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Abstract

Large language models exhibit a remarkable capacity for in-context learning, where they
learn to solve tasks given a few examples. Recent work has shown that transformers can be
trained to perform simple regression tasks in-context. This work explores the possibility of
training an in-context learner for classification tasks involving spurious features. We find
that the conventional approach of training in-context learners is susceptible to spurious
features. Moreover, when the meta-training dataset includes instances of only one task,
the conventional approach leads to in-weights learning and fails to produce a model that
leverages context for predictions. Based on these observations, we propose a novel technique
to train such a learner for a given classification task. Remarkably, this in-context learner
matches and sometimes outperforms strong methods like ERM and GroupDRO. However,
unlike these algorithms, it does not generalize well to other tasks. We show that it is possible
to obtain an in-context learner that generalizes to unseen tasks by training on a diverse
dataset of synthetic in-context learning instances.

1 Introduction

Large language models, such as GPT-3, have the ability of in-context learning (ICL), wherein they learn to
solve a task given a few examples in the context (Brown et al., 2020). The most significant aspect of in-context
learning is that the learning occurs during the forward pass on the context and query, without updating
network parameters. In order to study in-context learning in isolation, a number of studies considered training
transformers (Vaswani et al., 2017) from scratch to solve simple learning tasks in-context. In particular,
Garg et al. (2022) show empirically that transformers can be trained to perform in-context learning of simple
regression functions, such as dense or sparse linear functions, two-layer ReLU neural networks, and small
decision trees.

Training on ICL instances can be seen as an instance of meta-learning (Schmidhuber, 1987; Naik & Mammone,
1992; Thrun & Pratt, 1998), where the goal is to learn a learning algorithm. What exact algorithm is learned
when training transformers on ICL instances is an open problem. Akyürek et al. (2023) and Von Oswald
et al. (2023) show that transformers can implement a single gradient descent step of ordinary least squares
and update the closed-form solution of ridge regression when a new example is added. Additionally, they
provide evidence that transformers trained on ICL instances of linear regression learn algorithms that closely
match predictions of the known algorithms, such as gradient descent on the ordinary least squares objective
and ridge regression. However, there is evidence that the learned algorithm may vary with model scale,
depth, and pretraining task diversity (Akyürek et al., 2023; Raventós et al., 2024; Goddard et al., 2025). In
particular, Raventós et al. (2024) demonstrate that in the setting of in-context learning of linear regression
tasks with insufficient pretraining task diversity, the learned algorithm behaves like a Bayesian estimator with
the pretraining task distribution as the prior, and hence fails to generalize well to unseen tasks. Yadlowsky
et al. (2023) show that when trained on ICL instances where the regression function belongs to a union of
distinct function classes, the learned algorithm fails to generalize beyond the pretraining function classes.
Ahuja & Lopez-Paz (2023) show that in-context learning ability diminishes under strong distribution shifts.

In this work, we explore the limits of in-context learning further by studying it in a more challenging setting.
In particular, motivated by results indicating that in-context learning is susceptible to shortcuts and spurious
correlations (Tang et al., 2023; Zhou et al., 2024; Song et al., 2024), we pose the following question:
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(a) Naive approach (b) Proposed approach

Figure 1: In-context learning transformer architectures of the naive and proposed approaches. The proposed
approach allows arbitrary query tokens after each learning example. Token positions and the attention mask
are modified so that these intermediate queries have no effect on other tokens.

Can we obtain an effective classification algorithm that is robust to spurious features by training an in-context
learner on a suitable meta-training dataset, rather than designing the learning algorithm manually?

To address this question in isolation, we consider visual classification tasks where some features are spuriously
correlated with the label. Such features are predictive of the label but are not causally related to it, due to
which their correlation might not hold at test time. A prominent example is the cow vs. camel classification
task, where the background often correlates with the label, since cows are typically photographed in pastures,
while camels are typically photographed in deserts (Beery et al., 2018). It is well known that neural networks
trained with gradient-based methods to minimize empirical risk can exploit spurious features, causing
performance degradation under distribution shifts affecting these correlations (Torralba & Efros, 2011; Ribeiro
et al., 2016; Gururangan et al., 2018; Zech et al., 2018; McCoy et al., 2019; Geirhos et al., 2019; 2020; Xiao
et al., 2021).

We start our analysis in the standard setting of having a single classification task with spurious features.
We consider the conventional approach of obtaining an in-context learner, wherein a transformer is trained
on sequences of form (x1, y1, . . . , xk, yk, xk+1) to predict the label yk+1 of the query example xk+1. We find
that this conventional approach leads to in-weights learning (Chan et al., 2022), wherein models perform
classification ignoring the context, essentially memorizing the task. Furthermore, these models lack robustness
to changes in the correlation between the label and spurious features. In particular, we observe a significant
performance drop when the query follows a distribution in which the label and spurious feature correlation
is zero. We propose an effective approach to reduce in-weights learning and improve in-context learning.
Namely, we find that in-weights learning can be greatly mitigated by randomly permuting input embedding
dimensions for each training sequence. To address the issue of spurious features, we propose a novel way of
forming ICL instances and a suitable transformer architecture, which work together to simulate distribution
shift with respect to spurious features in the context. Overall, our proposed techniques lead to strong
in-context learners that outperform established methods such as 1-NN, empirical risk minimization (ERM),
and GroupDRO (Sagawa* et al., 2020), suggesting that the in-context learner implements a more specialized
algorithm.

Despite being trained on instances of a single task, the learned algorithm generalizes to other tasks without
spurious features. However, it fails to generalize to unseen tasks with spurious features. For this reason, we
next explore training an in-context learner that generalizes to unseen tasks with spurious features. We create
a dataset of in-context learning instances for various binary classification tasks with varying spurious features.
We demonstrate the efficacy of the proposed techniques on this dataset too and find that it can be improved
further by passing spurious feature annotations as input and injecting occasional queries requesting the label
of a preceding context example to promote learning induction heads. The resulting model generalizes perfectly
to unseen tasks, as long as the data generating process is similar. However, generalization to unseen tasks
with possibly different data generating process depends on the severity of the challenge posed by spurious
features, indicating that the learned algorithm is more brittle to severe distribution shifts than conventional
algorithms. The source code for reproducing our experiments is available at [anonymized].

We summarize our main contributions as follows.
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(b) Waterbirds-severe

Figure 2: Worst-group test accuracy on Waterbirds and Waterbirds-severe as a function of context size
for the naive and proposed methods with or without permuting input dimensions. Shaded regions show
standard deviation across 5 training runs.

(i) We show that the conventional approach of training an in-context learner is susceptible to presence
of spurious features and also leads to in-weights learning in case of a single task.

(ii) We propose a suite of novel techniques of forming in-context training data to reduce in-weights
learning and increase robustness to spurious features, leading to in-context learners that outperform
established learning algorithms.

(iii) We demonstrate that it is possible to obtain more general-purpose robust in-context learners by
training on a diverse set of synthetic classification tasks involving spurious features.

2 In-context learning based on a single task

We start by considering the common setting of having a single classification task with spurious features.
For simplicity, we focus on label-balanced binary classification tasks in presence of a single binary spurious
feature, although what follows next applies to label-imbalanced multiclass settings as well. Let Dtrain be a set
of training examples for the task, where each example is a triplet (x, s, y) of input x ∈ Rd, spurious feature
value s ∈ {0, 1}, and label y ∈ {0, 1}. Similarly, let Dtest be a set of test examples. Importantly, we do not
make any assumptions on the data generating process, except that x has some information about s and s is
predictive of y on the training set, but their correlation does not hold on the test set. For an example (x, s, y),
we define its group g = 2y + s. In a binary classification task with a single binary spurious feature, there are
four groups. Without loss of generality, we assume that for majority of training examples we have y = s.
Hence, we refer to groups 0 and 3 as majority groups, while referring to groups 1 and 2 as minority groups.

Training a transformer to perform linear regression in-context requires millions of ICL training instances,
even for small dimensional cases. For example, Garg et al. (2022) use 32 million training instances for
20-dimensional inputs. Next, we consider ways of generating so many ICL instances from a single task.

2.1 A naive approach of constructing ICL instances

The standard approach to constructing an ICL instance is to sample a subset of n+1 examples {(xi, si, yi)}n+1
i=1

from Dtrain and form a sequence S = (x1, ỹ1, x2, ỹ2, . . . , xn, ỹn, xn+1), where ỹi ∈ Rd is a fixed random
representation of either yi or gi (this distinction will be elaborated on later). Then one trains a transformer
fθ : ∪kRk×d → [0, 1] to predict yi given Si ≜ (x1, ỹ1, . . . , xi−1, ỹi−1, xi) (see Figure 1a), optimizing the
following loss function:

1
n + 1

n+1∑
i=1

CE(yi, fθ(Si)), (1)
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where CE(y, ŷ) = −y log ŷ − (1 − y) log(1 − ŷ) is the binary cross-entropy loss. We explore two options of
setting ỹi. In the first option, we set ỹi to represent yi with a constant vector or its negation in Rd. In this
case we aim to obtain an in-context learner that is robust to spurious features without receiving spurious
feature annotations as input. ERM is one such learner that minimizes average loss on training examples and
does not require spurious feature annotations. In the second option, we set ỹi to represent gi as a sum of two
constant vectors in Rd, one representing the class and the other representing the spurious feature. In this
case we aim to obtain an in-context learner that does robust classification with respect to a specified spurious
feature. GroupDRO is one such learner that minimizes worst-group loss, therefore requiring spurious feature
annotations at training time.

Unfortunately, the simple approach of (1) has several issues. First, as the mapping from inputs to labels is
the same for all ICL training instances, the model can do in-weights learning, wherein the model encodes
this stable mapping in its weights and classifies queries without using context examples. In other words,
the learned algorithm does no in-context learning and predict yi based solely on xi, essentially memorizing
the task. Second, as all n + 1 examples of a sequence S are sampled from the training set and the spurious
correlation holds for all of them, there is nothing preventing usage of spurious features in making predictions.
To confirm these two issues, we consider the Waterbirds dataset (Sagawa* et al., 2020), which is a landbird
versus waterbird image classification task where image background (sea or land) is correlated with the label
in the training set (4,795 examples), but not in the validation and test sets. A robust classifier should
predict waterbird or landbird without relying on image background. To separate out the representation
learning challenge, we represent images with a pretrained and frozen DINOv2 ViT-B/14 distilled (Oquab
et al., 2023). This way each image is embedded in R768. While using powerful pretrained representations
increases overall performance under distribution shifts (Radford et al., 2021; Mehta et al., 2022), we note
that it does not eliminate the problem of spurious correlations. Representations obtained via large-scale self-
supervised pretraining are likely rich enough to capture information about both the label and spurious feature.
Furthermore, many works have indicated that the main contribution to the out-of-domain generalization error
comes from the classification head (rather than the representation learning module) and called for designing
better methods of training the classification head (Galstyan et al., 2022; Menon et al., 2021; Kirichenko et al.,
2023; Izmailov et al., 2022; Shi et al., 2023).

We train a causal decoder-only GPT-J transformer (Wang & Komatsuzaki, 2021) with 80M parameters on
2M in-context learning sequences with n = 512 and ỹi representing labels, constructed from the training set of
Waterbirds. We use balanced sampling of classes and set the minority group proportion to 10% within each
class. We use the ADAM optimizer (Kingma & Ba, 2014) (β1 = 0.9 and β2 = 0.999) with 32 batch size and no
weight decay. The learning rate is selected from

{
3 · 10−5, 6 · 10−5, 10−4}

based on average test performance
over 5 runs. Concretely, we evaluate on 8192 sequences where the context part is n training examples, while
the query is a sampled from the test set with equal group distribution. Exact metric definitions and missing
details are provided in Section A. Note that with 512 context length and 10% minority group ratio within
each class, the expected value of the number of context examples from each of the 2 minority groups is about
25. For reference, the smallest minority group has only 56 examples in the Waterbirds training set.

Figure 2a plots worst-group test accuracy as a function of context size n. We see that the naive approach
results in models that ignore context – worst-group accuracy with 512 context examples is essentially the same
as with 2 examples (see the naive curve). This confirms the in-weights learning issue. Figure 17a also shows
that majority-group test accuracy of the naive approach is considerably higher compared to worst-group
accuracy, confirming the non-robustness issue.

2.2 The proposed approach of constructing ICL instances

To prevent in-weights learning and induce in-context learning instead, potentially enabling generalization
to other tasks, one approach is to increase the number of training tasks/mappings. We propose rotating
input embeddings in each ICL instance independently as a simple approach of deriving many tasks from a
single source task. When training with rotated input embeddings, every ICL sequences receives a different
permutation and thus represents a different mapping from inputs to labels. This naturally encourages
in-context learning, where the model uses context examples to infer the mapping on the fly, instead of
encoding a single mapping. We found that generating random rotation matrices on-the-fly is computationally
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expensive and slows down training. We tried generating and storing 10K rotation matrices, but this resulted
in fewer than 50M different training examples that were still possible to memorize to some extent. A more
effective and efficient alternative is to apply random permutations to image embedding dimensions (for
brevity, this technique is denoted by +P in figures and tables; please see Figure 12 for an illustration of this
technique). We found this approach to be very effective in inducing in-context learning (see naive + P in
Figure 2a). We also see that the difference between majority-group and worst-group accuracies decreases,
although an approximately 5 p.p. gap remains.

When training an ICL transformer, ideally, we would like to simulate the situation of making a test prediction
based on a context of training examples. Importantly, we would like to simulate the case where the test
distribution has balanced groups (i.e., the spurious correlation does not hold). Given access to spurious feature
annotations for the training set, we can simulate this scenario using only training examples. In particular,
we can form ICL instances of form (x1, ỹ1, . . . , xn, ỹn, xn+1), where the context examples (x1, . . . , xn) are
sampled in such a way that the spurious feature is correlated with the label, while the query xn+1 is sampled
to have a uniform group distribution. However, if we again optimize the loss of (1), for context lengths less
than n, the network will be allowed to make predictions using the spurious feature, which is undesirable.
Please refer to Figure 19 of Section C for evidence of this. To address this, one can compute loss only on the
query token, ignoring all intermediate predictions. Unfortunately, this approach leads to reduced sample
efficiency and slower learning.

Instead, we introduce a notion of intermediate queries, which allows us to simulate making predictions on
test examples sampled from a balanced group distribution at all context lengths at once. Given training
examples {(xi, ỹi)}n

i=1, we sample test examples {qi}n
i=1 from Dtrain \ {x1, . . . , xn} with uniform group

distribution. We name these test examples {qi}n
i=1 intermediate queries. Then, we form a sequence

S = (x1, ỹ1, q1, x2, ỹ2, q2, . . . , xn, ỹn, qn). Our goal is to do a single forward pass on this sequence S and
obtain the predictions of form ŷi ≜ fθ((x1, ỹ1, x2, ỹ2, . . . , xi, ỹi, qi)) for all i ∈ [n]. To this end we make two
modifications, essentially making representations of context tokens x1, ỹ1, . . . , xn, ỹn agnostic to the presence
of the intermediate queries q1, . . . , qn. First, we modify the causal attention matrix to disable attention to
query tokens, unless a query token is attending to itself. See Figure 11 for an illustration for n = 3. Formally,
if we enumerate tokens from 1 to 3n and define Mi,j as the attention mask for token i attending to token j,
then we set

Mi,j =


0, i < j,

0, i > j and j ≡ 0 mod 3,

1, otherwise.
(2)

Second, we use modified token positions for computing positional encodings, in order to discount interme-
diate query tokens. Namely, for the sequence (x1, ỹ1, q1, x2, ỹ2, . . . , xn, ỹn, qn), position indices are set to
(0, 1, 2, 2, 3, 4, 4, . . . , 2n − 2, 2n − 1, 2n). Formally, enumerating tokens from 1 to 3n, the position index of the
i-th token is set to 2

⌊
i−1

3
⌋

+ (i − 1) mod 3. Please refer to Figure 1 for an illustration.

Finally, once the predictions on the intermediate queries are obtained, we optimize the average loss on the
query examples:

1
n

n∑
i=1

CE(yqi
, ŷi), (3)

where yqi is the label of query qi. Hereafter, we refer to this approach as simply “proposed approach”.

Figure 2a compares the proposed and naive approaches with and without input dimension permutations.
Without random permutations, the proposed approach marginally outperforms the naive approach. However,
the same is not true with random permutations. We found that image embeddings of DINOv2 have a
bias toward representing objects more than backgrounds, alleviating the challenge posed by the spuriously
correlated background in Waterbirds. In fact, with 512 training examples, the linear probing accuracy of the
spurious feature is only ≈ 65%, while that of the label is ≈ 95%. For comparison, with ResNet-50 (He et al.,
2016) embeddings, the linear probing accuracies of the spurious feature and label are ≈ 81% and ≈ 85%
respectively.

5



Under review as submission to TMLR

For this reason, we create a modified version of Waterbirds by adding a constant vector s̃ or −s̃ to image
embeddings based on the spurious feature s. We scale s̃ to have its norm equal to the average norm of
image embeddings and verify that the linear probing accuracy of the spurious feature becomes 100%. On
this modified Waterbirds dataset, which we call Waterbirds-severe, we see a large separation between
the naive and proposed approaches (see Figure 2b). We also see that without permutations, both the naive
and proposed approaches perform identically, indicating no robustness to the spurious correlation. This is
expected, because in the absence of in-context learning, we can think of the naive and proposed approaches as
standard and reweighted empirical risk minimization with a complex classification head, respectively. Sample
reweighting has been observed to be ineffective in overparameterized settings, as all training examples will be
perfectly fitted (Byrd & Lipton, 2019; Menon et al., 2021).

2.3 Comparison with conventional learning algorithms

Now that we have established the efficacy of the proposed technique, we compare it to a few established
algorithms, such as 1-NN, ERM, and GroupDRO, of which the latter two have been historically hard to
outperform (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021). A comparison to more methods designed for
robustness to spurious correlations is outside of the goal of this work, namely, studying limits of in-context
learning. In our comparisons, we follow the evaluation recipe used for the in-context learners. We evaluate
each baseline on 8192 sequences by training on the context part of the sequence and making a prediction on
the single query. More information about hyperparameters and model selection is presented in Section A.

Figures 3a and 3b compare the proposed and baseline approaches on Waterbirds and Waterbirds-severe
respectively. On Waterbirds, the proposed method outperforms ERM and GroupDRO on almost all context
lengths, but is better than 1-NN only for short context lengths. The good performance of 1-NN is due to the
bias in DINOv2 representations. On Waterbirds-severe, the proposed method outperforms the baselines
at all context lengths. From these results, we conclude that in-context learners obtained with the proposed
approach implement none of these algorithms.

It should be noted that worst-group accuracies of baselines at n = 512 are actually higher than what we
get when training on the entire dataset. For example, on Waterbirds, 1-NN gets only 90.03 % worst-group
accuracy, while ERM gets 84.23 ± 0.17 % and GroupDRO gets 92.43 ± 0.24 %. This is due to balanced
class sampling and setting the minority ratio to 10% within each class, which is higher than the minority
ratio of ≈ 5% in the original Waterbirds dataset. One can think of our resampling as a weaker form of
down-sampling which has been found to be helpful in presence of spurious correlations (Nagarajan et al.,
2021; Menon et al., 2021; Idrissi et al., 2022).

Additionally, we verify our findings on one more image classification task CelebA (Liu et al., 2015) and on a
natural language inference task MultiNLI (Williams et al., 2018a). CelebA is blond vs non-blond person
classification, with sex being a spurious variable. Unlike Waterbirds, the spurious feature is asymmetric in
CelebA, as blond and non-blond women are equally represented, while blond men are significantly infrequent
compared to non-blond men. In MultiNLI, given a pair of sentences, a premise and a hypothesis, the task
is to determine whether the hypothesis is entailed by, neutral with, or contradicts the premise. Prior work
has observed that there is a spurious correlation between contradictions and the presence of the negation
words nobody, no, never, and nothing (Gururangan et al., 2018). For our experiments, we frame a binary
classification task entails or neutral vs. contradicts, with a binary spurious feature, which is 1 if and only if
the hypothesis has one of the four negation words. For both datasets, we verify the two shortcomings of the
conventional approach and demonstrate the efficacy of the proposed techniques compared to the baselines.
The results for CelebA are presented in Table 4 and Figure 20a, while the results for MultiNLI are presented
in Table 6 and Figure 20b.

2.4 Generality of the learned algorithm

Since we train in-context learners on ICL instances of a single task, a natural question arises whether the
learned algorithm can generalize to unseen tasks. Without permuting input dimensions, the model does not
learn to do in-context learning. Thus, we cannot expect any generality without permuting input dimensions.
We take the model obtained with the “Proposed + P” approach and probe its in-context learning generality
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Figure 3: Worst-group test accuracies on Waterbirds and Waterbirds-severe for the proposed approach
and conventional methods such as 1-NN, ERM, and GroupDRO. Majority-group accuracies are reported in
Figure 18 of Section C.
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Figure 4: Linear probing accuracy of the background variable at various layers of in-context learner trans-
formers trained on Waterbirds.

by evaluating on various tasks. We start by swapping the labels of two classes in Waterbirds at evaluation
and observe ≈ 2 p.p. overall accuracy drop and ≈ 5 p.p. worst-group accuracy drop. Despite the worsened
performance, this indicates that the model treats class labels symbolically, which is remarkable as labels
had consistent semantics during training. However, when we evaluate on Waterbirds-severe, it gets 100%
accuracy on the majority groups and 0% accuracy on minority groups. Additionally, when we switch the task
to predicting the background in the original Waterbirds dataset (now the class becomes a spurious feature),
the overall test accuracy drops to 54.4%, while the worst-group accuracy drops to 9.3%.

It is worth noting that the learned algorithm is not completely useless for other tasks and works well in
absence of spurious features, even on unseen tasks. For example, evaluating on binary classification tasks
derived from the CUB-200 (Welinder et al., 2010) dataset, from where the bird images of Waterbirds were
taken, we get 99.7% accuracy at context size 100 (the accuracy is so high because most pairs of classes are
easy to distinguish). We also test on binary classification tasks derived from classes belonging to Amphibia
and Mammalia supercategories of the iNaturalist (Van Horn et al., 2018) dataset. At context length 512,
the overall accuracy is 98.5%.

These OOD evaluation results indicate that the learned algorithm does something specific to the spurious
feature of Waterbirds. We hypothesize that it learns to ignore this particular spurious feature. To test this,
we evaluate on group-balanced Waterbirds sequences, with the task set to predicting background, and get
58.5% overall accuracy and 41.3% worst-group accuracy. Additionally, we do a forward pass on 1024 ICL
sequences and collect final query representations at various layers of the transformer. We then do a linear
probing (512 examples for probe training and 512 for validation) to measure predictability of the background
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Figure 5: Minority-group accuracy on the OOD
test set of iNaturalist for the proposed ap-
proach with or without permuting input dimen-
sions and promoting induction heads.
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Figure 6: Minority-group accuracy on the OOD
test set of iNaturalist for the best proposed ap-
proach with or without passing group information
as input.

variable. We find that the “Proposed + P” approach reduces background information effectively as we sweep
from input to the final layer, while the “Naive” fails to reduce background probing accuracy (see Figure 4).

One potential way of improving generality and possibly also performance is passing example groups as input,
i.e., setting ỹi to represent gi. We did not observe performance improvements or an increase in generality of
the learned algorithm when passing groups as input (see Tables 1 and 2 of Section C). Thus, we conclude
that when all ICL instances are derived from a single task, the learned algorithm is inherently tied to the
spurious feature of that task.

3 In-context learning based on a diverse set of tasks

In Section 2, we showed that it is possible to obtain a good in-context learner for a given task, but it fails to
generalize to tasks with different spurious features. A better in-context learner should detect spurious features
from context and make predictions without employing them. In this section, we explore the possibility of
obtaining such a learner by training on a diverse set of ICL tasks. Since there exist few suitable datasets,
we synthesize binary classification tasks with a single binary spurious feature, aiming to capture “structure”
present in existing datasets. In short, given a standard binary classification task, say cat vs. dog classification,
for a sampled minority of cats we overwrite some of their features with those of random dogs. Similarly, we
do an analogous operation for a sampled minority of dogs. In this way some cats share dog features and vice
versa. To create a diverse pool of in-context learning instances, we vary the two classes and the subset of
grafted features. Please refer to Figure 16 for an illustration of this grafting operation.

More concretely, we consider the iNaturalist dataset (Van Horn et al., 2018), which contains images
from 5,089 natural fine-grained categories and filter out categories that have fewer than 500 images. For
testing purposes, from remaining 239 categories we set apart the ones belonging to Amphibia and Mammalia
supercategories, along with 10% of random categories. We denote the set of these 48 categories as Cood, and
the set of remaining 191 categories as Cid, which we use to create ICL instances for training. For each category
in Cid, we hold out half of the examples as in-distribution validation set. To generate an ICL instance, we
randomly sample two distinct classes from Cid and sample n/2 images from the training split of each class
uniformly at random without replacement. Please refer to Figure 15 for an illustration of our preprocessing of
iNaturalist. We then do the grafting operation, setting the minority group ratio within each class to 10%.
We select the grafted features randomly, by first picking a subset size k uniformly at random from 0 to 199,
and then sampling a random subset of embedding dimensions of size k. With this we get n examples that
form the context part of the instance. Abandoning the naive approach and focusing on the proposed one, for
each class we sample n/2 queries from the remaining examples uniformly at random with replacement and do
the grafting operation with 50% minority group ratio.
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Figure 7: Minority-group accuracy on the OOD
test set of iNaturalist for the best variant of pro-
posed approach and conventional methods such
as 1-NN, ERM, and GroupDRO.

2 4 8 16 32 64 128 256
Number of context examples

55

60

65

70

75

80

85

90

W
or

st
-g

ro
up

 a
cc

ur
ac

y

Proposed + G + P + I
1-NN
ERM
GroupDRO

Figure 8: Worst-group test accuracy on
Waterbirds for the best variant of proposed ap-
proach trained on iNaturalist and for methods
such as 1-NN, ERM, and GroupDRO.

Following the experiments in Section 2, we train the same transformer with the proposed approach on 4M ICL
instances with n = 400 context examples. We use the same optimizer and sweep the learning rate in the same
range, selecting the best value based on the average minority-group accuracy (defined exactly in Section C)
on instances where both categories belong to Cood and thus were not observed during training. The results
presented in Figure 5 indicate a major difference compared to the results in the single-task regime, namely, the
proposed approach learns to do in-context learning to some extent without permuting embedding dimensions.
As expected, we see much better performance with permuted embedding dimensions. Notably, comparing
majority-group and minority-group accuracies of the proposed approach with permutations (Figure 23), we
see almost no sign of reliance on spurious features.

Promoting emergence of induction heads. In-context learning ability has been linked to induction
heads, which are a specific type of circuit found within large language models that implement the operation
of looking back over the sequence for finding previous instances of the current token and copying what comes
after that (Olsson et al., 2022). Inspired by this, we propose a data preparation technique that promotes
learning of induction heads. With probability p, we replace each intermediate query independently with a
random example from the preceeding part of the context (see Figure 14 for an illustration of this technique).
Note that this type of “hinting” is not possible in the naive approach and is enabled by the introduction
of intermediate queries. In all experiments with this technique enabled, we just set p = 0.25. We observed
that training of typical runs escapes the initial loss plateau faster with this technique (in about 3k iterations
compared to about 10k iterations). Moreover, we see modest performance gains in iNaturalist experiments
(see Figure 5, where +I stands for this technique).

Passing example groups as input. In contrast to the findings in the single-task setting of Section 2, we
observed that setting ỹi to represent group improves the proposed approach, even in addition of permuting
input dimensions and promoting induction heads. One case of this is presented in Figure 6, while more cases
can be found in the complete results presented in Section C. For brevity, we mark passing groups as inputs
with +G in figures and tables. Please see Figure 13 for an illustration.

Comparison with conventional learning algorithms. Similar to the experiments in Section 2, we
compare the best variant of the proposed approach (G + P + I) to 1-NN, ERM, and GroupDRO. The results
presented in Figure 7 show that the learned algorithm is on par with or outperforms the baselines starting at
context length 32. The results at context lengths below 20 are not as informative, since our implementation
of the grafting operation implies that no examples are grafted when there are less than 10 examples in a class.

Generality of the learned algorithm. To test the generality of the learned algorithm, we report
evaluation results on Waterbirds (Figure 8) and Waterbirds-severe (Figure 9). We see that the learned
algorithm outperforms baselines on Waterbirds and performs comparably to the model trained on Waterbirds
itself. However, the learned algorithm fails completely on Waterbirds-severe, while the baselines give
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Figure 9: Worst-group test accuracy on Waterbirds-severe for the best variant of proposed approach
trained on iNaturalist and for methods such as 1-NN, ERM, and GroupDRO.
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Figure 10: Majority-group and worst-group test accuracies of a proposed model (G + P + I) trained on
iNaturalist, but evaluated on a modified variants of Waterbirds where we add a vector representing the
spurious feature (background). The x-axis is the relative norm of the added vector compared to the average
Waterbirds image embedding norm. Relative norm of 0 corresponds to Waterbirds, while relative norm of 1
corresponds to Waterbirds-severe. Shaded regions show standard deviation across 5 training runs.

meaningful results starting at context length 32. We hypothesize that the challenge posed by the spurious
features in Waterbirds-severe is significantly more severe compared to that in iNaturalist. By varying
the norm of the added background vector, we interpolate between Waterbirds and Waterbirds-severe, and
we see good generalization until the norm of the added vector is ≈40% of the average embedding norm (see
Figure 10). It is possible that the learned algorithm specializes to spurious features planted with the grafting
operation, but fails to handle a strong, dense, additive spurious feature.

4 Related Work

In-weights vs in-context learning. We observe two modes of learner behavior in our experiments. In
the first mode, the learner acts like a standard supervised classifier, ignoring context examples. This mode
appears when training on ICL instance of a single task without permuting input embedding dimensions. In
the second mode, the learner does proper in-context learning. Our experiments indicate that both permuting
embedding dimensions and increasing the number of training tasks are reliable ways of steering the model
towards the in-context learning mode. The former is akin to the method of randomly projecting inputs
proposed by Kirsch et al. (2022) for obtaining general-purpose in-context classifiers. Prior work has made
a distinction between these two modes of learning, naming them in-weights and in-context learning. In
particular, Chan et al. (2022) demonstrate that certain distributional properties of data, such as long-tail
of class frequencies and bursty distribution of context example classes, can promote in-context learning
when meta-training on few-shot classification instances. Singh et al. (2024) show that in-context learning
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behavior is not persistent and decays away with overtraining, indicating a trade-off between in-weights and
in-context learning mechanisms. Moreover, they find that this in-context learning skill decay can be prevented
by applying weight decay of embeddings and MLP layers, slowing down in-weights learning. Anand et al.
(2024) make similar observations about these two modes of learning and propose active forgetting of token
embeddings as an effective way of steering towards the in-context learning mode.

Many shot ICL. One ancillary finding of this work is that transformers can be trained to do in-context
learning of visual classification tasks when good image embeddings are provided. This is remarkable because
the input dimensionality we considered is much higher than what was considered in the pioneering works of
Garg et al. (2022) and Akyürek et al. (2023) (784 vs 20). Furthermore, we observe predictable performance
gains from longer context sizes. The number of “shots” we consider (up to 512 examples) is well beyond what
is typically considered in ICL works (up to a few dozen examples). Our findings are complementary to those
of Agarwal et al. (2024), Jiang et al. (2024), and Li et al. (2024) who find that multimodal large language
models, such as Gemini-1.5 Pro and GPT-4o, can benefit from large number of in-context demonstrations
(up to 1000 demonstrations).

In-context learning and out-of-distribution generalization. Closest to our work are the works that
propose to make use of in-context learning for out-of-distribution generalization. Han et al. (2023) test
multimodal large language models (MLLMs) on a variety of visual classification tasks. They propose to
leverage in-context learning abilities of MLLMs to improve performance on specialized domains and on tasks
with significant corruptions. However, they only consider the case where both context examples and query
are from the target domain. Zhang et al. (2024) make similar observations, but additionally study robustness
of in-context learning to distribution shifts, such as domain shifts, label shifts, and spurious correlations.
They find that in-context learning is highly susceptible to label shifts and presence of spurious correlations.
This is in agreement with the findings of (Ahuja & Lopez-Paz, 2023) and our work that in-context learners
are brittle and don’t generalize under severe distribution shifts. Finally, Gupta et al. (2024) propose to
address the problem of domain generalization (Muandet et al., 2013) by training an in-context learner that
can take examples from a domain/environment and adapt to that domain in-context.

Task Diversity. The important of task diversity for out-of-distribution generalization is well-studied
outside of the in-context learning literature. In a transfer learning setting, Tripuraneni et al. (2020) derive
theoretical results highlighting the importance of task diversity in addition to samples per task in obtaining
transferable representations. Hendrycks et al. (2020) find that pretrained then fine-tuned models generalize
to out-of-distribution examples better than only fine-tuned models, connecting the success to pretraining task
diversity. Ramanujan et al. (2023) provide more direct evidence of this connection for image classification.
Task diversity has also been one of the primary drivers of success of instruction tuning (Wei et al., 2022).
Similarly, the excellent out-of-distribution generalization performance of the CLIP (Radford et al., 2021) has
been attributed to its pretraining dataset diversity (Fang et al., 2022). Similar observations have been made
for training in-context learners (Raventós et al., 2024; Goddard et al., 2025; Raparthy et al., 2024). Our
findings of Section 3 complement this literature and suggest that for training a general in-context learner
robust to spurious features, one likely needs a dataset of diverse tasks with diverse spurious features.

5 Discussion and conclusion

We showed that it is possible to train an effective in-context learner tailored to a particular classification
task with spurious features. We did this by introducing two key techniques: (a) permuting input embedding
dimensions and (b) forming ICL sequences with intermediate queries simulating distribution shift. We
provided evidence that the learned algorithm is highly competitive on the task it was trained on. However,
we found that while it generalizes to other tasks without spurious features, it does not work for tasks with
other spurious features. Understanding this failure mechanistically and exploring techniques for enabling
better generalization are key future research directions.

11



Under review as submission to TMLR

We next explored training on synthetic ICL instances of diverse tasks and showed that it is possible to obtain
an in-context learner that generalizes to unseen tasks, even with different data generating processes. We
established the usefulness of two more techniques: (c) passing example groups as input and (d) promoting
learning of induction heads by occasionally querying past context examples. We believe there is room for
improving in-context learning via improved strategies of choosing intermediate queries and possibly optimizing
worst-group loss. Understanding why the learned algorithm fails under extreme distribution shifts and why
variants with permutations fail more (see Figure 10) is an interesting question to explore. Another interesting
direction to explore is to find out what exact algorithm is learned in the process of training on diverse tasks.
Based on the results presented in this work, we conclude that the learned algorithm is neither 1-NN, ERM,
or GroupDRO.

Our work has several limitations. First, training a transformer-based in-context learner with high-dimensional
image embeddings is computationally costly (see Section A for information on compute resources), although it
is faster than the baselines during inference. For this reason, we did not explore more datasets and pretrained
image embeddings. We believe the main conclusions of our work will remain unchanged and provide an
experiment on CelebA with a larger network in Section C. Second, we experimented with only one model size,
width, and depth. Larger models might behave differently (Wei et al., 2023). Third, in our iNaturalist
experiments, we considered only one “type” of spurious features. This choice is likely to have a significant
effect on the learned algorithm and its generality. Future research should explore more ways of synthesizing
spurious features and consider varying the severity of the challenge posed by spurious features. The latter
can be done by considering multiple spurious features, introducing label imbalance, varying the magnitude of
spurious correlations, and varying the margin spurious features provide.

Finally, we acknowledge that the proposed approach of training robust in-context learners requires spurious
feature annotations, which are typically costly to obtain. As we have shown, this limitation can be addressed
by creating synthetic data, in which case spurious annotations are readily available. At inference time,
the learned algorithm does not require spurious annotations if it is trained with ỹi set to represent yi (i.e.,
ERM-like algorithm), but requires them when it is trained with passing example groups as input (i.e., ỹ
set to represent gi; GroupDRO-like algorithm). It is important to note that as we consider classification
problems where the learner receives training data only from a single environment, spurious annotations are
generally necessary to disambiguate core and spurious features.

Broader Impact Statement

Spurious correlations can appear in various domains, often in complex and unexpected ways. Given the
increasing reliance on few-shot prompting in large language models, understanding and mitigating the negative
effects of spurious correlations is important for ensuring the reliability and safety of these models. We hope
that our work can lead to new methods and training strategies for making LLMs more robust to spurious
correlations present in the context.
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A Further experimental details

Baselines. For empirical risk minimization as a baseline, we tune 2 hyperparameters: learning rate (0.01 or
0.001) and number of epochs (100 or 200). For GroupDRO we additionally tune its parameter that controls
adaptiveness of group weights (0.01, 0.1, or 1) and we also try an optional strong L2 regularization (1.0
weight decay), as it has been observed to be useful for small datasets (Sagawa* et al., 2020).

Transformer-based methods. In all transformer-based approaches, we train a causal decoder-only
GPT-J transformer with 80M parameters that has 6 transformer layers with 8 multi-head attention, 768
model dimensionality, and 3072 hidden dimensionality. When training on iNaturalist, we add a layer
normalization (Ba et al., 2016) on transformer input, as we expect input norms to change when we evaluate
on Waterbirds-based datasets. The transformer input sequence in the proposed approach consists of 3 types
of tokens: context image embeddings, query image embeddings, and label/group annotations. While the
network can rely on positions and content to distinguish image embeddings from annotations, we found it to
be helpful to encode token types explicitly. We do this by setting the first 3 dimensions of a token to be a
one-hot vector representing token type (context image embedding, query image embedding, or annotation).
When permuting dimensions, we do the permutation before encoding token types to keep the location of
token-type information consistent. In our preliminary experiments and development, we used n = 128 context
length. Apart from improved performance, we did not observe significant qualitative differences when we
switched to larger context lengths for final experiments.

Evaluation and model selection. For all transformer-based approaches and baselines, we do a grid
search to find the best combination of hyperparameters. In particular, we train each configuration with 5
different random seeds and select the one with the highest average test performance. Importantly, for baseline
methods model selection is done for each context length independently, while for transformer-based methods
model selection is done once with respect to the test performance at maximum context length observed
during training. All evaluations are done on 8192 sequences, where the first n examples are sampled from
the corresponding train set while the query is sampled from the test set with a balanced group distribution.
Finally, even when training transformers on permuted image embeddings, we do not apply permutations
during evaluation. In all figures throughout this work, shaded regions show standard deviation across the 5
training runs.

Note that the most principled model selection approach would be selecting models based on a metric calculated
on a dataset similar to the training set (e.g., a held-out part of training set), rather than the test set. For
example, in the case of experiments on Waterbirds or Waterbirds-severe, the principled approach would
be to select based on performance on sequences where the context part is sampled from the training set, while
the final query is sampled from a held-out validation set with balanced group distribution. We tried this way
of model selection and did not observe significant changes. In the case of experiments on iNaturalist, the
principled approach would be to select based on performance on sequences where the context part is sampled
from the training set, while the final query is sampled from the hold-out part the training set. We observed
that this in-distribution metric is always around 99.5%-100%, and can be non-informative for model selection.
This is a typical scenario in OOD generalization (see for example (Gulrajani & Lopez-Paz, 2021) or (Wenzel
et al., 2022)).
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Figure 11: The attention mask in the proposed approach with n = 3 context examples. Green cells indicate
allowed attention pairs, i.e., Mi,j = 1.

Definitions of metrics. Given a set of predictions on Waterbirds or Waterbirds-severe, worst-group
accuracy is defined as the lowest accuracy of predictions among the 4 groups. Note that worst-group accuracy
is not applicable to iNaturalist, as different ICL sequences correspond to different classification tasks and
hence form different groups. For this reason, we introduce minority-group and majority-group accuracies.
Given a triplet (C, q, ŷ), where C is a context, q is query, and ŷ is a prediction on q, we call ŷ a minority
(majority) prediction, if q is among the least (most) represented group(s) of the context C. Given a list of
triplets (C, q, ŷ), we define minority (majority) group accuracy as the accuracy among minority (majority)
predictions.

Compute resources. We used NVIDIA A100 GPUs with 40GB memory to train transformer-based methods.
The network we considered is small enough to fit on one GPU with batch size 32 when n = 400 (iNaturalist
experiments) and batch size 24 when n = 512 (Waterbirds and Waterbirds-severe experiments). We did
mixed 16-bit training to save compute and did not notice any quality degradation. A single training takes
around 12 hours for iNaturalist experiments and around 18 hours for Waterbirds experiments. We used a
mix of CPUs and weaker GPUs to train baselines, as they are not computationally as demanding.

B Additional illustrations

In this section, we present illustrations of the main techniques and data preparation steps involved in this
work.

Figure 11 plots the attention mask M of (2) in the proposed approach for n = 3.

Figure 12 presents an illustration of the proposed technique of permuting image embedding dimensions
(denoted by +P throughout the paper). Figure 13 presents an illustration of the proposed approach with
passing example groups as input (denoted by +G throughout the paper). Figure 14 presents an illustration of
the proposed approach with promoting emergence of induction heads (denoted by +I throughout the paper).
Figure 15 presents an illustration of our preprocessing of the iNaturalist dataset. Figure 16 presents an
illustration of the grafting operation for creating spurious features.
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ICL instance #1: embedding dimension permutation = (2, 3, 1, 4, 6, 5)

ICL instance #2: embedding dimension permutation = (1, 6, 5, 3, 4, 2)

Figure 12: An illustration of the proposed technique of permuting image embedding dimensions (denoted
by +P throughout the paper). Note that in each ICL instance we sample a new permutation, but the same
permutation is used to permute dimensions of all image embeddings within one ICL instance. Whenever we
use the proposed approach of forming ICL sequences (see Figure 1b), the dimensions of intermediate queries
are also permuted.

Figure 13: An illustration of the proposed approach with passing example groups as input (denoted by +G
throughout the paper).

Figure 14: An illustration of the proposed approach with promoting emergence of induction heads (denoted
by +I throughout the paper). Intermediate queries that are randomly selected to be one of the previous
context examples are shown in green.
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 Mammalia

Amphibia

Plantae  Insects  Aves      Reptilia  

Fungi     Mollusca Animalia

ArachnidaActinopterygii Chromista Protozoa 

  Category

  Training

  OOD validation

  ID validation

Held-out supercategories

Figure 15: An illustration of our preprocessing of the iNaturalist dataset.

(a) Before grafting (b) After grafting

Figure 16: An illustration of the grafting operation for creating spurious features. The figure (a) depicts
two classes of examples, each having 5 examples given by 12-dimensional embeddings. In this example, the
grafting operation selects 3 embedding dimensions to become spurious features. For this end, these 3 features
of examples 2 and 5 of class A are swapped with those of examples 2 and 4 of class B, respectively. Figure
(b) depicts the embeddings after the grafting operation.
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C Additional results

In addition to the figures presented in the main text, here we provide the exact experimental results for
multiple transformer-based and baseline approaches, some of which were not included in the main text due
to space constraints. Recall that +P means permuting input dimensions, +I means promoting learning of
induction heads, and +G means passing example groups as input to in-context learning transformers.

Table 1 presents worst-group accuracies on the test set of Waterbirds for 3 sets of approaches: (a) in-context
learners trained on Waterbirds itself, (b) in-context learners trained on iNaturalist, and (c) baselines.
Similarly, Table 2 presents worst-group accuracies on the test set of Waterbirds-severe for 3 sets of
approaches: (a) in-context learners trained on Waterbirds-severe itself, (b) in-context learners trained on
iNaturalist, and (c) baselines. As RoPE-based transformers are not good at length extrapolation (Press
et al., 2021), we do not attempt evaluating models trained on iNaturalist with context size 400 on 512-long
sequences of Waterbirds or Waterbirds-severe. Finally, Table 3 presents minority-group accuracy on
out-of-distribution classes of iNaturalist for two sets of approaches: (a) in-context learners trained on
iNaturalist itself and (b) baselines.

Figure 17 presents majority-group accuracies on Waterbirds and Waterbirds-severe for the naive and
proposed methods. Figure 18 presents majority-group accuracies on Waterbirds and Waterbirds-severe
for the proposed approach and conventional methods.

2 4 8 16 32 64 128 256 512
Number of context examples

65

70

75

80

85

90

95

100

M
aj

or
ity

-g
ro

up
 a

cc
ur

ac
y

Naive
Naive + P
Proposed
Proposed + P

(a) Waterbirds

2 4 8 16 32 64 128 256 512
Number of context examples

60

70

80

90

100
M

aj
or

ity
-g

ro
up

 a
cc

ur
ac

y

Naive
Naive + P
Proposed
Proposed + P

(b) Waterbirds-severe

Figure 17: Majority-group accuracies on Waterbirds and Waterbirds-severe as a function of context size
for the naive and proposed approaches with or without permuting input dimensions. Shaded regions show
standard deviation across 5 training runs.

Figure 19 demonstrates that it is important to simulate distribution shift at all intermediate query locations,
not just for the main query. This makes sure that the learned network can make robust predictions for all
intermediate context sizes.

Experiments on CelebA. To further verify our main findings presented in Section 2, we conduct
experiments on CelebA (Liu et al., 2015). Here the task is to classify blond vs non-blond persons from face
images, with sex being a spuriously correlated variable. Notably, the spurious correlation is asymmetric,
in the sense that blond and non-blond women are almost equally represented, while blond men are much
less represented compared to non-blond men. We follow the design of Waterbirds experiments in our
CelebA experiments, with the only difference that we set the group distribution of context examples to
(0.25, 0.25, 0.05, 0.45), where group 0 are non-blond men, group 1 are non-blond women, group 2 are blond
men, and group 4 are blond women. Table 4 presents worst-group accuracies on the test set of CelebA for 2
sets of approaches: (a) in-context learners trained on CelebA itself and (b) baseline algorithms. As in our
Waterbirds experiments, we see that it is essential to permute input embeddings and to form ICL sequences
in the proposed fashion. Unlike Waterbirds, comparing “Proposed + P” with “Proposed + P + G” we see
that providing spurious annotations in-context provides significant gains. Figure 20a demonstrates that both
of these approaches outperform 1-NN, ERM, and GroupDRO.
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Figure 18: Majority-group test accuracies on Waterbirds and Waterbirds-severe for the proposed approach
and conventional methods such as 1-NN, ERM, and GroupDRO. Shaded regions show standard deviation
across 5 training runs.
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Figure 19: Majority-group and worst-group test accuracies on Waterbirds-severe as a function of context
size for the naive approach with a single modification of making the last example (query) group-balanced.
Shaded regions show standard deviation across 5 training runs. As expected, at intermediate context lengths
this method performs similarly to the naive approach, but is much better at the training context length.

Experiments on MultiNLI. Beyond visual classification tasks, we also conduct experiments on a natural
language inference (NLI) task. In particular, we consider the MultiNLI dataset (Williams et al., 2018b), where
given a pair of sentences, a premise and a hypothesis, the task is to determine whether the hypothesis is entailed
by, neutral with, or contradicts the premise. Prior work has observed that there is a spurious correlation
between contradictions and the presence of the negation words nobody, no, never, and nothing (Gururangan
et al., 2018). For our experiments, we frame a binary classification task entails or neutral vs. contradicts,
with a binary spurious feature, which is 1 if and only if the hypothesis has one of the four negation words. We
follow the design of Waterbirds experiments and set the group the group distribution of context examples
to (0.45, 0.05, 0.05, 0.45). Table 6 presents worst-group accuracies on the test set of MultiNLI for 2 sets
of approaches: (a) in-context learners trained on CelebA itself and (b) baseline algorithms. Similar to
Waterbirds and CelebA results, we see that the proposed approach of intermediate queries with balance
group distribution helps to decrease the reliance on the spurious feature. However, in contrast to Waterbirds
and CelebA experiments, permuting input embeddings has smaller effect on preventing in-weight learning.
Figure 20b demonstrates the "Proposed + P" method outperforms 1-NN, ERM, and GroupDRO.

Experiments with a larger network. To verify that our findings generalize to larger models, we repeat
CelebA experiments but with a transformer architecture of 12 layers with 12 multi-head attention (instead
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Figure 20: Worst-group test accuracies on CelebA and MultiNLI for the proposed approach and conventional
methods such as 1-NN, ERM, and GroupDRO. Shaded regions show standard deviation across 5 training
runs.

of 6 layers with 8 multi-head attention). Due to memory increase, we decrease the batch size from 24 to 8.
Besides these two changes, we keep all other experimental details the same. The complete results presented
in Table 5 are qualitatively the same compared to the smaller network case (Table 4), with the difference that
the results of transformer-based entries are lower. Furthermore, the standard deviation of the +P approaches
is significantly higher, indicating difficulties in optimization. We hypothesize that this is due to reusing
learning rate and training length that were tuned for the smaller network with 3 times larger batch size.
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Figure 21: Majority-group and worst-group test accuracies on Waterbirds as a function of context size for a
“Proposed + P” run evaluated on ICL sequences with randomly rotated input embeddings. Largely unchanged
evaluation results fail to confirm that there is any data leakage when input embeddings are permuted during
training.

On data leakage in single task regime. In the single task setting of Section 2, there is a potential
for data leakage, not in the sense that individual examples might be leaked (we always evaluate on unseen
examples), but in the sense that the learner effectively observes more data from the single task than its context
length at evaluation. Indeed, when we do not permute input embeddings, we observe task memorization (i.e.,
data leakage) and the model does very well at evaluation with even close to empty context. To verify that
there is no data leakage when we enable permuting input embeddings (+P), we take one of the “Proposed +
P” runs trained on Waterbirds and evaluate it on ICL sequences where input embeddings of each sequence
are rotated with a random rotation matrix. As the set of permutation matrices is a measure-zero subset of
general rotation matrices, we expect that in case of data leakage we would observe degraded performance,
as the model would be expecting randomly permuted embeddings of some memorized embedding space. In
results presented in Figure 21, we see that under this new evaluation the results are the same (up to statistical
noise), failing to confirm that there is any data leakage when input embeddings are permuted during training.
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Finally, note that data leakage is not a concern in the multiple task setting of Section 3, because we evaluate
on either unseen categories of iNaturalist or on unseen tasks such as Waterbirds and Waterbirds-severe.
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Figure 22: Majority-group and worst-group test accuracies on Waterbirds as a function of context size for
the naive approach trained and evaluated on group-balanced contexts. The training is done on ICL sequences
with 128 context examples. Shaded regions show standard deviation across 5 training runs.

Experiments with group-balanced contexts. As noted in Section 5, the proposed approach of training
an in-context learner requires spurious annotations. Given access to spurious annotations, one can simply train
an in-context learner on sequences with balanced groups. While in-context learners obtained this way will not
be useful for new tasks for which we do not have spurious annotations (and thus cannot form group-balanced
contexts), it is still useful to compare how well this approach does in the single task setting of Section 2. For
this end, we train in-context learners on balanced-group sequences consisting of 128 Waterbirds examples.
This way each group is represented with 32 context examples. Note that in our main Waterbirds experiments
with 512 context examples but group-imbalanced contexts, the minority groups are represented with even
fewer, 25 examples. As the group-balanced sampling context breaks the correlation between the label and
spurious feature, we only consider the naive approach of forming ICL sequences (Figure 2a). The results
presented in Figure 22 show that, as expected, group-balanced sampling improves worst-group accuracy. The
naive approach, which again leads to in-weights learning, reaches 86.08 ± 1.87 worst-group accuracy with 128
group-balanced context examples, compared to 84.82 ± 1.26 worst-group accuracy on 512 group-imbalanced
context examples (see Table 1). This positive effect of downsampling has been also observed in standard (not
in-context) training settings (Nagarajan et al., 2021; Menon et al., 2021; Idrissi et al., 2022). Furthermore, we
again see that the proposed technique of permuting embedding dimensions induces strong in-context learning
and reaches 90.44 ± 1.10 worst-group accuracy with 128 group-balanced context examples. This is just a
bit below the 91.95 ± 1.20 worst-group accuracy we get training “Proposed + P” on 512 group-imbalanced
context examples (see Table 1).
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Figure 23: Majority-group and minority-group accuracies on the OOD test set of iNaturalist for the
proposed approaches with or without permuting input dimensions and promoting induction heads. Shaded
regions show standard deviation across 5 training runs.
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Table 1: Complete results on Waterbirds. Reported numbers are average worst-group test accuracies, along
with their standard deviation. The top half of in-context learners were trained on Waterbirds itself, while
the ones in the bottom half were training on iNaturalist.

Method / Context size 4 8 16 32 64 128 256 512

Naive 87.02
(0.79)

84.52
(1.00)

85.14
(0.42)

84.82
(0.89)

83.41
(0.75)

84.45
(1.04)

85.08
(1.15)

84.82
(1.26)

Naive + P 70.92
(1.18)

75.32
(1.11)

80.66
(0.68)

83.24
(0.35)

86.87
(0.62)

89.87
(0.85)

91.94
(0.75)

92.60
(0.59)

Proposed 87.91
(1.29)

85.63
(2.20)

86.51
(2.17)

85.42
(1.73)

85.12
(2.34)

85.86
(2.22)

86.72
(1.89)

86.89
(1.82)

Proposed + I 88.18
(1.07)

85.89
(1.31)

86.68
(1.02)

86.01
(1.39)

84.82
(1.02)

85.92
(1.23)

86.07
(1.27)

86.46
(1.57)

Proposed + P 68.44
(2.40)

73.46
(2.53)

80.00
(2.06)

83.71
(2.15)

87.30
(1.79)

90.02
(1.16)

92.11
(1.65)

91.95
(1.20)

Proposed + P + I 68.05
(1.51)

72.47
(1.80)

78.97
(1.12)

82.58
(0.68)

86.39
(0.69)

90.00
(0.60)

91.78
(0.56)

92.17
(0.86)

Proposed + G 88.74
(1.01)

87.00
(1.60)

87.62
(1.58)

86.86
(1.31)

86.18
(1.33)

86.91
(0.98)

87.26
(1.11)

86.95
(1.21)

Proposed + G + I 88.89
(0.53)

87.49
(0.69)

87.70
(0.74)

86.90
(0.95)

86.03
(0.71)

86.64
(0.72)

87.29
(0.77)

87.35
(1.00)

Proposed + G + P 68.47
(2.32)

73.74
(2.00)

79.21
(1.68)

82.85
(1.33)

86.55
(1.17)

89.98
(0.72)

92.00
(0.82)

93.05
(0.40)

Proposed + G + P + I 68.24
(1.88)

73.78
(1.67)

80.23
(0.94)

83.02
(1.22)

86.94
(1.31)

89.89
(0.91)

92.46
(1.00)

92.69
(1.15)

1-NN 65.29
(1.23)

72.53
(1.11)

79.15
(1.16)

82.81
(0.63)

87.49
(1.18)

90.00
(1.05)

91.96
(0.51)

93.40
(0.27)

ERM 63.04
(1.22)

70.76
(1.01)

77.32
(1.16)

83.04
(1.09)

85.95
(1.38)

87.20
(0.77)

88.10
(0.98)

88.48
(0.45)

GroupDRO 64.61
(1.79)

71.52
(0.73)

77.81
(1.19)

83.45
(1.57)

87.34
(1.42)

88.30
(0.91)

89.79
(0.81)

91.12
(0.62)

Naive 69.77
(1.37)

77.98
(1.51)

79.23
(0.83)

81.20
(1.35)

82.57
(1.52)

83.85
(1.56)

84.21
(1.19)

-

Naive + P 66.47
(1.17)

73.12
(1.44)

77.85
(1.74)

81.76
(1.49)

86.36
(0.86)

88.02
(1.25)

89.68
(0.77)

-

Proposed 69.75
(5.51)

77.51
(3.01)

79.20
(2.11)

81.39
(1.49)

82.04
(1.29)

83.51
(0.97)

84.63
(0.80)

-

Proposed + I 70.73
(1.42)

77.10
(1.76)

78.90
(1.49)

80.86
(1.74)

82.22
(1.72)

84.22
(1.45)

84.69
(1.47)

-

Proposed + P 66.09
(1.49)

73.71
(1.17)

78.33
(0.69)

82.75
(0.83)

86.32
(0.52)

88.85
(0.72)

89.98
(1.35)

-

Proposed + P + I 65.51
(2.16)

70.91
(2.32)

75.94
(3.04)

81.51
(1.90)

86.41
(1.50)

89.39
(0.98)

91.08
(0.75)

-

Proposed + G 70.98
(2.52)

78.41
(1.25)

79.67
(1.26)

81.59
(1.42)

82.42
(1.28)

83.91
(1.64)

84.31
(1.31)

-

Proposed + G + I 71.94
(2.70)

78.56
(1.65)

80.62
(1.66)

82.31
(1.76)

83.52
(1.57)

84.52
(1.32)

85.35
(1.20)

-

Proposed + G + P 67.55
(0.78)

73.79
(0.33)

78.32
(0.93)

82.56
(1.31)

86.01
(1.09)

89.40
(1.22)

90.99
(1.15)

-

Proposed + G + P + I 69.18
(2.76)

74.13
(2.06)

79.18
(1.81)

83.17
(0.85)

87.25
(0.37)

90.67
(0.80)

92.23
(0.69)

-
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Table 2: Complete results on Waterbirds-severe. Reported numbers are average worst-group test accuracies,
along with their standard deviation. The top half of in-context learners were trained on Waterbirds-severe
itself, while the ones in the bottom half were training on iNaturalist.

Method / Context size 4 8 16 32 64 128 256 512

Naive 83.04
(1.92)

80.78
(1.58)

80.78
(1.85)

79.43
(2.77)

80.50
(2.43)

80.29
(2.30)

81.67
(2.25)

82.02
(2.72)

Naive + P 10.89
(2.71)

28.61
(4.98)

46.23
(4.17)

58.40
(2.46)

67.13
(2.34)

74.28
(2.25)

77.18
(3.11)

77.49
(4.08)

Proposed 82.64
(1.56)

81.01
(2.23)

81.90
(1.80)

81.36
(1.69)

81.94
(1.91)

81.70
(1.62)

82.35
(1.72)

82.09
(2.15)

Proposed + I 83.23
(1.30)

80.76
(1.93)

81.65
(2.38)

81.46
(2.11)

81.63
(2.40)

81.34
(2.01)

81.46
(2.32)

82.24
(3.49)

Proposed + P 61.94
(8.91)

68.23
(5.53)

75.94
(3.13)

81.93
(1.53)

85.76
(2.03)

88.36
(1.30)

90.01
(1.98)

90.20
(2.65)

Proposed + P + I 64.01
(4.05)

72.22
(4.43)

78.45
(2.79)

82.00
(2.20)

85.86
(1.64)

88.13
(1.39)

90.09
(1.73)

90.59
(1.54)

Proposed + G 82.02
(3.37)

81.15
(3.56)

83.11
(1.84)

81.22
(2.08)

81.30
(1.72)

81.90
(1.62)

82.48
(1.62)

82.44
(1.34)

Proposed + G + I 82.61
(3.42)

80.48
(2.69)

81.20
(3.55)

80.13
(3.18)

81.09
(2.86)

80.84
(2.47)

81.61
(2.36)

81.84
(2.51)

Proposed + G + P 59.11
(2.89)

64.44
(5.67)

71.30
(3.74)

79.46
(0.83)

85.21
(1.54)

88.60
(1.36)

90.65
(1.01)

91.38
(1.14)

Proposed + G + P + I 64.26
(5.81)

70.05
(4.01)

77.76
(1.77)

82.38
(1.66)

86.56
(0.88)

89.09
(1.02)

90.75
(0.96)

90.82
(0.73)

1-NN 5.44
(0.60)

4.50
(0.43)

3.49
(0.21)

27.92
(0.54)

45.04
(0.88)

52.58
(1.39)

61.74
(0.48)

71.20
(0.58)

ERM 6.81
(0.44)

4.35
(0.26)

1.87
(0.24)

35.30
(1.55)

29.52
(1.49)

45.84
(1.00)

65.35
(0.53)

75.69
(0.88)

GroupDRO 7.42
(0.57)

5.26
(0.35)

2.75
(0.29)

17.62
(0.65)

45.47
(1.18)

65.13
(1.06)

78.57
(0.77)

86.89
(0.57)

Naive 48.18
(3.52)

49.39
(3.28)

48.71
(6.49)

52.58
(4.56)

54.10
(6.04)

56.41
(5.03)

56.86
(4.75)

-

Naive + P 0.88
(0.45)

0.06
(0.05)

0.00
(0.00)

0.13
(0.29)

0.19
(0.43)

0.13
(0.29)

0.02
(0.04)

-

Proposed 49.04
(2.76)

53.39
(4.74)

54.82
(8.82)

59.44
(10.75)

61.04
(12.23)

62.26
(12.31)

63.77
(12.38)

-

Proposed + I 48.45
(6.15)

52.44
(11.15)

54.74
(10.69)

58.67
(11.38)

60.37
(9.19)

62.42
(8.69)

63.27
(9.15)

-

Proposed + P 1.88
(0.56)

0.27
(0.21)

0.06
(0.10)

0.08
(0.13)

0.30
(0.60)

0.15
(0.28)

0.03
(0.06)

-

Proposed + P + I 2.27
(0.74)

0.66
(0.49)

0.15
(0.14)

1.18
(1.09)

2.50
(2.49)

1.14
(0.88)

0.50
(0.20)

-

Proposed + G 50.00
(5.03)

52.31
(5.05)

53.69
(4.54)

57.87
(3.33)

59.11
(3.16)

60.33
(3.36)

62.30
(3.01)

-

Proposed + G + I 51.78
(5.76)

53.87
(6.15)

55.07
(6.20)

60.15
(7.40)

60.73
(8.02)

62.40
(8.01)

61.86
(7.77)

-

Proposed + G + P 1.52
(0.69)

0.16
(0.13)

0.00
(0.00)

0.10
(0.20)

0.04
(0.05)

0.03
(0.05)

0.36
(0.73)

-

Proposed + G + P + I 1.59
(0.17)

0.23
(0.16)

0.08
(0.10)

0.50
(0.69)

1.91
(3.05)

2.19
(3.67)

2.34
(4.00)

-
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Table 3: Complete results on iNaturalist. Reported numbers are average minority-group accuracies on the
OOD test set of iNaturalist, along with their standard deviation.

Method / Context size 4 8 16 32 64 128 256 400

Naive 91.91
(0.21)

92.81
(0.47)

93.76
(0.35)

94.77
(0.28)

94.85
(0.44)

95.04
(0.48)

94.84
(0.75)

94.53
(0.38)

Naive + P 92.19
(0.34)

92.79
(0.25)

94.42
(0.20)

96.22
(0.19)

97.29
(0.16)

98.05
(0.19)

98.16
(0.07)

98.18
(0.16)

Proposed 91.80
(0.39)

93.20
(0.29)

93.71
(0.35)

94.58
(0.22)

95.01
(0.42)

95.27
(0.42)

95.30
(0.40)

94.89
(0.27)

Proposed + I 92.88
(0.31)

93.82
(0.37)

94.61
(0.56)

95.36
(0.45)

95.76
(0.40)

95.90
(0.44)

95.94
(0.18)

95.06
(0.54)

Proposed + P 92.04
(0.22)

92.90
(0.30)

94.80
(0.32)

96.64
(0.30)

97.65
(0.20)

98.39
(0.27)

98.49
(0.14)

98.55
(0.23)

Proposed + P + I 92.15
(0.28)

92.97
(0.30)

94.67
(0.28)

96.86
(0.21)

97.80
(0.29)

98.46
(0.20)

98.54
(0.11)

98.61
(0.25)

Proposed + G 92.48
(0.45)

93.27
(0.72)

93.88
(0.43)

94.91
(0.63)

94.99
(0.38)

95.29
(0.45)

95.13
(0.33)

94.64
(0.43)

Proposed + G + I 92.59
(0.33)

93.80
(0.23)

94.18
(0.38)

95.50
(0.33)

95.82
(0.41)

95.83
(0.34)

95.82
(0.55)

95.28
(0.60)

Proposed + G + P 91.90
(0.17)

92.84
(0.19)

94.69
(0.15)

97.28
(0.31)

98.29
(0.13)

98.70
(0.19)

98.85
(0.19)

99.00
(0.11)

Proposed + G + P + I 92.28
(0.10)

93.25
(0.09)

94.93
(0.22)

97.73
(0.07)

98.44
(0.20)

98.99
(0.09)

99.04
(0.14)

99.06
(0.07)

1-NN 92.08
(0.64)

94.56
(0.39)

95.84
(0.16)

97.17
(0.23)

97.84
(0.12)

98.49
(0.20)

98.55
(0.23)

98.80
(0.21)

ERM 89.67
(0.43)

92.98
(0.30)

94.65
(0.17)

96.17
(0.24)

96.88
(0.23)

97.70
(0.21)

98.15
(0.17)

98.43
(0.11)

GroupDRO 91.20
(0.55)

93.79
(0.39)

95.33
(0.18)

97.39
(0.20)

97.85
(0.20)

98.46
(0.13)

98.91
(0.20)

99.01
(0.18)
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Table 4: Complete results on CelebA. Reported numbers are average worst-group test accuracies, along with
their standard deviation. All in-context learners were trained on CelebA itself.

Method / Context size 4 8 16 32 64 128 256 512

Naive 24.88
(2.03)

24.56
(2.26)

25.80
(1.98)

25.14
(2.11)

23.85
(1.91)

25.62
(1.63)

25.84
(2.10)

26.20
(1.42)

Naive + P 20.72
(2.21)

17.27
(2.38)

12.43
(2.04)

14.85
(2.33)

13.56
(1.60)

16.17
(2.83)

20.16
(4.14)

26.03
(5.13)

Proposed 25.83
(1.77)

25.42
(1.66)

26.85
(1.52)

25.80
(1.60)

25.18
(1.06)

26.65
(2.11)

26.89
(1.41)

27.53
(1.31)

Proposed + P 26.90
(4.56)

26.54
(1.46)

27.00
(2.72)

37.30
(1.55)

47.29
(2.67)

54.66
(2.67)

60.48
(2.55)

68.45
(1.99)

Proposed + G 23.87
(1.50)

24.67
(1.51)

25.60
(1.30)

24.95
(1.12)

24.42
(1.17)

25.77
(1.24)

25.70
(0.81)

26.55
(1.39)

Proposed + G + P 26.71
(3.57)

32.06
(4.62)

39.21
(6.06)

46.13
(5.38)

53.41
(3.73)

59.37
(3.07)

64.39
(1.84)

69.58
(1.72)

1-NN 35.87
(1.48)

37.63
(0.86)

36.08
(1.13)

37.86
(0.45)

38.28
(0.80)

36.40
(0.32)

36.90
(0.99)

37.81
(0.36)

ERM 30.70
(1.05)

28.93
(0.64)

26.37
(0.66)

30.75
(0.40)

34.29
(0.93)

38.64
(1.29)

45.18
(1.39)

49.92
(1.28)

GroupDRO 35.32
(0.88)

34.64
(0.99)

30.24
(1.01)

37.49
(0.60)

47.11
(0.59)

54.56
(0.66)

56.11
(0.60)

61.47
(0.93)

Table 5: Complete results on CelebA, but with larger network of 120m parameters, consisting of 12 layers
(instead of 6 layers) with 12 multi-head attention (instead of 8 heads). Reported numbers are average
worst-group test accuracies, along with their standard deviation. All in-context learners were trained on
CelebA itself.

Method / Context size 4 8 16 32 64 128 256 512

Naive 24.43
(0.57)

21.79
(0.86)

23.68
(0.58)

23.02
(0.49)

23.99
(0.84)

23.18
(1.04)

22.62
(0.83)

20.22
(1.00)

Naive + P 21.34
(1.40)

14.64
(0.66)

12.56
(0.74)

13.35
(1.54)

13.76
(2.58)

15.73
(2.41)

17.69
(3.27)

21.67
(4.55)

Proposed 22.90
(2.30)

20.86
(2.40)

23.11
(2.66)

21.93
(2.50)

23.35
(2.80)

21.82
(3.11)

21.75
(2.32)

19.54
(2.06)

Proposed + P 35.13
(5.19)

31.54
(1.73)

30.89
(4.40)

35.19
(5.28)

41.63
(6.74)

47.81
(9.40)

51.60
(11.00)

55.53
(11.70)

Proposed + G 23.08
(2.47)

20.89
(2.66)

22.74
(2.54)

21.73
(3.23)

22.70
(3.25)

21.24
(3.45)

21.50
(2.61)

18.90
(2.01)

Proposed + G + P 31.44
(4.27)

32.09
(5.24)

36.54
(1.90)

43.67
(2.72)

49.62
(2.93)

54.77
(4.24)

58.75
(5.94)

61.74
(6.10)

1-NN 35.87
(1.48)

37.63
(0.86)

36.08
(1.13)

37.86
(0.45)

38.28
(0.80)

36.40
(0.32)

36.90
(0.99)

37.81
(0.36)

ERM 30.70
(1.05)

28.93
(0.64)

26.37
(0.66)

30.75
(0.40)

34.29
(0.93)

38.64
(1.29)

45.18
(1.39)

49.92
(1.28)

GroupDRO 35.32
(0.88)

34.64
(0.99)

30.24
(1.01)

37.49
(0.60)

47.11
(0.59)

54.56
(0.66)

56.11
(0.60)

61.47
(0.93)
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Table 6: Complete results on MultiNLI. Reported numbers are average worst-group test accuracies, along
with their standard deviation. All in-context learners were trained on MultiNLI itself.

Method / Context size 2 4 8 16 32 64 128 256 512

Naive 84.15
(0.30)

84.58
(0.37)

84.74
(0.37)

84.13
(0.45)

83.92
(0.25)

85.20
(0.24)

84.38
(0.32)

84.30
(0.33)

84.05
(0.39)

Naive + P 85.30
(1.58)

87.29
(0.95)

87.43
(1.05)

87.56
(0.77)

87.50
(0.57)

88.05
(0.38)

87.35
(0.27)

87.99
(0.20)

87.54
(0.34)

Proposed 86.62
(0.65)

86.02
(0.33)

87.45
(0.58)

87.54
(0.42)

86.99
(0.26)

86.51
(0.27)

86.11
(0.29)

87.35
(0.19)

86.89
(0.30)

Proposed + P 85.84
(1.12)

87.22
(0.55)

87.43
(0.48)

87.75
(0.24)

87.70
(0.43)

87.86
(0.62)

87.31
(0.53)

87.56
(0.46)

87.73
(0.30)

Proposed + G 87.15
(0.82)

86.23
(0.65)

87.23
(0.42)

87.37
(0.35)

87.02
(0.27)

86.51
(0.58)

86.47
(0.49)

87.69
(0.51)

87.50
(0.55)

Proposed + G + P 85.41
(1.38)

87.32
(0.76)

87.57
(0.34)

87.81
(0.56)

87.74
(0.50)

87.97
(0.30)

87.56
(0.27)

87.78
(0.31)

87.68
(0.12)

1-NN 64.49
(0.90)

82.41
(0.81)

85.84
(0.84)

86.39
(0.76)

86.01
(0.40)

86.04
(0.93)

86.44
(0.81)

85.90
(0.43)

86.53
(0.29)

ERM 76.40
(0.65)

81.71
(0.58)

85.10
(1.13)

86.82
(0.54)

86.76
(0.54)

87.30
(0.78)

87.04
(0.55)

87.10
(0.48)

87.55
(0.41)

GroupDRO 76.54
(0.42)

81.56
(0.75)

85.45
(1.10)

86.75
(0.47)

86.55
(0.30)

87.16
(0.55)

87.14
(0.37)

87.10
(0.14)

87.23
(0.49)
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