
Multi-order Orchestrated Curriculum Distillation for
Model-Heterogeneous Federated Graph Learning

Guancheng Wan1†, Xu Cheng1†, Run Liu1, Wenke Huang1, Zitong Shi1,
Pinyi Jin1, Guibin Zhang2, Bo Du1∗, Mang Ye1∗

1Wuhan University 2NUS
{guanchengwan, yemang}@whu.edu.cn

Abstract

Federated Graph Learning (FGL) has been shown to be particularly effective in
enabling collaborative training of Graph Neural Networks (GNNs) in decentralized
settings. Model-heterogeneous FGL further enhances practical applicability by ac-
commodating client preferences for diverse model architectures. However, existing
model-heterogeneous approaches primarily target Euclidean data and fail to account
for a crucial aspect of graph-structured data: topological relationships. To address
this limitation, we propose TRUST, a novel knowledge distillation-based model-
heterogeneous FGL framework. Specifically, we propose Progressive Curriculum
Node Scheduler to progressively introduce challenging nodes based on learning
difficulty. In Adaptive Curriculum Distillation Modulator, we propose an adaptive
temperature modulator that dynamically adjusts knowledge distillation temperature
to accommodate varying client capabilities and graph complexity. Moreover, we
leverage Wasserstein-Driven Affinity Distillation to enable models to capture cross-
class structural relationships through optimal transport. Extensive experiments on
multiple graph benchmarks and model-heterogeneous settings show that TRUST
outperforms existing methods, achieving an average 3.6% ↑ performance gain,
particularly under moderate heterogeneity conditions. The code is available for
anonymous access at https://github.com/GuanchengWan/TRUST.

1 Introduction

Federated Learning (FL) [20, 19, 18, 43] has emerged as a distributed machine learning paradigm
that enables multiple clients to collaboratively train a global model without sharing their privacy-
sensitive data, thereby preserving data confidentiality. Traditional FL methods operate by aggregating
locally computed model updates (e.g., gradients or weights) from participating clients under the
coordination of a central server, eliminating the need for direct data exchange. A prominent branch
of FL is Federated Graph Learning (FGL) [53, 6, 41, 3, 5, 44, 42], which specializes in handling
graph-structured data. In addition to inheriting privacy-preserving benefits of FL, FGL usually
leverages Graph Neural Networks (GNNs) [21, 11, 45, 30] to capture topology information in graph
data, offering a flexible and expressive framework for modeling graph-structured information.

Although many existing FGL works have made significant progress in improving the performance of
the global model, these studies are often based on the assumption that client models follow the same
architecture. This assumption rarely holds in real-world scenarios, where computational resources
and task requirements vary across participants and they prefer to design private models independently
rather than agreeing on a unified model architecture [54], ultimately restricting their real-world

† Equal Contribution.
* Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/GuanchengWan/TRUST

applicability. This challenge is formally termed model-heterogeneous federated learning. To
address this challenge, recent works have proposed several solutions. For instance, pFedHR [48]
generates a personalized model for each client through model reassembly to transfer knowledge
between clients. DESA [15] leverages synthetic global data to distill knowledge from other client
models. FedTGP [56] employs server-side maintained global prototypes to bridge heterogeneous
models. However, these methods are primarily tailored for traditional data types like images and do
not generalize to non-Euclidean graph-structured data. This gap motivates our core research question:

How can we design a model-heterogeneous FL framework specifically tailored for graph data?

Private
model

Proxy
model

Knowledge Distillation

(I) Constant Learning Difficulty

(II) Fixed Distillation Temperature

Low temperature:
Focus on major classes

High temperature:
Learn deep

structural information

Distillation
difficulty

0

0.27
0.45

Node difficulty

0.3
0.3

Difficulty
Ranking

Logits distribution Logits distribution

(III) Missing cross-class comparisons

Traditional KL

Fail to capture deep
structural information

Hidden
Relationship

Private model Proxy model

Feature
space

Feature
space

Figure 1: Problem Illustration. We describe three challenges
model-heterogeneous FGL encounters: constant learning difficulty
and fixed distillation temperature limit client-specific adaptation
and topology preservation. And the lack of cross-class comparison
impedes the capture of deep structural graph relationships.

Some previous model-heterogeneous
FL methods leverage knowledge dis-
tillation (KD) [13, 9, 50, 45] to trans-
fer knowledge between clients [16, 24,
54]. For example, FedType [49] in-
troduces small identical proxy mod-
els for clients to bridge the global ar-
chitecture discrepancy, and then they
leverage KD to transfer knowledge be-
tween large private and small proxy
models. However, in the model-
heterogeneous FGL scenario, there
are significant differences in model
architectures and computational capa-
bilities between clients, and the graph
data itself has high-order information
such as complex non-Euclidean topol-
ogy, multi-hop path pattern, and com-
munity structure. Traditional knowl-
edge distillation methods maintain a
constant "distillation difficulty" (fixed
task complexity) [10, 58] throughout the training process. This one-size-fits-all approach creates
dual dilemmas: For lightweight models, the early introduction of higher-order topology information
causes learning bottlenecks and slow convergence. Conversely, for large-scale models with strong
expressive ability, it may be too easy for them to exploit their full capacity, resulting in inadequate
capture of global structure information. This fixed-difficulty paradigm cannot take into account the
requirements brought about by model heterogeneity, preventing progressive learning and ultimately
leading to degraded FGL Performance. This naturally raises the following question: I) How can we
design a KD strategy that dynamically adjusts the task difficulty to accommodate heterogeneous
architectures and complex graph topologies?

In addition to the KD task itself, current KL-divergence based KD approaches maintain static
temperature parameters (controlling label distribution smoothness), which govern transfer intensity.
This rigidity prevents adaptation to varying graph complexity, label sparsity, and noise patterns.
To be specific, KD at low temperatures will neglect small probability events, blurring subtle but
important structural information like multi-hop paths and community features. In contrast, high
temperatures lose fine-grained node-level information. This inflexibility in distillation signaling
hinders client differentiation and deep topological knowledge transfer, ultimately limiting the capacity
of the proxy model. This leads us to think that: II) How can we devise an adaptive KD scheme
that dynamically calibrates temperature to harmonize global topology transfer with fine-grained
node details? Furthermore, the mentioned KD methods rely on KL-divergence loss, which only
compares probability distributions within the same class. This approach lacks cross-class comparison
mechanisms, making proxy models fail to capture topological relationships across different categories.
This limitation leads to the third problem: III) How can we enable cross-class comparison to fully
leverage deep structural information during the KD phase?

To address these challenges, inspired by curriculum learning [2, 51], we propose MulTi-oRder
Orchestrated CUrriculum DiSTillation (TRUST), a novel model-heterogeneous FGL framework. For
Problem I), we introduce the Progressive Curriculum Node Scheduler (PCNS), which progressively
schedules node samples for each client from easy (nodes with typical class representations) to difficult
(nodes situated near class boundaries that may confuse proxy models), thereby enabling heterogeneous

2

models to first absorb low-order semantic cues and then incrementally acquire high-order topological
knowledge. For Issue II), we propose the Adaptive Curriculum Distillation Modulator (ACDM),
a module that dynamically calibrates the distillation temperature during training—this mechanism
allows the framework to fluidly shift emphasis between capturing global structures and preserving
fine-grained node details. For Problem III), in addition to the KL-Divergence loss, we introduce
Wasserstein-Driven Affinity Distillation (WDAD), which leverages class prototypes from private
models and computes cross-class relational distances via the Wasserstein metric, thereby enabling
comprehensive cross-class topological knowledge transfer. The contributions are as follows.

❶ Problem Identification. We are the first to systematically study model-heterogeneous FGL and
formally characterize three core challenges in KD-based methods: the need for dynamic task
difficulty, adaptive distillation signaling, and cross-class relational transfer.

❷ Practical Solution. We develop a curriculum-guided distillation framework that progressively
schedules node difficulty, dynamically adjusts distillation strength, and enables knowledge transfer
across classes, effectively reconciling heterogeneous architectures with complex graph topologies.

❸ Experimental Validation. We conduct extensive experiments on multiple graph benchmarks under
diverse architecture heterogeneity settings. Empirical results demonstrate that TRUST consistently
outperforms state-of-the-art baselines.

2 Preliminaries

2.1 Notations

Graph Neural Networks. Given a graph G = (V, E), where V denotes the set of nodes and E
represents the set of edges. For every node vi ∈ V , vi is associated with a k-dimensional feature vector
xi. The feature vectors of all nodes are represented collectively as the feature matrix X ∈ RN×k.
The topology of the graph G is encoded in the adjacency matrix A ∈ RN×N where A(v, u) = 1
if (v, u) ∈ E and A(v, u) = 0 otherwise. GNN models operate through iteratively updating node
representations using a message-passing mechanism, where each node aggregates information from
its local neighborhood and updates its own state. Let Ni denote the neighborhood nodes of vi, and
for the l-th layer of a GNN model, the representation of hl

i of node vi can be computed as:
hl
i = Update

(
hl−1
i , Aggregate

(
{hl−1

j |vj ∈ Ni}
))

, (1)

where hl
i denotes the representation of node vi at layer l.

Knowledge Distillation Traditional knowledge distillation methods employ the Kullback-Leibler
(KL) Divergence loss to align the output distributions of student and teacher models:

LKL(p
T , pS) =

∑
i

pT (i) log
pT (i)

pS(i)
, (2)

where pT and pS denote the class probability distributions predicted by the teacher and student model
respectively. These are computed via softmax function σ and distillation temperature τ :

pT = σ(
hT

τ
), pS = σ(

hS

τ
). (3)

Model Heterogeneous Federated Graph Learning framework. Let S denotes the central server and
Ck denotes the k-th client with K clients in total. Each client k holds its own graph Gk = (Vk, Ek).
In a model heterogeneous setting, each client trains a model wk parameterized by θk on its own
training data and then uploads it to the server, and the client models {w1, w2, ..., wK} do not share
identical architectures. Mathematically, the learning objective can be formulated as:

min
θ

K∑
k=1

|Vk|
|V| L

k(y, wk(Gk)), (4)

where |Vk| and |V| represents the number of samples of the client k and the total number of samples
across all clients respectively, y denotes ground truth labels, and L(·, ·) is the empirical loss.

2.2 Model Heterogeneous FGL with proxy model

Inspired by FedType [49], we leverage proxy models to bridge heterogeneous models. In our
framework, each client maintains both its private model and a proxy model. The proxy model is a
small model with an identical architecture across all clients. The training process consists of three
key phases: (1) Forward Distillation: First, each client distills knowledge from its private model to its

3

Difficulty Measurer

Raw data Score node difficulty

Curriculum Scheduler

 ···

Epoch t
Gradually introduce

difficult nodesProgressive Curriculum Node Scheduler

lower temperature

Focus on major
category information

Adaptive Curriculum Distillation Modulator

Complex graph with
small model capacity

Simple graph with
high model capacity

increase temperature

Capture fine-grained
information

Private model
classifier

Cross-class
Relationships

Proxy model logits

Private model logits

Cross-class comparision

Overall Framework
Proxy model

Global model

Heterogenerous
private model Forward KD

Backward KD

Wasserstein-Driven Affinity Distillation

Figure 2: Architecture overview of TRUST, which includes three core components: (1) PCNS is a
difficulty-progressive curriculum learning module. (2) ACDM provides capability-aware dynamic
temperature adjustment. (3) WDAD employs Wasserstein-based cross-class distillation.

proxy model. (2) Global Aggregation: Then the weights of all proxy models are transmitted to the
server where they are aggregated through weighted averaging to form a global model. (3) Backward
Distillation: Next, the updated global model is distributed back to proxy models, which conducts
knowledge distillation to transfer global knowledge to private models using a conformal model. The
details of backward distillation are given in Section E in Appendix. This cyclic process continues
until the global model converges. However, FedType is originally tailored for Euclidean data types as
it does not fully exploit unique topological information of graph data. In order to generalize to graph
data, our approach specifically addresses the three key challenges identified in Section 1.

3 Methodology

3.1 Framework Overview

In this section, we present an overview of TRUST. TRUST adds three key components to the knowledge
distillation process: (1) At the client side, during knowledge transfer from private to proxy models,
we propose a PCNS to gradually introduce challenging nodes to proxy models. (2) At the same
time, distillation temperature automatically calibrates throughout the process to adjust to both client
model capabilities and local graph complexity. (3) After forward propagation, we introduce a
WDAD loss, which incorporates cross-class comparison through optimal transport theory, preserving
topological information that conventional distillation methods typically ignore. These components
work synergistically to address the unique challenges of model-heterogeneous federated learning
on graph data, while maintaining the privacy-preserving benefits of the federated paradigm. The
framework is illustrated in Figure 2.

3.2 Progressive Curriculum Node Scheduler

Motivation. As established in Sec. 1, graph-structured data contains complex topological relation-
ships. Therefore, premature exposure to this intricate high-order information during initial training
phases results in client models struggling to learn generalizable patterns from highly complex nodes,
and nodes situated near class boundaries with ambiguous class representations may even lead to
misleading learning signals. Therefore, we need to design a progressive learning framework to
introduce complex graph knowledge step by step.

4

Curriculum Learning. Drawing inspiration from human cognitive development, Curriculum Learn-
ing (CL) enables models to learn from data in a structured manner, transitioning from simpler to
more complex samples, rather than processing all data uniformly in each epoch [2]. Prior works have
proved that CL’s effectiveness in improving model convergence, generalization, and final performance
[23]. To implement this approach, we need to (1) make a formal definition of sample "difficulty" and
(2) schedule data samples based on the proposed definition.

Difficulty Measurer. In GNN, each layer aggregates neighboring nodes to update node representa-
tions, as formalized in Equation 1. Intuitively, GNN models are more proficient at learning nodes
whose neighbors belong to the same class because they share certain features. By contrast, for
cross-class nodes connected to neighbors with divergent labels, GNN models receive conflicting
gradient updates during aggregation, resulting in impaired learning. Therefore, we can quantify
node learning difficulty through the neighborhood label distribution, where for a node vi, the node
difficulty is formally defined as the entropy of the distribution:

Pc(vi) =
|{yn = c | n ∈ Ni ∪ {vi}}|

|Ni ∪ {vi}|
,

D1(vi) = −
∑
c∈C

Pc(vi) log(Pc(vi)),
(5)

where Pc(vi) computes proportion of class c in neighborhood Ni ∪ {vi}, yn denotes the label of
node n, and C represents the set of labels.

Notably, the neighbors of node vi may include samples from both the training and test datasets, and
theoretically, the labels of test dataset neighbors are unavailable during the training phase, which
means we need a locally pretrained GNN to generate pseudo-labels for unlabeled nodes. However,
this approach introduces a fundamental challenge in decentralized FGL settings: locally pretrained
GNN models may be unreliable due to the lack of global knowledge, potentially resulting in pseudo-
label inaccuracies. Therefore, our difficulty measurer must exhibit robustness to potential label noise.
Intuitively, we can implement this by evaluating the alignment between node representations and
class prototypes. For a node vi with pseudo-label yi, if its node representation hi demonstrates high
similarity with prototype of class yi, it is less likely to be assigned a wrong label because its features
exhibit strong class-typical characteristics. But if it’s the opposite, we can identify it as a "difficult"
node because it has ambiguous node representation and the pretrained model has low confidence in
the predicted pseudo-label. We can summarize this difficulty measurer as:

pyi =
1

|Vyi |
∑

v∈Vyi

hv,

D2(vi) = 1− exp(hi · pyi)
maxc∈C exp(hi · pc)

,

(6)

where Vyi is a subset of V with all nodes belonging to class yi in it, and pyi denotes the prototypes of
class yi (mean embedding of nodes in Vyi). Combining these two difficulty measurer, the overall
node difficulty score can be formalized as follows:

D(vi) = D1(vi) + α ·D2(vi), (7)
where α balances the weight of D2(vi).

Curriculum scheduler. Once data samples are sorted by node difficulty in ascending order, each
client implements a curriculum scheduler to gradually expose proxy model to more complex samples.
The scheduler regulates the proportion of sorted training data used at each epoch t through a pacing
function. For simplicity, we adopt a linear function:

f(t) = min(1, λ+ (1− λ) · t

T
), (8)

where λ denotes the available proportion of data samples at epoch 0, and T is the epoch when full
training data is first utilized. f(t) monotonically increases from λ to 1 over T epochs. Notably,
after f(t) reaches 1, the model should still continue training for several additional epochs to ensure
complete assimilation of challenging knowledge patterns.

Incorporating the proposed curriculum scheduler, we can reformulate the KL divergence loss as:

L̂KL(p
T , pS) =

1

B

B∑
j=1

∑
i

pTj (i) log
pTj (i)

pSj (i)
, (9)

5

where, for a given client k, the nodes are pre-sorted as v1, v2, . . . , v|Vk| in ascending order of their
difficulty D(vi). At epoch t, the number of nodes selected from the beginning of this sorted list is
Bt = ⌊f(t) · |Vk|⌋. In Equation 9, B corresponds to this Bt at epoch t.

3.3 Adaptive Curriculum Distillation Modulator

Motivation. In model-heterogeneous FGL, each client adjusts local model architecture based on its
available computational resources, and each client operates on a subgraph with varying complexity.
Fixed temperature fails to account for differences in client model capabilities and topological knowl-
edge complexity, limiting the ability of proxy models to learn intricate graph structures. To address
this issue, we need to propose an ACDM that dynamically calibrates temperature.

Adaptive Temperature Modulator. To dynamically adjust distillation signals during training,
intuitively if the current task difficulty is too low for a client model, increasing the difficulty can fully
exploit model capability. Conversely, if the task exceeds the model’s current capacity, reducing the
difficulty prevents ineffective training, which resembles an adversarial process. Inspired by Generative
Adversarial Networks (GANs) [25, 8], we implement this mechanism by converting the constant
temperature value into a learnable parameter θtemp, which is optimized in the opposite direction
of the client model parameters. In this way, θtemp controls the difficulty of the loss minimization
process, thereby enabling indirect dynamic adjustment of the distillation difficulty. Mathematically,
the learning objective can be formulated as:

θmodel = θmodel − η · ∂L

∂θmodel
, θtemp = θtemp + η · ∂L

∂θtemp
, (10)

where θmodel denotes the client model parameters (the proxy model more precisely in this framework),
θtemp is the temperature parameter, and η denotes the learning rate.

Curriculum Distillation Modulator. While the Adaptive Temperature Modulator provides dynamic
adjustment, we decide to prevent excessive interference at the early training stage since the model is
still initializing and has limited learning capacity. Therefore, we incorporate curriculum learning to
progressively increase the influence of the modulator. Specifically, we scale the loss L by a factor µ:

θtemp = θtemp + η · ∂(µ · L)
∂θtemp

. (11)

Here, µ is determined by the pacing function, which smoothly increases from 0 to 1 over the training
epochs. We implement the pacing function as a cosine scheduler to progress more smoothly:

µ =
1− cos(min(t,T)

T
· π)

2
, (12)

where t denotes the current epoch.

Module Pipeline. Having established the optimization objective of ACDM, we now formalize its
overall pipeline. The module can be conceptualized as a network layer denoted as ltemp parameterized
by θtemp. Each training epoch executes the following steps: (1) we first compute the scaling factor
µ using Equation 12. (2) During forward propagation, ltemp takes µ as input and outputs θtemp to
compute the distillation temperature τ for current epoch. (3) In backward propagation, ltemp updates
θtemp via gradient descent using Equation 11. This cyclic process continues throughout the entire
training phase. Notably, rather than directly use θtemp as the distillation temperature τ , we constrain
it to a reasonable range via a sigmoid function. Therefore, KL-divergence loss is reformulated as:

L̂KL(p
T , pS) =

1

B

B∑
j=1

∑
i

p̂Tj (i) log
p̂Tj (i)

p̂Sj (i)
,

p̂Tj = σ(
hT
i

τ
), p̂Sj = σ(

hS
i

τ
),

τ = τmin + τmax · sigmoid(θtemp),

(13)

where τmin and τmax are the upper bound and lower bound for distillation temperature.

3.4 Wasserstein-Driven Affinity Distillation

Motivation. As shown in Equation 2, KL-divergence only compares intra-class probability distri-
butions. For graph data with complex topological relationships, this approach may fail to capture

6

Table 1: Comparison with the state-of-the-art methods on five real-world datasets under moderate
heterogeneity. For each dataset, we report local and global accuracy(%) (with red/green markers
indicating regression/improvement over FedAvg). The best and second-best results are marked with
bold and underline, respectively. Additional results under more settings are in Appendix D.

Category Methods Cora CiteSeer PubMed CS Photo

acc Type local global local global local global local global local global

FL

FedAvg [ASTAT17] 81.36 64.52 82.61 65.48 88.10 82.09 90.10 83.35 90.14 84.10

FedNOVA [NeurIPS20] 81.54↑0.18 64.97↑0.45 82.76↑0.15 66.22↑0.74 88.20↑0.10 82.87↑0.78 90.13↑0.03 82.37↓0.98 90.34↑0.20 86.70↑2.60

FedProto [AAAI22] 79.17↓2.19 64.79↑0.27 82.61↑0.00 67.24↑1.76 88.10↑0.00 83.46↑1.37 91.97↑1.87 80.81↓2.54 86.38↓3.76 84.04↓0.06

MOON [CVPR21] 81.52↑0.16 65.70↑1.18 81.58↓1.03 63.84↓1.64 88.15↑0.05 82.34↑0.25 91.78↑1.68 83.81↑0.46 90.40↑0.26 86.18↑2.08

FedType [ICML24] 82.25↑0.89 72.96↑8.44 83.20↑0.59 64.24↓1.24 87.39↓0.71 84.34↑2.25 91.64↑1.54 86.36↑3.01 88.91↓1.23 90.17↑6.07

FGL
AdaFGL [ICDE24] 81.93↑0.57 64.61↑0.09 80.40↓2.21 65.48↑0.00 85.35↓2.75 82.87↑0.78 91.11↑1.01 84.24↑0.89 90.64↑0.50 82.54↓1.56

FedGTA [VLDB24] 77.73↓3.63 64.43↓0.09 79.96↓2.65 66.18↑0.70 85.62↓2.48 82.57↑0.48 91.80↑1.70 83.89↑0.54 90.87↑0.73 84.56↑0.46

Model-Heterogeneous
FGL TRUST 83.90↑2.54 75.32↑10.80 85.84↑3.23 67.43↑1.95 89.06↑0.96 84.57↑2.48 92.19↑2.09 87.07↑3.72 91.42↑1.28 91.50↑7.40

subtle but important cross-class structural dependencies. To address this limitation, we propose a
cross-class comparison mechanism.

Cross-class Relationships. We quantify cross-class relationships (CR) by computing cosine similarity
between prototypes of different categories. Following Equation 6, prototypes can be derived from
the mean node embeddings for each category. Drawing inspiration from [37], for implementation
efficiency we decide to instead adopt the classifier weight vectors of the private model to compute
class prototypes. For categories with certain connections, their classifier weight vectors also share
certain similarity. Let W ∈ Rc×n denotes the classifier weight matrix, where c is the number of
classes and n is the feature dimensions. The CR metric is computed as:

ŵi =
wi

||wi||2
, CR = ŴŴT , (14)

where wi represents the weight vector for class i in W , ŵi denotes the L2-normalized weight vector
of wi, and CR captures the pairwise similarity between all classes.

Wasserstein-Driven Affinity Distillation Loss. To quantify the probability distribution difference
between pT and pS , based on Wasserstein distance [4], we define WDAD loss as:

LWD(p
T , pS) = min

∑
i,j

cijqij + η · qij log qij , (15)

where qij and cij represents the transmitted probability mass and transmission cost from teacher
(private model in forward distillation) category i to student (proxy model) category j respectively, and
η is a regularization hyper-parameter. qij is constrained by:∑

j

qij = pTi ,
∑
i

qij = pSj , qij ≥ 0. (16)

Intuitively, if two categories are similar in the feature space, the transmission cost cij should be lower.
Therefore, we can leverage CR to compute cij using a Gaussian kernel:

cij = 1− exp(−κ(1− CRij)), (17)
where κ is a hyper-parameter adjusting the sensitivity to CR. Overall, WDAD loss explicitly intro-
duces cross-class relationships through transmission cost cij . By minimizing this loss, we enforce
consistency between private and proxy models in their probability allocation, particularly for cate-
gories that are similar in the feature space.

Moreover, rather than completely replace L̂KL with LWD, we decide to employ a weighted combina-
tion of LWD and L̂KL to ensure smooth transition between the two objectives. Therefore, our final
optimization objective can be formulated as:

L = LCE + α · LWD + β · L̂KL, (18)
where LCE denotes the cross-entropy function for classification tasks, and α and β are two hyper-
parameters regulating the weight of LWD and L̂KL respectively.

4 Experiment

In this section, we comprehensively evaluate TRUST through four axes: Q1 (Superiority), Q2
(Resilience). Q3 (Effectiveness), Q4 (Sensitivity),

7

4.1 Experimental Setup

Datasets. To effectively evaluate the performance of our approach, we employed five benchmark
graph datasets of various scales and distributions, including Cora [31], CiteSeer [7], PubMed [38],
CS, and Photo. Detailed descriptions and splits for these datasets can be found in Appendix C.1.
Moreover, the implementation details and parameter settings can be found in Appendix C.3.

Counterparts. We compare TRUST against several traditional FL methods: (1) FedAvg [ASTAT17]
[32], (2) FedNOVA [NeurIPS20] [47], (3) FedProto[AAAI22] [39], (4) MOON [CVPR 21][26],(5)
FedType [ICML24] [49]; two popular FGL approaches: (6) AdaFGL [ICDE24] [28]; (7) FedGTA
[VLDB24] [29].Detailed descriptions can be found in Appendix C.2.

Figure 3: We report the performance of different methods under varying data heterogeneity levels
on Cora, CiteSeer, and PubMed, with both local and global accuracy. The red color denotes the
performance of TRUST. (First): severe heterogeneity(α=0.3). (Second): mild heterogeneity(α=1.0).
(Third): Results on Cora under different heterogeneity levels with α set to 0.3, 0.5, and 1.0.

4.2 Superiority

To answer Q1, we conducted systematic experimental evaluations in a variety of subgraph data
heterogeneity environments, which we control by partitioning the graph using a Dirichlet distribution
with parameter α. Smaller values of α lead to more extreme subgraph distributions. We compared
the performance of TRUST with existing approaches based on two metrics: local accuracy and
global accuracy. Local accuracy is measured as the average classification accuracy across all clients,
reflecting the model’s effectiveness on decentralized subsets. Global accuracy is evaluated on the
aggregated model at the server. For most existing methods, the global model is updated via knowledge
distillation. In contrast, both TRUST and FedType update the global model by simply averaging the
parameters of the proxy models. The results are summarized in Tab. 1 and Figure 3.

From the table, several key observations can be made (Obs.): Obs. ❶Existing approaches show
suboptimal performance in heterogeneous FGL scenarios. For instance, when α is set to 0.3,
most existing methods achieve accuracy on the Cora dataset that is either lower than or comparable
to FedAvg. Notably, when α is reduced to 0.1, the performance of these methods drops significantly,
with the average global accuracy consistently falling below 35%.

Obs. ❷ TRUST demonstrates remarkable robustness across various graph data heterogeneity
scales. Under moderate heterogeneity conditions (α = 0.5), TRUST exhibits clear advantages. As
shown in Tab. 1, TRUST consistently outperforms both FL and FGL baseline methods across different
datasets in terms of both local and global accuracy. For example, TRUST achieves a global accuracy
of 75.32% on the Cora dataset, surpassing the best baseline method, FedType (72.96%) by 2.36%,
and outperforming FedAvg (64.52%) by a significant 10.80% margin. Furthermore, as shown in
Figure 3, TRUST consistently outperforms all baselines across various heterogeneity levels. In highly
heterogeneous environments,TRUST achieves varying degrees of performance improvement over all
baselines .In mildly heterogeneous settings, it demonstrates an average accuracy gain of 2.25%.

4.3 Resilience

To address Q2, we evaluate the performance of each method on the Cora dataset across varying
levels of data heterogeneity, where α is set to 0.3, 0.5, and 1.0.Figure 3(Third) illustrates that TRUST

8

(a) Cora Local (b) Cora Global (c) Citeseer Local (d) Citeseer Global
Figure 4: Ablation Study of the key components PCNS,ACDM and WDAD on Cora and Citeseer
datasets. For an in-depth analysis, please refer to Sec. 4.4.

achieves robust performance gains across varying levels of data heterogeneity, outperforming other
algorithms by an average of 5.78%, and at α = 0.5 on the Cora dataset, it even surpasses FedAvg by
10.80%.This demonstrates that TRUST can effectively identify heterogeneous graphs and maintain
superior performance, even under challenging conditions with extreme data heterogeneity.

4.4 Effectiveness

To address Q3, we conduct an ablation study on the key components of the framework: PCNS,
ACDM, and WDAD. Experimental results on Cora and CiteSeer are presented in Figure 4.

The ablation study demonstrates that all three components contribute substantially to performance
improvement. PCNS has the most pronounced individual effect; its removal results in a 2.9% drop
in accuracy (Citeseer Global: 67.43% → 64.51%), confirming its effectiveness in progressive node
scheduling. ACDM provides dataset-dependent benefits, yielding a 1.93% gain on Citeseer Global
through dynamic temperature modulation. WDAD consistently contributes 0.8–1.6% improvements
by enabling cross-class knowledge transfer.

When PCNS, ACDM, and WDAD are combined, the model achieves the best performance, effectively
distilling both structural and semantic knowledge into a well-generalizable student model.

4.5 Sensitivity

To address Q4, we conduct analyses on hyperparameters of TRUST. Specifically, we analyze the
model’s performance under different values of λ and T , as defined in Equation 8.We evaluate
all combinations of λ ∈ {0.25, 0.5, 0.75} and T ∈ {20, 40, 80, 100}. Results shown in Figure 5
demonstrate that the choice of hyperparameters λ and T has a minimal impact on the performance of
TRUST, proving the robustness of TRUST.

(a) Cora local (b) Cora global (c) CiteSeer local (d) CiteSeer global

Figure 5: Analysis on hyper-parameter in TRUST.Node classification results are evaluated on Cora
and CiteSeer datasets under various hyperparameter combinations, testing both global and local
accuracy. All experiments are conducted under the setting of α = 0.5.

5 Conclusion

In this paper, we propose TRUST to address model heterogeneity in Federated Graph Learning. Based
on knowledge distillation to bridge heterogenous client models, we integrates three key strategies to
effectively handle complex topological information in graph-structured data. We first employ PCNS
to progressively introduce complex samples based on learning difficulty. Then we propose ACDM
for dynamic temperature adjustment. We further propose WDAD that captures cross-class structural
relationships. Comprehensive experiments across five benchmark datasets demonstrate TRUST’s

9

superior capability in resolving model heterogeneity challenges while preserving graph topological
properties. The framework establishes a state-of-the-art for heterogeneous FGL systems.

Acknowledgement

This work is supported by National Natural Science Foundation of China under Grant (62361166629,
62225113, 623B2080), the Major Project of Science and Technology Innovation of Hubei Province
(2024BCA003, 2025BEA002), and the Innovative Research Group Project of Hubei Province under
Grants 2024AFA017. The supercomputing system at the Supercomputing Center of Wuhan University
supported the numerical calculations in this paper.

References
[1] A. Angelopoulos, S. Bates, J. Malik, and M. I. Jordan. Uncertainty sets for image classifiers

using conformal prediction, 2022.

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML ’09, page 41–48, New
York, NY, USA, 2009. Association for Computing Machinery.

[3] J. Cai, Y. Zhang, J. Fan, and S.-K. Ng. Lg-fgad: An effective federated graph anomaly detection
framework. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 3760–3769, 2024.

[4] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation distances,
2013.

[5] X. Fu, Z. Chen, Y. He, S. Wang, B. Zhang, C. Chen, and J. Li. Virtual nodes can help: Tackling
distribution shifts in federated graph learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2025.

[6] X. Fu, B. Zhang, Y. Dong, C. Chen, and J. Li. Federated graph machine learning: A survey of
concepts, techniques, and applications. arXiv preprint arXiv:2207.11812, 2022.

[7] C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: An automatic citation indexing system.
In Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial networks, 2014.

[9] J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A survey. IJCV, pages
1789–1819, 2021.

[10] Q. Guo, X. Wang, Y. Wu, Z. Yu, D. Liang, X. Hu, and P. Luo. Online knowledge distillation via
collaborative learning. In CVPR, pages 11020–11029, 2020.

[11] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
NeurIPS, 2017.

[12] C. He, K. Balasubramanian, E. Ceyani, C. Yang, H. Xie, L. Sun, L. He, L. Yang, P. S. Yu,
Y. Rong, P. Zhao, J. Huang, M. Annavaram, and S. Avestimehr. Fedgraphnn: A federated
learning system and benchmark for graph neural networks, 2021.

[13] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[14] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network, 2015.

[15] C.-Y. Huang, K. Srinivas, X. Zhang, and X. Li. Overcoming data and model heterogeneities in
decentralized federated learning via synthetic anchors, 2025.

[16] W. Huang, M. Ye, and B. Du. Learn from others and be yourself in heterogeneous federated
learning. In CVPR, 2022.

10

[17] W. Huang, M. Ye, and B. Du. Learn from others and be yourself in heterogeneous federated
learning. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 10133–10143, 2022.

[18] W. Huang, M. Ye, Z. Shi, and B. Du. Generalizable heterogeneous federated cross-correlation
and instance similarity learning. TPAMI, 2023.

[19] W. Huang, M. Ye, Z. Shi, H. Li, and B. Du. Rethinking federated learning with domain shift: A
prototype view. In CVPR, 2023.

[20] W. Huang, M. Ye, Z. Shi, G. Wan, H. Li, B. Du, and Q. Yang. A federated learning for
generalization, robustness, fairness: A survey and benchmark. arXiv, 2023.

[21] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

[22] S. Kotz, N. Balakrishnan, and N. L. Johnson. Continuous multivariate distributions, Volume 1:
Models and applications, volume 1. John Wiley & Sons, 2004.

[23] H. Li, X. Wang, and W. Zhu. Curriculum graph machine learning: A survey, 2024.

[24] M. Li, X. Zhang, Q. Wang, T. LIU, R. Wu, W. Wang, F. Zhuang, H. Xiong, and D. Yu. Resource-
aware federated self-supervised learning with global class representations. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[25] Q. Li, B. He, and D. Song. Adversarial collaborative learning on non-iid features. arXiv, 2021.

[26] Q. Li, B. He, and D. Song. Model-contrastive federated learning. In CVPR, pages 10713–10722,
2021.

[27] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg on non-iid
data. arXiv preprint arXiv:1907.02189, 2019.

[28] X. Li, Z. Wu, W. Zhang, H. Sun, R.-H. Li, and G. Wang. Adafgl: A new paradigm for federated
node classification with topology heterogeneity. In 2024 IEEE 40th International Conference
on Data Engineering (ICDE), pages 2379–2392. IEEE, 2024.

[29] X. Li, Z. Wu, W. Zhang, Y. Zhu, R.-H. Li, and G. Wang. Fedgta: Topology-aware averaging for
federated graph learning. Proceedings of the VLDB Endowment, 17(1):41–50, 2023.

[30] Z. Liu, G. Wan, B. A. Prakash, M. S. Lau, and W. Jin. A review of graph neural networks
in epidemic modeling. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 6577–6587, 2024.

[31] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the construction of internet
portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In AISTATS, pages 1273–1282, 2017.

[33] S. Mehta and A. Aneja. Securing data privacy in machine learning: The fedavg of federated
learning approach. In 2024 4th Asian Conference on Innovation in Technology (ASIANCON),
pages 1–5. IEEE, 2024.

[34] M. Morafah, V. Kungurtsev, H. Chang, C. Chen, and B. Lin. Towards diverse device heteroge-
neous federated learning via task arithmetic knowledge integration, 2024.

[35] C. Pan, J. Xu, Y. Yu, Z. Yang, Q. Wu, C. Wang, L. Chen, and Y. Yang. Towards fair graph
federated learning via incentive mechanisms, 2023.

[36] H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. Inductive confidence machines
for regression. In Machine Learning: ECML 2002: 13th European Conference on Machine
Learning Helsinki, Finland, August 19–23, 2002 Proceedings 13, pages 345–356. Springer,
2002.

11

[37] V. Papyan, X. Y. Han, and D. L. Donoho. Prevalence of neural collapse during the ter-
minal phase of deep learning training. Proceedings of the National Academy of Sciences,
117(40):24652–24663, Sept. 2020.

[38] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective classifica-
tion in network data. AI magazine, 29(3):93–93, 2008.

[39] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang. Fedproto: Federated prototype
learning across heterogeneous clients. In AAAI, 2022.

[40] Z. Tan, G. Wan, W. Huang, and M. Ye. Fedssp: Federated graph learning with spectral knowl-
edge and personalized preference. In Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[41] G. Wan, W. Huang, and M. Ye. Federated graph learning under domain shift with generalizable
prototypes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
15429–15437, 2024.

[42] G. Wan, Z. Huang, W. Zhao, X. Luo, Y. Sun, and W. Wang. Rethink graphode generalization
within coupled dynamical system. In Forty-second International Conference on Machine
Learning, 2025.

[43] G. Wan, Z. Liu, X. Shan, M. S. Lau, B. A. Prakash, and W. Jin. Epidemiology-aware neural
ode with continuous disease transmission graph. In Forty-second International Conference on
Machine Learning, 2025.

[44] G. Wan, Z. Shi, W. Huang, G. Zhang, D. Tao, and M. Ye. Energy-based backdoor defense
against federated graph learning. In International Conference on Learning Representations,
2025.

[45] G. Wan, Y. Tian, W. Huang, N. V. Chawla, and M. Ye. S3gcl: Spectral, swift, spatial graph
contrastive learning. In Forty-first International Conference on Machine Learning, 2024.

[46] J. Wang, Q. Li, L. Lyu, and F. Ma. pfedclub: Controllable heterogeneous model aggregation for
personalized federated learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[47] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization. In NeurIPS, pages 7611–7623, 2020.

[48] J. Wang, X. Yang, S. Cui, L. Che, L. Lyu, D. Xu, and F. Ma. Towards personalized federated
learning via heterogeneous model reassembly, 2023.

[49] J. Wang, C. Zhao, L. Lyu, Q. You, M. Huai, and F. Ma. Bridging model heterogeneity in
federated learning via uncertainty-based asymmetrical reciprocity learning, 2024.

[50] L. Wang and K.-J. Yoon. Knowledge distillation and student-teacher learning for visual
intelligence: A review and new outlooks. IEEE TPAMI, 2021.

[51] X. Wang, Y. Chen, and W. Zhu. A survey on curriculum learning, 2021.

[52] C. Wu, F. Wu, L. Lyu, T. Qi, Y. Huang, and X. Xie. A federated graph neural network framework
for privacy-preserving personalization. Nature Communications, 13(1), June 2022.

[53] H. Xie, J. Ma, L. Xiong, and C. Yang. Federated graph classification over non-iid graphs.
NeurIPS, 34:18839–18852, 2021.

[54] M. Ye, X. Fang, B. Du, P. C. Yuen, and D. Tao. Heterogeneous federated learning: State-of-the-
art and research challenges, 2023.

[55] L. Yi, H. Yu, C. Ren, G. Wang, X. Liu, and X. Li. Federated model heterogeneous matryoshka
representation learning, 2024.

12

[56] J. Zhang, Y. Liu, Y. Hua, and J. Cao. Fedtgp: Trainable global prototypes with adaptive-
margin-enhanced contrastive learning for data and model heterogeneity in federated learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

[57] K. Zhang, C. Yang, X. Li, L. Sun, and S. M. Yiu. Subgraph federated learning with missing
neighbor generation, 2021.

[58] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang. Decoupled knowledge distillation. In CVPR,
2022.

13

A Notations

We present a comprehensive review of the commonly used notations and their definitions in Tab. 2.

Table 2: Notation and Definitions
Notation Definition
K The number of clients.
Dk The dataset of k-th client.
wk The model of k-th client.
G Graph data.
V The node set of G.
E The edge set of G.
C The label set of G.
X The feature matrix of G.
A The adjacency matrix of G.
vi Node i in V .
xi Feature vector of node i.
yi Label of node i.
Ni The neighborhood nodes of vi.
hl
i The representation of vi at the l-th layer of GNN.

D(vi) The node difficulty of vi.
Vc The node subset consisting of all nodes labeled as c.
pc The prototype of class c.
λ The available proportion of data samples at epoch 0.
T The epoch when full training data is first utilized.
η The learning rate.
µ The scaling factor of Adaptive Temperature Modulator.
pT The class probability distribution predicted by the teacher model.
pS The class probability distribution predicted by the student model.
τ The distillation temperature.
CR The pairwise similarity matrix between all classes.
cij The probability mass transferred from teacher category i to student category j.
qij The transmission cost from teacher category i to student category j.
κ The hyper-parameter adjusting the sensitivity to cross-class similarity in Gaussian kernel.
LCE The cross-entropy function for classification tasks.
LWD The proposed Wasserstein-Driven Affinity Distillation loss.
LKL The Kullback-Leibler (KL) Divergence loss.

B Related Work.

Federated Graph Learning. With recent advances in Federated Learning (FL) for vision and
language tasks [20, 18], Federated Graph Learning (FGL) further extends FL to graph-structured
data [41, 42]. Existing FGL-related researches are mainly focused on processing graph-structured
data. Based on how graphs are distributed across clients, these methods can fall into three categories:
graph-level, subgraph-level and node-level [12]. Graph-level FGL methods consider settings where
clients possess completely disjoint graphs while in subgraph-level FGL settings, each client holds a
subgraph that is part of a larger global graph [57, 52]. In node-level FGL, each agent possesses the
ego-networks of one or multiple nodes [35, 12]. However, these methods often assume homogeneous
model architectures cross clients [17, 54, 40], which is an impractical constraint that degrades
performance in real-world scenarios. To tackle this problem, we propose a model-heterogeneous
method that transfers knowledge between clients in a model-agnostic manner through a novel
knowledge distillation framework, overcoming limitations of existing FGL approaches.

Model-heterogeneous Federated Learning. Model-heterogeneous federated learning entails learn-
ing from others without disclosing information about local model architectures. Recent works
on model-heterogeneous federated learning can be categorized into three approaches: data-level,

14

model-level and server-level [54]. Data-level methods, such as TAKFL [34] and DESA [15], distill
knowledge via external public data distributions. Model-level methods, such as pFedHR [48] and
pFedClub [46], share partial model structures or reassembled components to other clients. Server-
level methods, such as FedMRL [55] and FedType [49], deploy proxy models as intermediaries to
bridge heterogeneous models. While effective for Euclidean data, these methods fail to preserve
graph topological features during knowledge transfer. Our work breaks this limitation by uniquely
integrating curriculum learning and Wasserstein distance to capture complex structural information,
improving graph representation in model-heterogeneous FGL.

Knowledge Distillation. Knowledge Distillation (KD) is a machine learning method designed
for model compression and knowledge transfer [13, 14]. Traditional KD transfers knowledge
from a large teacher model to a compact student model through softened outputs or intermediate
representations [13]. Recently, researches have demonstrated its effectiveness in facilitating model
collaboration in federated learning (FL), particularly in scenarios involving heterogeneous models
or data distributions [54]. For instance, TAKFL [34] introduces KD to FL framework to distill
knowledge from heterogeneous clients and then integrate the separately distilled knowledge with task
arithmetic. Similarly, FedMKD [24] combines KD and attention mechanisms to work with model
heterogeneity in FL. However, existing KD methods typically rely on KL-Divergence minimization,
which only performs intra-category comparisons between teacher and student models. By contrast, our
work proposes a noval Wasserstein knowledge distillation framework which introduces Wasserstein-
distance to enable cross-class comparison, explicitly modeling graph-structured relationships during
knowledge transfer and maintaining topological properties of the original graph data.

C Experimental Details.

C.1 Dataset Details.

To assess the effectiveness of TRUST, we conduct experiments on five real-world graph datasets: Cora,
CiteSeer, PubMed, Amazon-Photo and CoAuthor-CS. Each dataset is split into training, validation,
and test sets in a fixed 20%/40%/40% ratio. The key statistics of these datasets are summarized in
Tab. 3. A detailed description is provided below:

• Cora, CiteSeer, and PubMed. These three citation network datasets are standard benchmarks in
graph-based machine learning, especially for tasks like node classification and link prediction. In
these datasets, nodes correspond to academic papers, while edges represent citation links. Each
node is assigned a class label, and its feature vector is constructed from textual information such as
words in the title or abstract. These datasets exhibit sparsity and high dimensionality, making them
well-suited for evaluating the effectiveness and scalability of graph neural networks (GNNs).

• CoAuthor-CS. This dataset represents a co-authorship network in the field of computer science,
where nodes correspond to research papers, and edges denote co-authorship relations. Each paper
is associated with a topic category, and features are extracted from the paper’s title and abstract.
This dataset is commonly used to evaluate node classification and community detection algorithms.

• Amazon-Photo. This dataset is built from the Amazon product catalog, where nodes represent
product images and edges indicate co-purchase relationships. Each photo is categorized into a
specific class, and node features are derived from image metadata. Amazon-Photo serves as a
benchmark for testing graph-based learning models in visual domains.

Table 3: Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Classes #Features
Cora 2,708 5,278 7 1,433

Citeseer 3,327 4,552 6 3,703
Pubmed 19,717 44,324 3 500

Coauthor-CS 18,333 327,576 15 6,805
Amz-Photo 7,650 287,326 8 745

C.2 Counterpart Details.

This section provides a comprehensive overview of the baseline approaches employed in our study.

15

• FedAvg [ASTAT17]. A foundational algorithm in Federated Learning, FedAvg operates by allowing
clients to independently train models on their local datasets and subsequently transmit their model
updates to a central server. The server performs a weighted aggregation of these updates to
refine the global model, which is then redistributed to the clients for further local training. By
transmitting only model parameters instead of raw data, FedAvg reduces communication costs and
enhances privacy. However, it struggles with performance degradation in scenarios where client
data distributions are highly non-IID [27, 33].

• FedNova [NeurIPS20]. FedNova refines the FedAvg framework by introducing normalization to
local updates before aggregation. Unlike standard averaging methods, FedNova ensures that each
client’s contribution to the global model is proportional to the amount of data it possesses. This
approach addresses the issue of unequal client influence, leading to more balanced and efficient
convergence. FedNova is particularly beneficial in federated environments where data distributions
are skewed across clients.

• FedProto [AAAI22].FedProto introduces prototype-based federated learning to address both
data and model heterogeneity across clients. Unlike gradient-based approaches, the framework
exchanges class prototypes (mean feature representations) between server and clients, enabling
knowledge transfer while accommodating different model architectures and non-IID data dis-
tributions. Through prototype aggregation and local regularization, FedProto achieves superior
communication efficiency and convergence guarantees while preserving privacy [39]. The method
demonstrates strong performance on image datasets while requiring significantly fewer communi-
cated parameters than traditional FL approaches.

• Moon [CVPR21].MOON adopts a model-contrastive approach to address data heterogeneity
in federated learning. The framework utilizes similarities between model representations to
correct local training through model-level contrastive learning, providing an effective solution for
collaborative training with deep learning models on image datasets while preserving data privacy.

• FedType [ICML24]. FedType[49] introduces a novel uncertainty-based asymmetrical reciprocity
learning framework to address model heterogeneity in federated learning. The approach employs
small identical proxy models as secure intermediaries for information exchange, eliminating the
need for public data while ensuring privacy protection. Through bidirectional knowledge distillation
with dynamic conformal prediction, FedType achieves superior performance across diverse model
architectures and datasets, demonstrating significant improvements in communication efficiency
and model security compared to existing methods.

• AdaFGL [ICDE24].AdaFGL introduces a novel paradigm for federated node classification with
topology heterogeneity, addressing the critical challenge of structural divergence among clients in
federated graph learning. The framework employs a decoupled two-step approach: first obtaining
a federated knowledge extractor through collaborative training, then performing personalized
propagation optimized by local topology. By incorporating adaptive mechanisms that automatically
balance homophilous and heterophilous propagation based on quantified structural characteristics,
AdaFGL achieves state-of-the-art performance across 12 benchmark datasets while minimizing
communication overhead and privacy risks [28].

• FedGTA [VLDB24]. FedGTA is tailored for large-scale graph federated learning, tackling issues of
slow convergence and suboptimal scalability. Unlike prior methods that focus on either optimization
strategies or complex local models, FedGTA integrates topology-aware local smoothing with mixed
neighbor feature aggregation to improve learning efficiency [29]. By leveraging graph structures in
aggregation, it enhances scalability and performance in federated graph learning.

C.3 Implementation Details.

The experiments are conducted on NVIDIA GeForce RTX 3090 GPUs, paired with dual Intel(R)
Xeon(R) Gold 6240 CPUs @ 2.60GHz (36 cores per socket, Turbo Boost up to 3.90GHz). The deep
learning framework used is PyTorch (v2.5.1) with CUDA 12.1.

The experimental setup involves 10 clients. To simulate real-world model heterogeneity, each client
maintains a private model whose architecture is randomly selected from GCN, GAT, or GraphSAGE.
All private models are configured with three layers, a hidden dimension of 64, and a dropout rate of
0.3. To facilitate collaboration, each client is equipped with an additional small proxy model that
serves as a communication bridge. This proxy model employs a standardized GCN architecture with
3 layers to ensure compatibility across clients. On the server side, we implement a global model

16

Table 4: Comparison with the state-of-the-art methods on three selected real-world datasets. The
alpha is set to 0.3 and 1.0. The best and second-best results are highlighted with bold and underline,
respectively.

Category Methods 0.3 alpha 1.0 alpha

Cora CiteSeer PubMed Cora CiteSeer PubMed

local global local global local global local global local global local global

FL

FedAvg [ASTAT17] 86.39 64.18 84.43 64.14 90.82 84.64 74.21 72.39 70.57 69.99 86.82 84.16

FedNOVA [NeurIPS20] 86.58↑0.19 65.48↑1.30 85.18↑0.75 63.54↓0.60 90.92↑0.10 84.99↑0.35 74.77↑0.56 72.58↑0.19 71.17↑0.60 71.77↑1.78 86.84↑0.02 83.95↓0.21

FedProto [IJCAI23] 86.93↑0.54 64.55↑0.37 84.88↑0.45 62.05↓2.09 90.75↓0.07 84.59↓0.05 73.50↓0.71 71.30↓1.09 70.42↓0.15 70.73↑0.74 86.64↓0.18 84.08↓0.08

MOON [CVPR21] 87.12↑0.73 65.82↑1.64 85.73↑1.30 64.69↑0.55 90.85↑0.03 84.69↑0.05 76.04↑1.83 71.66↓0.73 71.21↑0.64 70.88↑0.89 86.97↑0.15 84.16↑0.00

FedType [ICML24] 86.21↓0.18 63.09↓1.09 85.72↑1.29 62.95↓1.19 90.44↓0.38 84.59↓0.05 73.66↓0.55 75.50↑3.11 69.97↓0.60 68.20↓1.79 85.91↓0.91 84.74↑0.58

FGL
AdaFGL [ICDE24] 84.60↓1.79 65.45↑1.27 84.35↓0.08 65.22↑1.08 87.52↓3.30 84.89↑0.25 74.96↑0.75 73.31↑0.92 72.82↑2.25 70.73↑0.74 87.47↑0.65 84.03↓0.13

FedGTA [VLDB24] 84.72↓1.67 65.45↑1.27 83.66↓0.77 62.35↓1.79 87.30↓3.52 84.67↑0.03 72.94↓1.27 73.31↑0.92 69.26↓1.31 70.58↑0.59 85.39↓1.43 84.16↑0.00

Model-Heterogeneous
FGL TRUST 88.67↑2.28 67.18↑3.00 86.76↑2.33 66.52↑2.38 91.97↑1.15 86.67↑2.03 77.50↑3.29 77.70↑5.31 72.38↑1.81 72.03↑2.04 86.99↑0.17 85.04↑0.88

that also adopts a GCN backbone and uses a hidden dimension of 32 while sharing the remaining
configurations with the client models.

To simulate data heterogeneity, client data is partitioned using a Dirichlet distribution [22], drawing
pk ∼ Dir(α) to allocate a fraction pck of class c to client k. Each client’s subgraph is split into training,
validation, and test sets with a ratio of 0.6/0.2/0.2, respectively. We use the Adam optimizer with a
learning rate of 5×10−3 and a weight decay of 4×10−4 for training. The number of communication
rounds is set to 200.

For PCNS, in the Difficulty Measurer, we set α = 0.5. In the Curriculum Scheduler, the hyperparam-
eters λ and T are selected via grid search over {0.25, 0.5, 0.75} and {20, 40, 80, 100}, respectively.
For ACDM, the model parameters θmodel are optimized using Adam (learning rate: 0.01, weight
decay: 5 × 10−4), while the temperature parameters θtemp are optimized using SGD (momentum:
0.9, weight decay: 4× 10−4). The conformal mode parameters in backward distillation follow the
configuration in FedType. In WDAD, we set η = 0.05, κ = 1.0, with loss weights α = 0.025
(Wasserstein) and β = 0.01 (KL divergence).

Regarding baseline implementations, all selected FL baselines, except for FedAvg, support model
heterogeneity and operate similarly to their applications in computer vision tasks. However, for FGL
methods, to the best of our knowledge, our work is the first to explore model heterogeneity in FGL
settings. Consequently, the chosen FGL baselines are originally designed for model homogeneity
only. To include them (along with FedAvg) in heterogenous settings, we remove direct parameter
sharing between architecturally different models and maintain all other original components and
hyperparameters. For evaluation, we distill a global model from local private models and assess its
accuracy.

D Additional Experimental Results.

D.1 Comparison with More FGL Baselines.

To further validate the efficacy of our approach, we compare TRUST against two additional FGL
baselines, FedTAD and FedSSL, on the Cora, Citeseer, Pubmed, and CS datasets. The corresponding
results are presented in Tab. 5.

Table 5: Local and gobal accuracy results of TRUST and two additional FGL baselines on the Cora,
Citeseer, Pubmed and CS datasets under moderate heterogeneity(α = 0.5).

Methods Cora Citeseer Pubmed CS
local global local global local global local global

FedTAD 80.27 65.70 83.24 66.37 87.88 83.30 90.72 82.93
FedSSL 79.53 64.79 82.32 68.15 88.07 83.58 91.97 80.73
TRUST 83.90 75.32 85.84 67.43 89.06 84.57 92.19 87.07

17

As shown in Tab. 5, TRUST achieves the best performance on 7 out of the 8 evaluation metrics. The
only exception is the global accuracy on the Citeseer dataset, where FedSSL attains the best result.
These comprehensive results further confirm the effectiveness of TRUST against state-of-the-art FGL
methods.

D.2 Comparison under Extreme Data Heterogeneity.

We provide additional local and global accuracy results under the α settings of 0.3 and 1.0 in Tab. 4,
which is previously visualized in Figure 3. We also experiment at more extreme level of data
heterogeneity, where α = 0.1. Results are presented in Tab. 6.

Table 6: Comparison with state-of-the-art methods on three datasets under α = 0.1. The best and
second-best results are highlighted with bold and underline, respectively.

Methods Cora Citeseer Pubmed
local global local global local global

FedAvg 93.14 35.04 86.33 54.98 97.61 79.99
FedNOVA 93.51 36.50 86.47 56.17 97.66 79.92
FedProto 92.59 30.84 87.51 49.48 97.69 78.45
MOON 93.32 31.75 86.61 51.56 97.56 77.16
FedType 94.06 40.88 87.64 60.03 97.48 79.36
AdaFGL 85.44 36.13 88.22 56.91 92.88 79.69
FedGTA 85.43 35.40 88.79 56.17 92.86 80.02
TRUST 94.60 42.52 88.44 64.04 97.76 82.65

The results in Tab. 6 demonstrate that TRUST maintains superior performance even under extreme
data heterogeneity, achieving the best performance on 5 out of the 6 evaluation metrics, with only the
local accuracy on the Citeseer dataset showing slightly lower performance. These findings strongly
validate the robustness and effectiveness of our approach.

E Backward Distillation in FedType.

Backward distillation leverages knowledge distillation to transfer knowledge from proxy models
to private models. However, since proxy models are smaller than private models, conventional
distillation approaches may lead to performance degradation. To address this, FedType introduces an
Uncertainty-based Behavior Imitation Learning method that selectively transfers high-confidence
knowledge rather than complete logits. For every node vi, we construct a prediction set Si, which
guarantees inclusion of the true label with high probability (e.g., 95% confidence). To compute Si, we
need to train a conformal model denoted as cp using the validation dataset denoted as D′ following
Split Conformal Prediction[36, 1]. After training the conformal model, FedType proposes a dynamic
conformal prediction with Regularized Adaptive Prediction Sets (RAPS) to calculate the prediction
set:

Si = {y | u · pti(y) + ρti(y) + g(∆t, λ) · (oti(y)− κreg)
+ ≤ τ},

ρti(y) =
∑

pti(y
′)1{pti(y

′)>pti(y)}
,

g(∆t, λ) =

{
λ ·∆t −∆t + λ, if ∆t < 0,

λ, otherwise,

oti(y) = |{y′ | ρti(y′) > ρti(y)}|,

(19)

where pti(y) denotes the probability of class y for data sample vi predicted by conformal model,
u is a randomization factor for prediction set construction. Furthermore, ρi(y) denotes the total
probability mass of labels more probable than y, g(∆t, λ) is a piecewise calibration function where
∆t = A(pt, D′) − A(pt−1, D′) represents the accuracy difference between epoch t and t − 1.
Moreover, oti(y) denotes the label ranking of y based on predicted possiblity ρti, κreg is a regularization
hyper-parameter, and (·)+ is the positive part operator.

After constructing the prediction set, FedType computes the knowledge transfer weight ηi, which
plays a crucial role in determining the amount of information transferred from the proxy model to the

18

private model. This weight is inversely proportional to the size of the prediction set Si. When Si

contains fewer labels, which indicates higher confidence in the prediction, we assign a larger ηi to
encourage the proxy model to transfer such confident knowledge to the private model. Conversely,
larger prediction sets result in smaller transfer weights. Therefore, ηi can be defined as:

ηi =

{
|Si ∩ Li|/|Si ∪ Li|, if |Si| ≥ |Li|,
|Si ∩ Li|/|Si|, if |Si| < |Li|,

(20)

where Si and Li are similarly computed using Equation 19 but with conformal model trained by
proxy model and private model respectively. This formulation ensures adaptive knowledge transfer
based on the proxy model’s confidence level.

During backward distillation, we specifically enhance the probability alignment for labels within the
prediction set through the following loss function:

Lbackward =
∑
i=1

ηi
∑
y∈Si

log

(
exp(wt

i(vi)[y])

Φt
i

)
,

Φt
i =

∑
y∈Si

exp(wt
i(vi)[y]) +

∑
y′∈Ŝi

exp(wt
i(vi)[y

′]),
(21)

where Ŝi = C − Si and represents labels with low confidence in the prediction.

F Complexity Analysis.

In this section, we present the complexity analysis of our proposed method TRUST. We begin with
FedAvg as a baseline. Let T denote the communication rounds. On the client side, each client
executes E epochs of local training per round with model parameter size d. When combined with
GNN message passing, the computational complexity is (L · |E| · d) where L and |E| represent the
number of GNN layers and edges respectively. On the server side, model aggregation across K
clients yields O(K · d) complexity. Therefore, the total complexity is: O(T · (E ·L · |E| · d+K · d)).
For FedType, knowledge distillation introduces an additional O(N · C) cost per epoch, where N
and C are the number of nodes and classes respectively. The total complexity therefore becomes:
O(T · (E · (L · |E| · d+N · C) +K · d)).
For TRUST, it extends the knowledge distillation framework with three key components:

• PCNS first requires calculating node difficulties via neighborhood distribution entropy and proto-
type alignment. For neighborhood distribution entropy, it iterates through all edges (O(|E|)). For
prototype alignment, we pre-compute prototypes for all classes and calculate prototype similarity
for every node (O(N + C)). Node sorting then adds O(N logN).

• ACDM involves only lightweight operations: temperature scaling O(1) and cosine scheduling
O(1) per epoch, as indicated in Equation 13.

• WDAD leverages Sinkhorn algorithm to solve the loss function quickly. This reduces optimal
transport complexity from O(C!) to O(k · C2), where k is the iteration count (in our experiments
this is set to 10).

Notably, WDAD’s O(k · C2) complexity remains manageable in practice since C is bounded (e.g.,
C=7 for Cora and C=3 for Pubmed). Therefore, the total complexity is: O(T · (E · (L · |E| · d+N ·
C + k · C2) +N logN +K · d)).
As shown above, this represents only two additive terms compared to FedType: O(N logN) and
O(T · E · k · C2).

G Discussion on Limitations.

Although TRUST achieves significant success in addressing key challenges in model-heterogeneous
Federated Graph Learning (FGL)—such as dynamic task difficulty adjustment, adaptive distillation
signaling, and cross-class relational knowledge transfer—it still has some limitations. One notable
challenge is the computational complexity involved in dynamically adjusting task difficulty and
distillation strength, which could become a bottleneck in large-scale settings.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
contributions and scope of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
We discuss the limitations in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

20

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information needed to reproduce the main experi-
mental results in this paper and our code. We are convinced that the obtained results can be
reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

21

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is accessible in this paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details are included in Appendix C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Statistical significance of the experiments is considered and included in Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper strictly adheres to the NeurIPS Code of
Ethics, ensuring that all aspects of the work are in compliance with the guidelines provided.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The research presented in this paper is foundational. It is not directly tied to
any specific applications or deployments.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

24

paperswithcode.com/datasets

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Preliminaries
	Notations
	Model Heterogeneous FGL with proxy model

	Methodology
	Framework Overview
	Progressive Curriculum Node Scheduler
	Adaptive Curriculum Distillation Modulator
	Wasserstein‑Driven Affinity Distillation

	Experiment
	Experimental Setup
	Superiority
	Resilience
	Effectiveness
	Sensitivity

	Conclusion
	Notations
	Related Work.
	Experimental Details.
	Dataset Details.
	Counterpart Details.
	Implementation Details.

	Additional Experimental Results.
	Comparison with More FGL Baselines.
	Comparison under Extreme Data Heterogeneity.

	Backward Distillation in FedType.
	Complexity Analysis.
	Discussion on Limitations.

