the following conditions hold:
(1) ∥∇X 𝑓 (𝑥) − ∇X 𝑓 (𝑦)∥∗ ≤ 𝐿 · ∥𝑥 − 𝑦∥ for all 𝑥,𝑦 ∈ 𝑄 ,
(2)

���⟨∇̃X 𝑓 (𝑥) − ∇X 𝑓 (𝑥), 𝑦 − 𝑧⟩��� ≤ 𝜖 for all 𝑥,𝑦, 𝑧 ∈ 𝑄 ,
(3) 𝑥0 = arg min𝑥∈𝑄 𝑑 (𝑥) and 𝑑 (𝑥0) = 0,
(4) 𝑑 (𝑥) ≥ ^

2
∥𝑥 − 𝑥0∥2,

(5) (𝛼𝑘)𝑘 is a sequence such that 0 < 𝛼0 ≤ 1 and 𝛼2

𝑘
≤ 𝐴𝑘 for all 𝑘 ≥ 0.

Then Algorithm 4 satisfies 𝑓 (𝑦𝑘) − 𝑓 (𝑥∗) ≤
𝐿𝑑 (𝑥∗)
𝐴𝑘^

+3𝜖 for all 𝑘 ≤ 𝑇 , where 𝑥∗ = arg min𝑥∈𝑄 𝑓 (𝑥) is the minimizer of the optimization problem.

C.7.2 Proof of Theorem 6. Recall that we let𝑄 ⊆ R𝑛×𝑘 denote the convex subset of feasible solutions for Problem 2. We prove the following

useful lemma, which shows how certain functions can be optimized over our set of constraints 𝑄 .

We start by proving a lemma that will be useful later when implementing d’Aspremont’s algorithm.

Lemma 17. Let 𝛽 > 0 and let B,X ∈ R𝑛×𝑘 . Then the minimizer

X∗ = arg min

U∈𝑄

{
𝛽

2

∥U − X∥2𝐹 + ⟨B,U⟩𝐹
}
∈ R𝑛×𝑘

satisfies

X∗𝑖 = Proj𝑄

(
X𝑖 −

1

𝛽
B𝑖 − `∗𝑖 1

)
,

for all 𝑖 . Furthermore, X∗ can be computed in time O(𝑛𝑘).

Proof. We have that

X∗ = arg min

U∈𝑄

{
𝛽

2

∥U − X∥2𝐹 + ⟨B,U⟩𝐹
}

= arg min

U∈R𝑛×𝑘

{
𝛿𝑄 (U) +

𝛽

2

∥U − X∥2𝐹 + ⟨B,U⟩𝐹
}

= arg min

U∈R𝑛×𝑘

{
𝛿𝑄 (U) +

𝛽

2

(⟨U,U⟩𝐹 − 2⟨U,X⟩𝐹 + ⟨X,X⟩𝐹) + ⟨B,U⟩𝐹
}

= arg min

U∈R𝑛×𝑘

{
𝛿𝑄 (U) +

𝛽

2

(
⟨U,U⟩𝐹 − 2⟨U,X − 1

𝛽
B⟩𝐹 + ⟨X,X⟩𝐹

)}
= arg min

U∈R𝑛×𝑘

{
𝛿𝑄 (U) +

𝛽

2

(
⟨U,U⟩𝐹 − 2⟨U,X − 1

𝛽
B⟩𝐹 + ⟨X,X⟩𝐹 − 2⟨X, 1

𝛽
B⟩𝐹 + ⟨

1

𝛽
B,

1

𝛽
B⟩𝐹

)}
= arg min

U∈R𝑛×𝑘

{
𝛿𝑄 (U) +

𝛽

2

(
⟨U,U⟩𝐹 − 2⟨U,X − 1

𝛽
B⟩𝐹 + ⟨X −

1

𝛽
B,X − 1

𝛽
B⟩𝐹

)}
= arg min

U∈R𝑛×𝑘

{
𝛿𝑄 (U) +

𝛽

2

U − (
X − 1

𝛽
B
)

𝐹

}
= arg min

U∈R𝑛×𝑘

{
𝛿𝑄 (U) +

1

2

U − (
X − 1

𝛽
B
)

𝐹

}
= prox𝛿𝑄

(
X − 1

𝛽
B
)
,

where in the penultimate step we use that 𝛿𝑄 (U) only takes the values 0 and∞ and therefore we did not have to rescale 𝛿𝑄 .

26

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates WWW’24, May 13–17, 2024, Singapore

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

Next, let us consider the projection on our set of 𝑄 , which is given by all X′ such that

X′
𝑖

1,1

= 1 for all 𝑖 and X(𝐿) ≤ X′ ≤ X(𝑈). As
discussed before, the first constraint is equivalent to the hyperplane constraint ⟨X′

𝑖
, 1⟩ = 1 for all 𝑖 , since X′

𝑖
∈ [0, 1]𝑛 and the second

constraint can be rewritten as a sequence of box constraints X(𝐿)
𝑖
≤ X′

𝑖
≤ X(𝑈)

𝑖
for all 𝑖 .

From the previous paragraph we get that it suffices if we project on the feasible set for each row of X∗ individually. Since in the definition

of prox𝛿𝑄

(
X − 1

𝛽
B
)
we considered the Frobenius norm, we can find the minimizer for each row individually. More concretely, the rows X𝑖

of X∗ are given by prox𝛿𝑄𝑖
(X𝑖 − 1

𝛽
B𝑖), where by 𝑄𝑖 we denote the set of constraints

X′
𝑖

1,1

= 1 and X(𝐿)
𝑖
≤ X′

𝑖
≤ X(𝑈)

𝑖
.

We note that this is the same as computing the orthogonal projection of X𝑖 − 1

𝛽
B𝑖 onto 𝑄𝑖 . This orthogonal projection can be computed

by the algorithm of Kiwiel [21] in time O(𝑘). Since we have to run this procedure for each of the 𝑛 rows of X∗, we can compute X∗ in time

O(𝑛𝑘). □

To prove the theorem, we need to argue that we can apply Lemma 16 to GDPM and we also have to analyze the running time.

First, we note that GDPM is an implementation of Algorithm 4 with the following parameters.

We set ^ = 1 and 𝑑 (X′) = 1

2

X′ − X(0)2

𝐹
; note that this trivially implies 𝑑 (X′) ≥ 1

2
^

X′ − X(0)2

𝐹
and also 𝑑 (X(0)) = 0. Furthermore, we

set 𝛼𝑇 = 𝑇+1
2

, which satisfies the conditions of Lemma 16 as pointed out in [12]. It remains to show that Z(𝑇) and 𝑇 (X(𝑇)) are implemented

in accordance with Lemma 16. To this end, observe that

Z(𝑇) = arg min

U∈𝑄

{
𝐿

^
𝑑 (U) +

𝑇∑︁
𝑡=0

𝛼𝑡 [𝑓 (X(𝑡)) + ⟨∇̃X 𝑓 (X(𝑡)),U − X(𝑡) ⟩𝐹]
}

= arg min

U∈𝑄

{
𝐿

U − X(0)2

𝐹
+ ⟨

𝑇∑︁
𝑡=0

𝛼𝑡 ∇̃X 𝑓 (X(𝑡)),U⟩𝐹

}
.

Hence, we can compute Z(𝑇) using Lemma 17 with parametersX = X(0) , B =
∑𝑇
𝑡=0

𝛼𝑡 ∇̃X 𝑓 (X(𝑡)), and 𝛽 = 2𝐿. Additionally, for the projection

on our set of constraints we obtain that

𝑇𝑄 (X(𝑇)) = arg min

U∈𝑄

{
⟨∇̃X 𝑓 (X(𝑇)),U − X(𝑇) ⟩𝐹 +

𝐿

2

U − X(𝑇)2

𝐹

}
= arg min

U∈𝑄

{
⟨∇̃X 𝑓 (X(𝑇)),U⟩𝐹 +

𝐿

2

U − X(𝑇)2

𝐹

}
.

Hence, we can compute 𝑇𝑄 (X(𝑇)) using Lemma 17 with parameters X = X(𝑇) , B = ∇̃X 𝑓 (X(𝑇)), and 𝛽 = 𝐿.

Observe that in GDPM, V(𝑇) corresponds to 𝑇𝑄 (X(𝑇)) andW(𝑇) corresponds to Z(𝑇) .
This implies that we can we can use Lemma 16 if we can also show that the gradient of our objective function is Lipschitz and that the

error for our gradient is small.

First, using that we are working with the Frobenius norm which is self-dual, we can apply Proposition 5 to obtain the gradient is 𝐿-smooth

for 𝐿 = 8𝐶𝑊√
𝑛
· ∥s∥

2
· ∥Y∥2

2
.

Second, we obtain our approximate gradient result as follows. Observe that our feasible space only contains row-stochastic matrices with

entries in [0, 1]. Thus, we get that for all X2,X3 ∈ 𝑄 we have that ∥X2 − X3∥2𝐹 ≤ 2𝑛, since in each row the difference can be at most 2. Thus,

if we compute ∇̃X 𝑓 (X1) using Lemma 5 with 𝜖′ = 𝜖√
2𝑛

and using the Cauchy–Schwarz inequality we get that���⟨∇̃X 𝑓 (X1) − ∇X 𝑓 (X2),X2 − X2⟩𝐹
���

≤
∇̃X 𝑓 (X1) − ∇X 𝑓 (X2)

𝐹
· ∥X2 − X2∥𝐹

≤ 𝜖′ ·
√

2𝑛

≤ 𝜖

for all X1,X2,X3 ∈ 𝑄 .
As pointed out in [12], if we compute the gradient with precision 𝜖/6 then we obtain a solution with additive error at most 𝜖 after

𝑂

(
𝐿𝑑 (X∗)

𝜖

)
iterations of the algorithm, where X∗ is the optimal solution. Since X∗ and X(0) are row-stochastic matrices with entries in

[0, 1], we get that 𝑑 (X∗) ≤ 𝑛. Now using our previous bound on 𝐿 and ∥s∥
2
≤
√
𝑛, as well as ∥Y∥2

2
≤ ∥Y∥2

𝐹
≤ 𝑘 since Y is row stochastic

with 𝑘 rows, we get that the number of iterations is bounded by 𝑂

(√︃
𝐶𝑊𝑘𝑛

𝜖

)
.

27

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

WWW’24, May 13–17, 2024, Singapore Anon.

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

Next, observe that in each iteration we spend expected time Õ((𝑚𝑘 + 𝑛𝑘2 + 𝑘3) log(𝑊 /𝜖)) to compute the approximate gradient by

Proposition 5. Computing the matrices V(𝑇) andW(𝑇) takes time O(𝑛𝑘 log𝑘) by Lemma 17. Thus, the total time of each iteration is bounded

by Õ((𝑚𝑘 + 𝑛𝑘2 + 𝑘3) log(𝑊 /𝜖)).

Combing these results we obtain a total expected running time of Õ
(√︃

𝐶𝑊𝑘𝑛
𝜖 (𝑚𝑘 + 𝑛𝑘2 + 𝑘3) log(𝑊 /𝜖)

)
.

28

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Problem formulation
	5 Optimization algorithm
	5.1 Efficient estimation of expressed opinions
	5.2 Gradient descent-based polarization minimization
	5.3 Baselines

	6 Experimental evaluation
	7 Conclusion
	References
	A Omitted pseudocode
	B Omitted experiments
	B.1 Data Collection and Parameter Settings
	B.2 Additional experiment results

	C Omitted proofs
	C.1 Preliminaries on linear algebra and optimization
	C.2 Useful facts
	C.3 Proof of Lemma 1
	C.4 Proof of Proposition 3
	C.5 Proof of Corollary 4
	C.6 Proof of Proposition 5
	C.7 Proof of Theorem 6

