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Abstract

Large Language Models (LLMs) are increas-001
ingly used in tasks requiring interpretive and002
inferential accuracy. In this paper, we introduce003
ExpliCa, a new dataset for evaluating LLMs in004
explicit causal reasoning. ExpliCa uniquely in-005
tegrates both causal and temporal relations pre-006
sented in different linguistic orders and explic-007
itly expressed by linguistic connectives. The008
dataset is enriched with crowdsourced human009
acceptability ratings. We tested LLMs on Ex-010
pliCa through prompting and perplexity-based011
metrics. We assessed seven commercial and012
open-source LLMs, revealing that even top013
models struggle to reach 0.80 accuracy. In-014
terestingly, models tend to confound temporal015
relations with causal ones, and their perfor-016
mance is also strongly influenced by the lin-017
guistic order of the events. Finally, perplexity-018
based scores and prompting performance are019
differently affected by model size.020

1 Introduction021

Understanding cause-effect relationships is one of022

the hallmarks of human cognition (Pearl, 2009).023

The question of whether Large Language Mod-024

els (LLMs) truly comprehend causal relationships025

in natural language texts, or merely perform as026

‘stochastic parrots’ (Bender et al., 2021) by repli-027

cating statistical associations in their pretraining028

data, remains a topic of debate (Zečević et al., 2023;029

Merrill et al., 2024). This question is crucial for030

the application of LLMs in domains that demand031

interpretive and inferential accuracy. The recent032

growth in causal research and benchmarking high-033

lights the fundamental need for more reliable and034

interpretable models (Chen et al., 2024). LLMs035

should be able to interpret not only cause-effect036

relations but also the relations between causal and037

temporal aspects (Ning et al. (2018) as an example),038

which are often connected and overlapping (e.g.,039

typically an effect temporally follows its cause).040

A common task for evaluating causal reasoning 041

skills is Pairwise Causal Discovery (PCD), which 042

focuses on determining the existence of a causal 043

relation between two events and, if so, establishing 044

which event serves as the cause and which one 045

as the effect (Gao et al., 2023; Wan et al., 2024). 046

However, this formulation does not directly take 047

into account the tight bound between the cause- 048

effect and the before-after relationships. 049

In this paper, we present ExpliCa, a dataset de- 050

signed to evaluate LLMs in commonsense causal 051

reasoning through PCD tasks. Our formulation of 052

the PCD task for ExpliCa allows us to take into 053

account also the entanglement of causal and tem- 054

poral relations between events. This is achieved by 055

considering sentence pairs and connective words 056

that overtly express these relationships. In ExpliCa, 057

each sentence describes an event (e.g. Martina 058

has less chance of getting the flu and Martina has 059

been vaccinated), and each connective word ex- 060

plicitly indicates either a causal relationship (i.e., 061

so and because) or a temporal one (i.e., before and 062

after). We collected acceptability ratings for each 063

connective word with respect to each sentence pair, 064

to account for both causal and temporal relations. 065

To our knowledge, ExpliCa is the first dataset con- 066

taining both causal and temporal explicit relations 067

between events annotated by native speakers via 068

crowdsourcing, rather than expert annotators. 069

We conducted a nuanced evaluation of a group of 070

LLMs on ExpliCa. Its goal is to shed light on sev- 071

eral key aspects. First, we aim to estimate whether 072

and to what extent LLMs can model and distin- 073

guish causal and temporal relations, similarly to 074

humans. Second, we want to assess potential dif- 075

ferences between LLMs’ competence and perfor- 076

mance in our PCD task. Recent studies (Hu and 077

Levy, 2023; Kauf et al., 2024) identified a discrep- 078

ancy between the linguistic competence of models, 079

as measured by log-probability, and the accuracy 080

of their responses elicited via prompting, with the 081
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Figure 1: An overview of the contributions of this paper. On the left, the ExpliCa dataset, annotated with human
acceptability ratings. On the right, our evaluation framework which leverages LLMs through PPL and prompting.

latter method underestimating the models’ actual082

linguistic knowledge. Finally, we want to study083

these aspects across models of varying scales.084

Contributions. The primary contributions of this085

paper are illustrated in Fig. 1 and can be summa-086

rized as follows:087

• we introduce the ExpliCa dataset (Sec. 3),088

which is syntactically and semantically cu-089

rated, ensuring high-quality data and lexically090

balanced in terms of word frequency, making091

it suitable for comprehensive analyses. Ex-092

pliCa has also been extensively annotated by093

human evaluators, providing a robust founda-094

tion for testing various models;095

• we offer a framework for analyzing LLMs’096

ability to model causal and temporal relations.097

Our approach systematically targets models’098

competence (via perplexity) and performance099

(via prompting), measured across different for-100

mulations of the task (Sec. 4);101

• we present a comprehensive evaluation of102

seven LLMs in total, comprising both com-103

mercial and open models (Sec. 5).1104

2 Related Work105

The study of causality and its linguistic expressions106

garnered renewed and intensified interest, partic-107

ularly in the context of evaluating the reasoning108

abilities of LLMs. Recent advancements led to109

the development of several specialized datasets,110

aimed at testing the causal reasoning of LLMs111

through hypothetical scenarios. Notable examples112

1Data and code at: https://anonymous.4open.
science/r/ExpliCa-6473/.

include CLadder (Jin et al., 2023), which assesses 113

causal reasoning using questions based on formal 114

rules; CausalBench (Wang, 2024), used for tasks re- 115

lated to mathematics, coding, and textual data; and 116

CausalNet (Ashwani et al., 2024), which covers 117

both causal and counterfactual questions. Unlike 118

ExpliCa, these datasets focus on implicit notions 119

of causality, which are not overtly expressed in the 120

linguistic structures of the text. 121

To evaluate LLMs, several datasets have also 122

been annotated with explicit causal relationships 123

between events in texts. These range from multi- 124

lingual educational content, as in MECI (Lai et al., 125

2022), or financial news (Mariko et al., 2022), 126

to more diverse sources, such as CREST (Hos- 127

seini et al., 2021). Although these datasets do 128

not explore the temporal dimensions of causal- 129

ity, many causal annotation schemas are derived 130

from datasets that do annotate temporal relation- 131

ships between events (e.g., BECauSE, Dunietz et al. 132

2017) or vice-versa (e.g., Temporal and Causal 133

Reasoning, Ning et al. 2018), including those from 134

news sources (e.g., Causal Time Bank, Mirza et al. 135

2014; Event StoryLine Corpus, Caselli and Vossen 136

2017), and from short commonsense narratives 137

(e.g., CaTeRS, Mostafazadeh et al. 2016). How- 138

ever, such datasets do not leverage crowdsourcing 139

annotation by native speakers for both causal and 140

temporal relations as in ExpliCa. In our dataset, the 141

ground truth is given by English native speakers’ 142

annotation collected via crowdsourcing, with the 143

aim of addressing the complexity of distinguish- 144

ing truly causal from merely temporal relations be- 145

tween events. A key challenge in evaluating LLMs 146

using datasets with direct textual annotations of 147
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causal relations is, in fact, the inherent ambiguity148

of their expression in natural language. For in-149

stance, linguistic markers such as and can signal150

either causality or temporality, depending on the151

context. This ambiguity can limit the effectiveness152

of such datasets in assessing causal reasoning.153

To overcome this limitation, ExpliCa has chosen154

a more controlled approach to causality evaluation155

by conducting a pairwise analysis of events, each156

expressed by a single sentence. The same strategy157

has been adopted in the COPA dataset (Roemmele158

et al., 2011), where causality detection is framed as159

a task where the system must choose the most plau-160

sible alternative between two options. Similarly,161

e-CARE (Explainable Causal Reasoning, Du et al.162

2022) includes over 21, 000 multiple-choice ques-163

tions focused on causal reasoning, accompanied164

by conceptual explanations that clarify the under-165

lying causal logic of each question. While these166

two datasets present instances of implicit causality,167

the BIG-Bench (Beyond the Imitation Game, Sri-168

vastava et al. 2022) initiative also models explicit169

causal reasoning. In this framework, the system170

must select the most plausible causal relationship171

between A because B and B because A. Similarly,172

in ExpliCa pairs of sentences from e-CARE and173

BIG-bench are joined in both directions (A > B;174

B > A), but using both temporal and causal con-175

nectives. This allows us to carefully analyze the176

models’ ability to discriminate between the related177

and yet very different relations of temporal prece-178

dence and causality. Furthermore, other linguistic179

cues, such as anaphoric references, have been re-180

moved. This design ensures that models are un-181

likely to rely on surface features, preventing the182

correct interpretation of causal markers from being183

inferred simply from the syntactic context.184

Finally, it is worth mentioning that some of the185

above datasets have become part of a broader eval-186

uation framework called Causal evaluation of Lan-187

guage Models (CaLM, Chen et al. 2024). CaLM188

serves as a comprehensive benchmark for assessing189

LLMs’ causal reasoning capabilities. It comprises190

126, 334 data samples and provides a foundational191

taxonomy of four modules: causal target, adap-192

tation, metric, and error analysis. In relation to193

causal discovery, this framework addresses issues194

distinct from those targeted by ExpliCa, and it fo-195

cuses solely on the analysis of LLM-generated re-196

sponses. By contrast, in our work, we evaluated197

both the model outputs elicited via prompts, and198

the internal knowledge of LLMs, assessed through199

perplexity measurements. 200

3 The ExpliCa Dataset 201

ExpliCa2 is designed to evaluate LLMs on com- 202

monsense causal reasoning through PCD tasks. It 203

is composed of sentence pairs, where each sen- 204

tence describes an event. Sentence pairs were in 205

part adapted from sentences in existing datasets and 206

in part manually crafted. Approximately a third of 207

the sentence pairs were based on sentences from 208

DeScript (Wanzare et al., 2016), e-Care (Du et al., 209

2022), and BIG-Bench (Srivastava et al., 2022).3 210

ExpliCa includes 600 English sentence pairs, 211

selected to be equally divided into three subsets: 212

i.) CAUSAL subset, where the relationship is most 213

likely causal (and possibly also temporal); ii.) TEM- 214

PORAL subset where the relation is expected to be 215

only temporal; iii.) UNRELATED subset, including 216

sentences that are thematically related but neither 217

causally nor temporally.4 Sentence pairs are linked 218

through words that explicitly signal either a causal 219

or temporal relationship. These connectives act 220

as linguistic cues, enabling a causal or temporal 221

interpretation of events based on the compositional 222

meaning of the sentences. Other than the TYPE 223

of the relation intercurring among the events, the 224

connectives specify the ORDER of the events in the 225

relations, which can be ICONIC — where the effect 226

follows the cause and events are presented in their 227

chronological order — or ANTI-ICONIC, where the 228

order is reversed. We join each sentence pair with 229

each connective, also considering the reverse order. 230

This way, we obtained 4, 800 unique items (600 231

pairs × 4 connectives × 2 orders). 232

An English native speaker examined a sample of 233

the dataset to validate if the connectives correctly 234

express the nature of the relation and the order be- 235

tween the events. We detail the connectives below: 236

• then - indicates a temporal relation in an 237

iconic order: The first event precedes the sec- 238

ond event; 239

• after - indicates a temporal relation in an anti- 240

iconic order: The first event follows the sec- 241

ond event; 242

• so - indicates a causal relation in an iconic 243

order: The first event causes the second event; 244

2Release license details are in App. A.
3Cf. Sec. 2 for a brief description of these datasets.
4Note that the division was done by the authors during the

creation of the dataset, but the final annotations provided as
gold standard are based on the human ratings from the survey.
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• because - indicates a causal relation in an anti-245

iconic order: The first event is a consequence246

of the second event.247

Crucially, the connectives serve as the only lin-248

guistic cue for a causal or temporal interpretation of249

events. Other potential cues, such as causal verbs250

(i.e., cause, result, produce, affect, etc.) were not251

included. Moreover, to avoid biasing humans’ and252

models’ decisions, anaphoric pronouns were not253

used. For example, instead of The coffee was bitter,254

The child spit it out, we overtly expressed the ob-255

ject in the second sentence: The coffee was bitter,256

The child spit the coffee out.257

Then we applied a rigorous procedure to enrich,258

validate, and refine the dataset. First, we validated259

the dataset assuring that the statistical association260

between words in sentence pairs does not signif-261

icantly differ across the three subsets (i.e., UN-262

RELATED, TEMPORAL, CAUSAL). This validation263

was performed using Mutual Information (Sec. 3.1).264

Hence, we enriched each item with human accept-265

ability ratings collected via crowdsourcing, and we266

set a threshold to the ratings for unrelated ones267

(Sec. 3.2). Finally, we checked for frequency bi-268

ases in the dataset by analyzing the triplets {1st269

sentence verb, connective, 2nd sentence verb} in270

enTenTen (Jakubíček et al., 2013)(Sec. 3.3).271

3.1 Lexical Association Bias272

If unrelated sentence pairs presented very different273

lexical elements compared to causally or tempo-274

rally related ones, this might affect a LLM behav-275

ior, and lead to biased results. In order to address276

this aspect, we computed the statical association277

strength via Pointwise Mutual Information (PMI)278

and Local Mutual Information (LMI) (Church and279

Hanks, 1990; Evert, 2004) between pairs of lex-280

emes (nouns, verbs, or adjectives),5 one belonging281

to the first sentence and the other to the second282

sentence. MI scores were computed on UkWaC283

(Ferraresi et al., 2008). We averaged the MI scores284

of all the possible pairs of lexemes from a single285

sentence pair to obtain an item-level MI score. We286

applied the Wilcoxon test to check if there were287

statistically significant differences in the item-level-288

MI scores across the CAUSAL, TEMPORAL, and289

UNRELATED groups. We found that the statistical290

association of the sentence pairs in the three groups291

was not significantly different, both for LMI (W:292

41, 576, p-value: 0.4312) and PMI (W: 38, 318, p-293

5We used Stanza (Qi et al., 2020) for PoS-tagging.

Table 1: The ground truth of ExpliCa according to
human acceptability ratings.

Rel. Type Rel. Order Connective # Sentences

Temporal Iconic Then 1,040
Temporal Anti-iconic After 656

Causal Iconic So 820
Causal Anti-iconic Because 876

Unrelated - - 1,408

Figure 2: Number of sentence pairs (categorized by
relation TYPE and ORDER) in each frequency bin.

value: 0.4009). Thus, we can conclude that our 294

dataset is free from lexical association biases. 295

3.2 Human Ratings 296

Each of the 4, 800 items in ExpliCa was annotated 297

via crowdsourcing by 15 native English speakers.6 298

We asked the participants to assess the acceptability 299

of each item by giving a rating from 1 to 10. The 300

ratings were then averaged for each item, obtaining 301

the average acceptability rating for each connective 302

in each sentence pair, in both event directions. We 303

assigned to each sentence pair a relation TYPE and 304

a relation ORDER label based on the connective 305

deemed more acceptable for humans. For exam- 306

ple, if then obtained the highest average rating for 307

a sentence pair (in a specific direction), this is la- 308

beled as TEMPORAL TYPE with an ICONIC ORDER. 309

Sentence pairs for which no connective had a rat- 310

ing higher than 6 and with mean rating below 5 311

are labeled UNRELATED. Tab. 1 summarizes the 312

cardinality of the different classes in the dataset. 313

3.3 Frequency Bias 314

The frequency of linguistic constructions affects 315

the performances of LLMs (McCoy et al., 2023). 316

For example, if the construction {listen, after, turn 317

up} were more frequent than {listen, then, turn up}, 318

a model might be biased towards the former. 319

6See App. B for details on the annotation procedure.
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To control for such frequency biases in ExpliCa,320

we proceeded as follows. We PoS-tagged and lem-321

matized the sentence pairs with SpaCy.7 Then, we322

extracted the verb from each sentence, and the con-323

nective used to join them. For copulative verbs, we324

also considered the noun or the adjective following325

the copula. We retained particles in phrasal verbs326

(e.g., turn up), and in sentences containing multiple327

verbs (e.g., with embedded clauses), we considered328

up to two verbs, prioritizing those most salient to329

the sentence meaning (e.g., Michele chose the pizza330

he wanted to eat [want, eat]). Then, we used the331

SketchEngine APIs8 to query the enTenTen21 cor-332

pus to compute the co-occurrence of the elements333

in the triplet {1st sentence verb, connective, 2nd334

sentence verb}. We divided the co-occurrences into335

frequency bins based on quartile ranges: RARE,336

UNCOMMON, COMMON, and FREQUENT. Fig. 2337

shows the number of sentence pairs for each bin.338

While there are differences between classes, their339

distribution on the frequency spectrum shows no340

significant trends.9 This suggests that our dataset341

is relatively free from frequency biases.342

4 Experiments343

We evaluated models on ExpliCa using human344

ratings as ground truth across four tasks: three345

prompting tasks, and one perplexity evaluation.346

Prompting experiments were conducted under vari-347

ous settings, including few-shot and zero-shot se-348

tups, and employing either greedy search10 or the349

Outlines framework (Willard and Louf, 2023) for350

generating answers. We used accuracy as eval-351

uation metric. To study the effect of the model352

parameter scale, we then compared several models353

of the Qwen2.5 family on the acceptability rating354

task and perplexity. Finally, we compared the mod-355

els’ rating distributions in the acceptability tasks to356

the human ones, and assessed their correlation.357

Experiments were ran on a single Nvidia A100358

80GB GPU, for around 120 GPU hours. OpenAI359

models were queried via the proprietary API for an360

estimate of 7 GPU hours.361

Prompting Evaluation. This aimed to assess362

LLMs’ generation abilities and analyze how perfor-363

mance varies based on task modeling. Specifically,364

we defined three tasks:365

7spacy.io, English model en_core_web_sm.
8https://www.sketchengine.eu/apidoc/
9Sentence count for each frequency bin in Tab. 3, App. C.

10More details on answer cleaning in App. D.

i.) acceptability ratings - we adopted the same 366

design used in the survey with human participants 367

(Sec. 3.2). Items for which the model failed to 368

provide a rating were assigned a score of −1; 369

ii.) cloze test - given a test item consisting of two 370

sentences linked by a connective, we masked the 371

connective and asked the model to choose the most 372

suitable one out of a list of candidates. An out-of- 373

list answer was considered a miss; 374

iii.) multiple-choice task - the model received a 375

sentence pair with the four connectives marked as 376

A, B, C, D, and tasked to return the letter corre- 377

sponding to the appropriate connective. Failure to 378

provide one of the options was considered a miss. 379

We collected data from a single prompt per task, 380

and each underwent a selection process. We drafted 381

a first prompt, and then used ChatGPT to obtain 382

four more variants of it.11 We averaged the per- 383

plexity of all the open models on each prompt and 384

chose the one with the lowest average perplexity. 385

We randomized the order of few-shot examples, 386

options to choose from, and correct answers during 387

inference. In the few-shot scenario, the models saw 388

one example for each connective.12 389

Perplexity Evaluation. We computed the per- 390

plexity (PPL) of each item in the dataset, and 391

grouped those corresponding to the same sentence 392

pair. Then, we chose the connective from the item 393

with the lowest PPL. We derived from the con- 394

nective the TYPE and ORDER of the relation and 395

computed models’ accuracy by comparing these 396

results with the human ground truth obtained with 397

crowdsourcing annotation. We call this accuracy 398

as Accuracy Perplexity Score (APS). 399

4.1 Models 400

We selected 7 generative LLMs. Specifically, we 401

selected two open-weights models (Mistral-7B- 402

Instruct-v0.3 and falcon-7b-instruct), three par- 403

tially open models (Meta-Llama-3.1-8B-Instruct, 404

gemma-2-9b-it, and Qwen2.5-7B-Instruct), and 405

two commercial models, gpt4o and gpt4o-mini. 406

Perplexity evaluation was not performed on com- 407

mercial models as it is not permitted through the 408

API. We used Qwen2.5 instruct models of differ- 409

ent sizes (from 0.5B to 32B parameters) for analyz- 410

ing the impact of model scale.13 411

11https://chatgpt.com/, used November 2024.
12Selected prompts and perplexity scores are in App. E.
13More details on models in App. F.
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Figure 3: Average models’ accuracy (on prompting
tasks and perplexity) obtained from all the tasks on
causal and temporal related sentence pairs. The numbers
on top of each bar represent the standard deviation.

5 Results and Discussion412

We carried out an in-depth analysis of several inter-413

esting aspects emerging from the experiments, as414

outlined in the following.415

Core results are summarized in Fig. 3,14 which416

shows the average accuracy across all three prompt-417

ing tasks for a specific model in a specific setting418

(e.g., Outlines in zero-shot). Violet bars represent419

the APS (a single numerical value) for each open420

model. These results are complemented by Tab. 2,421

which compares performances across prompting422

tasks, aggregated by model type.423

The main trends observed are: i.) performance424

variability is high among models of the same scale425

in prompting tasks, despite similar APSs across426

open models; ii.) GPT4o outperforms all models,427

but its mini variant does not follow this trend and428

is still far from human performance; iii.) accuracy429

standard deviation shows that most open models ex-430

hibit inconsistent results across tasks, particularly431

with greedy search (Sec. 5.1); iv.) prompting per-432

formance is systematically lower than competence-433

level APSs in open models (Sec. 5.2).434

5.1 Modeling PCD with Prompting435

Tab. 2 shows that, on average, PCD performed best436

when responses were framed using Outlines in a437

few-shot setting (0.40 overall, 0.61 for GPT mod-438

els). However, the highest task-specific accuracy439

was achieved in the acceptability rating task under440

a zero-shot setting with greedy search (0.49).441

Moreover, the Outlines framework proved to be442

beneficial for all models on the multiple-choice443

14Detailed results are shown in Tab. 5, App. G.

Table 2: Models’ accuracy and SD across prompting
tasks, reported for i.) all models, ii.) open models, and
iii.) GPT variants. The overall best average is in bold,
the top few/zero-shot result is underlined and bold,
and the best per task is underlined.

Task Greedy Search Outlines

All Open GPTs All Open GPTs

Few-shot
Acc. 0.46±0.2 0.35±0.1 0.75±0.0 0.38±0.2 0.25±0.1 0.71±0.1

Cloze 0.42±0.2 0.34±0.2 0.62±0.1 0.43±0.2 0.35±0.1 0.62±0.1

M.C. 0.24±0.2 0.22±0.2 0.29±0.3 0.38±0.2 0.34±0.1 0.50±0.2

Avg 0.37±0.2 0.30±0.2 0.55±0.3 0.40±0.2 0.31±0.1 0.61±0.2

Zero-shot
Acc. 0.49±0.2 0.43±0.2 0.66±0.0 0.40±0.2 0.32±0.1 0.62±0.2

Cloze 0.38±0.1 0.32±0.1 0.54±0.0 0.40±0.1 0.35±0.1 0.53±0.0

M.C. 0.21±0.2 0.18±0.2 0.27±0.3 0.38±0.1 0.34±0.1 0.46±0.2

Avg 0.36±0.2 0.31±0.2 0.49±0.2 0.39±0.2 0.34±0.1 0.54±0.2

task. Conversely, for the cloze test and accept- 444

ability rating task, performances either remained 445

roughly the same or decreased substantially for 446

both open models and GPTs. Strikingly, the top 447

average accuracy of 0.61 in Tab. 2 still reveals a 448

strong gap with human data. 449

Fig. 3 shows that each model performs best un- 450

der different settings. Each of GPT4o, Gemma, and 451

Qwen achieved the highest mean accuracy (0.72, 452

0.53, and 0.51, respectively) in a distinct setup, sur- 453

passing GPT4o-mini (0.50). Standard deviation 454

analysis (sd) indicates that task selection signif- 455

icantly affects smaller models’ performance, es- 456

pecially with greedy search (sd 0.2 as in Tab. 2). 457

Notably, GPT4o-mini exhibits a much wider per- 458

formance range across both few-shot and zero-shot 459

settings. 460

5.2 Modelling PCD with Perplexity 461

The APS results of the open models are shown in 462

Fig. 3. The scores obtained by relying solely on 463

perplexity are significantly higher (0.63 overall av- 464

erage) compared to those achieved in the prompting 465

tasks.15 Although Falcon performs poorly in the 466

latter, it is the model with the best APS (0.66). By 467

leveraging perplexity, the lowest APS too, reached 468

by Qwen with 0.59, surpasses the other open mod- 469

els in prompting tasks and GPT4o-mini as well. 470

Although this result does not match GPT4o per- 471

formances, it seems to confirm that models’ com- 472

petence about causal relations encoded in their 473

probabilistic predictions is more accurate than their 474

prompting performances (Hu and Levy, 2023). 475

From these analyses we conclude that ExpliCa 476

15Perplexity values are in Tab. 8, App. G.
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Figure 4: Accuracy of models by relation TYPE and
ORDER. APS stands for Accuracy Perplexity score.

is a highly challenging dataset for explicit causal477

reasoning evaluation. State-of-the-art LLMs like478

GPT4o are not able to fully solve the dataset, while479

smaller variants perform worse, exhibiting high480

variability depending on the prompt and generation481

strategy. Notably, when evaluated via APS, small482

open models can sometimes outperform larger483

(commercial) models.484

5.3 In-depth Analysis on ExpliCa485

The ExpliCa design allows us to provide a more in486

depth analysis of causal reasoning and LLMs.487

Relations’ type and order. First, we focus on488

the relation TYPE between the events expressed in489

each dataset item, and their ORDER. We report490

results on the acceptability rating prompting task,491

with zero-shot and greedy search (i.e., where the492

models performed best overall).16 We specifically493

focus on GPT4o and two open models, namely494

Gemma and Falcon, with the latter achieving the495

best APS. In Fig. 4, we see that models perform496

best on the CAUSAL relations in ICONIC order, with497

the exception of Falcon.17 Worse performances are498

obtained for CAUSAL ANTI-ICONIC and TEMPO-499

RAL ICONIC, with the latter often being mistaken500

for CAUSAL ICONIC.501

An interesting pattern emerges by comparing502

APSs and Accuracy on acceptability ratings. APSs503

for a model are always higher than the respective ac-504

ceptability ratings’ accuracy, except for TEMPORAL505

ANTI-ICONIC items.18 However, by observing the506

models’ behavior,19 we saw that both Gemma and507

Falcon tend to favor the TEMPORAL ANTI-ICONIC508

connective despite showing lower perplexity for509

16All the models’ results, in all settings, are in App. G.
17Values are shown in Tab. 9, App. G.
18As for most of the models (see Tab. 8, App. G).
19See App. H, Fig. 12 for the confusion matrices.

Figure 5: Distribution of acceptability ratings for hu-
mans and Gpt4o and Gemma, and Falcon’s normalized
perplexity.

the connective expressing a CAUSAL ICONIC re- 510

lation (i.e., so). The performances of GPT4o do 511

not seem to suffer the same biases toward specific 512

cases. Nevertheless, intra-cases differences are up 513

to 26%. 514

Overall, results show that open models may be 515

rather inconsistent in how they address causal and 516

temporal relations and are highly influenced by 517

how the task is formulated (i.e., by using prompt- 518

ing or perplexity-based scores). Moreover, while 519

LLMs are quite good at identifying causally-related 520

events, they tend to confound temporal relations 521

with causal ones, and their performance is also 522

strongly influenced by the linguistic order of 523

presentations of the events. This suggests that, 524

compared to humans, they have a less general 525

and abstract knowledge of causal (and tempo- 526

ral) relations. 527

Correlation and distribution variation. We 528

compared human ratings with model-generated 529

ones in terms of their distribution and correlation. 530

We show a comparison of models acceptability rat- 531

ings with humans’ for the causal-temporal and un- 532

related subsets in Fig. 5.20 We consider ratings of 533

GPT4o and Gemma,21 and the (normalized) per- 534

plexity scores for Falcon, as it obtained the best 535

APSs. A noticeable difference exists between hu- 536

man ratings of CAUSAL and TEMPORAL items vs. 537

UNRELATED and model scores. 538

Fig. 6 shows Spearman correlation computed 539

among human ratings and models’ acceptability rat- 540

ings collected in zero-shot scenario.22 We observed 541

20Answers without a rating are not shown in the distribution.
21Results for the zero-shot prompt with greedy search.

These are the models with the highest accuracy for this task.
22Individual results in Tab. 13, App. I.
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Figure 6: Spearman correlation between humans’ rat-
ings and models’ results. Ratings from the zero-shot
task, both with greedy (_gr) and Outlines (_out).

that even though GPT4o, Gemma, and Qwen have542

a strong correlation with human ratings, this greatly543

varies according to the items’ condition. In particu-544

lar, the model scores for TEMPORAL ANTI-ICONIC545

and UNRELATED items have a much lower correla-546

tion with human ratings.547

Size Effect. We analyzed how the model size af-548

fects performance on PCD. We selected the Qwen549

model family, available in a wide range of sizes,550

and used the acceptability rating and perplexity551

tasks as a testbed.23 Fig. 7 shows that Qwen’s per-552

formance and APS improve with model size, except553

for a slight drop for the latter in the largest variant.554

Nonetheless, the improvement rates are quite differ-555

ent. Performances seem to linearly scale with size,556

whereas the APS growth curve is flatter and even-557

tually plateaus. The initial APS is markedly higher558

(2x) than the respective accuracy; accuracy and559

APS are near equal at the 14B mark; the accuracy560

of the 32B keeps improving while the APS is stale.561

A similar trend holds true also for each relation,24562

despite showing a higher variability. For exam-563

ple, the 0.5B variant is quite proficient with ANTI-564

ICONIC relations but almost incapable of modelling565

ICONIC ones. Model’s scale seem to correlate with566

less differences in performances among relations.567

This might suggest that size mainly affects the568

model’s performance on prompting tasks, rather569

than their competence about causal and temporal570

relations. These are likely to be already encoded571

– though partially, as observed above – in smaller572

23Few-shot and greedy search setup, i.e. the best for Qwen.
24Results for each are shown in App. J.

Figure 7: Results on Accuracy for Acceptability Ratings
and APS for Qwen models of increasing size.

models, although they lack the necessary scale to 573

properly use such competence in generation. 574

6 Conclusion and Future Work 575

In this paper, we introduced ExpliCa, a dataset 576

designed to evaluate LLMs on PCD tasks with the 577

aim to assess their reasoning abilities on explicitly 578

expressed relations. ExpliCa is the first dataset 579

to incorporate both causal and temporal relations 580

between events, with acceptability ratings provided 581

by native speakers via crowdsourcing. 582

Results indicate that ExpliCa is particularly chal- 583

lenging, even for commercial models like GPT4o- 584

mini, which is outperformed by open models when 585

leveraging probabilistic scores, and GPT4o, which 586

struggles to reach 0.80 accuracy. We observed that 587

LLMs exhibit variable performance according to 588

both the evaluation setup and the relation TYPE 589

and ORDER. The models’ rating distribution do not 590

approximate the humans’ ratings, especially for cer- 591

tain types of relations and linguistic orders. More- 592

over, our results suggest that the competence on 593

causal relations measured with perplexity is signifi- 594

cantly more accurate than prompting performance 595

(especially in smaller models). 596

For future works, we aim to further explore the 597

effect of model size on different model families, 598

and we plan to adopt ExpliCa also to investigate 599

how models interpret implicit causality. 600

So far, the presented results reveal that, despite 601

their increasing size, the knowledge of causal re- 602

lations is still suboptimal in LLMs, which also 603

show a strong tendency to confound temporal rela- 604

tions with causal ones, compounded with a limited 605

abstraction from the surface linguistic presentation 606

order of the events. e can conclude that, although 607

LLMs have undoubtedly progressed along the ‘lad- 608

der of causation’ (Pearl, 2009), they have still sev- 609

eral steps to climb. 610
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7 Limitations611

This study has several limitations that should be612

acknowledged. The prompts used across different613

models were not specifically optimized for each614

of them. However, this decision was necessary to615

maintain the feasibility of our experiments and en-616

sure a fair comparative evaluation among all mod-617

els and tasks. Computational constraints played a618

significant role in shaping our methodology, influ-619

encing aspects such as batch size, model capacity,620

and the overall scope of the analysis. While we621

examined causal reasoning through various tasks,622

the selection of prompts, possible choices, and con-623

nectives represents only a subset of all potential624

analytical strategies. Additionally, the number of625

closed-source models included in the analysis was626

limited, and the dataset size was relatively small,627

further constraining the generalizability of the find-628

ings. Experiments on model scaling were confined629

to the Qwen model, where we observed that larger630

models tend to equalize performance on tasks and631

competence. However, this observation requires632

further validation to confirm that it is not influenced633

by factors such as the specific prompt or model634

used, which would bolster the robustness of our635

claims. Among the CAUSAL sentence pairs in Ex-636

pliCa, 50 are labeled as ‘socially challenging’, in-637

dicating content that touches on sensitive or poten-638

tially offensive topics such as religion, abortion, im-639

migration, gender identity, drug abuse, and bribery.640

We acknowledge that some sentences may be offen-641

sive to certain groups, but these themes were added642

to evaluate whether bias-mitigation strategies in643

LLMs would impact PCD performance. Due to644

space constraints, we plan to explore such aspects645

more in depth in future works. Finally, we acknowl-646

edge that we focused only on LLMs and we did647

not include the so-called Large Reasoning Models648

(LRM) like OpenAI o1 (OpenAI, 2024b) or the649

very recent DeepSeek-R1 (DeepSeek-AI, 2025),650

which may have an advantage in such a task. This651

choice was mainly due to financial constraints, but652

they will be explored in future works.653
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Table 3: Sentences count for each frequency bin across
different item TYPES and ORDERS.

Category Bin C. Ic. C. a.Ic. T. Ic. T. a.Ic Unrel.

Rare (0-4) 214 241 239 164 303
Uncommon (5-56.4) 244 244 295 174 282
Common (56.5-498) 173 205 272 169 380
Frequent (499-7M ) 189 186 234 149 443

Appendix 854

A Dataset License 855

The dataset is made publicly available under the 856

Creative Commons Attribution-NonCommercial- 857

ShareAlike 4.0 International (CC BY-NC-SA 4.0) 858

license, which allows redistribution, adaptation, 859

and reuse for non-commercial purposes, provided 860

proper attribution is given and derivative works are 861

shared under the same terms. However, the dataset 862

cannot be used for training artificial intelligence 863

models or other machine learning systems. 864

B Human Annotation 865

We collected acceptability ratings from human an- 866

notators for each of the 4800 items in ExpiCa. We 867

used the crowdsourcing platform Prolific25, which 868

ensures fair compensation for participants. For our 869

study, we recruited native English speakers born 870

and residing in the UK or USA. Each item was 871

examined by 15 participants. Prolific facilitated 872

the distribution of Google Forms, through which 873

participants provided formal consent to take part in 874

the study and received the following instructions: 875

Acceptable use of the connective

This survey aims to investigate the acceptability of sentences each describing
two events linked by the use of a temporal or causal connective among: “then”,
“after”, “because”, and “so”. You must rate on a scale from 1 to 10 how
acceptable the connective is to express the relation between the events in the
sentences. For example:

• Jude walked under the rain for an hour, so Jude got sick: Rating 10
(highly acceptable)

• Mary bought some flowers, because Jean went to the dentist: Rating 1
(not acceptable)

IMPORTANT: There are three check questions in the survey. You must answer
these check questions correctly to receive payment.
Read the following sentences, then rate each sentence by answering this ques-
tion: How acceptable is the sentence from 1 (unsuitable connective) to 10
(suitable connective)?

876

C Frequency Analysis 877

Tab. 3 reports the number of sentences for each fre- 878

quency bin computed on the enTenTen21 corpus. 879

The Table highlights a slight difference in the distri- 880

bution of UNRELATED items across the frequency 881

spectrum compared to CAUSAL and TEMPORAL 882

25https://www.prolific.com/
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Table 4: Perplexity of the models on five prompt variants
for each task.

Task Prompt Mistral Falcon Qwen Llama Gemma Avg

Accept. Rat.

0 9.99 23.2 14.7 13.74 18.85 16.10
1 12.23 24.38 21.76 16.14 32.39 21.38
2 15.59 25.05 14.37 17.7 38.81 22.30
3 12.81 29.52 20.89 20.09 31.34 22.93
4 14.62 29.86 18.25 17.81 30.62 22.23

Multiple-Choice

0 3.34 3.66 3.58 4.34 4.39 3.86
1 4.06 4.6 5.87 6.6 7.57 5.74
2 3.42 4.15 5.89 7.26 7.86 5.72
3 3.99 6.09 11.42 10.68 8.51 8.14
4 4.41 4.75 7.46 7.27 8.03 6.38

Cloze Test

0 13.41 15.52 20.41 14.2 21.38 16.98
1 9.03 12.42 24.07 20.05 19.98 17.11
2 9.87 12.06 16.64 13.39 15.02 13.40
3 12.72 13.91 21.18 21.34 23.73 18.58
4 13.52 14.93 17.65 12.13 14.95 14.64

items in both ICONIC and ANTI-ICONIC orders.883

This pattern was expected, as verbs in unrelated884

sentences tend to be higher-frequency common En-885

glish verbs. However, we account for their topical886

relatedness by measuring PMI and LMI among the887

lexemes in the sentence pairs.888

D Models Answer Cleaning889

In order to maximize the models’ accuracy in890

greedy search, we processed the models’ answers891

with regular expressions, to clean the returned text892

(e.g., from tags used to mark the end of the gener-893

ated text, spaces, tabulations, symbols, punctuation,894

and motivation of their choices).895

E Prompt Engineering896

The prompts used during our experiments were897

selected by computing models’ perplexity over five898

prompts per task, as described in Sec. 4. Tab. 4899

shows the perplexity score given by the models900

to each prompt variant in zero-shot setting. Then901

the prompts with the lower average perplexity for902

each task were selected. The selected prompts are903

reported in the boxes below in the few-shot setting.904

Acceptability Rating Prompt

Evaluate the acceptability of sentences that describe two events linked by
connectives: ’so’, ’because’, ’after’, and ’then’.
Rate each sentence on a scale from 1 to 10 based on how well the connective
expresses the relationship between the events.
Examples:

• So (effect): “Jude walked under the rain for an hour, so Jude got sick.”
(Rating: 10)

• Because (cause): “Mary bought some flowers, because Jean went to
the dentist.” (Rating: 1)

• After (preceding event): “The girl finished her homework, after the
girl put her books in the backpack.” (Rating: 1)

• Then (following event): “James took the phone, then James called
Clara.” (Rating: 10)

Sentence: <Sentence>
Rating:

905

Cloze test Prompt

Select the word that best describes the relationship between the events in these
two sentences.
Use this template: event in sentence 1 <word> event in sentence 2.
Choose from: [’thus’, ’then’, ’because’, ’after’].
Provide only one word, no explanation.
Examples:

• Sentence 1: “Jude walked under the rain for an hour.”
Sentence 2: “Jude got sick.”
Answer: “so”

• Sentence 1: “Mary bought some flowers.”
Sentence 2: “Mary wants to give a present to her mom.”
Answer: “because”

• Sentence 1: “The girl put her books in the backpack.”
Sentence 2: “The girl finished her homework.”
Answer: “after”

• Sentence 1: “James took the phone.”
Sentence 2: “James called Clara.”
Answer: “then”

Sentences:
• Sentence 1: “sentence_1”
• Sentence 2: “sentence_2”

Answer:

906

Multiple-choice Prompt

Task Description:
You are given two sentences, Sentence A and Sentence B, and a list of words.
Your task is to select the most appropriate word to connect the two sentences
logically and coherently. The chosen word should fit grammatically and contex-
tually.
Instructions:
1. Read Sentence A and Sentence B carefully.
2. Review the list of words provided.
3. Select the word that best connects the two sentences.
Format:
1. Sentence A: [Insert Sentence A here]
2. Sentence B: [Insert Sentence B here]
3. Words:

• A. [Insert word A here]
• B. [Insert word B here]
• C. [Insert word C here]
• D. [Insert word D here]

4. Answer: [Provide the letter of the correct word]
Examples:

• 1. Sentence A: “Jude walked under the rain for an hour.”
2. Sentence B: “Jude got sick.”
3. Words:

– A. then
– B. after
– C. because
– D. so

4. Answer: D
• 1. Sentence A: “Mary bought some flowers.”

2. Sentence B: “Mary wants to give a present to her mom.”
3. Words:

– A. because
– B. then
– C. after
– D. so

4. Answer: A
• 1. Sentence A: “The girl put her books in the backpack.”

2. Sentence B: “The girl finished her homework.”
3. Words:

– A. because
– B. after
– C. so
– D. then

4. Answer: B
• 1. Sentence A: “James took the phone.”

2. Sentence B: “James called Clara.”
3. Words:

– A. after
– B. because
– C. then
– D. so

4. Answer: C
Sentence Connection Task:
1. Sentence A: “sentence_a”
2. Sentence B: “sentence_b”
3. Words:
“multiple_choices”
4. Answer:

907

F Models Details 908

Open and partially open models used for our exper- 909

iments are available via the Hugging Face model 910

library (https://huggingface.co/models); all 911
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models are used as per their licenses. We used the912

instruction-tuned version of the models as follows:913

• Mistral (Jiang et al., 2023) leverages grouped-914

query attention (GQA) for faster inference,915

and sliding window attention (SWA) to ef-916

fectively handle sequences of arbitrary length917

with a reduced inference cost. We used the918

0.3 version of 7B parameters, which is pro-919

vided with a larger vocabulary compared to920

the previous version. This model is available921

at: https://huggingface.co/mistralai/922

Mistral-7B-Instruct-v0.3.923

• Falcon (Almazrouei et al., 2023) series of924

models was developed by the Technology In-925

novation Institute (TII). Pre-training data was926

collected from dumps from CommonCrawl927

after significant filtering (to remove machine-928

generated text and adult content) and dedu-929

plication. We used the 7B parameter model,930

which is available at: https://huggingface.931

co/tiiuae/falcon-7b-instruct.932

• Llama (Large Language Model Meta AI) is933

a family of open-source LLMs developed by934

Meta AI. The first version of LlamA was re-935

leased in February 2023. We adopted the936

version 3.1 of Llama (Dubey et al., 2024),937

which counts 8B parameters. This model938

is available at: https://huggingface.co/939

meta-llama/Llama-3.1-8B-Instruct.940

• Qwen is a LLM family built by Alibaba941

Cloud. We used the 2.5 version (Yang et al.,942

2024) which underwent an optimization pro-943

cess during both the pre-training and post-944

training stages. This model is available945

at: https://huggingface.co/Qwen/Qwen2.946

5-7B-Instruct. For experiments on size947

effect, we used Qwen 2.5 instruction-tuned948

models of increasing size, according to their949

number of parameters: 0.5, 1.5, 3, 7, 14, and950

32 billions.26951

• Gemma is a model released by Google (Team952

et al., 2024a) and it is built from the re-953

search and technology used to create Gem-954

ini models. We adopted version 2 of this955

model (Team et al., 2024b), with a size of956

9B parameters. This is the biggest among the957

26The whole model family is available in this Hugging Face
collection: https://huggingface.co/collections/Qwen/
qwen25-66e81a666513e518adb90d9e.

small open models we adopted for our experi- 958

ments. This model is available at: https:// 959

huggingface.co/google/gemma-2-9b-it. 960

• The GPT (Generative Pre-trained Trans- 961

former) series of models (Brown et al., 2020) 962

was developed by OpenAI. It is the commer- 963

cial model under the ChatGPT platform. For 964

our experiments, we used the state-of-the- 965

art model GPT4o (Hurst et al., 2024), and a 966

lighter version, GPT4o-mini (OpenAI, 2024a). 967

The experiments were conducted between 968

November 2024 and January 2025, by means 969

of the APIs.27 970

G More Models’ Results 971

Tab. 5 shows the results plotted in Fig. 3. Similar 972

to GPT4o-mini, Gemma displays a high instability 973

with greedy search, although it is notably reduced 974

when using the Outlines framework. Llama fol- 975

lows a similar trend, whereas Falcon is quite stable 976

also when using greedy search in zero-shot set- 977

tings. In contrast, Mistral’s results remain nearly 978

the same across all scenarios, with a range similar 979

to GPT4o. On the contrary, Qwen shows the oppo- 980

site pattern, with more stable performances using 981

greedy search. 982

Results on all tasks and setups with greedy 983

search are reported in Fig. 8 and Tab. 6. Results 984

with Outlines are reported in Fig. 9, Tab. 7. 985

Tab. 8 shows the overall APSs achieved by the 986

models and those achieved according to various re- 987

lations’ conditions. APS changes according to the 988

relation between the events contained in each item. 989

Gemma and Llama best detect events in ICONIC 990

ORDER, whereas Falcon, Mistral, and Qwen are 991

better in identifying CAUSAL relations. All the 992

models struggle at recognizing TEMPORAL ANTI- 993

ICONIC relations, achieving really low results for 994

this condition (0.19). 995

Tab. 9, shows the results plotted in Fig. 4, 996

Sec. 5.3. In the table are reported APS and results 997

on the acceptability rating task, with zero-shot and 998

greedy search, i.e. where the models performed 999

best overall. We specifically focus on GPT4o and 1000

two open models, namely Gemma and Falcon, with 1001

the latter achieving the best APS. 1002

Post-hoc analyses were conducted on the ob- 1003

tained results to see if they might be affected by the 1004

frequency of the triplets {1st sentence verb, con- 1005

nective, 2nd sentence verb} in each item. Fig. 10 1006

27https://platform.openai.com/docs/overview
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Table 5: Models’ Greedy Search and Outlines accuracy results on all tasks (including APS when applicable) are
averaged in few and zero-shot scenarios.

Model
Outlines Greedy

APSFew-shot Zero-shot Few-shot Zero-shot
Avg. SD Avg. SD Avg. SD Avg. SD

Falcon 0.25 0.01 0.27 0.01 0.21 0.02 0.15 0.10 0.66
Gemma 0.46 0.09 0.53 0.03 0.18 0.24 0.26 0.25 0.62
GPT4o-mini 0.50 0.13 0.43 0.10 0.42 0.30 0.39 0.27 -
GPT4o 0.72 0.05 0.65 0.09 0.69 0.08 0.60 0.07 -
Llama 0.25 0.01 0.27 0.01 0.23 0.17 0.30 0.22 0.65
Mistral 0.34 0.11 0.33 0.07 0.38 0.10 0.36 0.06 0.65
Qwen 0.27 0.03 0.29 0.01 0.51 0.04 0.47 0.07 0.59

Figure 8: Accuracy scores for all models in all prompting tasks in zero and few-shot scenarios with greedy search.
APSs are in blue as perpl.

Figure 9: Accuracy scores for all models in all prompting tasks in zero and few-shot scenarios with Outlines. APSs
are in blue as perpl.
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Table 6: Performance comparison across Acceptability, Cloze test, and Multiple-choice tasks for few and zero-shot
settings with greedy search.

GREEDY SEARCH

Acceptability Rating
FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic. All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic.

GPT4o-mini 0.71 0.81 0.82 0.73 0.37 0.63 0.63 0.58 0.63 0.73
GPT4o 0.78 0.83 0.8 0.74 0.75 0.69 0.78 0.72 0.72 0.52
Falcon 0.2 0.01 0.0 0.03 0.99 0.19 0.03 0.0 0.05 0.88
Gemma 0.51 0.42 0.41 0.5 0.79 0.59 0.7 0.38 0.52 0.9
Llama 0.33 0.76 0.23 0.1 0.24 0.52 0.46 0.48 0.5 0.66
Mistral 0.25 0.13 0.02 0.1 0.95 0.29 0.12 0.01 0.27 0.95
Qwen 0.48 0.5 0.36 0.56 0.52 0.54 0.38 0.37 0.78 0.71

Cloze test
FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic. All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic.

GPT4o-mini 0.54 0.25 0.48 0.79 0.66 0.52 0.19 0.5 0.75 0.66
GPT4o 0.69 0.44 0.77 0.8 0.74 0.55 0.16 0.49 0.83 0.76
Falcon 0.24 0.87 0.0 0.01 0.16 0.25 0.52 0.05 0.21 0.26
Gemma 0.02 0.02 0.02 0.02 0.0 0.2 0.45 0.1 0.21 0.01
Llama 0.38 0.06 0.38 0.57 0.51 0.39 0.01 0.43 0.83 0.21
Mistral 0.49 0.4 0.48 0.57 0.53 0.41 0.32 0.32 0.44 0.64
Qwen 0.56 0.37 0.78 0.65 0.35 0.37 0.1 0.86 0.08 0.32

Multiple-chioce
FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic. All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic.

GPT4o-mini 0.0 0.0 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.01
GPT4o 0.59 0.47 0.68 0.77 0.33 0.54 0.42 0.62 0.72 0.36
Falcon 0.19 0.2 0.17 0.23 0.17 0.0 0.0 0.0 0.0 0.0
Gemma 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0
Mistral 0.4 0.2 0.58 0.57 0.12 0.39 0.18 0.55 0.44 0.34
Qwen 0.5 0.42 0.65 0.52 0.35 0.5 0.29 0.84 0.56 0.16

Figure 10: Accuracy scores grouped by frequency
bin. The results are shown in red for acceptability rat-
ings in zero-shot scenario with greedy search (i.e., the
task where models obtained the best cumulative perfor-
mance); in blue, the APSs of open models (as perpl).

Figure 11: Accuracy scores grouped by frequency bin of
increasing size of Qwen Models. The results are shown
in red for acceptability ratings in few-shot scenario with
greedy search (i.e., the setting where Qwen-7B obtained
the best cumulative performance for all tasks); in green,
the APSs of such models (as perpl).
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Table 7: Performance comparison across Acceptability, Cloze test, and Multiple-choice tasks for few and zero-shot
settings with Outlines.

OUTLINES

Acceptability Rating
FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic. All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic.

GPT4o-mini 0.64 0.81 0.63 0.68 0.36 0.47 0.4 0.22 0.63 0.71
GPT4o 0.78 0.84 0.8 0.74 0.75 0.77 0.86 0.7 0.76 0.76
Falcon 0.26 0.25 0.2 0.29 0.32 0.26 0.2 0.22 0.35 0.31
Gemma 0.33 0.38 0.15 0.33 0.58 0.57 0.69 0.48 0.6 0.5
Llama 0.24 0.24 0.23 0.25 0.24 0.26 0.27 0.22 0.27 0.31
Mistral 0.19 0.05 0.03 0.22 0.55 0.22 0.18 0.11 0.15 0.56
Qwen 0.23 0.2 0.14 0.27 0.36 0.28 0.26 0.21 0.32 0.35

Cloze test
FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic. All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic.

GPT4o-mini 0.54 0.23 0.46 0.78 0.71 0.53 0.19 0.5 0.76 0.67
GPT4o 0.7 0.44 0.79 0.82 0.72 0.54 0.14 0.48 0.83 0.76
Falcon 0.24 0.28 0.33 0.14 0.17 0.29 0.38 0.36 0.15 0.23
Gemma 0.52 0.46 0.62 0.74 0.16 0.53 0.56 0.63 0.77 0.03
Llama 0.26 0.1 0.2 0.46 0.29 0.28 0.12 0.25 0.52 0.23
Mistral 0.43 0.05 0.47 0.65 0.55 0.36 0.18 0.25 0.45 0.63
Qwen 0.29 0.07 0.78 0.07 0.09 0.31 0.04 0.88 0.01 0.12

Multiple-chioce
FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic. All Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic.

GPT4o-mini 0.32 0.31 0.3 0.45 0.21 0.29 0.29 0.22 0.4 0.27
GPT4o 0.67 0.49 0.82 0.89 0.36 0.63 0.51 0.77 0.81 0.3
Falcon 0.24 0.27 0.23 0.26 0.2 0.27 0.26 0.28 0.31 0.24
Gemma 0.51 0.2 0.67 0.83 0.2 0.5 0.23 0.72 0.77 0.1
Llama 0.26 0.25 0.23 0.28 0.29 0.26 0.29 0.27 0.25 0.21
Mistral 0.41 0.24 0.59 0.57 0.12 0.4 0.2 0.55 0.45 0.34
Qwen 0.28 0.32 0.25 0.3 0.25 0.28 0.28 0.31 0.29 0.23

Table 8: APS results for all the open models. The
table shows results by relation ORDER (ICONIC as Ic.
vs ANTI-ICONIC as a.Ic) and TYPE (CAUSAL as C. vs
TEMPORAL as T.). In bold the best-averaged result,
the overall result of the best model is underlined.

Model Overall C. Ic. T. Ic. C. a.Ic. T. a.Ic.

Falcon 0.66 0.85 0.66 0.80 0.23
Gemma 0.62 0.93 0.69 0.60 0.15
Llama 0.65 0.93 0.74 0.70 0.12
Mistral 0.65 0.89 0.68 0.75 0.15
Qwen 0.59 0.83 0.53 0.65 0.32

Avg. 0.63 0.89 0.66 0.70 0.19

(Tab. 10) shows that, on the items in each frequency1007

bin, models perform about the same way, i.e., tasks1008

results have, with slight differences, the same dis-1009

tribution.1010

We also tested the frequency effect in models1011

of increasing size. In Fig. 11 (Tab. 11), as in the1012

previous case, the distribution of Qwen’s results1013

reached by models of different sizes is about the1014

same.1015

H Error Analysis1016

Other than what is described in Sec. 5.3, from the1017

confusion matrixes in Fig. 12, we observed that1018

GPT tends to consider TEMPORAL RELATIONS as1019

CAUSAL ones more often. However, most of the 1020

mistakes are within the same ORDER (i.e., ANTI- 1021

ICONIC), whereas, open models tend to make more 1022

mistakes under both TYPE and ORDER of the re- 1023

lation. Gemma, in the acceptability rating task, 1024

interprets CAUSAL relations as TEMPORAL, but it 1025

tends to confuse also the ORDER of the TEMPORAL 1026

ones. Differently, Falcon is inclined to interpret 1027

all the items as TEMPORAL in ANTI-ICONIC OR- 1028

DER. We also can observe that Falcon and Gemma 1029

errors in a different manner according to the way 1030

the PCD task is modeled. These results further 1031

underline a discrepancy between models’ internal 1032

representation and prompted knowledge, not only 1033

across different models but also referring to the 1034

same one. 1035

I Correlation & Distribution 1036

In Fig. 5, Sec. 5.3, we see that for both humans 1037

and models, the acceptability ratings are lower for 1038

the unrelated sentence pairs, showing that mod- 1039

els appear to understand this difference. For the 1040

CAUSAL-TEMPORAL subset, in the case of normal- 1041

ized perplexities for Falcon, all values are heav- 1042

ily skewed toward the lower end of the spectrum. 1043

On the contrary, ratings from Gemma are gener- 1044
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Figure 12: Comparison of different plots
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Table 9: Performance metrics for the best models in the best settings and tasks for PCD: zero-shot with greedy
search on acceptability rating task and APS. Results are reported with an overview over items’ RELATION and
ORDER, i.e., direction of the relation.

Model Overall Causal Iconic Temporal Iconic Causal Anti-iconic Temporal Anti-iconic
Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS

Falcon 0.19 0.66 0.03 0.85 0.00 0.66 0.05 0.80 0.88 0.23
GPT-4o 0.69 - 0.78 - 0.72 - 0.72 - 0.52 -
Gemma 0.59 0.62 0.70 0.93 0.38 0.69 0.52 0.60 0.90 0.15

Table 10: LLMs’ accuracy on the acceptability rating task and APS across different frequency bins.

Model Overall Rare Uncommon Common Frequent

Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS

GPT-4o Mini 0.63 - 0.62 - 0.62 - 0.64 - 0.67 -
GPT-4o 0.69 - 0.69 - 0.69 - 0.70 - 0.70 -
Falcon 0.19 0.66 0.19 0.65 0.17 0.65 0.20 0.64 0.21 0.69
Gemma 0.59 0.62 0.56 0.59 0.61 0.64 0.57 0.61 0.63 0.64
Llama 0.52 0.65 0.50 0.66 0.52 0.64 0.55 0.63 0.48 0.70
Mistral 0.29 0.65 0.28 0.64 0.30 0.66 0.30 0.64 0.27 0.65
Qwen 0.54 0.59 0.51 0.55 0.58 0.67 0.54 0.58 0.54 0.56

Figure 13: This plot shows the

ally distributed towards higher values than the hu-1045

man ratings, whereas GPT4o’s ratings tend to be1046

lower. GPT4o shows this behavior in zero-shot1047

with greedy search, but also in zero-shot with Out-1048

lines as shown in Fig. 13, even if the model’s rat-1049

ings strongly correlate with humans’ ones. Tab. 121050

shows the correlation of open models’ perplexity1051

with results in acceptability ratings with greedy1052

search and Oulines. In none of the setups, the ac-1053

curacy of the internal representation of the models1054

and the prompting accuracy show some kind of1055

correlation.1056

Correlation scores for all the models (in zero-1057

shot setting) are reported in Tab. 13. We see that1058

GPT4o obtains a high correlation with humans only1059

when using Outlines (ρ = 0.77), while the zero-1060

shot greedy setting is markedly worse. We ob-1061

serve an opposite trend for GPT4o-mini and open1062

models, which seem to be closer to human ratings1063

Figure 14: This plot shows the

when prompted without using Outlines. The best- 1064

performing open model is Gemma, on par with 1065

GPT4o-mini, followed by Qwen. All other mod- 1066

els have a correlation lower than 0.5. Gemma is 1067

also the only model that is relatively resistant to 1068

the decoding method, i.e. greedy or with Outlines. 1069

Tab. 13 also contains correlation values computed 1070

on results obtained with prompting task according 1071

to the different relation TYPE and ORDER of the 1072

events in each dataset item. 1073

J Size effect 1074

Fig. 7 in Sec. 5.3 shows how Qwen models’ of 1075

different sizes perform according to two evaluation 1076

settings, accuracy on acceptability rating and APS. 1077

In Fig. 14 (Tab. 14 for the individual results), the 1078

overall accuracy on the acceptability rating task is 1079

divided into groups related to the relation condi- 1080

tion of each item, according to the ground truth we 1081

obtained by human ratings. We observed that the 1082

same pattern as APS is also followed by TEMPO- 1083

RAL ICONIC relations, the most frequent condition 1084

in our dataset according to human ratings. TEM- 1085
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Table 11: Performance of Qwen models with increasing size across different frequency bins. Accuracy for the
acceptability rating task and APSs are reported.

Model Overall Rare Uncommon Common Frequent

Acc. Rat. AP. S. Acc. Rat. AP. S. Acc. Rat. AP. S. Acc. Rat. AP. S. Acc. Rat. AP. S.

Qwen-0.5 0.27 0.46 0.28 0.47 0.23 0.46 0.27 0.46 0.30 0.44
Qwen-1.5 0.30 0.47 0.34 0.50 0.29 0.52 0.26 0.42 0.28 0.43
Qwen-3 0.35 0.54 0.34 0.51 0.37 0.56 0.36 0.54 0.35 0.53
Qwen-7 0.48 0.59 0.49 0.55 0.49 0.67 0.48 0.58 0.43 0.56
Qwen-14 0.60 0.61 0.60 0.63 0.59 0.63 0.60 0.57 0.60 0.62
Qwen-32 0.68 0.58 0.66 0.57 0.70 0.57 0.69 0.58 0.68 0.59

Table 12: Spearman correlation computed on models’
perplexity and acceptability ratings in a zero-shot sce-
nario, for greedy search and outlines. Results are on
items of all conditions.

Model Greedy search Outlines

Falcon -0.030 (0.039) -0.062 (0)
Gemma -0.115 (0) -0.115 (0)
Llama -0.236 (0) -0.091 (0)
Mistral -0.150 (0) 0.082 (0)
Qwen -0.215 (0) 0.002 (0.904)

PORAL ICONIC relations are naturally the most1086

frequent if we consider the chronological order of1087

events in each narrative and the fact that a causal1088

relation between events (most of the times) im-1089

plies a temporal relation. Thus, the APS might rely1090

more on the frequency of observation of a certain1091

phenomenon in the dataset. On the contrary, the ac-1092

curacy in the detection of relations in ANTI-ICONIC1093

ORDER seems not to follow a clear pattern.1094
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Table 13: Spearman correlation values between models’ results and human ratings on causal, temporal, and unrelated
sentence pairs (human ratings as ground truth). Models’ results are computed on the basis of acceptability ratings in
a zero-shot scenario, for greedy search and outlines, and perplexity.

Model Caus. Ic. Temp. Ic. Caus. a.Ic. Temp. a.Ic

Greedy Outlines Greedy Outlines Greedy Outlines Greedy Outlines

GPT4o 0.60 (0.0) 0.82 (0.0) 0.57 (0.0) 0.80 (0.0) 0.53 (0.0) 0.76 (0.0) 0.29 (0.0) 0.69 (0.0)
GPTo-mini 0.65 (0.0) 0.41 (0.0) 0.71 (0.0) 0.41 (0.0) 0.60 (0.0) 0.49 (0.0) 0.48 (0.0) 0.30 (0.0)
Gemma 0.63 (0.0) 0.63 (0.0) 0.61 (0.0) 0.64 (0.0) 0.70 (0.0) 0.50 (0.0) 0.58 (0.0) 0.33 (0.0)
Qwen 0.44 (0.0) 0.07 (0.041) 0.55 (0.0) 0.04 (0.233) 0.69 (0.0) 0.06 (0.065) 0.57 (0.0) 0.03 (0.413)
Llama 0.48 (0.0) 0.04 (0.224) 0.62 (0.0) 0.06 (0.052) 0.43 (0.0) 0.01 (0.816) 0.24 (0.0) 0.05 (0.171)
Mistral 0.23 (0.0) -0.12 (0.001) 0.23 (0.0) -0.08 (0.013) 0.41 (0.0) -0.18 (0.0) 0.30 (0.0) -0.03 (0.425)
falcon 0.04 (0.2) -0.02 (0.497) -0.07 (0.035) -0.02 (0.594) 0.04 (0.215) -0.01 (0.691) 0.09 (0.023) 0.01 (0.784)

Model Unrel. All Perplexity
Greedy Outlines Greedy Outlines

GPT4o 0.23 (0.0) 0.59 (0.0) 0.46 (0.0) 0.77 (0.0) -
GPT4o-mini 0.50 (0.0) 0.21 (0.0) 0.66 (0.0) 0.38 (0.0) -
Gemma 0.44 (0.0) 0.38 (0.0) 0.65 (0.0) 0.55 (0.0) -0.150 (0)
Qwen 0.41 (0.0) -0.03 (0.312) 0.59 (0.0) 0.04 (0.009) -0.282 (0)
Llama 0.32 (0.0) 0.04 (0.141) 0.47 (0.0) 0.05 (0.002) -0.265 (0)
Mistral 0.35 (0.0) 0.09 (0.001) 0.42 (0.0) -0.12 (0.0) -0.273 (0)
falcon 0.05 (0.049) 0.06 (0.022) 0.05 (0.001) 0.00 (0.784) -0.251 (0)

Table 14: Performance metrics for Qwen models of increasing size, measured in billions of parameters. Acc. Rat.
refers to the accuracy rating task, and APS refers to Accuracy Perplexity Score.

Model’s Size Overall Caus. Icon. Temp. Icon. Caus. a.Icon. Temp. a.Icon.
Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS

0.5 0.27 0.46 0.11 0.87 0.03 0.43 0.49 0.42 0.56 0.03
1.5 0.30 0.47 0.61 0.94 0.11 0.40 0.29 0.44 0.21 0.02
3 0.35 0.54 0.72 0.85 0.28 0.54 0.11 0.60 0.34 0.05
7 0.48 0.59 0.50 0.83 0.36 0.53 0.56 0.65 0.52 0.32
14 0.60 0.61 0.80 0.88 0.72 0.58 0.51 0.72 0.27 0.20
32 0.68 0.58 0.87 0.87 0.53 0.52 0.83 0.67 0.50 0.16
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