
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON STRUCTURED STATE-SPACE DUALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equiva-
lence between a simple Structured State-Space Model (SSM) and a masked at-
tention mechanism. In particular, a state-space model with a scalar-times-identity
state matrix is equivalent to a masked self-attention with a 1-semiseparable causal
mask. Consequently, the same sequence transformation (model) has two algorith-
mic realizations: a linear-time O(T ) recurrence or as a quadratic-time O(T 2) at-
tention. In this work, we formalize and generalize this duality: (i) we extend SSD
from the scalar-identity case to general diagonal SSMs (diagonal state matrices);
(ii) we show that these diagonal SSMs match the scalar case’s training complexity
lower bounds while supporting richer dynamics; (iii) we establish a necessary and
sufficient condition under which an SSM is equivalent to 1-semiseparable masked
attention; and (iv) we provide a negative result that such duality is impossible to
extend to standard softmax attention due to rank explosion. Together, these results
strengthen the theoretical bridge between recurrent SSMs and Transformers, and
widen the design space for expressive yet efficient models.

1 INTRODUCTION

Structured State-Space Duality (SSD) refers to a one-to-one equivalence between a certain linear
Structured State-Space Model (SSM) and a masked self-attention mechanism (Dao & Gu, 2024). In
plain terms, it means the same sequence transformation has two algorithmic realizations: either as
a recurrent state-space system or as a self-attention (matrix) operation. Dao & Gu (2024) introduce
the first example of such duality: a state-space model whose state matrix is a scalar multiple of the
identity is equivalent to a causal self-attention with a rank-1 mask matrix.

In this case, we write the sequence (time) index of a matrix as a superscript (At). Then the SSM
update ht+1 = Atht + btxt (with h1 = 0 and output yt = c⊤t ht for t = 1, ..., T ) yields the closed-
form solution yt =

∑t
s=1 c

⊤
t A

t · · ·As+1bsxs. Equivalently, the self-attention viewpoint treats y as
an explicit attention matrix M ∈ RT×T acting on x, with entries Mt,s = c⊤t A

t · · ·As+1bt for s ≤ t
(and Mt,s = 0 for s > t due to the causal mask). This attention matrix M is a rank-N matrix with
a 1-semiseparable (Definition 3.1) causal mask, where N is the dimension of At, also known as the
state dimension. Thus, the SSM and the masked attention realize the same function x 7→ y: one via
a linear-time O(T ) recurrence and the other via a quadratic-time O(T 2) matrix multiplication.

Remarkably, this duality bridges two disparate paradigms for sequence modeling — recurrent state-
space models and Transformer attention. State-space models update a latent state recurrently, and
hence yields linear complexity in sequence length. Attention mechanisms compute pairwise token
interactions, and hence yields quadratic complexity. The structured state-space duality unifies these
two paradigms by revealing that they implement identical functions.

Nevertheless, while Dao & Gu (2024) conjecture that analogues duality should hold for diagonal
state-space models, there exist no formal treatment to the best of our knowledge. We give a concrete
diagonal state-space duality, and provide the regarding computation algorithm.

Contributions. In this work, we build on SSD and extend its scope in four key directions:

• General Diagonal SSMs (Sections 4.1 and 4.2). We extend SSD beyond the simple (scalar)×IN
state matrix to general diagonal state matrices. This enlarges the class of SSMs under the duality
(from a single exponential decay to N separate diagonal dynamics), thereby supporting richer
sequence dynamics.
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• Efficiency at Scale (Section 4.3). We prove that these more general diagonal SSMs match the
training complexity lower bound of the scalar case while offering greater expressiveness. In other
words, it is possible to train and execute the richer diagonal SSMs with the same optimal O(TN)
time complexity as the scalar SSM, so we get additional modeling power at no extra asymptotic
cost.

• Higher-Rank Equivalence (Appendix A). We prove the conjecture of Dao & Gu (2024) that the
equivalence between semiseparable matrices and matrices with sequential state-space representa-
tion holds not only for the rank-1 case, but also for general rank N . In other words, an SSM of
state dimension N corresponds to an N -semiseparable attention matrix.

• Masked Attention Duality of General SSM (Section 4.4). While each 1-semiseparable masked
attention has an SSM dual, we provide a necessary and sufficient condition for an N -semiseparable
(Definition 3.3) matrix (corresponding to an SSM of state dimension N ) to have a 1-semiseparable
masked attention dual.

Together, these results strengthen the theoretical bridge between recurrent state-space models and
Transformer-style attention, and widen the design space for expressive yet efficient sequence mod-
eling. Through this generalized duality framework, we enable principled exploration of new archi-
tectures that enjoy the best of both worlds (recurrent and attentional) in terms of speed, capacity, and
strong theoretical guarantees.

Organization. We provide related work in Section 2,and background in Section 3. We show our
main theory in Section 4, and the limitations of structured state-space duality in Section 5.

Notations. We denote the index set {1, . . . , I} by [I]. We denote vectors with lower case and
matrices with upper case. We write the sequence (time) index of a matrix as a superscript (At). We
write the sequence (time) index of a vector or scalar as a subscript (at). We use ⊙ for Hadamard
multiplication. We write the input sequence of length T as [x⊤

1 , x
⊤
2 , . . . , x

⊤
T ] ∈ Rd×T and the output

at time t ∈ [T ] as yt ∈ R1×d.

2 RELATED WORK

In this section, we review related work on structured state-space models, efficient Transformers and
linear attention mechanisms, and the connections between state-space models and attention.

Structured State-Space Models (SSMs). SSMs aim to model long-range dependencies with
linear-time computation. S3 first introduced the idea of parameterizing state-space models with
structured matrices to enable efficient sequence modeling (Gu et al., 2021a). S4 introduces a state-
space layer with stable diagonalization and fast convolution, which enabled long-context training
and inference (Gu et al., 2021b). S5 simplifies the design with a single multi-input multi-output
SSM and preserved O(T ) scaling (Smith et al., 2023). Mamba adds input-dependent gating on the
SSM projections and achieved strong accuracy with linear-time sequence modeling (Gu & Dao,
2024). These works establish SSMs as competitive sequence models and motivate analyses that
compare their expressive power to attention.

Efficient Transformers and Linear Attention. Many works reduce the quadratic cost of self-
attention by imposing structure or approximation (Tay et al., 2022). Linformer projects keys and
values to low rank and reduced compute and memory while preserving accuracy (Wang et al., 2020).
Linear Transformers replace softmax by kernel feature maps and execute attention as a recurrence,
which yielded O(T ) autoregressive inference (Katharopoulos et al., 2020). Performer uses random
features to approximate softmax attention with variance control and linear complexity (Choromanski
et al., 2021). Nyströmformer applies Nyström approximation to attention and obtains sub-quadratic
cost (Xiong et al., 2021). Sparse patterns such as Longformer, BigBird, and Reformer improve
scaling by local windows, global tokens, or LSH-based routing (Beltagy et al., 2020; Zaheer et al.,
2020; Kitaev et al., 2020). Retentive networks propose a recurrent retention operator that matches
Transformer quality with linear-time execution (Sun et al., 2023). These methods show that attention
admits efficient surrogates when the attention matrix has a low-rank, kernel, or sparse structure.
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Connections between SSMs and Attention. Linear attention admits a recurrent implementation
and thus links attention with RNN-style computation (Katharopoulos et al., 2020). Dao & Gu
(2024) introduce Structured State Duality (SSD), prove the duality between scalar-identity SSMs
and masked attention with 1-semiseparable kernels, and conjectrue such duality hold in diagonal
SSM. Hydra generalizes matrix mixers beyond causal SSMs with quasi-separable structure and bidi-
rectional information flow (Hwang et al., 2024).

Our work differs in scope and goal: we give an algebraic duality between N -dimensional diagonal
SSM and 1-semiseparable masked attention, and we prove that diagonal SSMs match the scalar case
in training FLOPs and memory while enabling N independent state modes. These results place
diagonal SSD on a firm foundation and clarifies how SSM capacity aligns with semiseparable rank.

3 BACKGROUND

In this section, we present the foundational concepts and definitions in Section 3.1. Then we provide
the existing theory from (Dao & Gu, 2024) for the structured state-space duality in Section 3.2.

3.1 SEMISEPARABLE MATRIX DEFINITIONS

We begin by defining the class of semiseparable (SS) matrices that prepares our theoretical develop-
ment. First, we recall the base case of 1-semiseparable matrices:

Definition 3.1 (1-Semiseparable (1-SS) Matrix.). Suppose M is a lower triangular matrix. M is
1-semiseparable (1-SS) if and only if every submatrix of M consisting of entries on or below the
main diagonal has rank at most 1.

Intuitively, a 1-SS matrix has extremely low complexity: each new row introduces at most one new
independent direction in the space of lower-triangular entries. We next define a masked attention
operator that is structured by such a matrix.

Definition 3.2 (1-SS Masked Attention.). Let Q,K ∈ RT×N be query and key matrices. A 1-SS
masked attention is a self-attention operation whose attention weight matrix is masked by a 1-SS
matrix M ∈ RT×T . In particular, the attention scores take the form M ⊙ (QK⊤), i.e. the element-
wise product of QK⊤ with the mask M (with M enforcing a causal lower-triangular structure).

We now generalize from 1-semiseparable to (higher-rank) N -semiseparable as follows. In essence,
an N -semiseparable matrix allows up to N independent directions in each lower-triangular block.

Definition 3.3 (N -Semiseparable (N -SS) Matrix.). A lower triangular matrix M is N -
semiseparable (N-SS) if every submatrix of M consisting of entries on or below the main diagonal
has rank at most N . The smallest such N is called the semiseparable rank (or order) of M .

Furthermore, we introduce the notion of a Sequentially SemiSeparable (SSS) representation. Impor-
tantly, SSS connects these structured matrices to state-space models:

Definition 3.4 (N -Sequentially Semiseparable (N -SSS) Representation.). A lower triangular ma-
trix M ∈ RT×T has an N -sequentially semiseparable (N-SSS) representation if there exist vectors
b1, . . . , bT ∈ RN , c1, . . . , cT ∈ RN , and matrices A1, . . . , AT ∈ RN×N such that

Mj,i = c⊤j A
j · · ·Ai+1bi, (3.1)

for all 1 ≤ i ≤ j ≤ T .

Definition 3.5 (N -SSS Representable Matrix.). A matrix M is N -SSS representable if it admits an
N -SSS representation (Equation (3.1)). Equivalently, M can be written in the form of (3.1).

The above definitions formalize how a structured state-space model of dimension N gives rise to
a matrix M with semiseparable rank N . In particular, any M that has an N -SSS representation is
necessarily N -semiseparable (since each new state dimension contributes at most one new rank to
the growing matrix). We next review the known correspondence between such structured matrices
and attention mechanisms in the simplest (rank-1) case.
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3.2 EXISTING STRUCTURED STATE-SPACE DUALITY

We now describe the structured state-space duality as originally established by Dao & Gu (2024) for
the scalar-identity state-space case. We begin by formulating the state-space model and its induced
sequence kernel, then show how it corresponds to a masked attention operator.

Time-Varying SSM and Induced Kernel. Consider a time-varying linear state-space model
(SSM) with state dimension N , defined by the recurrence

ht︸︷︷︸
N×d

:= At︸︷︷︸
N×N

ht−1︸︷︷︸
N×d

+ bt︸︷︷︸
N×1

xt︸︷︷︸
1×d

, yt︸︷︷︸
1×d

= c⊤t︸︷︷︸
1×N

ht︸︷︷︸
N×d

, for t ∈ [T ], (3.2)

where we set h0 = 0 for consistency. Here, ht ∈ RN×d is the hidden state, At ∈ RN×N is the state
transition matrix, bt ∈ RN×1 and ct ∈ RN×1 are input and output weight matrices. Importantly, this
recurrence defines a causal linear operator on the input sequence. Unrolling the recurrence yields an
explicit input-output relation

yt =

t∑
s=1

Mt,sxs, where Mt,s :=

{
c⊤t A

t · · ·As+1bs, for t ≥ s;

0, for t < s.
(3.3)

for 1 ≤ s ≤ t ≤ T . We refer to Mt,s as the SSM kernel at (t, s). Let M ∈ RT×T denote the
lower-triangular matrix of kernel coefficients, i.e. Mt,s for t ≥ s (and Mt,s = 0 for t < s). By
construction, M encodes the entire transformation from inputs x1, . . . , xT to outputs y1, . . . , yT .
Moreover, M is structured: since the latent state is N -dimensional, M has semiseparable rank at
most N (each row of M lies in an N -dimensional subspace). In particular, M is an N -SS matrix in
the sense of Definition 3.3, and for this special case N = 1, M is 1-SS.

Scalar-Times-Identity State Matrix (At = atIN ). A particularly simple case of the above is when
each state matrix is a scalar multiple of the identity. We call such an SSM a scalar-identity SSM,
meaning At = atIN for some scalar at ∈ R. In this case, the recurrence (3.2) simplifies to

yt =

t∑
s=1

at · · · as+1c
⊤
t bsxs, (3.4)

which is a convolution-style sum over past inputs. For example, if at = a is constant, then (3.4)
reduces to the standard discrete-time convolution yt =

∑t
s=1 a

t−sc⊤t bsxs.

Scalar-Identity SSM. We call an SSM layer a scalar-identity SSM if each of the state matrices At

is a scale multiple of the identity matrix.

Rank-1 Special Case (N = 1). In the extreme case of state dimension N = 1, the state ht is
one-dimensional. Then bt and ct are scalars for all t. We can collect the input sequence into a matrix
X = [x1;x2; . . . ;xT ] ∈ RT×d (with x⊤

t as the t-th row) and similarly Y = [y1; . . . ; yT ] ∈ RT×d

for the outputs. Let p = (b1, . . . , bT )
⊤ ∈ RT and q = (c1, . . . , cT )

⊤ ∈ RT denote the vectors of
input and output weights over time. The scalar-identity formula (3.4) then reduces to

Y︸︷︷︸
T×d

= diag(p)︸ ︷︷ ︸
T×T

M︸︷︷︸
T×T

diag(q)︸ ︷︷ ︸
T×T

X︸︷︷︸
T×d

,

where

Mt,s :=

{
at · · · as+1, for t ≥ s;

0, for t < s.

Here M is a 1-semiseparable mask matrix (Definition 3.1). In other words, the sequence mapping
implemented by this N = 1 SSM can be viewed as a masked attention operation: M serves as a
causal mask on the outer-product matrix CB⊤ = qp⊤. In the notation of Definition 3.2, this is a
1-SS masked attention with Q = C and K = B.

Now we are ready to present the structured state-space duality by Dao & Gu (2024):
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Figure 1: Mj,i = c⊤j A
j · · ·Ai+1bi Figure 2: Construction of bn and cn.

Proposition 3.6 (Dao & Gu (2024) Scalar-Identity State-Space Duality.). Consider the SSM defined
by (3.2) where each At = atIN (i.e. a scalar-identity SSM). Let B = [b1; b2; . . . ; bT ]

⊤ ∈ RT×N

and C = [c1; c2; . . . ; cT ]
⊤ ∈ RT×N be the matrices whose t-th rows are b⊤t and c⊤t , respectively.

Define M ∈ RT×T by Mt,s = atat−1 · · · as+1 for t ≥ s and Mt,s = 0 for t < s. Then for any
input sequence X = [x1; . . . ;xT ] ∈ RT×d with output Y = [y1; . . . ; yT ] ∈ RT×d, the recurrence
(3.4) is equivalent to a 1-SS masked attention representation:

Y = (M ⊙ (CB⊤))X,

where

Mt,s :=

{
at · · · as+1, for t ≥ s;

0, for t < s.

Here ⊙ denotes elementwise (Hadamard) product. In particular, the same sequence transformation
is realizable either by the linear-time recurrence (3.2) or by the quadratic-time matrix operation on
the right-hand side.

Proposition 3.6 (from Dao & Gu (2024)) establishes a one-to-one correspondence between a simple
structured SSM and a masked self-attention operator with a 1-SS (rank-1) mask.

4 MAIN THEORY

In this section, we provide the structured state-space duality for general diagonal SSMs in Sec-
tion 4.1, structured state-space duality for diagonal SSMs with full-rank state matrices in Section 4.2,
computational complexity of diagonal SSD in Section 4.3, and general SSMs having 1-SS masked
attention dual in Section 4.4.

4.1 STRUCTURED STATE-SPACE DUALITY FOR GENERAL DIAGONAL SSMS

While Dao & Gu (2024) only study state-space duality of SSM with scalar-identity state matrices,
we extend state-space duality to SSM with general diagonal state matrices.

In the case of general diagonal SSM, where each At is a diagonal matrix in (3.1), the state-space
model also has an attention-like dual.

Attention-Like Dual of Diagonal SSMs. Suppose M ∈ RT×T is a lower triangular matrix as in
(3.1) regarding the state-space model. We show that M has an attention-like dual as the sum of N
attention-like matrices Mn = Ln ⊙ (Qn ·Kn⊤), where for all n ∈ [N ] we have Qn,Kn ∈ RT×1.

Specifically, suppose

Mj,i = c⊤j A
j · · ·Ai+1bi (4.1)

for all 1 ≤ i ≤ j ≤ T , where b1, · · · , bT , c1, · · · , cT ∈ RN and each At ∈ RN×N is a diagonal
matrix. See Figure 1.

Then we have Mj,i =
∑N

n=1(cj)n(A
j · · ·Ai+1)n,n(bi)n for all 1 ≤ i ≤ j ≤ T .

5
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Note that those terms are separated for different n1, n2 ∈ [N ]. For all n ∈ [N ], let bn, cn ∈ RT be
such that for all t ∈ [T ], bnt = (bt)n and cnt = (ct)n. See Figure 2.

Define 1SS(·) : RT → RT×T by

1SS(a1, a2, · · · , aT ) = M︸︷︷︸
T×T

,

where

Mt,s :=

{
at · · · as+1, for t ≥ s;

0, for t < s.

for 1 ≤ t, s ≤ T . Then we verify that M =
∑N

n=1 M
n, where Mn = 1SS(A1

n,n, · · · , AT
n,n)⊙ (bn ·

cn⊤) with simple algebra.

4.2 STRUCTURED STATE-SPACE DUALITY FOR DIAGONAL SSMS WITH FULL-RANK STATE
MATRICES

Now we use the attention-like representation of M in Section 4.1 to construct the 1-SS masked
attention dual of M . When all the state matrices At of the state-space model have full rank, the
attention-like dual of diagonal SSM turns into 1-SS masked attention dual.

1-SS Attention Dual of SSM with Full-Rank Diagonal State Matrices. Suppose M ∈ RT×T

has N -SSS representation as in (3.1), where each At is a diagonal matrix with none-zero determi-
nant. In this case we show that M has a 1-SS masked attention dual.

Specifically, when det(At) ̸= 0 for all t ∈ [T ], Mn has the representation of

1SS(1, 1, · · · , 1)⊙ (b′n · c′n⊤),

where b′nt = bnt · (A1
n,n · · ·At

n,n) and c′nt = cnt /(A
1
n,n · · ·At

n,n) for all t ∈ [T ]. Let B′, C ′ ∈ RT×N

be such that B′
:,n = b′n and C ′

:,n = c′n for all n ∈ [N ], then M = 1SS(1, 1, · · · , 1)⊙ (B′ · C ′⊤).

4.3 COMPUTATIONAL COMPLEXITY OF DIAGONAL SSD

We give the concrete computation algorithm of diagonal state-space duality and evaluate its effi-
ciency in aspects of computation cost, total memory and parallelization.

Computation Algorithm. Define f : RT ×RT×d → RT×d by f(x, Y ):,s = x⊙ (Y:,s) for all s ∈
[d]. Define g : RT ×RT×d → RT×d by g(x, Y )1,: = Y1,:, g(x, Y )t+1,: = xt+1 · g(x, Y )t,: +Yt+1,:

for t ∈ [T − 1]. Consider the SSM layer with state dimension N defined by (3.2), where each At is
a diagonal matrix. This recurrence relation also has representation

Y︸︷︷︸
T×d

= M︸︷︷︸
T×T

· X︸︷︷︸
T×d

,

where

Mj,i = c⊤j A
j · · ·Ai+1bi.

Express M as M =
∑N

n=1 M
n, where Mn = 1SS(A1

n,n, · · · , AT
n,n) ⊙ (bn · cn⊤). Let an ∈ RT

denote (A1
n,n, · · · , AT

n,n) for n ∈ [N ]. Denote Y = M · X as Y = SSM(X). Then SSM(X) is
computed as the following algorithm Algorithm 1.

Computation Cost. Since each step of Algorithm 1 takes computation cost of O(NTd), this
algorithm takes total computation cost of O(NTd) FLOPs.

Total Memory Cost. The memory cost of the state data A1, · · · , AT , b1, · · · , bT , c1, · · · , cT is
TN + TN + TN = O(NT ). In the first three steps of Algorithm 1, each step generates n matrices
of size T×d, and in the lsat step of Algorithm 1, only one matrix of size T×d is generated. Therefore
the memory cost of the intermediate step is NTd +NTd +NTd + Td = O(NTd). Considering
all the memory costs above, we deduce that diagonal state-space duality has total memory cost
O(NT ) +O(NTd) = O(NTd).

6
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Algorithm 1 Diagonal state space dual(SSD)
procedure SSM(X)

Zn ← f(bn, X) for all n ∈ [N ] ▷ Time O(NTd)
Hn ← g(an, Zn) for all n ∈ [N ] ▷ Time O(NTd)
Y n ← f(cn, Hn) for all n ∈ [N ] ▷ Time O(NTd)

Y ←
∑N

n=1 Y
n ▷ Time O(NTd)

return Y
end procedure

Parallelization. Note that the first 3 steps of Algorithm 1 are operated in parallel for each n ∈ [N ],
the diagonal state-space dual has separation into N parallel computation processes, each of them
costing time O(Td). Furthermore, note from the definition of f and g that the all columns of X
are operated respectively during the whole processing of Algorithm 1. Therefore the diagonal state-
space dual has further separation into Nd parallel computation processes, each process costing time
O(T ).

4.4 GENERAL SSMS HAVING 1-SS MASKED ATTENTION DUAL

We further study the duality between 1-SS masked attention and general SSM.

Equivalence Between N -SS Matrices and N -SSS Representable Matrices. Firstly we state the
equivalence between the class of N -SS matrices and the class of N -SSS representable matrices.
Note that there exists a trivial 1-1 correspondence between SSMs and N -SSS representations.
Proposition 4.1 (Proposition 3.3 in (Dao & Gu, 2024)). A lower triangular matrix is N -
semiseparable iff it is N -SSS representable.

Proof. For detailed proof, see Appendix A.

Remark 4.2. We remark that Proposition 4.1 complements the proof of Dao & Gu (2024, Propo-
sition 3.3). Our constructive proof reveals more details and gives a concrete method to derive the
corresponding N -SSS representation from an N -SS matrix.
Remark 4.3. Versions of this equivalence appear in the structured-matrix literature (semisepa-
rable/quasiseparable/SSS). We include a self-contained constructive proof tailored to the causal
setting (connecting to attention mechanism in transformer architectures). This makes the result
accessible to the ML audience and to enable our higher-rank SSD instantiation.

SSMs Having 1-SS Masked Attention Dual. Now that we have the equivalence between N -SS
matrices and N -SSS representable matrices, we use N -SS matrices to study the duality between 1-
SS masked attention and general SSM. We provide a necessary and sufficient condition for an SSM
to have 1-SS masked attention dual regarding to the SSM’s corresponding attention matrix.

Suppose M ∈ RT×T is an N -SS matrix. We study the necessary and sufficient condition for M to
have a 1-SS masked attention dual.
Definition 4.4 (Fine 1-SS Matrix.). We say a 1-SS matrix L = 1SS(a1, a2, · · · , at) is a fine 1-SS
matrix iff a1a2 · · · at ̸= 0.
Definition 4.5 (New Column of Lower Triangular Matrix.). We call Mt:,t a new column of M iff
Mt:T+1,t is not in Mt:,:t’s column space.

Proposition 4.6. Suppose M ∈ RT×T is an N -SS lower triangular matrix. Then M has represen-
tation of 1-SS masked attention L ⊙ (QK⊤) for some Q,K ∈ RT×N and fine 1-SS matrix L iff it
has at most N new columns.
Proof. The proof consists of two parts.

Part 1. In this part we show that M does not have representation of fine 1-SS masked attention if
it has more than N new columns.

Suppose M = L ⊙ QK⊤ for some Q,K ∈ RT×N and L = 1SS(a1, a2, · · · , aT ) where
a1a2 · · · aT ̸= 0. We then multiply the t-th row by 1

a1a2···at
and multiply the t-th column by

7
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a1a2 · · · at for all t ∈ [T ]. Note that these operations don’t change the number of new columns of
the matrix.

After these operations we get a lower triangular matrix M ′ having at least N + 1 new columns.
The lower triangular part of M ′ is exactly the same as the lower triangular part of QK⊤. Denote
W := QK⊤, then W has rank at most N .

Suppose M ′ has new columns M ′
t1:,t1 ,M

′
t2:,t2 , · · ·M

′
tN+1:,tN+1

for 1 ≤ t1 < t2 < · · · < tN+1 ≤ T .

We claim that W:,t1 ,W:,t2 , · · · ,W:,tN+1
are linearly independent. If not so, there exist

c1, c2, · · · , cN+1 ∈ R such that at least one of them is none-zero and c1W:,t1 + c2W:,t2 + · · · +
cN+1W:,tN+1

= 0T .

Suppose n is the largest index in [N +1] such that ctn ̸= 0. Then we have c1W:,t1 + c2W:,t2 + · · ·+
cnW:,tn = 0T .

This implies that c1M ′
tn:,t1+c2M

′
tn:,t2+· · ·+cnM

′
tn:,tn = c1Wtn:,t1+c2Wtn:,t2+· · ·+cnWtn:,tn =

0T−tn+1, which contradicts to the fact that M ′
tn:,tn is a new column of M ′.

Then we deduce that W:,t1 ,W:,t2 , · · · ,W:,tN+1
are linearly independent. This implies that W has

rank at least N + 1, which contradicts to W = QK⊤. Therefore M doesn’t have the representation
of L⊙ (QK⊤) where Q,K ∈ RT×N and L is a fine 1-SS matrix.

Part 2. In this part we show that any lower triangular matrix with at most N new columns has
representation of L⊙ (QK⊤) for some Q,K ∈ RT×N and fine 1-SS matrix L ∈ RT×T .

Suppose M ∈ RT×T is a lower triangular matrix having at most N new columns. We now change
M ’s entries above the diagonal to create a matrix with rank at most N .

We change the entries column by column from the left to the right.

For t ∈ [T ], if Mt:,t is a new column of M , remain M ′
:t,t to be 0t−1; if Mt:,t is not a new column of

M , there exist c1, c2, · · · , ct−1 ∈ R satisfying

Mt:,t =

t−1∑
s=1

csMt :, s.

Set M ′
:t,t to be

t−1∑
s=1

csM
′
:t,s,

then M ′
:,:t+1 and M ′

:,:t have the same column rank.

Given that M has no more than N new columns, we deduce by mathematical induction that M ′ has
rank at most N . Therefore there exist Q,K ∈ RT×N such that M ′ = QK⊤.

Then we have M = 1SS(1, 1, · · · , 1)⊙ (QK⊤).

This completes the proof.

The following results are deduced from Proposition 4.6.

Lemma 4.7. Suppose M ∈ RT×T is an N -SS lower triangular matrix. Then M has representation
of 1-SS masked attention L ⊙ (QK⊤) for some Q,K ∈ RT×N iff M has several diagonal blocks
containing all the none-zero entries of M , and each of the diagonal blocks has at most N new
columns.

Theorem 4.8. Suppose M is an N -SS matrix corresponding to an SSM. This SSM has 1-SS masked
attention dual iff M has several diagonal blocks containing all the none-zero entries of M , and each
of the diagonal blocks has at most N new columns.

Remark 4.9. In Proposition 4.6 we focus on fine 1-SS masked attention and in Lemma 4.7
our conclusion holds for general 1-SS masked attention, where for the causal mask L =
1SS(a1, a2, · · · , aT ), at is possibly 0 for some t ∈ [T ].

8
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5 LIMITATIONS OF STRUCTURED STATE-SPACE DUALITY

We study the limitation of state-space duality from two sides. (i) From the attention side, we show
impossibility of extending SSD to softmax attention; (ii) from the state-space model (SSM) side, we
show impossibility of extending to general SSM with low state dimension.

Impossibility of Extending SSD to Softmax Attention. We provide a trivial example to show
that softmax attention does not have state-space duality. Consider a matrix V ∈ RT×T such that
Vij = i × j for all i, j ∈ [T ]. The matrix V has rank 1 because each of its column vectors is a
multiple of (1, 2, · · · , T )⊤ ∈ RT . However, softmax(V ) has rank T according to the Vandermonde
determinant, and furthermore, each submatrix of softmax(V ) is full rank. This implies that even
when the attention matrix QK⊤ has very low rank, the rank of softmax(QK⊤) expands to T in
most cases. Moreover, any attention matrix that has a state-space dual must be N -semiseparable,
where N is the state dimension of the corresponding state-space model. Therefore, softmax attention
does not have a state-space dual.

Impossibility of Extending SSD to General SSM with Low State Dimension. We provide an
example to show that general SSM doesn’t have a state-space dual, even when the state dimension
is very low.
Proposition 5.1. Consider the SSM layer with state dimension N ≥ 2 defined by (3.2), there exist
A1:T+1, b1:T+1, c1:T+1 such that the recurrence relation doesn’t have an attention dual.

Proof. According to Proposition 4.1, there exist A1:T+1, b1:T+1, c1:T+1 such that the recurrence
relation (3.2) has representation Y = M ·X , where M = IT×T + ET,1 is a 2-SS matrix. Here

ET,1
j,i =

{
1, j = T and i = 1;

0, otherwise.

We claim that M doesn’t have the representation of L ⊙ (QK⊤) where Q,K ∈ RT×N and L is a
1-SS matrix.

Otherwise, suppose

Lj,i =

{
aj · · · ai+1, for j ≥ i;

0, for j < i.

for i, j ∈ [T ].

Since MT,1 = 1, LT,1 = a2 · · · aT is none-zero, i.e. each of a2, a3, · · · , aT is none-zero. From this
we deduce that for all 1 ≤ j < i ≤ T − 1, (QK⊤)i.j = 0.

Since each diagonal element of M is none-zero, each diagonal element of QK⊤ is also none-zero.
Given that (QK⊤)i.j = 0 for all 1 ≤ j < i ≤ T − 1, we deduce that QK⊤ has rank at least T − 1,
which is a contradiction.

6 DISCUSSION AND CONCLUSION

We initiate a unified framework that reveals deep structural parallels between recurrent state-space
models (SSMs) and masked attention. Specifically, we formalize and generalize the structured state-
space duality between simple recurrent SSMs and masked attention mechanisms. We extend the
duality from the scalar-identity case to general diagonal SSMs Section 4.1 and show that these
models retain the same training-time complexity lower bounds while supporting richer, multiscale
dynamics Section 4.3. We further provide a necessary and sufficient condition under which an SSM
corresponds to a 1-semiseparable masked attention mechanism Section 4.4. Finally, we prove a
negative result: this duality does not extend to standard softmax attention due to a rank explosion
in the induced kernel Section 5. Together, these results strengthen the theoretical bridge between
recurrent SSMs and Transformer-style attention, and broaden the design space for expressive yet
efficient sequence modeling.

9
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A HIGHER-RANK EQUIVALENCE BETWEEN SEMISEPARABLE MATRICES
AND MATRICES WITH SSS REPRESENTATION.

Proof of Proposition 4.1. Here is the main proof of Proposition 4.1.

Proof. Our proof consists of two parts.

Part 1. In this part, we take three steps to show that any lower triangular matrix with an N -SSS
representation is N -semiseparable.

• Step 1. Express M with its N -SSS representation. Suppose M ∈ RT×T is a lower triangular
matrix with an N -SSS representation

Mj,i = c⊤j Aj · · ·Ai+1bi, (A.1)

for all i, j ∈ [T ], where b1, · · · , bT , c1, · · · , cT ∈ RN and A1, · · · , AT ∈ RN×N .

• Step 2. For any submatrix S whose entries are all on or below the diagonal of M , express S
with the N -SSS representation of M . Suppose S is a submatrix of M such that each entry of S
is on or below the principal diagonal line of M , we have

S = Mj1:j2,i1:i2 ,

for some 1 ≤ j1 < j2 ≤ T + 1, 1 ≤ i1 < i2 ≤ T + 1 and i2 ≤ j1.
Let S1 ∈ R(j2−j1)×N be such that S1[:, j] = c⊤j+j1−1A

(j+j1−1) · · ·Aj1+1 for j ∈ [j2 − j1]. Let
S2 ∈ RN×(i2−i1) be such that S2[i, :] = Aj1 · · ·A(i+i1)bi+i1−1 for i ∈ [i2 − i1].
Then according to (A.1), we have

S = S1 · S2.

• Step 3. Upperbound the rank of S with S1 and S2. Since S1 and S2 both have rank at most N ,
we deduce that S has rank at most N .

Part 2. In this part we take 4 steps to show that any N -semiseparable lower triangular matrix has
an N -SSS representation.Suppose M ∈ RT×T is an N -semiseparable lower triangular matrix.

• Step 1. Divide Mt:,:t+1 into the product of 2 matrices of rank at most N . Since M is N -
semiseparable, Mt:,:t+1 ∈ R(T−t+1)×t has rank at most N for each t ∈ [T ]. Therefore there exist
low-rank matrices Wt ∈ R(T−t+1)×N and Ut ∈ RN×t such that

Mt:,:t+1 = Wt · Ut. (A.2)

We provide a visualization in Figure 3.

Figure 3: Mt:,:t+1 = W t · U t

none-zero

none-zero

Figure 4: Only the first rt columns (rows) of W t (U t) are
non-zero.

Let rt ≤ N denote the rank of Mt:,:t+1 for all t ∈ [T ]. Without loss of generality, we construct
Wt and Ut to be such that only the first rt columns of Wt are none-zero, and similarly, only the
first rt rows of Ut are none-zero. We provide a visualization in Figure 4.
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This means that the span of Wt’s column vectors equals the span of Mt:T+1,1:t+1 column vectors,
and the span of U t’s row vectors equals the span of Mt:T+1,1:t+1 row vectors.

• Step 2. Suppose M has N -SSS representation, analyze the condition
A1, · · · , AT , b1, · · · , bT , c1, · · · cT should satisfy. Note that if M has an N -SSS represen-
tation, then for all t ∈ [T ], we have

Mt:,:t+1 =


b⊤t

b⊤t+1A
t+1

b⊤t+2A
t+2At+1

...
b⊤TA

T · · ·At+1

 ·
(
At · · ·A2c1 At · · ·A3c2 · · · Atct−1 ct

)
. (A.3)

We expect there exist A1:T+1, b1:T+1, c1:T+1 satisfying
b⊤t

b⊤t+1A
t+1

b⊤t+2A
t+2At+1

...
b⊤TA

T · · ·At+1

 = W t, (A.4)

and (
At · · ·A2c1 At · · ·A3c2 · · · Atct−1 ct

)
= U t, (A.5)

for all t ∈ [T ].
Set W t′ = W t

2:,: and U t′ = U t
:,:t for all t ∈ [T ], i.e. W t′ is W t without the first row, and U t′ is

U t without the last column. We provide a visualization in Figure 5.

Figure 5: W t′ · U t = W t+1 · U t+1′

none-zero

Figure 6: Set only the first rt columns and the
first rt+1 rows of At+1 and At+1′ to be non-
zero.

Then we have W t+1 · U t+1′ = Mt+1:,:t+1 = W t′ · U t.
(A.4) and (A.5) requires W t′ = W t+1 ·At+1 and U t+1′ = At+1 · U t for all t ∈ [T − 1].

• Step 3. Verify the existence of At satisfying the conditions mentioned above. Next we show
that there exists At+1 ∈ RN×N for all t ∈ [T − 1] satisfying W t′ = W t+1 · At+1 and U t+1′ =
At+1 · U t.
Since the column vectors of W t+1 span to be the linear space containing all column vectors of
Mt+1:,:t+2, which also contains all column vectors of W t′, there must exist At+1 ∈ RN×N

satisfying W t′ = W t+1 ·At+1.
For the same reason there exists At+1′ ∈ RN×N satisfying U t+1′ = At+1′ · U t.
Without loss of generality, we set only the first rt columns and the first rt+1 rows of At+1 and
At+1′ to be none-zero. We provide a visualization in Figure 6.
Now we deduce that

W t+1 ·At+1′ · U t = W t+1 · U t+1′

13
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= Mt+1:,:t+1

= W t′ · U t

= W t+1 ·At+1 · U t,

where the 1st step is by U t+1′ = At+1′ · U t, the 2nd and 3rd step is by simple algebra (see
Figure 5), and the last step is by W t′ = W t+1 ·At+1. We provide a visualization in Figure 7.

none-zero
none-zero

none-zero

none-zero
none-zero

none-zero

Figure 7: W t+1′ ·At+1′ · U t = W t+1′ ·At+1 · U t

Since W t+1 and U t have rank rt+1 and rt perspectively, we deduce that At+1′ = At+1. Therefore
for any t ∈ [T − 1], we have constructed At+1 satisfying both W t′ = W t+1 · At+1 and U t′ =

At+1′ · U t+1.

• Step 4. Construct the N -SSS representation of M using At, W t and U t. For all t ∈ [T ],
let bt be the first column of (W t)⊤ and ct be the last column of U t. Let At+1 be as constructed
above for t ∈ [T − 1] and A1 = IN . Then Mj,i = c⊤j A

j · · ·Ai+1bi, i.e., M has an N -SSS
representation.

This completes the proof.
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