
Strassen Attention, Split VC Dimension and
Compositionality in Transformers

Alexander Kozachinskiy
CENIA

alexander.kozachinskyi@cenia.cl

Felipe Urrutia
University of Chile & CENIA
furrutia@dim.uchile.cl

Hector Jimenez
University of Chile & CENIA
hjimenez@dcc.uchile.cl

Tomasz Steifer
Institute of Fundamental Technological
Research, Polish Academy of Sciences

tsteifer@ippt.pan.pl

Germán Pizarro
CENIA

german.pizarro@cenia.cl

Matías Fuentes
IMC, Pontifical Catholic University of Chile

mdfuentes4@uc.cl

Francisco Meza
IMC, Pontifical Catholic University of Chile

fjmeza1@uc.cl

Cristian B. Calderon
CENIA

cristian.buc@cenia.cl

Cristóbal Rojas
Institute for Mathematical and Computational Engineering

Pontifical Catholic University of Chile & CENIA
luis.rojas@uc.cl

Abstract

We propose the first method to show theoretical limitations for one-layer softmax
transformers with arbitrarily many precision bits (even infinite). We establish those
limitations for three tasks that require advanced reasoning. The first task, Match
3 (Sanford et al., 2023), requires looking at all possible token triplets in an input
sequence. The second and third tasks address compositionality-based reasoning:
function composition (Peng et al., 2024) and binary relations composition, re-
spectively. We formally prove the inability of one-layer softmax Transformers to
solve any of these tasks. To overcome these limitations, we introduce Strassen
attention and prove that, equipped with this mechanism, a one-layer transformer
can in principle solve all these tasks. Importantly, we show that it enjoys sub-cubic
running-time complexity, making it more scalable than similar previously proposed
mechanisms, such as higher-order attention (Sanford et al., 2023). To complement
our theoretical findings, we experimentally studied Strassen attention and compared
it against standard (Vaswani et al, 2017), higher-order attention (Sanford et al.,
2023), and triangular attention (Bergen et al. 2021). Our results help to disentangle
all these attention mechanisms, highlighting their strengths and limitations. In
particular, Strassen attention outperforms standard attention significantly on all
the tasks. Altogether, understanding the theoretical limitations can guide research
towards scalable attention mechanisms that improve the reasoning abilities of
Transformers.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1 Introduction

What tasks can Transformers solve? A fundamental question in modern AI is understanding
why and under which conditions a given deep network architecture succeeds or fails on a given
task. Numerous recent works have shown that tasks requiring compositional reasoning stand out as
particularly challenging [6, 24, 16, 15]. Compositionality refers to the ability of composing blocks of
knowledge to generate new content or solve new tasks, and is believed to play a major role in the
emergence of systematic generalization in language [17, 4]; making the question for these kind of
tasks even more relevant.

To address this problem, benchmark datasets such as SCAN [14], PCFG [11], CLUTRR [22] or
COGS [13] have been introduced. Moreover, different empirical methods have been developed to
test, quantify and compare compositional capabilities [12], as well as to assess the impact of design
choices on the performance of Transformers on compositional tasks [18]. While many of these
works provide strong empirical evidence that Transformers may suffer from inherent limitations for
compositional tasks [8], our current theoretical understanding of the underlying phenomenon remains
limited.

Here, we take a deeper dive into the problem and aim at contributing to the study of compositionality
in Transformers on a more basic mathematical level. As we shall see, this allows us to pin down
simple theoretical obstacles that make compositionality hard for the standard Transformer architecture.
In turn, we can devise a new attention mechanism, which transcends these basic limitations.

Related work Our work can be related to two complementary lines of research which we now
develop.

Theoretical limitations of Transformers. A natural first step to explain why models struggle with
some tasks is to study their expressivity— whether a given architecture is in-principle capable of
solving the task in question. That is, whether there exists a choice of parameters that results in
a model computing the function underlying the task solutions. If the answer is positive, then the
chances are that the difficulty lies in efficiently learning the appropriate parameters. If the answer is
negative, then a formal proof of this fact can be directly related to the poor performance observed in
practice.

The first theoretical limitations of this sort were obtained for Transformers using hardmax attention
[10]. Instead of computing attention as a convex combination of all input tokens using softmax,
one takes a single token where the attention is maximal. Using this simplification, Hahn showed
that hardmax Transformers with O(1) layers cannot compute formal languages such as PARITY,
MAJORITY, or Dyck-1.

Theoretical limitations against softmax Transformers have recently been obtained by employing a
different proof technique, one based on communication complexity [19]. The idea is to show that a
Transformer solving a given task can be used to construct a corresponding communication protocol
for a problem whose communication complexity is known. From this, one obtains lower bounds on
the size of Transformers capable of solving the task for inputs of a given length. In [19], for example,
the authors apply this technique to show that any one-layer softmax Transformer that can compute
the composition of two functions must have nΩ(1) embedding dimension, where n is the size of the
input. Crucially, for this conclusion to hold, one must assume that the Transformer works with a
relatively low number of precision bits, namely sub-linear in n. The technique has subsequently been
applied to show lower bounds for other tasks such as string equality [3] and Match3 [20] (see Section
3.2.2 for a definition).

Overcoming Transformers limitations. Equipped with a better theoretical understanding of why
Transformers struggle with some tasks, the next question is how they can guide research towards
the construction of more expressive machines. A key observation is that the standard attention
mechanism can only see interactions between pairs of tokens, whereas compositional tasks require to
reason about the interaction of three or more tokens simultaneously [2, 20]. Consequently, suitably
modified attention mechanisms have been proposed, which would track interactions between more
than two tokens. For instance, triangular attention [2] (see Section 2 for a definition) outperforms
standard attention in compositional tasks such as CLUTRR [22] or COGS [13]. Similarly, it has
been shown that higher-order tensor attention embedded in a constant size one-layer Transformer
can theoretically solve Match3, a task that cannot be solved by the standard attention [20]. However,

2



both these mechanisms suffer from a significant increase in running-time complexity, e.g., order 3
requires cubic-time, limiting its scalability and potentially affecting its practical relevance. In the
case of triangular attention, the mechanism works with an adjacency matrix of a graph (in which
case it is square-time in the size of the graph). It is possible to produce an adjacency matrix from the
sequence of tokens, as already shown in Bergen et al. [2], but this increases the complexity to cubic.
The higher-order tensor attention, on top of being cubic-time as well, has been only considered in
theoretical work and has not been evaluated empirically yet.

Our contributions In this work we aim at addressing these fundamental questions from comple-
mentary angles. Our main results can be summarized as follows:

• We present a new technique for proving theoretical limitations. Since previous results
establishing limitations for softmax transformers are based on communication complexity,
they only apply to transformers that store numbers with relatively few precision bits. This
raises the question – would the use of long arithmetic help to circumvent these limitations?
In this paper, we answer this question negatively. In order to establish that, we introduce a
new technique for proving limitations, based on the novel notion of Splitting VC dimension.
The splitting VC dimension of a Boolean function f , denoted by split-VC(f), is a positive
integer number intended to capture the complexity of f in a certain combinatorial sense.
Our main technical contribution is the following:
Main Theorem. Let T be any one-layer standard attention Transformer that can do
arithmetic operations over real numbers with infinite precision. Denote by d, H and L,
respectively, its embedding dimension, number of attention heads and size of the output
MLP of T . Suppose T can compute a function f . Then it holds that max{d,H,L} ≥
split-VC(f)Ω(1).
To put it differently, even an idealized transformer T that can manipulate numbers with
infinitely many bits cannot compute a function f with large split-VC(f) unless T has a large
embedding dimension, a large number of attention heads, or a large output MLP. Obviously,
the same limitations apply to real-life Transformers that can only manipulate numbers using
some finite (however large) number of bits.

• We obtain new theoretical limitations for tasks requiring complex reasoning. We apply
our new method to the task of function composition (Peng et al. [19]) and the Match3
(Sanford et al. [20]) task, and show that previously known limitations for these tasks are
also applicable to transformers that work with arbitrarily large (and even infinite) precision.
We also do this for a new task, that we name binary relation composition task. We introduce
it because the function composition task can be solved by a 2-layer transformer, while for the
binary relation composition task there is no apparent solution with any constant number of
layers. Finally, we introduce another task that we call Quotient Binary Relation Composition
(see Section 5). Our method allows to establish limitations for this task even for mixed
transformers that can use both the standard and the triangular attention.

• We develop a more scalable higher-order mechanism. Previous works (e.g. [20]) have
shown that higher-order methods can in principle overcome these limitations, but suffer
from severe scalability issues. In an attempt to address these difficulties, we present and
study Strassen attention, a variation devised to be sensitive to interactions between triplets
of tokens without sacrificing too much efficiency. In contrast to previous similar attention
mechanisms that required running time n3 for inputs of length n, our mechanism enjoys n2

space and sub-cubic running time, making it more scalable. At the same time, we show that
1-layer constant-size Strassen attention transformers are theoretically capable of solving all
4 aforementioned tasks.

• We empirically demonstrate the convergence of Strassen attention. Is Strassen atten-
tion capable of converging to these theoretical solutions during learning? We empirically
demonstrate that the answer is positive for all 4 tasks. For comparison, we have additionally
evaluated all other attention mechanisms on these tasks. Our empirical findings agree with
theory and show that Strassen attention: (i) outperforms the accuracy of Standard attention,
(ii) achieves superior efficiency in terms of training time and computational resources when
compared with other triple-wise interaction attention mechanisms.

3



Paper organization In Section 2 we recall the Transformer architecture and introduce our new
Strassen attention mechanism. Section 3 presents our new lower bound method and its application to
function composition, Match3, and binary relation composition tasks. In Section 4, we show that
Strassen attention can be implemented in sub-cubic time, and formally prove that, in principle, it is
capable of solving the three aforementioned task. Section 5 presents a novel task allowing to separate
the capabilities of Strassen attention from those of standard and triangular attentions. Finally, section
6 contains our experimental findings. Due to space constraints, some proofs and experimental details
are deferred to the Appendix.

2 Preliminaries

Throughout the paper, we denote [n] = {1, . . . , n} for n ∈ N. For a set Σ, we will denote by Σn the
collection of sequences of elements of Σ of length n, and by Σ∗ the collection of all finite sequences.
We start by briefly recalling the basics of the Transformer architecture and formally defining the
attention mechanisms studied in this paper.

The main block of the Transformer layer is the attention function, formally defined as a length-
preserving function a : (Rd)∗ → (Rd)∗, where d is the embedding dimension. In this paper, we
consider 4 types of attention functions.

Standard attention [23], receives as input a sequence xi ∈ Rd, i = 1, . . . , n and outputs a sequence
ai ∈ Rd, i = 1, . . . , n, computed as follows:

ai =

n∑
j=1

aijvj (1)

aij = Softmaxj(qikj/
√
d) (2)

qi = W qxi, kj = W kxj , vj = W vxj , (3)

where W q,W k,W v ∈ Rd×d

Triangular attention [2] is defined for n = m2, with input tokens indexed by pairs (i, j), i, j =
1, . . . ,m. Given an input {xij ∈ Rd}mi,j=1, the output is computed as follows:

aij =

m∑
ℓ=1

aiℓjviℓj (4)

aiℓj = Softmaxℓ(qiℓkℓj/
√
d) (5)

qiℓ = W qxiℓ, kℓj = W kxℓj , (6)
viℓj = V1xiℓ ⊙ V2xℓj , (7)

where W q,W k, V1, V2 ∈ Rd×d.

Third-order attention [20] is computed as follows:

ai =

n∑
j,ℓ=1

aijℓ(vj ⊙ vℓ) (8)

aijℓ = Softmaxj,ℓ(qi(kj ⊙ kℓ)/
√
d) (9)

qi = W qxi, kj = W k
1 xj , kℓ = W k

2 xℓ, (10)
vj = V1xj , vℓ = V2xℓ, (11)

where W q,W k
1 ,W

k
2 , V1, V2 ∈ Rd×d.

4



We introduce Strassen attention, computed as follows:

ai =

n∑
j,k=1

aijk(vj ⊙ vk) (12)

aijk = Softmaxj,k((figj + gjhk + hkfi)/
√
d) (13)

fi = W fxi, gj = W gxj , hk = Whxk, (14)
vj = V1xj , vk = V2xk, (15)

where W f ,W g,Wh, V1, V2 ∈ Rd×d, and ⊙ denotes the Hadamard product. See Figure 2 in
Appendix A for the illustration of these attention mechanisms.

Definition 2.1. A one-layer Transformer T with H heads and embedding dimension d is given by H
attention functions Att1, . . . , AttH : (Rd)∗ → (Rd)∗, a matrix WO ∈ Rd×(dH), and an “output MLP”
N : Rd → R with P parameters, which is formally a neural network with ReLU activation. We define
the size of T as size(T ) = max{H, d, P}. The output of T on input x̄ = (x1, . . . , xn) ∈ (Rd)n is
the sequence ȳ = (y1, . . . , yn) ∈ (R)n given by

a
(h)
i = (Atth(x̄))i, h = 1, . . . H (16)

âi = WO

a
(1)
i
...

a
(H)
i

 (17)

yi = N (xi + âi). (18)

So far, Transformers are defined as functions transforming sequences of vectors in Rd. For the
tasks we consider in this paper, we need to apply Transformers on sequences of symbols of an
arbitrary finite alphabet Σ. This is done by including into the Transformer a positional encoding
p : [n]× Σ→ Rd. For a given p, an input word w = σ1 . . . σn ∈ Σn is converted into a sequence of
vectors:

x1 = p(1, σ1), . . . , xn = σ(n, σn)

that constitute the input for the Transformer. For our lower bounds, we make no assumptions about
the function p. In our upper bounds, however, we present constructions that use reasonable, easily
computable positional encodings of the form p(i, σi) = q(i) + r(σi), treating positions and symbols
independently.

3 Theoretical Limitations of Transformers via Split-VC dimension

We now introduce the notion of splitting dimension for a Boolean function f . Let X be a set and
H ⊆ {0, 1}X be a collection of functions h : X → {0, 1} which we will refer to as hypothesis class.
We say that an hypothesis class H shatters a subset X = {x1, . . . , xm} ⊆ X if for any Boolean
vector c1 . . . cm ∈ {0, 1}m there exists h ∈ H with h(x1) = c1, . . . , h(xm) = cm. The maximal m
for which H shatters some X ⊆ X of cardinality m is called the VC dimension of H [21].

We now explain how to adapt VC dimension to use it as a complexity measure of a single function
(instead of a class of functions). Take a function f : Σn → {0, 1} and imagine we split the n
arguments of f into two parts. One part will continue to correspond to the inputs, but the other is
to be regarded as a set of parameters, so that now we can see f as a class of functions that has a
well-defined VC dimension. The complexity of f will be defined as the maximal VC dimension that
we can obtain in this way, considering all possible splittings into parameters and inputs.

Let us formalize this idea. For a set of positions A ⊆ {1, . . . , n}, we define a Boolean matrix MA
f as

follows. Its rows (interpreted as inputs) will be indexed by all the words w1 ∈ ΣA and its columns
(interpreted as parameters) by the words w2 ∈ ΣB , where B = {1, . . . , n} \A. Thus, Mf

A will be a
|Σ||A| × |Σ|n−|A| Boolean matrix. The value of Mf

A at (w1, w2) is then defined as

Mf
A(w

1, w2) = f(w1 ⊕ w2)

5



where w1 ⊕ w2 ∈ Σn is obtained by merging w1 and w2 according to the positions indicated by A
and B, i.e.

(w1 ⊕ w2)i =

{
w1

i i ∈ A,

w2
i i ∈ B,

i = 1, . . . , n.

Definition 3.1. We define the splitting VC dimension of f : Σn → {0, 1}, denoted by split-VC(f),
as the maximum over A ⊆ {1, . . . , n} of the VC dimension of the set of columns of MA

f , understood
as Boolean functions on the set of rows.

Example. Consider a Boolean function f : {0, 1}4 → {0, 1}, defined by f(x1, x2, x3, x4) =
(x1 ∧ x2)⊕ (x3 ∧ x4). We claim that split-VC(f) = 2. To establish split-VC(f) ≥ 2, we consider
A = {1, 3}. The matrix MA

f is constructed as follows: its rows are indexed by Boolean vectors
x1x3 ∈ {0, 1}2, its columns by Boolean vectors x2x4 ∈ {0, 1}2, and the intersection of the row
x1x3 and column x2x4 has f(x1, x2, x3, x4) in it. Thus, this matrix looks as follows:

x1x3

x2x4 00 01 10 11

00 0 0 0 0
01 0 1 0 1
10 0 0 1 1
11 0 1 1 0

Columns of this matrix realize all 4 Boolean functions on the second and the third row, implying that
the VC dimension of the set of columns of this matrix is at least 2. We now observe that there is
no A ⊆ {1, 2, 3, 4} such that the set of columns of MA

f has VC dimension at least 3. Indeed, this
requires A to be of size at least 2, because otherwise there are less than 3 rows. But if |A| ≥ 2, there
are at most 4 columns, making it impossible to realize 23 = 8 different Boolean functions.

3.1 Main Theorem

In order to state our main Theorem, we first need to specify a way to see a Transformer as computing
a given boolean function f : Σn → {0, 1}. We assume that an input word w = σ1 . . . σn is given
to the Transformer using n + 1 tokens. The first n tokens are used to encode the n symbols of w,
while the (n + 1)-st auxiliary token (initially encoding the empty symbol) is used to encode the
output f(w) of the function being computed. More specifically, the output of the Transformer in the
auxiliary token has to be a real number yn+1, satisfying f(w) = sign(yn+1). When a Transformer
T fulfills this requirement for a given function f , we will say that the Transformer T computes f in
an auxiliary token. We can now state our main result.
Theorem 3.2. Let T be a one-layer standard-attention Transformer and let f : Σn → {0, 1} be a
Boolean function. If T computes f in an auxiliary token, then size(T ) = split-VC(f)Ω(1).
Remark 3.3. Note that from Theorem 3.2 it follows that for any Transformer T satisfying
size(T ) = no(1), it is impossible to compute in an auxiliary token any function f : Σn → {0, 1}
with split-VC(f) = nΩ(1).

3.2 Applications to three concrete tasks

We now apply Theorem 3.2 to three different tasks.

3.2.1 Function Composition

Introduced in Peng et al. [19], in this task we receive a description of two functions g : [n] → [n]
and h : [n]→ [n], and we are asked the value of h(g(x)) for a given x ∈ [n]. The task is presented
to a Transformer in the form of a sequence of 2n + 1 tokens, divided in three parts. The first
two parts encode the values of g and h, and the third part encodes x in a single token, where the
output has to be computed. More specifically, the output has to be a real number y2n+1 satisfying
|y2n+1 − h(g(x))| < 0.5. That is, with h(g(x)) being the closest integer to y2n+1.

Theorem 3.4. Let T be any one-layer standard-attention Transformer with size(T ) = no(1). Then
T cannot solve the function composition task.

6



Proof. We show that any Transformer that solves this task can be converted into a Transformer
computing in the auxiliary token the following Boolean function:

Indn : [n]
n+1 → {0, 1},

Indn(p1, q1, . . . , qn) =

{
1 qp1 = 1,

0 otherwise,

and that this transformation requires adding just O(1) neurons to the output MLP. Indeed, by fixing
x = 1 and setting g(1) = p1, h(1) = q1, . . . , h(n) = qn, we obtain that the token with x outputs
a real number y with |y − h(g(1))| = |y − qp1

| < 0.5. It now remains to change the output to
ReLU(1.5− y) which will be positive exactly when qp1

= 1.

The result now follows from Theorem 3.2 and the following:

Lemma 3.5. split-VC(Indn) ≥ n.

Proof. We claim that the VC dimension of the set of columns of M = MA
Indn

with A = {1}, is at
least n. Rows of this matrix are indexed by p1 ∈ [n], and columns by vectors q1 . . . qn ∈ [n]n. We
claim that the set of all n rows of M is shattered by the columns of M . Take any Boolean vector
b = c1 . . . cn ∈ {0, 1}n. We need to find q1 . . . , qn ∈ [n]n such that Indn(i, q1, . . . , qn) = ci for all

i ∈ [n]. It is suffices to define qi =

{
1 ci = 1,

2 ci = 0.

3.2.2 The Match3 task

Next, we define the Match3[n,m] task [20]. It is a sequence-to-sequence task. The input is presented
to the Transformer as a sequence of n tokens, encoding a vector of integers (p1, . . . , pn) ∈ [m− 1]n.
The output is a vector (y1, . . . , yn) ∈ Rn, required to satisfy:

sign(yi) =


1 ∃j, k ∈ [n] s.t.

pi + pj + pk = 0 (mod m)

0 otherwise

Note that we deliberately exclude the value pi = 0 for the input positions. This is to avoid inputs that
make the task trivial. Indeed, if pi = 0 for some i, then the output is trivially 1 since we always have
pi + pi + pi = 0.
Theorem 3.6. Let T be any one-layer standard-attention Transformer with size(T ) = no(1). Then
T cannot solve the Match3[n,m] task for m = 2n− 2.

3.2.3 Binary Relation Composition

Finally, we define the binary relation composition task. This is a sequence-to-sequence task, where
on input we get two Boolean matrices A,B ∈ {0, 1}

√
n×

√
n. The input is presented to a Transformer

using n tokens, indexed by pairs (i, j) ∈ [
√
n]2, with the (i, j)-th token receiving an encoding of Aij

and Bij . In the output, we have to compute the matrix of the “composition” of A and B:

B ◦A ∈ {0, 1}
√
n×

√
n, (B ◦A)ij =

√
n∨

k=1

(Aik ∧Bkj).

More precisely, the output of the (i, j)-th token for (i, j) ∈ [
√
n]2 has to be a real number yij with

sign(yij) = (B ◦ A)ij . We refer to A and B as “relations” on the set [
√
n], with Aij indicating

whether the pair (i, j) is in the relation A and Bij doing so for relation B. For an example, imagine
that A = B encodes a relation for a group of researchers where two researchers i and j are related if
they have a paper in co-authorship. Then the composition B ◦A refers to the relation of “having a
common co-author”.
Theorem 3.7. Let T be any one-layer standard-attention Transformer with size(T ) = no(1). Then
T cannot solve the binary relation composition task.

7



4 Strassen attention – An efficient mechanism to solve complex tasks

Both the third-order mechanism of Sanford et al. [20] and the Strassen mechanism define attention as
the interaction between three tokens (i.e., a triplet). The crucial difference is that Strassen attention
is computed using pairwise dot-products of vectors in the triplet, while the third-order involves
coordinates products of all 3 vectors. This allows us to decompose Strassen attention scores in a way
that reduces the whole layer to the product of a constant number of n× n matrices. Famously, the
n× n matrix product admits an O(nω)-time algorithm for w < 3, with currently best known upper
bound on w being 2.372 [7].
Theorem 4.1. Strassen attention layer can be implemented in O(nω · d)-time, where n is the number
of input tokens, d is the embedding dimension, and ω is the matrix multiplication exponent, i.e, the
smallest real number such that the n× n matrix product admits an O(nω)-time algorithm.

Proof. Writing ai in (12–15) by definition, we get:

ai =

∑
j,k

e(figj+gjhk+hkfi)/
√
d(vj ⊙ vk)∑

j,k

e(figj+gjhk+hkfi)/
√
d

. (19)

Defining matrices X,Y, Z ∈ Rn×n and Ŷ ∈ Rn×n×d by:

Xij = efigj/
√
d, Yj,k = egjhk/

√
d, Zk,i = ehkfi/

√
d,

Ŷj,k = egjhk/
√
dvj ⊙ vk,

we get an expression for ai in terms of their matrix products ai =
(XŶ Z)ii
(XY Z)ii

.

On top of exhibiting a faster running-time, we now show that, in contrast to standard attention,
Strassen attention allows a one-layer Transformer to solve all the 3 tasks described in Section 3.2.
Theorem 4.2. The function composition, the binary relation composition, and the Match3[n, poly(n)]
tasks can be solved by a one-layer constant-size Strassen attention Transformer.

5 Disentangling Strassen from Standard and Triangular attentions

So far, we have evaluated tasks that are challenging for one-layer standard attention Transformers
but (in principle) easy for one-layer Strassen attention Transformers. In this section, we extend
our analysis to triangular attention. As a reminder, running the triangular attention mechanism on
a general sequence of length n, requires the creation of n2 tokens. In this regime, the triangular
attention running time becomes n3 . However, when the input is already structured as a

√
n×
√
n

matrix, one can run the triangular attention on it directly, making the running time O(n3/2). One such
task example using structured input is the binary relation composition task. In this case, a one-layer
triangular attention can perform this task with one attention head, constant embedding dimension and
constant-size output MLP.

We devise a variant of the binary relation task that allows us to disentangle the performance of
Strassen attention with that of the triangular and standard attentions, namely the quotient binary
relation composition task. The latter takes as inputs two Boolean matrices A,B ∈ {0, 1}m×m and
a “coloring” function col : [m] → [m], where m =

√
n. There are n = m2 input tokens, indexed

by pairs from [m]2, with the (i, j)-th token receiving Ai,j , Bi,j and (col(i), col(j)) as inputs. The
quotient of the composition B ◦A by col is a Boolean matrix B ◦A/col ∈ {0, 1}m×m, defined by:

(B ◦A/col)ij =


1 ∃k1, k2 ∈ [m] s.t. Aik1 = Bk2j = 1,

col(k1) = col(k2), and k1 ̸= k2,

0 otherwise.

The task is to output, for all (i, j) ∈ [m]2, a real number yij such that (B ◦A/col)ij = sign(yij).

To illustrate an instance of this task, imagine that A = B encodes the graph of co-authorship between
a set of researchers, and c assigns each researcher its university. Then we have (B ◦A/col)ij = 1 if

8



0 500 1000

0.6

0.8

1.0
(a)

Accuracy per
Epoch

Function
Composition

0 50 100

0.6

0.8

1.0

Binary
Relation Composition

0 200 400

0.6

0.8

Match3

0 1000 2000

0.6

0.8

Quotient Binary
Relation Composition

0 20 40

0.6

0.8

1.0
(b)

Accuracy per
Minute

0 20

0.6

0.8

1.0

0 10 20

0.6

0.8

0 200

0.6

0.8

0

20

40
(c)

Speed gain
(Epochs/Minute)

NA

×1

/1.8

0

20

40
×1.1

/3.5
/12

0
20
40

NA

/1.9 /2.4

0

10

×1 ×1

/1.8

Standard Strassen Third-Order Triangular

Figure 1: Accuracy as a function of (a) the number of epochs, (b) training time (forward plus
backward runtime per epoch), and (c) speed gain (measured as epochs per minute). Performance for
each task is presented as the median accuracy over 8 independent runs on data outside the training set.
For readability, we truncated the binary relation composition and quotient binary relation composition
learning curves to 100 and 2000 epochs, respectively.

and only if researchers i and j have co-authors from the same university, with the condition that these
co-authors must be different people.

Theorem 5.1. The quotient binary relation composition task is solvable by a one-layer Strassen-
attention constant-size transformer. At the same time, this task cannot be solved by any one-
layer Transformer T with no(1) standard-attention heads, no(1) triangular-attention heads, no(1)

embedding dimension, and no(1)-size output MLP.

6 Experiments and Results

In this section, we systematically compare the performance of standard, triangular, third-order and
Strassen attention in four tasks: (i) Indicator of the 1st coordinate in the Function Composition
(with f = g ), (ii) Binary Relation Composition (with A = B), (iii) Match3 (over position-aware
permutations) and (iv) Quotient Binary Relation Composition (with B = AT ). To obtain a tighter
upper bound on the capability of the standard attention, we chose to implement simple special cases
of the tasks (see Appendix C for all the details on data generation). To compare these attention
mechanisms, we evaluate their performance (accuracy per epoch) and training time (accuracy per
minute) on the test sets of these tasks. Furthermore, Appendix D provides a thorough analysis in
terms of computational performance, evaluating forward pass times, GPU and memory usage. Code
for our experiments can be found at furrutiav/strassen-attention-neurips25.

Figure 1 displays our main experimental results. First, both the Strassen and third-order atten-
tions are the only two mechanisms that present high accuracy levels across all tasks. Note that
Strassen attention displays slight advantages on the Function Composition and Match3 tasks (Figure
1a). Second, Strassen attention consistently outperforms third-order attention in training time (to peak
performance), across all tasks (Figure 1b). Third, the advantages of Strassen attention are further
exemplified by displaying speed gains (i.e., number of epochs per minute) that match that of the
standard attention in the Function Composition and Quotient Binary Relation Composition tasks, and
are always superior to that of the third-order attention (Figure 1c). Fourth, perhaps unsurprisingly,
triangular attention outperforms all attention mechanisms in terms of training time at the Binary
Relation Composition task (Figure 1b, second column). Indeed, Strassen and the third-order attentions
need to learn the triangular structure of the task, a knowledge that is already structurally embedded in
the triangular attention. Fifth, although the third-order attention presents similar accuracy per epoch
trend to that of Strassen attention, its learning dynamics seems to be significantly more unstable,
particularly for the Function Composition and Quotient Binary Relation Composition tasks. Sixth, a
clear advantage of Strassen attention over the triangular and standard attentions was observed for the
Quotient Binary Relation Composition task (Figure 1b, last column). Lastly, it is noteworthy that the

9

https://github.com/furrutiav/strassen-attention-neurips25


triangular attention framework has a smaller applicability scope, and therefore could not be run on
the Function Composition and Match3 tasks (without changing the data presentation from sequences
to matrices).

Strassen vs. standard attention Parameter-matched comparisons Given that 1-layer Strassen
and standard attention architectures are not parameter matched, we performed two additional experi-
ments to provide a fair comparison between them. In both experiments, Quotient Binary Relation
Composition and Binary Relation Composition, we pitted a 1-layer Strassen attention against a
2-layer standard attention, both models with hidden dimension 16. Table 1 revealed that even with
less parameters, 1-layer Strassen attention continues outperforming a 2-layer Standard attention (with
about 40% more parameters) in both of the tasks considered. Furthermore, to demonstrate the value
of Strassen attention over standard attention in more practical settings, we evaluated this two attention
architectures on the COGS dataset, in a parameter-matched configuration. Table 1 shows that Strassen
attention outperforms standard attention.

Task Attention Type Layers Hidden dim. Parameters Accuracy (%)
Binary Relation
Composition

Strassen 1 16 2.5k 100
Standard 2 16 3.6k 92

Quotient Binary
Relation Composition

Strassen 1 16 2.5k 98
Standard 2 16 3.6k 82

COGS Strassen 3 64 99k 72
Standard 3 68 99k 65

Table 1: Accuracies for the Binary Relation Composition task, Quotient Binary Relation Composition
task and COGS dataset as a function of attention type, layer number, hidden dimension and parameters
number.

Future directions and limitations Our results pave the way for several directions of future research.
First, we have introduced a new method to obtain limitations for one-layer Transformer, based on a
new concept we have named splitting VC dimension. We expect our method will be applied to obtain
lower bounds in other architectures and other tasks involving complex reasoning. Second, given the
differences observed in learning stability between the third-order and Strassen attentions, the latter
seems to be associated with a smoother loss landscape, an hypothesis that needs to be confirmed and
studied. Third, Strassen attention can be adapted to incorporate interactions that involve more than
three tokens, possibly capturing more complex patterns in data. Yet, practical learnability of such
higher-order interactions needs to be assessed. Finally, and related to the previous point, although
the main goal of our work was to gain a deeper theoretical understanding of the abilities of the
Transformer, our conclusions are limited by using toy tasks. Our next step is to test the theoretical
advantages of the Strassen attention using specific benchmarks or even in learning methods such as
masked language modeling. At the same time, the possible applications of the Strassen attention are
not limited to compositionality but could extend to such areas as knowledge graphs, protein structure
prediction and others.

Acknowledgments Kozachinskiy, Urrutia, Jimenez, Pizarro, Calderon, and Rojas are funded by
the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Kozachinskiy is
supported by ANID Fondecyt Iniciación grant 11250060.

10



References
[1] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin

Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban
Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh,
Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang,
Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark
Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang,
William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng
Wu, and Soumith Chintala. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation. In 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi:
10.1145/3620665.3640366. URL https://pytorch.org/assets/pytorch2-2.pdf.

[2] Leon Bergen, Timothy O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge transform-
ers. Advances in Neural Information Processing Systems, 34:1390–1402, 2021.

[3] Satwik Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the Representational
Capabilities of Transformers and Recurrent Architectures. arXiv preprint arXiv:2406.09347, 2024.

[4] Noam Chomsky. Syntactic structures. Mouton, 1957.

[5] G Daniel, Johnnie Gray, et al. Opt\_einsum-a python package for optimizing contraction order for
einsum-like expressions. Journal of Open Source Software, 3(26):753, 2018.

[6] Ronald B Dekker, Fabian Otto, and Christopher Summerfield. Curriculum learning for human com-
positional generalization. Proceedings of the National Academy of Sciences, 119(41):e2205582119,
2022.

[7] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 2129–2138. IEEE,
2023.

[8] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck,
Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Xiang Ren, Allyson
Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on compositionality.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems, volume 36, pages 70293–70332. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c1
57cb653c15e90-Paper-Conference.pdf.

[9] Paul W Goldberg and Mark R Jerrum. Bounding the Vapnik-Chervonenkis dimension of concept classes
parameterized by real numbers. Machine Learning, 18:131–148, 1995.

[10] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of the
Association for Computational Linguistics, 8:156–171, 2020.

[11] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How do
neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

[12] Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin, Nikola
Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang, Marc van
Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive method on realistic
data. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=SygcCnNKwr.

[13] Najoung Kim and Tal Linzen. COGS: a compositional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (emnlp), pages 9087–9105, 2020.

[14] Brenden Lake and Marco Baroni. Generalization without Systematicity: On the Compositional Skills
of Sequence-to-Sequence Recurrent Networks. In Proceedings of the 35th International Conference on
Machine Learning, pages 2873–2882. PMLR, July 2018. URL https://proceedings.mlr.press/v8
0/lake18a.html.

[15] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building machines
that learn and think like people. Behavioral and brain sciences, 40:e253, 2017.

[16] Gary Marcus. Deep Learning: A Critical Appraisal. arXiv preprint arXiv:1801.00631, 2018.

11

https://pytorch.org/assets/pytorch2-2.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf
https://openreview.net/forum?id=SygcCnNKwr
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html


[17] Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive science. MIT press, 2003.

[18] Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and Vaclav Cvicek. Making Transformers Solve
Compositional Tasks. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 3591–3607, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v
1/2022.acl-long.251. URL https://aclanthology.org/2022.acl-long.251.

[19] Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer architecture.
arXiv preprint arXiv:2402.08164, 2024.

[20] Clayton Sanford, Daniel J. Hsu, and Matus Telgarsky. Representational Strengths and Limitations of
Transformers. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/73bf692447f174984f3
0499ec9b20e04-Abstract-Conference.html.

[21] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to Algorithms.
Cambridge University Press, 2014. ISBN 978-1-10-705713-5.

[22] Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L Hamilton. CLUTRR: a diagnostic
benchmark for inductive reasoning from text. arXiv preprint arXiv:1908.06177, 2019.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017. URL https://proceeding
s.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[24] Aimen Zerroug, Mohit Vaishnav, Julien Colin, Sebastian Musslick, and Thomas Serre. A benchmark for
compositional visual reasoning. Advances in neural information processing systems, 35:29776–29788,
2022.

12

https://aclanthology.org/2022.acl-long.251
http://papers.nips.cc/paper_files/paper/2023/hash/73bf692447f174984f30499ec9b20e04-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/73bf692447f174984f30499ec9b20e04-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


A Illustration of the attention mechanisms

n ✕ dQ

n ✕ dK

n ✕ dV

n ✕ n

Softmax

n ✕ d

Att

i

j

j

ij i

n ✕ dQ

Softmax

n ✕ d Att
i

jl

i

n ✕ dK1
j

n ✕ dK2
l

n ✕ d

V1

j
n ✕ d

V2

l

n ✕ n

✕ d

n ✕ n
ijl

✕ n

•

•

Standard (Vaswani et al., 2017) Third-Order (Sanford et al., 2023)

n ✕ dQ

n ✕ dK

n ✕ m

Softmax

n ✕ d

Att

il

lj

ilj ij

Triangular (Bergen et al., 2021)

n ✕ d

V1

il
n ✕ d

V2

lj

•

n - input length
d - embedding dimension

m - number of 
      nodes

n = m ✕  m

Strassen (Our mechanism)

jl
✕ d

n ✕ n

ilj
✕ d

n ✕ m

✕ 1

One-layer Transformer

Strassen 
Attention

Output
MLP

+

+

Transposed Product

Weighted Sum

Operator Legend

Hadamard Product
(Element-wise Product)•

Element-wise Division÷
Addition+

A

B

n ✕ dC
k

n ✕ n

Exponential

ij

n ✕ d
j

n ✕ d
i

X

n ✕ n
jk

n ✕ n
ki

Y

Z

jk
✕ d

n ✕ n Y

V1

V2•

n ✕ d
j

n ✕ d
k

N ✕ d Att
i

÷

X Y Z

X Y Z

Diagonal

n ✕ d

n

% Define custom colors
\definecolor{standardcolor}{RGB}{31, 120, 180} 
\definecolor{namecolor}{RGB}{227, 26, 28} 
\definecolor{thirdordercolor}{RGB}{51, 160, 44}
\definecolor{triangularcolor}{RGB}{106, 61, 154}

•

Figure 2: Comparison of Transformer attention mechanisms: Standard [23], Third-Order [20], Tri-
angular [2], and Strassen (proposed). The diagram shows operations and the one-layer Transformer
architecture, highlighting the flow through each attention and output MLP (without layer normal-
ization and dropout in the attention mechanism). Notation: input length n, embedding dimension d,
number of nodes m, with n = m2 when n refers to the shape of flatten matrices.

B Missing proofs

B.1 Proof of Theorem 3.2.

Denote m = split-VC(f). Let A ⊆ {1, . . . , n} be such that the VC dimension of the set of columns
of MA

f is m. Denote B = [n] \A. Assume for contradiction that there exists a one-layer standard-
attention Transformer T that computes f and whose size (that is, embedding dimension, number of
attention heads, and the size of the output MLP) is mo(1).

Consider any w1 ∈ ΣA, w2 ∈ ΣB and define w = w1 ⊕ w2 = σ1 . . . σn ∈ Σn. For h = 1, . . . ,H ,
observe that the output of the h-th attention head in the (n+ 1)-st token (the auxiliary one, where the
output of the function is computed), can be written as:

a
(h)
n+1 =

α(h)(w1) + β(h)(w2) + γ(h)

λ(h)(w1) + µ(h)(w2) + ν(h)
, (20)

where

α(h)(w1) =
∑
i∈A

eqn+1kivi ∈ Rd, β(h)(w2) =
∑
i∈B

eqn+1kivi ∈ Rd

λ(h)(w1) =
∑
i∈A

eqn+1ki ∈ R, µ(h)(w2) =
∑
i∈B

eqn+1ki ∈ R

γ(h) = eqn+1kn+1vn+1, ν(h) = eqn+1kn+1

Note that that ki = W qp(i, σi), vi = W vp(i, σi) are functions of w1 for i ∈ A and of w2 for i ∈ B,
whereas qn+1, kn+1, and vn+1 are fixed.

The output of the function is thus computed by:

f(w) = MA
f (w1, w2) = sign

N
xn+1 +WO


α(1)(w1)+β(1)(w2)+γ(1)

λ(1)(w1)+µ(1)(w2)+ν(1)

...
α(H)(w1)+β(H)(w2)+γ(H)

λ(H)(w1)+µ(H)(w2)+ν(H)



 , (21)

13



where xn+1 = p(∅),WO ∈ Rd×dH are fixed, and N is the output MLP of T .

Consider now arbitrary real vectors

α = (α(1), . . . , α(H)) ∈ RdH , β = (β(1), . . . , β(H)) ∈ RdH

λ = (λ(1), . . . , λ(H)) ∈ RH , µ = (µ(1), . . . , µ(H)) ∈ RH

and define a function F : (α, λ, β, µ) 7→ {0, 1} as in (21), but with vectors α, λ, β, µ allowed to take
arbitrary values:

F (α, λ, β, µ) = sign

N
xn+1 +WO


α(1)+β(1)+γ(1)

λ(1)+µ(1)+ν(1)

...
α(H)+β(H)+γ(H)

λ(H)+µ(H)+ν(H)



 , (22)

Let H be a class, defined by (22) when α, λ are considered as inputs to hypotheses and β, µ as
parameters:

H = {hβ,µ : RdH+H → {0, 1} : hβ,µ(α, λ) = F (α, λ, β, µ), (β, µ) ∈ RdH+H}.

On the one hand, the VC dimension of H is at least m = split-VC(f). Indeed, consider H is an
infinite matrix, with rows indexed by (α, λ) ∈ RdH+H , columns by (β, µ) ∈ RdH+H , and the
intersection of the (α, λ)-row and (β, µ)-column containing F (α, λ, β, µ) = hβ,µ(α, λ). The VC
dimension of H is the VC dimension of the columns of this matrix. Since by (21) this matrix has
MA

f as a sub-matrix, we get the required lower bound.

On the other hand, the VC dimension of H can be upper bounded by mo(1). Indeed, the number of
parameters of H is dH +H = mo(1). To compute the value of a given hypothesis on a given input,
it is enough to do mo(1) basic arithmetic operations and comparisons with 0, because the size ofN is
mo(1). By Theorem 2.3 in [9], the VC dimension is polynomial in these quantities, which gives us
mo(1) upper bound in our case.

B.2 Proof of Theorem 3.6

We fix the value of p1 to be equal to 1, and consider the output of Match3[n,m] at the first position.
If we additionally set pj ̸= m − 2 for j ≥ 2, we obtain p1 + pj + pk = 0 (mod m) if and only
if j, k ≥ 2 and pj + pk = −1 (mod m). Hence, a Transformer for the Match3[n,m] task can be
converted into a Transformer, computing the following function in the auxiliary token:

Sum2[ℓ,m] : ([m− 1] \ {m− 2})ℓ → {0, 1}

Sum2[ℓ,m](p) :=

{
1 ∃j, k ∈ [ℓ] s.t. pj + pk = −1 (mod m),

0 otherwise

where ℓ = n− 1.

The following Lemma establishes what we need in order to obtain the desired lower bound from
Theorem 3.2.
Lemma B.1. For even ℓ, it holds that split-VC(Sum2[ℓ, 2ℓ]) ≥ ℓ/2.

Proof. We claim that the VC dimension of the set of columns of M = MA
Sum2[ℓ,2ℓ]

with A =

{1, . . . , ℓ/2}, is at least ℓ/2. The rows of this matrix are indexed by vectors p = p1 . . . pℓ/2 ∈
([2ℓ− 1] \ {2ℓ− 2})ℓ/2, and columns by vectors q = q ℓ

2+1 . . . qℓ ∈ ([2ℓ− 1] \ {2ℓ− 2})ℓ/2. Note
that in this case, for a given row p and column q, their merging p⊕ q is simply their concatenation.

We now consider ℓ/2 rows, corresponding to vectors:

p1 = (2, 1, 1, . . . , 1),

p2 = (1, 4, 1, . . . , 1),

...

pℓ/2 = (1, 1, 1, . . . , ℓ).

14



and show that these rows can be shattered by the columns of MA
Sum2[ℓ,2ℓ]

. For any Boolean vector
c1 . . . cℓ/2 ∈ {0, 1}ℓ/2, we have to find a column q ∈ ([2ℓ− 1] \ {2ℓ− 2})ℓ/2 such that:

Sum2[ℓ, 2ℓ](p
i ⊕ q) = ci

for all i = 1, . . . , ℓ/2. It then suffices to choose q such that

q ℓ
2+i =

{
2ℓ− 2i− 1 ci = 1,

1 otherwise.
i ∈ [ℓ/2].

Indeed, first note that the value m− 2 = ℓ− 2 is not used. Now, if ci = 1, then pi ⊕ q has numbers
2i and 2ℓ− 2i− 1, summing up to 2ℓ− 1. Next, if ci = 0, in pi ⊕ q only two numbers can appear, 1
and 2iℓ, whose sum is neither 2ℓ− 1 nor 4ℓ− 1 because i ≤ ℓ/2. This completes the proof.

B.3 Proof of Theorem 3.7

We consider a subproblem of this task, where only elements A12, . . . , A1k and B21, . . . , Bk1 can
be equal to 1, where k =

√
n. Under this restriction, a Transformer solving the binary relation

composition computes, in the token at position (1, 1), the function Disjm : {0, 1}m × {0, 1}m →
{0, 1} given by

Disjm(a, b) =

m∨
k=1

(ai ∧ bi),

with a and b being written in positions A12, . . . , A1k and B21, . . . , Bk1, respectively. In our case,
m = k − 1 =

√
n− 1. The results now follows from Theorem 3.2 and the following lemma.

Lemma B.2. split-VC(Disjm) ≥ m.

Proof. We show that the VC dimension of the set of columns of MA
Disjm

is at least m for A =

{1, . . . ,m}. Both the rows and the columns of MA
Disjm

are indexed by m-bit vectors. We show that
m rows, corresponding to the following vectors:

a1 = (1, 0, . . . , 0, 0),

a2 = (0, 1, . . . , 0, 0),

...
am = (0, 0, . . . , 0, 1)

can be shattered by the columns of the matrix. To establish that, for every c ∈ {0, 1}m we have to
provide b = b1 . . . bm ∈ {0, 1}m with

Disjm(ai, b) = ci, i ∈ [m].

This can be achieved by simply setting bi = ci for i ∈ [m].

B.4 Proof of Theorem 4.2

Function composition In the function composition task, we get a (2n + 1)-length sequence of
numbers

ϕ(1), . . . , ϕ(2n+ 1) ∈ [n].

The task is to output, in the (2n+ 1)-st token, the value of h(g(x)) with the 0.5-precision (in fact,
we will do this with a much better precision, namely e−Ω(n2)), where g, h : [n] → [n] and x ∈ [n]
are such that g(1) = ϕ(1), . . . , g(n) = ϕ(n), h(1) = ϕ(n+ 1), . . . , h(n) = ϕ(2n), x = ϕ(2n+ 1).

We use the following positional encoding:

xi =



i
i2

ϕ(i)
(ϕ(i))2

1
0
0


, i = 1, . . . , 2n+ 1.

15



We take matrices W f ,W g,Wh in (12–15) so that:

fi = n


(ϕ(i))2

2ϕ(i)
−1
0
0
0

 , gj = n


−1
j
j2

(ϕ(j))2

2ϕ(j)
−1

 ,

hk = n


0
0
0
−1

k − n
k2 − 2kn+ n2



We obtain:

ai,j,k = Softmaxj,k
figj + gjhk + hkfi√

6

= Softmaxj,k
−n2

[
(ϕ(i)− j)2 − (ϕ(j)− (k − n))2

]
√
6

In particular, the maximum of a2n+1,j,k is for j and k such that j = ϕ(2n + 1) = x, and k =

n + ϕ(j) = n + ϕ(x) = n + g(x), and other values of a2n+1,j,k are by an eΩ(n2)-factor smaller.
Hence, with precision ±e−Ω(n2), we obtain a2n+1 = vj ⊙ vk for j = x and k = n+ g(x). Observe
that ϕ(k) = ϕ(n+ g(x)) = h(g(x)), so it is enough for vj ⊙ vk to have a coordinate equal to ϕ(k).
We can achieve this by setting matrices V1, V2 in (15) such that the first coordinates of vj and vk are
1 and ϕ(k), respectively.

Binary relation composition In this task, the length of input is a square number n = m2, and
tokens are indexed by pairs (i, j) ∈ [m]2. The token, indexed by (i, j), receives on input two bits
Aij , Bij from two Boolean matrices A,B ∈ {0, 1}m×m. As an output, the (i, j)-th token has to
produce a real number yij such that

(B ◦A)ij =

m∨
k=1

(Aik ∧Bkj) = sign(yij).

We employ the following positional encoding:

xij =



Aij

Bij

i
i2

j
j2

1


, i, j = 1, . . . ,m.

16



We then take matrices W f ,W g,Wh in (12–15) so that:

fij = n2



i2

2i
−1
j2

2j
−1
0
0
0
0
0

1/m2

1/m3

1/m4

1/m5



, gcd = n2



−1
c
c2

0
0
0
d2

2d
−1
1

Acd

c
d
0
0



, hkℓ = n2



0
0
0
−1
ℓ
ℓ2

−1
k
k2

Bkℓ

1
0
0
k
ℓ


(horizontal lines are added for readability). We obtain:

fijgcd+gcdhkℓ+hkℓfij = n4

[
−(i− c)2 − (d− k)2 − (ℓ− j)2 +Acd +Bkℓ +

cm3 + dm2 + km+ ℓ

m5

]
.

(23)
The expression in brackets has the “integral part”, and also has the term cm3+dm2+km+ℓ

m5 which is
O(1/m) and is different for different quadruples (c, d, k, ℓ). Hence, there is a unique quadruple
(c, d, k, ℓ), establishing the maximum of the above expression, and it also maximizes the “integral
part”

[
−(i− c)2 − (d− k)2 − (ℓ− j)2 +Acd +Bkℓ

]
. Because of the factor n4, the value for the

other quadruples will be smaller by at least Ω(n4/m5) = Ω(n3/2).

The quantity
[
−(i− c)2 − (d− k)2 − (ℓ− j)2 +Acd +Bkℓ

]
is at most 2, being equal to 2 if and

only if c = i, ℓ = j, d = k and Aid = Bdj = 1. In other words, the maximum of the integral part is 2
if and only if (B ◦A)ij = 1.

As a result, the (i, j)-th token will get the value of the Hadamard product vcd ⊙ vkℓ with precision
e−Ω(n3/2) for some quadruple c, d, k, ℓ ∈ [m] satisfying:

(c = i, ℓ = j, d = k and Acd = Bkℓ = 1) ⇐⇒ (B ◦A)ij = 1 (24)

It remains to define matrices V 1, V 2 so that this Hadamard product in some coordinates has
c, d, k, ℓ, Acd, Bkℓ, and has 0 where xij has i and j. Then xij + (vj ⊙ vk) will have all quanti-
ties involved in the equalities of the left-hand side of (24), and checking them can be done with a
constant-size MLP.

Match3 On input, we get an array p1 . . . pn ∈ [m − 1]n. We first describe how to check, for
a fixed Σ and for every i = 1, . . . , n, if there exist j, k ∈ [n] such that pi + pj + pk = Σ using
one Strassen attention head. We get a solution for the Match3[n,m] task with 2 attention heads by
applying this construction to Σ = m and Σ = 2m.

The embedding dimension will be 8. Define qi = pi−Σ/3. We use the following positional encoding:

xi =



i
qi
q2i
1
0
0
0
0


, i = 1, . . . , n.

17



We define matrices W f ,W g,Wh in (12–15) so that:

fi = n2



−qi
−qi
0
−q2i
0
0
0
0


, gj = n2



2qj
0
−qj
1
−q2j
1
i
n2

1


, hk = n2



0
2qk
2qk
0
1
−q2k
1
k
n3


.

As a result, we get:

aijk = Softmaxj,k
figj + gjhk + hjfi√

8

= Softmaxj,k
n4

(
−(qi + qj + qk)

2 + in+j
n3

)
√
8

= Softmaxj,k
n4

(
−(pi + pj + pk − Σ)2 + in+j

n3

)
√
8

For a given i, the maximum of aijk is attained on a single triple (i, j, k) with the minimal value of
|pi + pj + pk − Σ| across the array, and it will be by an eΩ(n)-factor larger than any other value of
ai,j,k. We added the fraction in+j

n3 to ensure uniqueness of the maximum; the added term is different
for different pairs (i, j) while not exceeding O(1/n).

Since all numbers under consideration are polynomial in n, the output ai will be equal to vj ⊙ vk
for the maximal pair (j, k) up to exp{−Ω(n)}-precision. In the output MLP, we have to check if
pi+pj+pk = Σ for this pair (j, k). It is enough to define V1, V2 so that the 5th and the 6th coordinate
of vj and vk are 1, pj and pk, 1, respectively. As a result, the 2nd, the 5h, and the 6th coordinates
of xi + ai will be −pi, pk, and pj , respectively, allowing us to find out if pi + pj + pk = Σ with a
constant-size output MLP.

B.5 Proof of Theorem 5.1

Upper bound The upper bound is very similar to our construction for the binary relation composi-
tion task in Theorem 4.2. Namely, first we replace −(d− k)2 by −(col(d)− col(k))2 in (23). After
this modification, the maximum of (23) will be attained on a single quadruple (c, d, k, ℓ), and for this
quadruple we will have c = i, ℓ = j, col(d) = col(k) and Aid = Bkj = 1 if and only if a quadruple,
satisfying these equalities, exists. However, due to the definition of our task, we have to add a smaller
term, enforcing that among quadruples, satisfying this property, those with d ̸= k have a larger value
of (23). This can be achieved by adding a term of the form (d− k)2/m3, which is always O(1/m)
so that the largest possible difference in this term is smaller than the smallest possible difference of
the “integral part” in (23).

We also have to add a term which ensures that the maxima is attained at the unique quadruple. The
largest possible difference in this term should be smaller than the smallest possible difference in the
previous terms, which is Ω(1/m3). We can again take the expression cm3 + dm2 + km + ℓ but
divided by a larger denominator, for instance:

cm3 + dm2 + km+ ℓ

m8

(now the maximal possible difference in this term is O(1/m4)). Finally, it remains to multiply all
the coefficients by a sufficiently large factor to make the minimal possible difference between the
maximum and the other values polynomial in n.

Lower bound We employ the same technique as in Theorem 3.2. However, we cannot rely on it
directly as now we have to deal with the triangular attention.

Assume for contradiction that there exists a one-layer Transformer T such that (a) it solves the quotient
binary relation composition task; (b) it has no(1) standard-attention heads, no(1) triangular-attention

18



heads, no(1) embedding dimension, and no(1)-size output MLP. Without loss of generality, let n be
even and fix s be such that n = 2s+2. Given two binary words p = p1 . . . ps, q = q1 . . . qs ∈ {0, 1}s,
we define an instance (A(p), B(q), col) of the quotient binary relation composition task by setting:

A1,2+j = pj , B2+s+j,2 = qj ,

for j ∈ [s], and letting all the other entries of the matrices A,B to be 0. The coloring function is
defined by col(1) = col(2) = 1 and

col(2 + j) = col(2 + s+ j) = 2 + j

for j ∈ [s]. An example of this construction for s = 4 is given in Figure 3.

1 2

4

3

5

6

8

7

9

10

A

A

B

B

B

p = 1010 q = 0111

Figure 3: An example of the construction. Nodes apart from 1 and 2 are split into 2 equal groups – 3,
4, 5, 6 and 7, 8, 9, 10. If Aij = 1 (resp., Bij = 1), we draw an A-labeled (resp., a B-labeled) edge
from i to j. The A-edges can only go from 1 to 3,4,5,6, and the word p determines, which of these
edges are present. Likewise, the B-edges only go from 7, 8, 9, 10 to 2, according to whether q has 1
or 0 in the corresponding position. Nodes 3 and 7, 4 and 8, 5 and 9, 6 and 10 have the same color but
different pairs have a different color. Therefore, the only way we can have (B ◦A/c)12 = 1 is when
1 has an A-edge to some node on the left, and the node of the same color from the right has a B-edge
to 2. In the example from the figure, this is true for 5 and 9 (which happens because p and q both
have 1 in the third position).

We claim that for the instance (A(p), B(q), col), the value of the quotient binary relation composition
at the pair (1, 2) is defined by the equation:

(B(q) ◦A(p)/col)12 = Disj(p, q), (25)

where Disj(p, q) is 1 if and only if there is a position where both p and q have 1. Indeed, if
Disj(p, q) = 1, taking j ∈ [s] such that pj = qj = 1 and then setting k1 = 2 + j, k2 = 2 + s + j,
we obtain that A1k1 = pj = qj = Bk22 = 1 and col(k1) = col(k2) = 2 + j, which implies
(B(q) ◦ A(p)/col)12 = 1. On the other hand, if (B(q) ◦ A(p)/col)12 = 1, then for some k1 ̸= k2
we have A1k1

= Bk22 = 1 and col(k1) = col(k2). Since A1k1
= 1, Bk22 = 1, we have k1 = 2+ j1

and k2 = 2 + s+ j2 for some j1, j2 ∈ [s]. Since 2 + j1 = col(k1) = col(k2) = 2 + j2, we derive
that j1 = j2 = j. Hence, we get pj = A1k1

= Bk22 = qj and Disj(p, q) = 1, as required.

We now put the instance (A(p), B(q), col) to our Transformer T and look at its output int the token
indexed by (1, 2). By (25), we have:

sign(y12) = Disj(p, q).

We now look at how the output y12 is computed in our Transformer on such input. The key observation
is that, for any h = 1, . . . ,H , the output of the h-th attention head in position (1, 2) can be written
similarly to (20) as a fraction, where some terms depend solely on p and others solely on q:

a
(h)
12 =

α(h)(p) + β(h)(q) + γ(h)

λ(h)(p) + µ(h)(q) + ν(h)
, α(h)(p), β(h)(q), γ(h) ∈ Rd, λ(h)(p), µ(h)(q), ν(h) ∈ R

19



regardless of whether the h-th attention head uses the standard or the triangular attention. Indeed,
for the case of the standard attention, this is by the same computation as in the proof of Theorem 3.2.
Now, for the case of the triangular attention, the same computation goes through but for pairs of tokens
of the form (x1ℓ, xℓ2) instead of individual tokens. It remains to notice that for ℓ = 3, . . . , s + 2,
the value of this pair is determined by p, and for ℓ = s + 3, . . . , 2s + 2, the value of this pair is
determined by q (and for s = 1, 2, the value of this pair is fixed).

The rest of the proof is identical to the corresponding part in the proof of Theorem 3.2. Similarly to
(21), we can now write:

Disj(p, q) = sign

N
x1,2 +WO


α(1)(p)+β(1)(q)+γ(1)

λ(1)(p)+µ(1)(q)+ν(1)

...
α(H)(p)+β(H)(q)+γ(H)

λ(H)(p)+µ(H)(q)+ν(H)



 . (26)

Then we define a hypothesis class H by considering parts of (26) that depend on p as inputs and
parts that depend on q as parameters. On the one hand, since d,H and the size of N are assumed
to be no(1), the VC dimension of this class is no(1) by Theorem 2.3 in [9]. On the other hand, its
VC dimension is lower bounded by the VC dimension of the set of columns of the matrix Disj(p, q),
which is at least s = n/2− 1 as established in the proof of Proposition B.2.

C Experimental Setup

C.1 Datasets

We create dedicated datasets to evaluate our models across all four tasks. Each task consists of
5× 104 examples. Below, we detail the data generation process for each task, with explanations of
key components and structures.

C.1.1 Function Composition

The task of function composition involves determining whether a specific condition holds for a given
sequence derived from a function f . Each example in the dataset is represented as a tuple (X, y),
where:

• X = (⊥, f(0), f(1), . . . , f(n− 1)) is an input sequence of length n+ 1. The first token,
⊥, is a query token indicating the position where the output is required.

• n is sampled uniformly from the range [Nmin, Nmax], with Nmin = 25 and Nmax = 30.
• y ∈ {0, 1} is a binary label that indicates whether the condition f(f(0)) = 0 is satisfied.

The dataset generation process ensures that the sequences are random but incorporates specific
constraints to maintain diversity and balance (approximately 50% positive labels). Algorithm 1
outlines the data generation procedure.

Algorithm 1 Dataset Generation for Function Composition

Input: Nmin, Nmax
Output: Dataset
for _ = 1 to 5× 104 do

Sample n ∼ Uniform(Nmin, Nmax)
Generate random sequence X = x0x1 . . . xn−1 with xi ∼ Uniform({0, 1, 2, . . . , n− 1})
Sample y ∼ Uniform({0, 1})
if y = 1 and xx0

̸= 0 then
Set xx0

← 0 {Ensure f(f(0)) = 0}
else if y = 0 and xx0

= 0 then
Set x0 ∼ Uniform(i ∈ {1, 2, . . . , n− 1} | xi ̸= 0) {Ensure f(f(0)) ̸= 0}

end if
Prepend query token: X ← (⊥, X)
Add (X, y) to the dataset

end for

20



Explanation of Examples (Table 2) In the sequence (⊥, 3, 0, 5, 1, 0, . . . ), the label y = 0 implies
that the condition f(f(0)) = 0 does not hold. Specifically: f(0) = 3, and f(3) = 1 ̸= 0. Thus, the
condition f(f(0)) = 0 is false. In the sequence (⊥, 4, 1, 3, 5, 0, . . . ), the label y = 1 indicates that
the condition f(f(0)) = 0 is satisfied. Specifically: f(0) = 4, and f(4) = 0. Thus, the condition
f(f(0)) = 0 is true.

0 1 2 3 4 . . .
⊥ 3 0 5 1 0 . . .
⊥ 4 1 3 5 0 . . .

0
1

Sequence X Label y
Table 2: Example sequences for the Function Composition task. The label y depends on whether
f(f(0)) = 0.

C.1.2 Binary Relation Composition

The task of binary relation composition involves determining whether a transitive relation exists
between two elements in a binary relation matrix. Given two relations A,B ∈ {0, 1}m×m, where
m =

√
n, and a pair of elements i, j ∈ {0, 1, ...,m − 1}, the goal is to check whether there exists

another element k ∈ {0, 1, ...,m− 1} such that both relations Aik and Bkj hold. For simplicity, we
define R ∈ {0, 1}m×m and set A = R and B = R. Each example in the dataset is represented as a
tuple (X,Y ), where:

• X = flatten(R) is an input sequence of length n = m2 of a flatten boolean matrix
R ∈ {0, 1}m×m representing the binary relation. Each element Rij is independently set to
1 with a probability P between 0 to 1, where P is a parameter independent on the input
length.

• m is sampled uniformly from the range [Nmin, Nmax], with Nmin = 6 and Nmax = 8.
• Y ∈ {0, 1}n is a list of binary labels that at position k = i×m+ j indicates whether there

is a composition of relations between element i and j is satisfied.

The dataset generation process ensures randomness in X while adhering to the constraints for Y . For
m in the range [Nmin, Nmax], the probability P is set to 32.5% to achieve a balanced proportion of
positive labels. Algorithm 2 provides the detailed data generation procedure.

Algorithm 2 Dataset Generation for Binary Relation Composition

Input: Nmin, Nmax, P
Output: Dataset
for _ = 1 to 5× 104 do

Sample m ∼ Uniform(Nmin, Nmax)
Generate boolean matrix R ∈ {0, 1}m×m, where each element Rij = 1 with probability P
Initialize Y = [ ] {An empty list for labels}
for i = 0 to m− 1 do

for j = 0 to m− 1 do
if there exists k such that Rik = 1 and Rkj = 1 then

Append 1 to Y
else

Append 0 to Y
end if

end for
end for
Add (flatten(R), Y ) to the dataset

end for

Explanation of Examples (Table 3) Consider the binary relation matrix R shown in Table 3: For
i = 0, j = 4, there exists k = 2 such that R02 = 1 and R24 = 1. Thus, Y0×6+4 = 1. For i = 5,
j = 0, R50 = 1 is the unique candidate, but R00 = 0. Thus, Y5×6+0 = 0.

21



0 1 2 3 4 5
0 0 0 1 1 0 0
1 0 1 1 0 0 0
2 1 0 1 0 1 0
3 0 0 0 0 0 0
4 0 0 1 1 0 0
5 1 0 0 0 0 0

0 1 2 3 4 5
1 0 1 0 1 0
1 1 1 0 1 0
1 0 1 1 1 0
0 0 0 0 0 0
1 0 1 0 1 0
0 0 1 1 0 0

Matrix R R ◦R
Table 3: Examples of binary relation matrix and corresponding composition. Here, X = flatten(R)
and Y = flatten(R ◦R).

C.1.3 Match3

The Match3 task involves determining a target label sequence Y for a given input sequence X . Each
example consists of an input sequence X of size n and a label sequence Y of the same size, where for
every index i ∈ {0, 1, ..., n− 1}, Yi represents the target value for Xi. Each example is represented
as a tuple (X,Y ), where:

• X = (x0, x1, . . . , xn−1) is a pseudo-random sequence of integers sampled from the range
[0,M − 1], where M = 37.

• Y = (y0, y1, . . . , yn−1) is a binary sequence, with yi ∈ {0, 1}, where each value yi
indicates if the token xi satisfied the Match3 condition in X .

• n is sampled uniformly from the range [Nmin, Nmax], where Nmin = 30 and Nmax = 35.

The dataset generation process aims to balance the distribution of ones in Y across four predefined bins
corresponding to percentage ranges: [0, 25)%, [25, 50)%, [50, 75)%, and [75, 100]%. Algorithm 3
outlines the data generation procedure.

Algorithm 3 Dataset Generation Algorithm for Match3

Input: Nmin, Nmax, D {Input D is the dataset size}
Output: Dataset
Initialize four empty bins {Each bin corresponding to percentage ranges of ones in sequences:
[0, 25)%, [25, 50)%, [50, 75)%, and [75, 100]%}
Nb ← (D/10)/4
for i = 1 to 5× 103 do

Randomly select skewness ∼ Uniform(1, 40) {An initial percentage distribution of ones in the
sequence}
Sample n ∼ Uniform(Nmin, Nmax)
Generate a pseudo-random sequence X = (x0, x1, . . . , xn−1), where xi ∼
Uniform({0, 1, . . . ,M − 1}) ensuring the percentage of tokens that satisfied Match3 condition
is at least skewness
Compute Y = (y0, y1, . . . , yn−1) based on Match3 condition
Calculate the percentage of ones in Y
Add (X,Y ) to the corresponding bin if size(bin) < Nb

end for
for each bin in bins do

while size(bin) ̸= (D/4) do
Randomly sample an example (X,Y ) from bin
Apply the same permutation to X and Y
Add the permuted pair (X∗, Y ∗) to bin

end while
end for
Add all examples from the bins to the dataset

Explanation of Examples (Table 4) Consider the example sequence X and its corresponding label
Y in Table 4:

22



• The input sequence X = (6, 9, 9, 9, 7, 10, 9, 34, 9, 9, 30, . . . ) contains pseudo-random inte-
gers between 0 and M − 1 (M = 37).

• The label sequence Y = (1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . . ) has a skewed distribution of ones.

• For instance, y5 = 1 indicates that the element x5 = 10 satisfies the property, because
x7 = 34 and x10 = 30 holds, x5 + x7 + x10 = 74 = 2×M .

Sequence X
Label Y

0 1 2 3 4 5 6 7 8 9 10 . . .
6 9 9 9 7 10 9 34 9 9 30 . . .
1 0 0 0 1 1 0 1 0 0 1 . . .

Table 4: Example sequence for Match3 task with M = 37.

C.1.4 Quotient Binary Relation Composition

The task of quotient binary relation composition involves determining whether a transitive relation
exists between two elements in a binary relation matrix while incorporating an additional constraint
based on a coloring function col : [0,m−1]→ [0,m−1]. For simplicity, we define R ∈ {0, 1}m×m

and set A = R and B = AT . Each example in the dataset is represented as a tuple (X,Y ), where:

• X = flatten(R) is an input sequence of length n = m2 obtained by flattening the boolean
matrix R, where each element Rij is independently set to 1 with probability P , which is
independent of the input length.

• col is a function that assigns a unique color to each element in [0,m − 1], with colors
sampled uniformly from the range [0,m− 1].

• m is sampled uniformly from the range [Nmin, Nmax], with Nmin = 6 and Nmax = 8.

• Y ∈ {−100, 0, 1}n is a list of binary labels, where the position k = i ×m + j indicates
whether the quotient binary relation composition between elements i and j is satisfied if and
only if i ̸= j, otherwise Yk = −100.

The dataset generation process ensures randomness in R while adhering to the constraints for Y . For
m in the range [Nmin, Nmax], the probability P is set to 43.3% to achieve a balanced proportion of
positive labels. Algorithm 4 provides the detailed data generation procedure.

Algorithm 4 Dataset Generation for Quotient Binary Relation Composition

Input: Nmin, Nmax, P
Output: Dataset
for _ = 1 to 5× 104 do

Sample m ∼ Uniform(Nmin, Nmax)
Generate boolean matrix R ∈ {0, 1}m×m where each element Rij = 1 with probability P
Generate a coloring function col : [0,m− 1]→ [0,m− 1] by assigning colors uniformly
Initialize Y = [ ] {An empty list for labels}
for each pair (i, j) in [0,m− 1]× [0,m− 1] do

Append 1 to Y if i ̸= j and there exist k1, k2 such that:
Rik1

= 1, Rjk2
= 1, col(k1) = col(k2), and k1 ̸= k2

Otherwise, if i ̸= j, append 0 to Y , else append −100 to Y
end for
Add (flatten(R), Y ) to the dataset

end for

Explanation of Examples (Table 5) Consider the binary relation matrix R shown in Table 5.
For i = 2, j = 4, there exist elements k1 = 4 and k2 = 5 such that R24 = 1, R45 = 1, and
col(4) = 2 = col(5), with k1 ̸= k2. Thus, Y2×7+4 = 1.

23



0 1 2 3 4 5 6
0 0 1 1 1 1 0 0
1 0 0 0 0 0 1 1
2 1 1 0 0 1 1 0
3 0 0 0 0 0 1 1
4 1 0 0 0 0 1 1
5 0 0 1 1 0 0 1
6 0 1 0 0 0 1 0

5
4
5
1
2
2
3

0 1 2 3 4 5 6
1 1 1 1 0 0

0 0 0 0 1 1
1 1 0 1 1 0
0 0 0 0 1 1
1 0 0 0 1 1
0 0 1 1 0 1
0 1 0 0 0 1

Matrix R col RT ◦R/col
Table 5: Examples of binary relation matrix and corresponding quotient composition.

C.2 Experimental Protocol

Dataset Splitting. The dataset is split into a training and validation set. We randomly select 90%
of the data for training, and the remaining 10% is used for validation. The validation set is used to
monitor the model’s performance as well as test set. The validation data is kept within the same
distribution as the training set to ensure that the evaluation is conducted in an in-distribution manner.

Evaluation. The evaluation metric for all tasks is accuracy. To compute the accuracy during training
or evaluation, we first calculate the accuracy for each batch individually. This is done by dividing
the number of correctly predicted labels by the total number of labels in that batch. These per-batch
accuracies are then aggregated across all batches within an epoch. The overall accuracy for the epoch
is obtained by taking the mean of the per-batch accuracies. Note that this is not equivalent to just
taking the number of correctly predicted labels divided by the number of all labels in the whole
dataset (due to variable lengths of examples). Both approaches converge to the same value as the
number of examples grows.

Training Setting. We fix random seeds across all experiments. Each task and model configuration
is evaluated using 8 different random seeds, and the reported results include the median across these
runs. This approach mitigates the effects of random weight initialization and stochastic data sampling
during training. Additionally, training parameters such as learning rate, batch size, and training
duration equally specified for each task across model, as summarized in Table 6.

Implementation Details We implement all models using PyTorch framework [1] with Opt-Einsum
library [5]. We employ AdamW optimizer for all training tasks without a learning rate scheduler,
ensuring a consistent optimization strategy across experiments. We use the Binary Cross-Entropy
loss as the objective function. In order to handle padding, we used attention masks, preventing the
model from attending to padded positions, and thus ensuring no changes in the model’s outputs.
For the target sequence, we assign a value of −100 to positions corresponding to padded tokens.
This ensures that during loss and accuracy calculations, only tokens with values other than −100
are considered. We achieve this by applying a mask, where predictions and targets are filtered as
pred = pred[mask] and target = target[mask], respectively.

Hardware and Resource Utilization We conduct all experiments on high-performance NVIDIA
GPUs. Specifically, we execute on NVIDIA A100 GPUs with 80GB of memory tasks requiring
extensive computational resources, such as Match3 and Quotient Binary Relation Composition.
For tasks with lower computational demands, such as Function Composition and Binary Relation
Composition, We use NVIDIA A40 GPUs with 48GB of memory.

D Further Experiments

We evaluate the computational performance of attention mechanisms exclusively on an NVIDIA RTX
A6000 GPU. This analysis focuses on three metrics: (a) forward pass time, (b) GPU utilization, and
(c) memory utilization. These metrics provide insights into the computational efficiency and hardware
constraints associated with different configurations of hidden dimension and input length. Below, we
detail the evaluation methodology and the observed limitations in the Figure 4.

24



Task Model d h B ρ T p

Function
Composition

Standard 16 1 2500 1 · 10−3 1000 epochs 0.3
Third-Order 16 1 2500 1 · 10−3 1000 epochs 0.3

Strassen 16 1 2500 1 · 10−3 1000 epochs 0.3

Binary Relation
Composition

Standard 16 1 2500 1 · 10−3 200 epochs 0.3
Triangular 16 1 2500 1 · 10−3 200 epochs 0.3

Third-Order 16 1 2500 1 · 10−3 200 epochs 0.3
Strassen 16 1 2500 1 · 10−3 200 epochs 0.3

Match3
Standard 128 2 2500 1 · 10−3 500 epochs 0.4

Third-Order 128 2 2500 1 · 10−3 500 epochs 0.4
Strassen 128 2 2500 1 · 10−3 500 epochs 0.4

Quotient
Binary Relation
Composition

Standard 16 1 2000 1 · 10−3 3000 epochs 0.3
Triangular 16 1 2000 1 · 10−3 3000 epochs 0.3

Third-Order 16 1 2000 1 · 10−3 3000 epochs 0.3
Strassen 16 1 2000 1 · 10−3 3000 epochs 0.3

COGS Standard 68 4 100 5 · 10−4 200 epochs 0.1
Strassen 64 4 100 5 · 10−4 200 epochs 0.1

Table 6: Training parameter settings for tasks and models. For all models and tasks, we run
experiments on 8 different seeds with only one attention layer (except for the COGS dataset where
we use 3 layers). Here d is embedding dimension, h is the number of heads, B is the batch size, ρ is
the learning rate, T is training duration and p is the dropout outside attention mechanism. We did not
use batch normalization for any task.

0

10(a)
Time

(Seconds)

Hidden Dim.: 64

0

2

4
128

0

2

4

512

0.0

2.5

5.0

768

0

5

1024

0

50

100
(b)

GPU Usage
(%)

0

50

100

0

50

100

0

50

100

0

50

100

102 104

0

20
(c)

Memory
Reserved

(GB)

102 104

0

20

102 104

0

20

102 104

0

20

102 104

0

20

38 ms 83 ms 148 ms 287 ms 465 ms

Input Length (N)

Standard Strassen Third-Order Triangular (N=Nodes) Triangular (N=Nodes×Nodes)

Figure 4: Analysis of computational performance for each attention mechanisms presented in this
work: Standard, Strassen, Third-Order and Triangular attention. Metrics include (a) forward pass
time in seconds, (b) GPU utilization in percentage, and (c) memory reserved in GB on an NVIDIA
RTX A6000. Experiments are conducted across varying input lengths (4 to 16,384) and five hidden
dimensions (64, 128, 256, 768, 1024). Each result represents the average of the median over 8 runs
on 100 random sequences (100 tensors with batch size 1) passed through the respective attention
mechanisms.

Time We measure the forward pass time as the delta time before and after passing a 1 × n × d
random tensor through the attention mechanism, where n is input length and d hidden dimension.
We implement this using time.time() function from Python. As we expect, the results indicate that
forward pass time increases significantly for higher hidden dimensions and input lengths.

GPU Usage We monitor GPU utilization using the pynvml library to query the current CUDA
device. Specific configurations of attention mechanisms, such as Strassen attention with large hidden
dimensions (e.g., 512 or higher) and long input lengths (e.g., 1600 or higher), result in 100% GPU
usage.

25



Memory Reserved We record the memory reserved during tensor processing using CUDA memory
management functions from PyTorch: torch.cuda.memory_reserved.

Our computational performance results show that (Figure 4):

• The computational constraints of Strassen attention become evident for hidden dimensions
of 512 or higher and input lengths exceeding 1600.

• Those of Third-Order attention appear with even lower hidden dimensions (64 or 128) and
input lengths exceeding 1600.

• Standard and Triangular (n =Nodes×Nodes) GPU memory usage does not shows a
bottleneck even for configurations with hidden dimensions of 2048 and input lengths of
16,384.

• Triangular (n =Nodes) Limitations appear for hidden dimensions of 1024 or higher and
input lengths as low as 196, with increasing severity for longer input sequences.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claim is that of a new lower bound method to evaluate the theoretical
expressivity of transformers (which we clearly describe in 3). We also describe our proposed
Strassen attention and its related empirical results in section 4 and 5, respectively. Hence all
the claims in the abstract are well accounted for in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are addressed in section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

26



• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results are backed up with correct proofs in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information needed to reproduce the paper is available in the main text,
and we provide access to our code and data as a link to a github repo.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

27



• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the results of the experiments are fully reproducible with our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are provide, alongside information with respect
to the hyper-parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bar when relevant, but our paper is a theoretical paper that
does not involve any statistical analyses.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have a fully dedicated subsection in the Appendix that discusses the
compute resources needed to run the distinct models we present.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms with the NeurIPS Code of Ethics

Guidelines:

29

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper discusses a theoretical method to evaluate the expressivity of
Transformers, this question therefore does not apply to our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: See justification to question 10.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

30



Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: See justification to question 10.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: See justification to question 10.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

31

paperswithcode.com/datasets


Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: See justification to question 14.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not1082 involve LLMs as any important, original, or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Theoretical Limitations of Transformers via Split-VC dimension
	Main Theorem
	Applications to three concrete tasks
	Function Composition
	The Match3 task
	Binary Relation Composition


	Strassen attention – An efficient mechanism to solve complex tasks
	Disentangling Strassen from Standard and Triangular attentions
	Experiments and Results
	Illustration of the attention mechanisms
	Missing proofs
	Proof of Theorem 3.2.
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Proof of Theorem 4.2
	Proof of Theorem 5.1

	Experimental Setup
	Datasets
	Function Composition
	Binary Relation Composition
	Match3
	Quotient Binary Relation Composition

	Experimental Protocol

	Further Experiments

