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ABSTRACT

Offline Reinforcement Learning (RL) presents unique challenges, primarily due
to the constraint of learning from a static dataset without additional environmen-
tal interaction. Traditional methods often face limitations in effectively exploiting
the available data, particularly when navigating the exploration-exploitation trade-
off inherent in RL. This paper introduces a novel algorithm inspired by Implicit
Q-Learning Kostrikov et al. (2021), designed to extend the utility of the Bellman
update to actions not explicitly present in the dataset. Our approach, termed Ex-
tended Implicit Q-Learning (EIQL), strategically incorporates actions beyond the
dataset constraints by allowing selection actions with maximum Q. By doing so,
it leverages the maximization capability of the Bellman update, while simultane-
ously mitigating error extrapolation risks. We demonstrate the efficacy of EIQL
through a series of experiments that show its improved performance over tradi-
tional offline RL algorithms, particularly in environments characterized by sparse
rewards or those containing suboptimal and incomplete trajectories. Our results
suggest that EIQL enhances the potential of offline RL by utilizing a broader ac-
tion spectrum.

1 INTRODUCTION

Reinforcement learning (RL) has made significant advances in solving sequential decision problems
in recent years. Training an RL agent typically requires extensive interaction with the environment,
which can involve taking actions that are either dangerous or costly. Additionally, online interactions
with the environment are time-consuming. Offline RL addresses these challenges by learning from
pre-existing datasets without real-time interactions, proving invaluable in practice. However, offline
RL must contend with the challenge of distribution shift. Unlike conventional supervised learning,
which trains models to perform well on data from the same distribution as the training set, offline
RL aims to derive policies that outperform those in the dataset. This involves dynamic programming
that might query out-of-distribution (OOD) data, as policies trained on historical data are applied to
new and varied state spaces. This can lead to error extrapolation if not properly regularized, under-
scoring the need for advanced methods capable of adapting to and overcoming these distributional
discrepanciesLevine et al. (2020).

To mitigate the distribution shift in offline RL, current approaches involve penalizing OOD state-
action pairs or regularizing the trained policy towards the behavior policy. Works such as Kumar
et al. (2019) and Kumar et al. (2020) explicitly constrain policy or Q-value updates to ensure pes-
simism during training. However, balancing the tradeoff between staying within the support of
the data and avoiding suboptimal solutions when constraints are too conservative remains chal-
lengingKumar et al. (2019). Another approach focuses on eliminating extrapolation error through
in-sample learning, which updates the Bellman target using only actions present within the dataset.
Implicit Q-Learning (IQL), for instance, employs in-sample learning and avoids querying the value
of unseen actions by using expectile regression to assess the near-optimality of actions taken under
the observed policy.

In this paper, we introduce a novel algorithm, Extended Implicit Q-Learning (EIQL), which builds
on the framework of Implicit Q-Learning. EIQL occasionally allows querying actions not present in
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the dataset by leveraging the strengths of Bellman update’s maximization capability while mitigating
the risk of extrapolation errors by controlling the chance of choosing out-of-sample actions, as
demonstrated in our experiments. We test EIQL on the D4RL benchmark, which includes the Gym-
MuJoCo locomotion domains and the more challenging AntMaze, Adroit, and Kitchen domains.
Our empirical results highlight the effectiveness of EIQL.

2 RELATED WORK

Offline reinforcement learning (RL) has recently gained substantial attention due to its potential
to learn effective policies from static datasets without additional online exploration. The primary
challenge in offline RL is to mitigate extrapolation errors that arise when the learning algorithm
queries states and actions that are not well-represented in the dataset. Various approaches have been
proposed to address this issue, often focusing on constraining the learned policy to remain within
the support of the dataset Levine et al. (2020).

Implicit Q-Learning (IQL) is an offline reinforcement learning algorithm designed to avoid evalu-
ating out-of-distribution actions while still enabling dynamic programming. By employing expec-
tile regression, IQL introduces minor yet effective modifications to the conventional SARSA-like
temporal difference learning algorithmKostrikov et al. (2021). Demonstrably, IQL achieves robust
performance on the D4RL benchmarkFu et al. (2020).

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a framework where an agent learns to make decisions by interacting
with an environment assumed to be a Markov Decision Process (MDP). An MDP is characterized
by a set of states S, a set of actions A, a scalar reward function R, transition dynamics p, and a
discount factor γ. The agent’s interaction with the MDP is governed by a policy π(a|s), which can
either be a deterministic mapping or a stochastic distribution over actions. The primary objective
in RL is to derive a policy that maximizes the expected discounted return, formally expressed as
Eπ [

∑∞
t=0 γ

trt].

3.2 OFFLINE REINFORCEMENT LEARNING

In offline reinforcement learning (RL), existing datasets are leveraged to learn policies without the
necessity for new data collection. Recent offline RL algorithms often utilize approximate dynamic
programming, focusing on minimizing the temporal difference (TD) error. This approach is encap-
sulated in the loss function LTD(θ), defined as:

LTD(θ) = E(s,a,s′)∼D

[(
r(s, a) + γmax

a′
Qθ̂(s

′, a′)−Qθ(s, a)
)2

]
,

where D represents the dataset, Qθ(s, a) denotes the parameterized Q-function, and Qθ̂(s
′, a′)

signifies the target network. The policy π(s) is derived by maximizing the Q-value, π(s) =
argmaxaQθ(s, a). To mitigate overestimation caused by out-of-distribution (OOD) actions, which
can inaccurately elevateQθ̂(s

′, a′), modifications to the value function loss and direct constraints on
the policy optimization are commonly implemented in recent offline RL strategies.

4 EXTENDED IMPLICIT Q-LEARNING

In offline reinforcement learning, leveraging the current Q-network’s ability to generalize beyond
training data is crucial, yet it can introduce extrapolation errors during loss evaluation. To mitigate
this, we propose a value loss function that combines the strengths of Bellman updates and implicit
Q-learning for effective sample utilization from the dataset:

LV (ψ) = (1−B)·E(s,a)∼D
[
Lτ2

(
Qθ̂(s, a)− Vψ(s)

)]
+B·Es∼D,a′∼π(s)

[
Lτ

′

2

(
Qθ̂(s, a

′)− Vψ(s)
)]
(1)
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Here, B is a Bernoulli random variable with parameter p, determining the contribution of each term
in the loss:

B ∼ Bernoulli(p) where P (B = x) =

{
p if x = 1

1− p if x = 0

This stochastic approach allows us to balance the direct Q-values against the maximum expected
value from the policy, fostering robust learning.

Additionally, we define the Q-value loss function as:

LQ(θ) = E(s,a,s′)∼D

[
(r(s, a) + γV ψ(s′)−Qθ(s, a))

2
]

(2)

This equation emphasizes the importance of aligning the estimated Q-values with the rewards and
discounted future value, ensuring effective training of the Q-network.

Similar to Implicit Q-Learning (IQL), we employ Advantage Weighted Regression to derive the
policy. This objective function trains a policy designed to maximize the Q-value while adhering to
a KL divergence constraint between the learned policy, π, and the sampling policy, µ.

Lπ(ϕ) =(1−B′) · E(s,a)∼D
[
exp

(
β
(
Qθ̂(s, a)− Vψ(s)

))
log πϕ(a | s)

]
+B′ · Es∼D

[
exp

(
β
(
Qθ̂(s, a)− Vψ(s)

))
log πϕ(a | s)

] (3)

B′ ∼ Bernoulli(q) where P (B′ = x) =

{
q if x = 1

1− q if x = 0

This formulation integrates the exponential weighting of the advantage term, encouraging the policy
to focus on actions that provide higher value compared to the current state value, ultimately refining
the policy’s performance.

4.1 EXPECTILE REGRESSION

Algorithm 1: EIQL
Initialize parameters ψ, θ, θ̂, ϕ.

for each gradient step do
ψ ← ψ − λV∇ψLV (ψ)
θ ← θ − λQ∇θLQ(θ)
θ̂ ← (1− α)θ̂ + αθ

end for
Policy extraction (AWR):

for each gradient step do
ϕ← ϕ− λπ∇ϕLπ(ϕ)

end for

In our approach, we employ expectile regression to esti-
mate action value functions, both for in-sample and out-
of-sample scenarios. This method deviates from tradi-
tional approaches that typically rely on the estimation of
mean values. We propose that the application of varying
expectiles across different gym environments offers dis-
tinct advantages.

Particularly, in environments where datasets predomi-
nantly feature negative rewards with few positive out-
comes, the use of a higher expectile allows for the ef-
fective filtration of suboptimal actions. Conversely, in
scenarios characterized by datasets containing primarily
suboptimal trajectories, employing a lower expectile facilitates a more conservative valuation of ac-
tion value functions. This methodology aids in mitigating the potential overestimation of Q-values
for actions that are poorly represented within the dataset.

Our experimental findings, detailed later in this paper, substantiate the efficacy of this approach. By
adjusting the expectile level according to the reward distribution characteristics of each dataset, our
method not only enhances the robustness of value estimation but also tailors the learning process to
accommodate the specific challenges presented by different environments.

4.2 BOUNDEDNESS OF VALUE FUNCTION

In the following theorems, we establish that under certain assumptions, our method not only approx-
imates the optimal state-action value function Q∗, but also facilitates multi-step dynamic program-
ming.

3
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For clarity and brevity in our analysis, we introduce the following notation: Let Ex∼Xτ [x] denote
the τ -th expectile of a random variable X . For example, Ex∼X0.5 [x] corresponds to the standard
expectation of X . We define V Iτ (s), the value function in Kostrikov et al. (2021), Vτ,τ ′(s), the value
function of our proposed method, and Qτ,τ ′(s, a) as follows:

V Iτ (s) = Eτ(s,a)∼D[Qτ (s, a)],

Vτ,τ ′(s) = (1− p) · Eτ(s,a)∼D[Qτ,τ ′(s, a)] + p · Eτ
′

s∼D,a∼π(s)[Qτ,τ ′(s, a)],

Qτ,τ ′(s, a) = R(s, a) + γEs′ ∼ P (·|s, a)[Vτ,τ ′(s′)],

where π(s) denotes the policy, R(s, a) is the immediate reward, γ is the discount factor, and
P (s′|s, a) is the transition probabilityKostrikov et al. (2021). From Kostrikov et al. (2021), we
know that V Iτ (s) ≤ max a∈A

πβ(a|s)>0
Q∗(s, a).

Theorem 4.1 We assume that there exists an ϵ > 0 such that for all p ∈ [0, ϵ),

Vτ,τ ′(s) = (1− p) · Eτ(s,a)∼D[Qτ,τ ′(s, a)] + p · Eτ
′

s∼D,a∼π(s)[Qτ,τ ′(s, a)] ≤ max
a∈A

πβ(a|s)>0

Q∗(s, a),

where Q∗(s, a) is defined as:

Q∗(s, a) = r(s, a) + γEs′∼p(·|s,a)

 max
a′∈A

πβ(a
′|s′)>0

Q∗(s′, a′)

 .
See Appendix A for detailed proof.

We have shown that Vβ(s), the value function under the mixed policy πβ , is bounded by the maxi-
mum Q-value achievable under actions taken with positive probability by πβ . This proof highlights
the influence of the parameter β in controlling the extent to which the new policy deviates from
optimality.

4.3 LOWER VARIANCE

We start by considering two random variables, X1 and X2, to illustrate the computation of ex-
pectations and variances in a Bernoulli distribution framework. Let us define Y1 and Y2 as linear
combinations of these variables:

Y1 = (1− p)X1 + p(X2)

Y2 = (1−B)X1 +BX2

B ∼ Bernoulli(p) where P (B = x) =

{
p if x = 1

1− p if x = 0

We can easily derive that E[Y1] = E[Y2]:

E[pX1 + (1− p)X2] = pE[X1] + (1− p)E[X2] (4)

This equation holds due to the linearity of expectation. We then proceed to calculate the variance of
the linear combination:

We then compute the variance of variable Y1 and Y2:

Var[Y1] = Var[pX1 + (1− p)X2]

= p2Var[X1] + (1− p)2Var[X2] + 2p(1− p)Cov(X1, X2)
(5)

Var[Y2] = pVar[X1] + (1− p)Var[X2] + p(1− p) (E[X1]− E[X2])
2 (6)

This variance expression arises from the properties of variance and covariance for linear combina-
tions of random variables.
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After establishing the general form, we substituteX1 andX2 with the specific expressions involving
expectations under different sampling strategies from distribution D:

X1 = E(s,a)∼D
[
Lτ2

(
Qθ̂(s, a)− Vψ(s)

)]
,

X2 = Es∼D,a′∼π(a′|s)
[
Lτ2

(
Qθ̂(s, a

′)− Vψ(s)
)]
.

Applying these substitutions, the variance expressions become:

Var[Y1] = p2Var
[
E(s,a)∼D

[
Lτ2

(
Qθ̂(s, a)− Vψ(s)

)]]
+ (1− p)2Var

[
Es∼D,a′∼π(s)

[
Lτ2

(
Qθ̂(s, a

′)− Vψ(s)
)]]

+ 2p(1− p)Cov
(
E(s,a)∼D

[
Lτ2

(
Qθ̂(s, a)− Vψ(s)

)]
,Es∼D,a′∼π(a′|s)

[
Lτ2

(
Qθ̂(s, a

′)− Vψ(s)
)])

(7)

Var[Y2] = pVar[E(s,a)∼D
[
Lτ2

(
Qθ̂(s, a)− Vψ(s)

)]
]

+ (1− p)Var[Es∼D,a′∼π(a′|s)
[
Lτ2

(
Qθ̂(s, a

′)− Vψ(s)
)]
]

+ p(1− p)
(
E[E(s,a)∼D

[
Lτ2

(
Qθ̂(s, a)− Vψ(s)

)]
]− E[Es∼D,a′∼π(a′|s)

[
Lτ2

(
Qθ̂(s, a

′)− Vψ(s)
)]
]
)2

(8)

Given that the policy π(s) is designed to generate actions that are supported by the data, the expec-
tations E[X1] and E[X2] are expected to be close. The covariance between X1 and X2 is expected
to be significantly high. It demonstrate that our approach achieve a reduction in the overall variance
of the system. Therefore, our approach to use sampling, as opposed to merely adjusting the weights
in the loss function, provides a more effective strategy for minimizing variance.

5 EXPERIMENTAL EVALUATION

5.1 COMPARISON ON OFFLINE RL BENCHMARKS

We evaluate the performance of EIQL against prior offline RL methods across various domains and
dataset compositions, encompassing both continuous and discrete action spaces, as well as state
observations with different dimensionalities. Our comparisons include prior offline RL methods:
TD3+BCFujimoto & Gu (2021), CQL Kumar et al. (2020), IQLKostrikov et al. (2021), as well
as behavioral cloning (BC). The implementations for these algorithms are based on the work of
Kostrikov et al. (2021) and Kang et al. (2023).

Gym locomotion. We tested our approach using the D4RL benchmark Fu et al. (2020) and com-
pared it to existing methods, as shown in Table 1. Our experiments were conducted in the Gym-
MuJoCo locomotion environments, which involve three different agents: halfcheetah, hopper, and
walker2d. For each of these agents, five distinct datasets were used. These datasets represent behav-
ior policies of varying quality: random, medium, medium-replay, medium-expert, and expert.

Adroit tasks. The Adroit tasks Rajeswaran et al. (2017) in D4RL Fu et al. (2020) involve controlling
a 24-DoF robotic hand, which represents a more complex challenge than standard gym tasks. These
tasks rely on limited data derived from human demonstrations and are notably difficult due to their
complex dataset composition and high dimensionality. The experimental results are shown in Table 2

Franka kitchen tasks. The Franka kitchen tasks Gupta et al. (2019) from D4RL Fu et al. (2020),
the objective is to control a 9-DoF robot to manipulate various objects, including a microwave and
a kettle, within a single episode. The tasks require the robot to achieve a specific configuration
for each object, for which it receives a sparse 0-1 completion reward. This domain poses significant
challenges due to the need for composing partial trajectories, precise long-horizon manipulation, and
the integration of human-provided teleoperation data. These tasks are designed to test the robot’s
ability to perform complex sequential object manipulation under limited feedback. The experimental
results are shown in Table 2

AntMaze. The AntMaze taks from D4RLFu et al. (2020) consist of sparse-reward tasks and re-
quire leaning more optimal policies from the suboptimal trajectories. EIQL is able to make obvious
progress on the more complex large mazes. The results are shown in Table 3.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Environment BC TD3+BC CQL IQL EIQL
halfcheetah-medium-v2 42.6 48.1 47.0 47.5 47.7
hopper-medium-v2 56.8 54.7 55.0 67.0 68.1
walker2d-medium-v2 69.5 76.2 74.5 78.3 79.9
halfcheetah-expert-v2 92.9 96.5 96.3 95.0 95.5
hopper-expert-v2 107.0 110.0 96.5 108.1 109.0
walker2d-expert-v2 107.1 110.2 108.9 109.7 110.5
halfcheetah-medium-replay-v2 36.6 43.8 45.5 44.5 45.1
hopper-medium-replay-v2 45.1 45.5 88.7 94.5 95.1
walker2d-medium-replay-v2 23.4 42.6 81.5 73.4 75.4
halfcheetah-medium-expert-v2 47.1 92.4 75.7 89.3 91.1
hopper-medium-expert-v2 55.4 87.6 105.6 90.5 92.5
walker2d-medium-expert-v2 93.3 106.5 107.9 95.7 96.1

Table 1: Normalized scores on MuJoCo locomotion, averaged over 3 seeds. The implementations
of BC, TD3, and CQL are based on Kang et al. (2023)

Environment BC TD3+BC CQL IQL EIQL
pen-human-v0 79.6 5.9 77.4 76.0 81.6
pen-cloned-v0 33.5 17.3 40.3 45.2 58.2
Total (adroit) x x x x x

kitchen-complete-v0 64.9 2.2 42.0 65.0 68.3
kitchen-partial-v0 35.8 0.7 40.7 63.0 73.0
kitchen-mixed-v0 49.7 0.0 45.7 49.5 50.2

Table 2: Normalized scores on Adroit and kitchen domains, averaged over 3 seeds. The implemen-
tations of BC, TD3, and CQL are based on Kang et al. (2023)

5.2 ANALYSIS OF EXPECTILE-BASED VALUE UPDATES

To enhance the robustness of the Bellman update in the value function estimation, we explore the
adaptation of expectile regression as an alternative to the conventional mean-based approach. This
modification involves fitting the expectile of the return distribution rather than the mean, offering
a nuanced view that potentially accommodates the asymmetry in the distribution of returns. We
experiment with various levels of the expectile, specifically examining τ = 0.5, which corresponds
to the mean-based update, as well as other expectile levels to investigate their impacts on policy
performance.

We selected three distinct datasets for our experiments: walker2d-medium-replay-v2, antmaze-
large-play-v2, and kitchen-partial-v0 from Fu et al. (2020). These datasets were chosen to represent
a diverse array of tasks, complexities, and data distributions, facilitating a comprehensive analysis
of expectile-based updates across different domains and scenarios.

Our experiments aim to evaluate how different expectiles influence the learning dynamics and the
resultant policy efficacy in offline reinforcement learning settings. By comparing these outcomes,
we seek to identify whether expectile regression can provide a more effective or robust approach for
value function estimation in scenarios characterized by skewed or heavy-tailed reward distributions.

antmaze-large-play-v2 In the AntMaze environment, rewards are typically sparse and only given at
specific goals or endpoints, such as reaching the end of the maze. Throughout the rest of the maze,
the agent might receive zero or even negative rewards for hitting walls or taking inefficient paths. The
”large-play” variant features a large maze with minimal guidance on navigationFu et al. (2020). The
experimental data presented in the accompanying table demonstrate that higher expectiles enhance
learning efficacy for agents by effectively filtering out actions that yield low or negative rewards. As
illustrated in Figure 1, higher expectiles are advantageous, particularly in antmaze dataset charac-
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Environment BC TD3+BC CQL IQL EIQL
antmaze-umaze-v2 66.5 73.0 82.7 91.0 93.3
antmaze-umaze-diverse-v2 56.8 46.7 11.5 66.5 71.2
antmaze-medium-play-v2 0.0 0.0 59.0 74.0 78.2
antmaze-medium-diverse-v2 0.0 0.0 53.7 73.1 75.5
antmaze-large-play-v2 0.0 0.0 15.8 44.0 61.2
antmaze-large-diverse-v2 0.0 0.0 14.9 46.5 57.5

Table 3: Normalized scores on AntMaze, averaged over 3 seeds. The implementations of BC, TD3,
and CQL are based on Kang et al. (2023)

terized by sparse rewards. By excluding actions that lead to negative outcomes, higher expectiles
facilitate the development of more effective policies.

(a) Q-values during training. (b) Average Evaluation Rewards.

Figure 1: Analysis of the training dynamics and performance evaluation on the antmaze-large-play-
v2 dataset: (a) Q-value progression during training across different expectile, (b) Average evaluation
rewards across various expectiles.

kitchen-partial-v0 This dataset features a simulated kitchen environment where an agent interacts
with objects. The ”partial” variant, characterized by suboptimal actions and incomplete tasksGupta
et al. (2019), is analyzed in Figure 2. The results indicate that a lower expectile is advantageous in
the kitchen-partial-v0 scenario. It supports the learning of conservative Q-values, thereby mitigating
the overestimation of actions associated with suboptimal or incomplete trajectories.

(a) Q-values during training. (b) Average Evaluation Rewards.

Figure 2: Analysis of the training dynamics and performance evaluation on the kitchen-partial-v0
dataset: (a) Q-value progression during training across different expectile, (b) Average evaluation
rewards across various expectiles.
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6 CONCLUSION

In this paper, we introduced EIQL, a novel algorithm that engages in both in-sample and out-
of-sample learning. This approach leverages the stability provided by learning from high-quality
in-sample data, while also effectively incorporating potential valuable out-of-sample actions. Our
algorithm maintains computational efficiency and does not significantly increase the complexity
compared to the baseline IQL model.

Experimental results demonstrate that EIQL not only enhances performance but also represents the
first application of in-sample offline reinforcement learning as a regularization strategy. This dual
learning capability enables our algorithm to mitigate the impact of maximum error extrapolation
caused by out-of-sample (OOD) data, achieving robust performance across varied scenarios.

In future work, we plan to explore the potential of our method to improve other in-sample learning
techniques, with the aim of assessing the generalizability of our approach across different domains
and settings.
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A APPENDIX

Let Q∗ represents maxa∈A,πβ(a|s)>0Q
∗(s, a) for the simplicity of the notation. Consider the func-

tion defined by

Vτ,τ ′(s) = (1− p) · Eτ(s,a)∼D[Qτ,τ ′(s, a)] + p · Eτ
′

s∼D,a∼π(s)[Qτ,τ ′(s, a)],
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where p is a parameter in the interval [0,1]. It is established in Kostrikov et al. (2021) that

V Iτ (s) ≤ Q∗,

where πβ denotes the behavior policy under which the data D was collected and Q∗ represents the
optimal action-value function for the decision process.

Firstly, note that at p = 0,

Vτ,τ ′(s) = Eτ(s,a)∼D[Qτ (s, a)] ≤ Q
∗.

This initial condition establishes that the function starts below Qτ (s, a) at p = 0.

The derivative of Vτ, with respect to p is given by

d

dp
Vτ,τ ′(s) = −Eτ(s,a)∼D[Qτ,τ ′(s, a)] + Eτ

′

s∼D,a∼π(s)[Qτ,τ ′(s, a)].

The derivative indicates the rate of change of Vτ,τ ′(s) with respect to p. The function
Vτ,τ ′(s) will be increasing if Eτ

′

s∼D,a∼π(s)[Qτ,τ ′(s, a)] > Eτ(s,a)∼D[Qτ,τ ′(s, a)] and decreasing

if Eτ
′

s∼D,a∼π(s)[Qτ,τ ′(s, a)] < Eτ(s,a)∼D[Qτ,τ ′(s, a)].

We need to establish that there exists a p > 0 small enough such that Vτ,τ ′(s) < Q∗. Consider two
cases based on the value of Eτ

′

s∼D,a∼π(s)[Qτ (s, a)]:

Case 1: Eτ
′

s∼D,a∼π(s)[Qτ,τ ′(s, a)] < Eτ(s,a)∼D[Qτ,τ ′(s, a)].

If Eτ,τ
′

s∼D,a∼π(s)[Qτ (s, a)] ≤ Eτ(s,a)∼D[Qτ (s, a)], Vτ (s) is decreasing or constant, and since
Vτ,τ ′(s)(0) < Q∗, Vτ,τ ′(s) will remain less than Q∗.

Case 2: Eτs∼D,a∼π(s)[Qτ (s, a)] > Qτ (s, a)

We know:
Vτ (s)(0) = Eτ(s,a)∼D[Qτ (s, a)] ≤ Q

∗

Given that Vτ,τ ′(s) changes continuously with respect to some parameter p, and initially
Vτ,τ ′(s)(0) ≤ Q∗, we aim to show that there exists an interval [0, ϵ) for some ϵ > 0 where
Vτ,τ ′(s) ≤ Q∗ holds for all p in this interval. To establish this, consider the following reasoning:

1. Continuity Argument: By the continuity of Vτ,τ ′(s) over the interval [0, ϵ) with respect
to p, and knowing that Vτ,τ ′(s)(0) ≤ Q∗x, the function Vτ,τ ′(s) remains less than Q∗ near
p = 0.

2. Application of the Intermediate Value Theorem: Since Vτ,τ ′(s) is continuous and
initially less than Q∗, by the Intermediate Value Theorem, if there were any point p′
in [0, ϵ) where Vτ,τ ′(s)(p′) > Q∗, then there must exist some p′′ ∈ (0, p′) such that
Vτ,τ ′(s)(p′′) = Q∗. However, given that Vτ,τ ′(s)(0) ≤ Q∗ and assuming Vτ,τ ′(s) does not
meet or exceed Q∗ within the interval [0, ϵ), the condition Vτ,τ ′(s) < Q∗ remains true for
all p in this interval.

Thus, it follows that: There exists a p s.t.

∀p ∈ [0, ϵ), Vτ,τ ′(s)(p) ≤ Q∗
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