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ABSTRACT

The precise localization of 2D echocardiography planes in relation to a dynamic
heart necessitates specialized expertise, as existing automated algorithms prmar-
ily classify standard views while lacking the capability for comprehensive 3D
structural perception. Traditional measurement techniques have evolved to in-
fer 3D heart geometry, yet recent advancements in artificial intelligence, though
demonstrating spatial awareness, still fall short in providing explicit 3D model-
ing. CTA-based digital twins, while promising, are hindered by cost and radiation
concerns. Echocardiography, being cost-effective and radiation-free, remains lim-
ited in its ability to provide 3D perception. To address this gap, we introduce
a novel point cloud-based weakly supervised 3D generation network specifically
tailored for echocardiograms. This network automates 3D heart inference, and
biomarker modeling, based on 2D echocardiography, slice tracking. To further
enhance accuracy, we integrated a self-supervised learning branch into our frame-
work, introducing multi-structure reconstruction loss and an overall reconstruction
loss specifically designed for cardiac structure completion. Additionally, we con-
structed a comparative branch that serves to bolster the network’s precision in in-
ferring cardiac structures, thereby refining our approach and elevating the fidelity
of the generated 3D models. Our approach enables real-time, robust 3D heart
modeling, independent of paired data requirements, thereby facilitating research
advancements in echocardiographic digital twins.

1 INTRODUCTION

In two-dimensional(2D) echocardiography, sensing the relative position between the sectional view
and the dynamic heart is a professional task that only skilled ultrasound physicians can perform. In
the past, many algorithms for automatically sensing the position of 2D ultrasound sections without
magnetic positioning have been proposed, but most of them are aimed at static grayscale medical
images and require the input of corresponding three-dimensional(3D) volume data at the same time
during inference. (De Silva et al., 2013; Zhang et al., 2022; Wang et al., 2023) Although those
registration based methods can locate the position of 2D ultrasound, their data requirements are high
and it is difficult to make real-time inferences.In this regard, Luo et al. (2023) developed a freehand
3D reconstruction method for 2D fetal ultrasound scans based on online learning. While this method
achieves ultrasound 3D reconstruction without magnetic localization in a practical sense, it still
requires a significant amount of 3D ultrasound images during the model training process.

Unlike the linear scanning techniques frequently employed in ultrasound examinations of many
other body parts,2D echocardiography often involves a sector scan within a fixed acoustic window to
locate standard planes of the echocardiogram. Instead of linear scanning to detect potential lesions,
echocardiography primarily focuses on the functional assessment of the heart’s fixed structures.
Consequently, determining the relative spatial relationship between the ultrasound slices and the
heart is the initial step in scan guidance of echocardiography. Some efforts have been made to
assess the relative relationship between ultrasound slices and the heart, yet these studies typically
concentrate solely on the classification of standard views. (Madani et al., 2018; Wegner et al., 2022;
Li et al., 2024b; Kusunose et al., 2020) Freitas et al. (2024) proposed a image-based method for
plane localization in focused cardiac ultrasound. This study achieved the localization inference of
ultrasound slices. However, their method necessitates a set of input images to determine the relative
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3D poses between slices, lacking the capability to infer 3D structures and directly obtain the relative
3D pose between 3D heart structures and 2D ultrasound slices.

In reality, a pivotal objective in locating ultrasound planes is to perceive the 3D structure of the
heart. It is crucial to tap into the spatial perception capabilities of neural networks in this regard,
yet previous ultrasound AI models have failed to accomplish this precisely and directly. Essentially,
many measurements in 2D echocardiography involve achieving 3D spatio-temporal perception of
heart structure and function.(Nakajima & Shibutani, 2023) Taking the measurement of left ventric-
ular ejection fraction as an example, from M-mode echocardiography to the Simpson’s single-plane
method, and then to the Simpson’s biplane method, these measurement models are all based on the
goal of inferring the 3D structure of the left ventricle, albeit proposed with different assumptions.
(Otterstad et al., 2001; He et al., 2023)

In recent years, deep learning has seen rapid advancements. Ouyang et al. (2020) leveraging data-
driven approaches, modeled left ventricular ejection fraction (LVEF) using video AI models. Specif-
ically, they employed R2+1D to measure LVEF using a single plane, typically requiring two planes
for measurement, demonstrating a form of spatial perception in AI models. However, they did not
explicitly model the spatio-temporal information in echocardiography. Although 2D explicit model-
ing is often outperformed by data-driven regression methods (He et al., 2023) , this does not negate
the significance of explicit modeling of 3D structures. For instance, a study by Xu et al. (2023)
illustrated that using a 3D label completion network can better model the fine structure of the left
atrium, not only enhancing geometric assumptions for connecting structures such as the left atrial
appendage and pulmonary veins but also surpassing the Simpson’s biplane method in measurement
performance, as outlined in current guidelines. Furthermore, explicitly modeling the 3D structure
of the heart benefits computational biology (Camps et al., 2024; Li et al., 2024a) , hemodynamic
research (Karabelas et al., 2022) , detailed observation of heart structures(Beetz et al., 2023) , and
analysis of cardiac dynamic patterns (Laumer et al., 2023). Such advancements provide a solid
technical foundation for the development of digital twins of the heart.

Echocardiography currently represents the low-cost and non-radiative means of observing cardiac
structures. In terms of dynamic observation of specific structures such as valves, 2D echocardiog-
raphy holds advantages (Zoghbi et al., 2024). However, 2D echocardiography typically only cap-
tures motion within standard planes, limiting the ability to perceive the 3D structure of heart. The
guidance of echocardiographic scanning has also remained an unresolved challenge. Although 3D
ultrasound probes can be used to perceive the 3D structure of the heart, their resolution is infe-
rior to that of 2D echocardiography. Furthermore, many cardiac interventional procedures rely on
2D transesophageal echocardiography for monitoring (Cutrone et al., 2024). The widespread use
of 2D echocardiography makes it difficult to overlook its potential advantages and contributions in
the process of creating digital twins of the heart. Therefore, there is a need to develop a spatial
perception model based on echocardiography that can achieve explicit modeling of the heart’s three-
dimensional structure from 2D echocardiography images and rapidly locate the relative position of
the current view within the heart’s 3D structure.

Point cloud completion aims to address incomplete point cloud data resulting from occlusion, spar-
sity, or sensor limitations. Traditional point cloud completion methods(Yuan et al., 2018; Mao &
Yang, 2023; Miao et al., 2024; Egiazarian et al., 2019; Huang et al., 2020) typically employs Multi-
layer Perceptions (MLPs) to analyze each point separately before aggregating these insights into
a comprehensive feature set via a symmetric operation, such as Max-Pooling. Some methods(Dai
et al., 2017; Han et al., 2017) convert point cloud data into 3D voxel representation and then then
processing it using 3D CNN. However, these methods need to increase voxel resolution to enhance
the accuracy, which will lead to an explosion in computational costs. GRNet(Xie et al., 2020) and
VE-PCN(Wang et al., 2021) adopt voxel grids as intermediate representation to tackle this problem.

With Transformer(Vaswani, 2017) being proposed for natural language processing tasks due to its
excellent representation learning capabilities, recent efforts have increasingly focused on applying
Transformer to point cloud completion to extract correlated features between points(Li et al., 2023;
Yu et al., 2021; Wang et al., 2024; Yu et al., 2024).

In addition to these two mainstream approaches, other works have explored alternative strategies,
such as(Lyu et al., 2021)leveraging the concept of diffusion models, (Wang et al., 2021) attempting
to utilize the edge features of objects, and (Wu et al., 2021) proposing a new metric, DCD, inspired
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by Chamfer Distance (CD) and Earth Mover’s Distance (EMD). However, none of these works
have considered the point cloud completion from entirely two-dimensional point clouds. Based on
PCNs(Yuan et al., 2018), we have developed a novel weakly-supervised 3D generation network
tailored for echocardiography, which is fully adapted for the task of completing point clouds from
entirely two-dimensional point clouds.

The main contributions of this work are as follows:

• We innovatively propose a weakly-supervised single-view 3D generation network and pro-
cessing pipeline based on point clouds for echocardiography. This system is designed to
locate and track the displacement of echocardiographic views and enable single-view in-
ference of dynamic heart structures.

• We constructed a lightweight neural network with multiple structural branches and local
generative block(LGB) tailored for heart structure completion.

• We use contrastive reconstruction losses, enhancing the network’s accuracy in inferring
heart structures while simultaneously decoupling multi-structural point clouds of the heart.
Our model achieved optimal performance on the test set.

Our method aims to fully automate, rapidly, and robustly complete 3D inference of heart structures.
It does not rely on a large amount of paired training data and can perform real-time inference of
heart 3D models and view localization during scanning.

2 METHOD

2.1 PROBLEM FORMULATION

Given a two-dimensional slice point cloud X ∈ RN1×2 of input, we need to find the full heart
structure YShape ∈ RN2×3 corresponding to the input, as well as the tangent plane of the input
slice related to YShape, denoted as YRotate ∈ RN1×3 , so that they match the actual corresponding
YgtShape ∈ RN2×3 and YgtV iew ∈ RN1×3. That is to say, solving:

min
f,gview,gshape

L(YgtShape, gshape ◦ f(X)) + L(YgtV iew, gview ◦ f(X))

Among them, f is the encoder. gshape and gview are the decoders. Since the loss function L needs
to measure the differences between point clouds, it is necessary to choose a loss function that is
suitable for the type of point cloud data.

Based on cardiac shape point cloud YgtShape get from segmentation of computed tomography an-
giography (CTA) and view point cloud X get form 2D down sample of YgtShape, we utilize weak
supervised learning to train multi-branch PCN h(X) = (gview ◦f, gshape ◦f)(X) parameterized by
weights θ. When using, the input view point cloud X can be get from echocardiographic segmenta-
tion mask.

Figure 1: Training dataset processing pipeline. CTA imaging data obtained from XXX were seg-
mented automatically using a previously described and validated 3D convolutional neural network.
And we get normalize point clouds and echocardiographic planes (A2C, A4C, A5C and PLAX
views) from voxel mask using open3d package (version 0.17.0).
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Figure 2: This image illustrates a multi-branch network structure for echocardiographic view local-
ization and 3D structural inference. The network is based on PCN and incorporates self-supervised
learning and multi-branch reconstruction loss. It uses an encoder for feature extraction and multi-
ple parallel decoders for different tasks. The network has multiple structure branches to accurately
depict each heart component, using component decoders and local generative blocks for structural
reconstruction. Local generative blocks use folded seeds to model local structures without global
feature integration. A view reconstruction branch enhances the network’s understanding of input
slices, improving slice localization and structural defect sensitivity for precise acoustic window and
slice angle determination.

2.2 DATA PREPROCESSING

The dataset presented in this study was gathered using a GE Revolution Apex scanner over a one-
year period, spanning from August 2023 to August 2024. The CTA images were automatically
segmented by leveraging a previously validated 3D convolutional neural network (Xu et al., 2021),
which provided ten labels, including the left atrium (LA), left ventricle (LV), right ventricle (RV),
right atrium (RA), Left ventricular myocardium (MYO), aorta, and left/right pulmonary arteries.
This method achieved a Dice score exceeding 95% when compared to manual segmentation, demon-
strating its high accuracy. The quality of the 3D segmentation results was further visually inspected
by senior radiologists to ensure they met our rigorous standards. Ultimately, a total of 2508 CTA
voxel data were incorporated into this work.

To address the potential issue of data redundancy arising from the inclusion of multiple scans from
the same patient at different time points, we split dataset in case-level to ensure that different samples
from the same case do not inadvertently appear in both the training and testing sets. Specifically,
we allocated a ratio of 7:1:2 for the training, validation, and test sets, respectively. This translates
to 1007 cases (1778 scans) in the training set, 145 cases (255 scans) in the validation set, and 288
cases (475 scans) in the test set.

The process of obtaining heart structure and slice point clouds for training and testing purposes in-
volves intricate steps, as shown in Figure 1. The heart structure point cloud requires edge coordinate
sampling, normal generation, point cloud resampling, pose calibration, and standardization of point
cloud size. On the other hand, generating slice point clouds entails section positioning, acquisition
of section point clouds, generation of section mask images, image-based 2D point cloud acquisition,
and simulation of visible structural incompleteness within the sections. Detailed descriptions and
code of these procedures are provided in the supplementary materials.

2.3 WEAKLY SUPERVISED MULTI BRANCH PCN

2.3.1 MULTI BRANCH NETWORK STRUCTURE

We constructed a multi branch completion network incorporating self-supervised learning and multi-
branch reconstruction loss based on PCN (Yuan et al., 2018).We adopted the encoder structure of
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PCN as the feature extractor and paralleled multiple decoders to achieve echocardiographic view
localization and 3D structural inference tasks. The detailed workflow is illustrated in Figure 2.

Multi Structure Branches: In this study, the full-heart point cloud consisted of six components,
including the LV, LA, MYO, RV, RA, and aorta. When considering individual structures, the MYO
exhibited significant concave features. When considering the global structure, coupling occurred
among structures at valve rings. To accurately depict each component’s structure, we needed to per-
form end-to-end structural decoupling. This decoupling was necessary for the full-heart point cloud
generated by the network, to prepare it for subsequent testing. Therefore, we employed component
decoders and local generative blocks for structural reconstruction. The component decoder gener-
ated point clouds for the six heart structures, while the coarse shape decoder produced the full-heart
shape as one point cloud directly. After passing through the local generative blocks, the full-heart
structural point cloud could be characterized from two perspectives.

Local Generative Blocks: Directly using the component decoder and coarse shape decoder for mu-
tual supervision of the two generated full-heart point clouds would interfere with network optimiza-
tion under supervision by real point cloud data. To address this issue, we employed folded seeds to
model the local structure of the point cloud. However, in the original setting of PCN, local structure
modeling should extend global features and merge them with point features and folded seed features
to form features with a width of 1029 for processing. Considering that the completion network in
this study is dedicated to the heart and does not face the challenging implicit classification problem
of various fine-grained target point clouds as in ShapeNet, the local generative blocks in this study
are not connected with global features v. Additionally, we noted that merely using MLPs made it
difficult to depict curved morphologies locally. Therefore, we incorporated a Sigmoid setting as
follows:

YShape = λ(2Sigmoid(MLP (Ŷcoarse, seed))− 1) + Ŷcoarse

whereŶcoarse ∈ R16384×3 is the result of Ycoarse ∈ R1024×3 after broadcasting, λ is a hyperparam-
eter with a value of 0.1.

View Reconstruction Branch: We utilized a view reconstruction branch to enhance the network’s
understanding of the input slices. Since our input slices were cropped according to the echocar-
diographic sector and view window, the branch used for slice localization in this network actually
served both slice localization and slice structure completion functions. Moreover, the cropping pat-
tern of the slices is related to the acoustic window and contains slice information. Therefore, we
designed a slice reconstruction brunch to enhance the stability of slice shapes and make the network
more sensitive to structural defects related to slice angles, enabling more precise localization of the
acoustic window and slice angles.

2.3.2 CONTRASTIVE RECONSTRUCTION LOSSES

Due to the use of contrastive reconstruction strategy in this network, the loss function is divided into
three parts:

The first part is Lcoarse, which includes sparse point cloud chamfer loss for six output structures,
chamfer loss for reconstructed and rotated completed cross-sections, and loss for overall shape
branching, as this network focuses on both whole heart structure and cross-section localization.

The second part is Lfine, which further supervises the shape formed by merging six output structures
and the overall shape output by the shape branch after using the branch of the local generation block.

The third part is the contrastive reconstruction loss Lcompare, which supervises the differences in the
overall shape output by merging six output structures and shape branches. Enable the two branches
to better promote each other. The total loss is as follows:

Ltotal = Lcoarse + αLfine + αβLcompare

where α and β are hyperparameters, and β is always 0.1, while α increases with training and be-
comes 0.01 when the epoch is less than 100 and 0.1 when the epoch is more than 200. Namely, in the
early stages of training, the loss function makes the network pay more attention to the overall shape
of the rough point cloud. In the later stages of training, the loss function makes the network pay
more attention to the characterization of fine shapes and the similarity between the two branches.
Due to the multiple output branches of the network, we need to consider the loss of each supervision
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separately. All the above losses are based on the L1-norm based chamfer distance, which reads:

LCD(Soutput, Sgt) =
1

Soutput
Σ

x∈Soutput

min
y∈Sgt

||x− y||L1 +
1

Sgt
Σ

y∈Sgt

min
x∈Soutput

||x− y||L1

where Soutput is output point cloud, and Sgt is ground truth. So the loss functions are as follows

Lcoarse = Σ
x∈Ω

LCD(x, xgt)+LCD(Ycoarse, YgtShape)+LCD(YV iew, X)+LCD(YRotate, YgtV iew)

Lfine = LCD(YShape, YgtShape) + LCD(YComponent, YgtShape)

Lcompare = LCD(YComponent, YShape)

where Ω is coarse component set {Slv, Sla, Srv, Sra, Smyo, Saorta}, and xgt means respective
ground truth point cloud of x.

3 RESULTS AND ANALYSIS

3.1 IMPLEMENTATION DETAILS

The models were implemented using PyTorch on an NVIDIA GeForce RTX 3080 GPU. A batch size
of 16 and Adam optimiser with a learning rate of 10-4 were used for all models. We trained each
model for 200 epochs using a 0·7 decay learning rate scheduler with 50 epochs. The performance
on validation set was recorded to optimise the network and set up the hyperparameters. We used
various metrics to assess the model’s performance on shape reconstruction and view localization
tasks, including L1-norm based chamfer distance(CD), L2-norm based chamfer distance, FScore
with threshold as 2mm. Other than that, we use degree error, and center distance error of view
planes to assess view localization function of our model.

3.2 SHAPE RECONSTRUCTION

Figure 3: The visualization of the results of sectional localization and shape completion for two
cases from different views.

The use of local generative block can improve the generative performance of PCN. And the compo-
nent brunch made it possible to get heart structure separately from network output.When the sparse
output of component branches is not finely characterized using local generation blocks, directly
using contrastive reconstruction loss will lower the performance of the overall shape point cloud
output. When using locally generated blocks, the output accuracy of model component branches is
significantly improved and can exceed that of the overall shape point cloud, as shown in Table 1.

6
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Model Shape Brunch Output Component Brunch Output

L1 CD(mm) L2 CD(mm) FScore(2mm,%) L1 CD(mm) L2 CD(mm) FScore(2mm,%)
PoinTr(Yu et al., 2021) 1.978 0.0644 61.43 - - -
PCN(Yuan et al., 2018) 2.128 0.0694 59.76 - - -

PCN+SLGB 1.874 0.0534 65.33 - - -
PCN+Com+SLGB 1.930 0.0572 65.58 2.236 0.0726 50.09

PCN+Com+SLGB+Rec 1.940 0.0576 65.16 2.250 0.0738 49.63
Ours(PCN+Com+SLGB+CLGB+Rec) 1.938 0.0578 65.22 1.550 0.0372 79.55

Table 1: The performance of models.Com represents whether to use component branches, Rec rep-
resents whether to use contrastive reconstruction loss, SLGB represents whether to use the local gen-
erative blocks mentioned above in the coarse shape output branches, and CLGB represents whether
to use local generative blocks in the component branches

Figure 4: The performance distribution of the network in cross-sectional localization using a violin
plot. Among them, a) and b) respectively show the L1 and L2 chamfer distances between the output
slice and the actual slice. c) Displayed FScore with a threshold of 2mm on different cross-sections.
d) The distance deviation of the center of the plane after fitting the plane with the cross-section is
shown. Overall, the network has good segmentation ability in different aspects.

Our network can accurately restore shapes from a single view, as shown in Figure 3. Our method
not only effectively decouples the multi-chamber shapes of the whole heart in terms of shape re-
construction but also achieves optimal performance in shape reconstruction accuracy. The F-Score
presented in the table represents points that lie within a distance of 0.01 from the ground truth point
cloud. Based on the dimensional information of CTA and our data processing pipeline, distance of
0.01 in our point cloud corresponds to a real-space error of 2 millimeters, implying that nearly 80%
of the points in the shapes generated from a single slice are within 2 millimeters of the ground truth
point cloud. Achieving an error within 2 millimeters is a leading goal in current cardiac surgery
guidance technology, which demonstrates that our network can effectively infer and reconstruct the
whole heart structure from a single slice. For detailed reconstruction performance across various
slices and numerical values of reconstruction performance for structures visible or invisible in the
current slice, please refer to Figure 5(a) and (b). Currently, among the overall dataset, the A4C
view exhibits the best reconstruction performance. And the generation result of A2C view is the
worst. This may be attributed to the fact that the A4C view directly reflects the structural informa-
tion of the four chambers and the left ventricular myocardium, with only one invisible structure, the
aorta. In contrast, the A2C view only reflects partial information of the LV, LA, and left ventricu-
lar myocardium, introducing some uncertainty about invisible parts and resulting in slightly poorer
reconstruction performance. However, overall, there are no significant differences in reconstruction
performance among these slices.
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A4C A2C A5C PLAX All

θ3D(◦) 2.79± 4.85 5.75± 4.13 4.98± 4.22 5.79± 3.89 4.83± 4.45
d3D(mm) 3.17± 1.73 3.78± 2.22 3.24± 1.82 2.61± 1.51 3.20± 1.88

Table 2: The performance distribution of networks in view localization. Among them, θ3D(◦) is
the normal angle deviation between the three-dimensional plane fitted by the inferred section and
the corresponding three-dimensional plane of the real section, measured in degrees. d3D(mm) is
the distance between the centroids of the predicted and ground truth 3D view plane. To calculate
the centroid position, the boundary of two 3D planes is defined as the boundary with the inferred
epicardium.

3.3 VIEW POSITION

Our method performs stably and accurately in slice localization. The L1-norm and L2-norm based
chamfer distances between the output slice and the ground slice are relatively stable, but there are
differences in FScore, as shown in Figure 4. Overall, the effect of the A4C view is the best, and the
positioning effect of the PLAX and the A2C view is slightly lower than that of the A4C view. The
overall angle error is 4.83 ± 4.45 degrees, with a four chamber heart rate of 2.79 ± 4.85 degrees, as
shown in Table 2. In fact, the focus of A2C view is to observe the mitral valve, and it is difficult
to ensure that the section with the largest inner diameter of LV is obtained. In cases where the LV
is relatively symmetrical, the eligible A2C view may have two corresponding symmetrical slices,
leading to an increase in error.

Figure 5: a) and b) show the performance of different related structures on different sections, where
dark blue dots are used to color the heart structures that are not visible on the current section, and
yellow dots are used to color the heart structures that are visible on the current section. Different
line colors represent different input facets. c) The dimensionality reduction distribution of the hid-
den layer encoding of input slice samples by the network is demonstrated, where the hidden layer
encoding is the v vector in the text, indicating that the network correctly identifies the type of slice.
d) The distribution trend of feature vectors encoded by different slice networks in the same case in
terms of time is shown. The dimensionality reduction method used in c) and d) is umap.

3.4 REPRESENTATION LEARNING

In terms of structural inference, we aimed to avoid catastrophic mode collapse in the network’s pre-
dictions of structures not visible in the current single slice, which fortunately did not occur. In fact, as
shown in Figure 5 (a), (b), for structures invisible on the input view, the network’s performance was
only slightly inferior to that for visible structures. Regarding the accuracy of structural inference,
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the complexity of the structure itself had a greater impact on the network’s predictions. Indeed, for
the aorta, there may have been deviations in boundary definitions within this batch of training data,
as voxel segmentation was limited by the coverage of CTA, while point cloud completion inference
might notice longer or shorter aortic structures.

Simultaneously, the network demonstrated a certain level of representation learning ability, as shown
in Figure 5(c),(d). We used UMAP package (version 0.5.6) to reduce the dimensionality of the fea-
ture vectors output by the encoder of network and found that it exhibited excellent slice classifica-
tion performance when encoding individual slice samples. Furthermore, it captured the similarity
between slices in their adjacent relationships. For example, a A5C view, sometimes similar to a A4C
view in terms of marginal structures when the aorta is not clearly visible. When encoding multiple
slices of each heart and performing combined dimensionality reduction analysis, the network was
able to reflect temporal trends. Even though the our network did not consider the temporal correla-
tion of the dynamic heart and trained the end-systolic and end-diastolic phases as separate structural
data, there was still some clustering effect in the feature space between these two phases, despite the
network not receiving any arbitrary input or supervision regarding cardiac phases.

The heart is a dynamic system in which various structures interact with each other, and some local
structural features may affect the overall motion and health of the heart. These observations re-
flect that the proposed network can be a representation learning model, may encode representations
that imply more information about the heart, even though it was not directly optimized by relative
supervisory signals.

4 CONCLUSION

We have made a groundbreaking contribution by introducing a novel point cloud-based, weakly
supervised, single-view 3D echocardiography generation network, along with a comprehensive pro-
cessing pipeline tailored to it. This methodology not only achieves precise localization and tracking
of echocardiographic slice displacements but also successfully applies to the inference of cardiac
dynamic structures from a single plane. By converting voxel data into point clouds and employing
a series of innovative processing tools, we have constructed an efficient and lightweight neural net-
work. Furthermore, the introduction of multi-structural reconstruction loss, local generative blocks,
and contrastive loss has significantly enhanced the accuracy and robustness of cardiac structure in-
ference. Most importantly, this method aims to achieve fully automated, rapid, and highly robust 3D
inference of cardiac structures. It is capable of generating real-time 3D heart models and performing
slice localization during scanning, providing potent support for clinical decision-making.
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A DATA PREPROCESSING AND DISTRIBUTION

A.1 VOXEL DATA TO POINT CLOUD DATA

For the cardiac data processing, we first read the voxel data of the three-dimensional heart structure
and convert it into a 3D array. Then apply an affine transformation to align it with a unified coordi-
nate system. For the annotated cardiac chamber structures and vascular structures within the voxel
data, we iteratively traverse these structures, treating each one as a positive sample and examining
all its eight-neighborhood voxels. By identifying the coordinates of voxels with negative labels, we
determine the boundary point clouds for each structure, thus accurately extracting the inter-structural
boundary information. Different structures are stored with distinct color information for differen-
tiation. Specifically, valve points are located at the intersection of chamber annotations, with the
mitral valve taking the intersection between the left ventricle and left atrium, the tricuspid valve at
the intersection between the right ventricle and right atrium, and the aortic valve at the intersection
between the left ventricle and aorta. Based on the voxel annotations, we sampled the following
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Figure 6: The schematic diagram of the structure corresponding to the point cloud, where the cham-
bers and aorta are colored with varying degrees of gray, and the valve annulus are colored. Among
them, green represents the tricuspid valve annulus, red represents the mitral valve annulus, and blue
represents the aortic valve annulus.

structures: left ventricle, left ventricular wall, right ventricle, right atrium, left atrium, aorta, mitral
valve, tricuspid valve, and aortic valve. These structures are illustrated in Figure 6.

To enhance the quality of the point cloud data, we also introduced a normal generation and refine-
ment step. Specifically, we first identify the inner and outer points relative to the current structure
of interest by scanning the eight-connected neighborhood of each voxel. The direction from the
centroid of the inner point cloud to the centroid of the outer point cloud is defined as the initial
simulated normal vector. We then smooth the simulated normal vectors using a minimum span-
ning tree algorithm to obtain more accurate normal vector information. For a voxel coordinate
(i, j, k) ∈ V , if it is a boundary point, we consider whether the 26 neighboring voxels within the
cube [(i − 1) : (i + 1), (j − 1) : (j + 1), (k − 1) : (k + 1)] belong to the current structure or not.
The normal vector at this vertex is determined by the direction from the centroid of the inner point
set to the centroid of the outer point set. The generation of boundary points can be performed in
parallel with the normal generation. Next, we use the inner and outer point clouds, along with their
respective centroids and the initial simulated normal vectors, to grid the voxel data. We then use
curvature-based point cloud resampling to standardize the number of points for the cardiac chamber
and vascular structures within the gridded data, resulting in voxel-reconstructed point cloud data.
Additionally, we standardize the number of points for each structure: 4038 points for the left ven-
tricle, 4660 points for the left ventricular wall, 1299 points for the left atrium, 1000 points for the
mitral valve, 3814 points for the right ventricle, 1480 points for the right atrium, 1000 points for the
tricuspid valve, 1139 points for the aorta, and 1000 points for the aortic valve.

A.2 POINT CLOUD DATA REFINEMENT

After obtaining the point cloud data, we perform point cloud pose correction and size normalization
to acquire standardized whole-heart point cloud data. Point cloud pose correction involves defining
and unifying the spatial coordinate system, while size normalization aims to enhance the consistency
of the mean point coordinates across different sample point clouds, thereby reducing the difficulty
of fitting the echocardiographic scan-guided network. Specifically, we use the centroid of the whole
heart as the origin of the spatial coordinate system, the direction from the tricuspid valve centroid
to the mitral valve centroid as the X-axis, the vector from the left ventricle centroid to the apex
as the Y-axis, and the cross product of the X-axis and Y-axis direction vectors as the Z-axis. The
corresponding affine matrix is automatically extracted based on the structural annotations. After
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pose calibration, the vertex coordinates of the point cloud data are scaled down to 1
300 of their

original values, resulting in standardized whole-heart point cloud data.

A.3 STANDARD VIEW ACQUISITION

Finally, based on the standard views specified in two-dimensional medical imaging standards for
the heart, we segment and collect the whole-heart point cloud data to obtain standard view point
cloud data. Specifically, we solve for the plane equations using three non-collinear key points for
each standard view and traverse the standardized point cloud data, sampling the whole-heart point
cloud data using the inequalities of the plane equations. The standardized view point clouds include
the apical five-chamber view, apical four-chamber view, apical two-chamber view, and parasternal
long-axis view. These views are illustrated in Figure 7.

Figure 7: Definition of the A2C, A4C, A5C and PLAX views. The chambers and aorta are colored
with varying degrees of gray. And green represents the tricuspid valve annulus, red represents the
mitral valve annulus, and blue represents the aortic valve annulus. The solid red and blue lines
indicate the A2C, A4C, PLAX, and A5C views. a) is the perspective from the apex to the base of
the heart, and b) is the perspective from the base to the apex of the heart.

A.4 DATA DISTRIBUTION

We conducted an analysis of the data utilized in this study. For each data, we established the spatial
coordinate system with the centroid of the whole heart as the origin. The direction from the tricuspid
valve centroid to the mitral valve centroid was defined as the X-axis, the vector from the left ventricle
centroid to the apex as the Y-axis, and the cross product of the X-axis and Y-axis direction vectors as
the Z-axis. Consequently, for the estimation of heart size distribution, it suffices to collect statistics
along the X, Y, and Z axes.

Statistical analysis revealed that, for the training set, the mean minimum value on the X-axis is
−58.67mm with a standard deviation of 5.94mm, and the mean maximum value is 50.86mm with
a standard deviation of 5.08mm. The mean minimum value on the Y-axis is −80.84mm with a
standard deviation of 7.61mm, and the mean maximum value is 64.98mm with a standard deviation
of 5.96mm. The mean minimum value on the Z-axis is −43.02mm with a standard deviation of
4.75mm, and the mean maximum value is 54.68mm with a standard deviation of 6.17mm. For
the test set, the mean minimum value on the X-axis is −59.58mm with a standard deviation of
6.49mm, and the mean maximum value is 51.23mm with a standard deviation of 5.27mm. The
mean minimum value on the Y-axis is −81.59mm with a standard deviation of 8.23mm, and the
mean maximum value is 64.92mm with a standard deviation of 6.12mm. The mean minimum value
on the Z-axis is −43.59mm with a standard deviation of 5.09mm, and the mean maximum value is
55.15mm with a standard deviation of 6.25mm.

The aforementioned data indicate that the distributions of the training and test sets are consistent.
A more detailed visualization of the width statistics for each axis of the heart is provided in the
following figure.
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Figure 8: The histogram of the width distribution along each axis.

B HOW CAN THIS MODEL BE APPLIED TO CARDIAC ULTRASOUND?

B.1 PAIRED DATA TESTING OF ULTRASOUND AND CTA

This model is used for generating three-dimensional structures from two-dimensional echocardiog-
raphy, with the aim of inferring three-dimensional structures from two dimensions and performing
sectional localization and guidance of two-dimensional echocardiography. The way to complete this
function is not only based on contour point cloud completion. Using grayscale direct conversion is
one method, but in previous experience, such methods were often limited by the data quality of sim-
ulated data and prone to mode collapse during real data testing. Therefore, some people have trained
non paired data based on the CycleGAN approach, using latent spatial transformation to complete
the conversion between ultrasound videos and cardiac grids. However, the performance of the above
methods is limited and comprehensive biomarker performance testing has not been conducted.

We believe that there are several aspects of error between cardiac ultrasound and three-dimensional
shape conversion. Firstly, the low signal-to-noise ratio of ultrasound makes it difficult for the model
to accurately capture the shape edge patterns contained in ultrasound images. Secondly, the ac-
curacy of converting two-dimensional shape edge patterns into three-dimensional spatial structures
is limited. Using a network architecture to overcome two sources of error may not be accurate
enough. The first source of error we will propose in another study is the Ultrasound Cardiac Whole
Structure Segmentation Network (unpublished). This article aims to test the error situation of the
two-dimensional to three-dimensional process and try to solve the second source of error as much
as possible.

The testing process is divided into several aspects. On the one hand, the output should accurately
reflect the properties of the ultrasound. On the other hand, the output should match the true three-
dimensional shape of the patient’s heart, that is, consistent with the structural information reflected
by CTA. Therefore, we additionally collected parasternal long axis section ultrasound and CTA
(from different hospitals) from 11 patients, calculated the left ventricular width at the end of ul-
trasound systole (US LVIDs, us2dlv), left ventricular width at the end of CTA systole 4-chamber
view (CTA LVIDs, cta2dlv), left ventricular volume at the end of CTA systole (gt3dlv), and the
correlation between the three-dimensional left ventricular volume (pred3dlv) completed by the ul-
trasound segmentation model in this article. The ultrasound segmentation model mentioned here is
temporarily based on MTANet. It can be seen that in the three-dimensional structure inferred by this
method, the Pearson correlation between left ventricular volume and the corresponding CTA’s true
left ventricular volume is high (0.69, p=0.018), and the Pearson correlation between right ventricular
volume and the corresponding CTA’s true right ventricular volume is high (0.82, p=0.0021).

B.2 ULTRASOUND VIDEO PREDICTION OF 3D BIOMARKERS

In addition to accurately predicting three-dimensional structures using 2D ultrasound, another ma-
jor clinical application of this model is to obtain non radiative and high-resolution 3D biomarkers.
For CTA, special gating settings are required to control the radiation dose from end systolic to end
diastolic to achieve multi frame 3D data acquisition, and usually only end systolic and end diastolic
phases are collected or used for coronary observation. Collecting more than 10 CTA body data for
one cardiac cycle is not a cost-effective and common practice. In contrast, two-dimensional echocar-
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Figure 9: The correlation between ultrasound end systolic left ventricular width (US LVIDs, us2dlv),
CTA end systolic 4-chamber view left ventricular width (CTA LVIDs, cta2dlv), CTA end systolic
left ventricular volume (gt3dlv), and 3D left ventricular volume (pred3dlv) completed using the
model in this article after ultrasound segmentation

diography has higher temporal resolution, sufficient spatial resolution, and no radiation. This work is
directly based on the contour data of two-dimensional echocardiography to obtain cardiac structures,
which may greatly increase the reserve of cardiac structural data, help expand the available data and
refine the temporal resolution for structural heart disease research, and accelerate the research pro-
cess of structural heart disease. Here is an example of frame by frame synchronous inference of an
ultrasound video. The curve below the image shows the change in left ventricular volume.

The segmentation and structural inference effects of five time points in a cardiac cycle are shown
above, and the corresponding time points are marked in the curve graph. The segmentation result
is based on MTANet. It can be seen that the three-dimensional structure of the heart derived is
basically synchronized with the changes in left ventricular volume and two-dimensional ultrasound.
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Figure 10: The change curve of left ventricular volume and the segmentation and structural inference
effect at five time points during a diastolic process.

Figure 11: The trend of loss value change on the validation set within 200 epochs during models
training.
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