

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON STRUCTURED STATE-SPACE DUALITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a 1-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this work, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to 1-semiseparable masked attention; and (iv) we provide a negative result that such duality is impossible to extend to standard softmax attention due to rank explosion. Together, these results strengthen the theoretical bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient models.

1 INTRODUCTION

Structured State-Space Duality (SSD) refers to a one-to-one equivalence between a certain linear Structured State-Space Model (SSM) and a masked self-attention mechanism (Dao & Gu, 2024). In plain terms, it means the same sequence transformation has two algorithmic realizations: either as a recurrent state-space system or as a self-attention (matrix) operation. Dao & Gu (2024) introduce the first example of such duality: a state-space model whose state matrix is a scalar multiple of the identity is equivalent to a causal self-attention with a rank-1 mask matrix.

In this case, we write the sequence (time) index of a matrix as a superscript (A^t). Then the SSM update $h_{t+1} = A^t h_t + b_t x_t$ (with $h_1 = 0$ and output $y_t = c_t^\top h_t$ for $t = 1, \dots, T$) yields the closed-form solution $y_t = \sum_{s=1}^t c_t^\top A^t \cdots A^{s+1} b_s x_s$. Equivalently, the self-attention viewpoint treats y as an explicit attention matrix $M \in \mathbb{R}^{T \times T}$ acting on x , with entries $M_{t,s} = c_t^\top A^t \cdots A^{s+1} b_t$ for $s \leq t$ (and $M_{t,s} = 0$ for $s > t$ due to the causal mask). This attention matrix M is a rank- N matrix with a 1-semiseparable (Definition 3.1) causal mask, where N is the dimension of A^t , also known as the state dimension. Thus, the SSM and the masked attention realize the same function $x \mapsto y$: one via a linear-time $O(T)$ recurrence and the other via a quadratic-time $O(T^2)$ matrix multiplication.

Remarkably, this duality bridges two disparate paradigms for sequence modeling — recurrent state-space models and Transformer attention. State-space models update a latent state recurrently, and hence yields linear complexity in sequence length. Attention mechanisms compute pairwise token interactions, and hence yields quadratic complexity. The structured state-space duality unifies these two paradigms by revealing that they implement identical functions.

Nevertheless, while Dao & Gu (2024) conjecture that analogues duality should hold for diagonal state-space models, there exist no formal treatment to the best of our knowledge. We give a concrete diagonal state-space duality, and provide the regarding computation algorithm.

Contributions. In this work, we build on SSD and extend its scope in four key directions:

- **General Diagonal SSMs (Sections 4.1 and 4.2).** We extend SSD beyond the simple (scalar) $\times I_N$ state matrix to general diagonal state matrices. This enlarges the class of SSMs under the duality (from a single exponential decay to N separate diagonal dynamics), thereby supporting richer sequence dynamics.

054 • **Efficiency at Scale (Section 4.3).** We prove that these more general diagonal SSMs match the
 055 training complexity lower bound of the scalar case while offering greater expressiveness. In other
 056 words, it is possible to train and execute the richer diagonal SSMs with the same optimal $O(TN)$
 057 time complexity as the scalar SSM, so we get additional modeling power at no extra asymptotic
 058 cost.

059 • **Higher-Rank Equivalence (Appendix A).** We prove the conjecture of Dao & Gu (2024) that the
 060 equivalence between semiseparable matrices and matrices with sequential state-space representa-
 061 tion holds not only for the rank-1 case, but also for general rank N . In other words, an SSM of
 062 state dimension N corresponds to an N -semiseparable attention matrix.

063

064 • **Masked Attention Duality of General SSM (Section 4.4).** While each 1-semiseparable masked
 065 attention has an SSM dual, we provide a necessary and sufficient condition for an N -semiseparable
 066 (Definition 3.3) matrix (corresponding to an SSM of state dimension N) to have a 1-semiseparable
 067 masked attention dual.

068 Together, these results strengthen the theoretical bridge between recurrent state-space models and
 069 Transformer-style attention, and widen the design space for expressive yet efficient sequence mod-
 070 eling. Through this generalized duality framework, we enable principled exploration of new archi-
 071 tectures that enjoy the best of both worlds (recurrent and attentional) in terms of speed, capacity, and
 072 strong theoretical guarantees.

073

074 **Organization.** We provide related work in Section 2, and background in Section 3. We show our
 075 main theory in Section 4, and the limitations of structured state-space duality in Section 5.

076

077 **Notations.** We denote the index set $\{1, \dots, I\}$ by $[I]$. We denote vectors with lower case and
 078 matrices with upper case. We write the sequence (time) index of a matrix as a superscript (A^t). We
 079 write the sequence (time) index of a vector or scalar as a subscript (a_t). We use \odot for Hadamard
 080 multiplication. We write the input sequence of length T as $[x_1^\top, x_2^\top, \dots, x_T^\top] \in \mathbb{R}^{d \times T}$ and the output
 081 at time $t \in [T]$ as $y_t \in \mathbb{R}^{1 \times d}$.

082

083 2 RELATED WORK

084

085 In this section, we review related work on structured state-space models, efficient Transformers and
 086 linear attention mechanisms, and the connections between state-space models and attention.

087

088 **Structured State-Space Models (SSMs).** SSMs aim to model long-range dependencies with
 089 linear-time computation. S3 first introduced the idea of parameterizing state-space models with
 090 structured matrices to enable efficient sequence modeling (Gu et al., 2021a). S4 introduces a state-
 091 space layer with stable diagonalization and fast convolution, which enabled long-context training
 092 and inference (Gu et al., 2021b). S5 simplifies the design with a single multi-input multi-output
 093 SSM and preserved $O(T)$ scaling (Smith et al., 2023). Mamba adds input-dependent gating on the
 094 SSM projections and achieved strong accuracy with linear-time sequence modeling (Gu & Dao,
 095 2024). These works establish SSMs as competitive sequence models and motivate analyses that
 096 compare their expressive power to attention.

097 **Efficient Transformers and Linear Attention.** Many works reduce the quadratic cost of self-
 098 attention by imposing structure or approximation (Tay et al., 2022). Linformer projects keys and
 099 values to low rank and reduced compute and memory while preserving accuracy (Wang et al., 2020).
 100 Linear Transformers replace softmax by kernel feature maps and execute attention as a recurrence,
 101 which yielded $O(T)$ autoregressive inference (Katharopoulos et al., 2020). Performer uses random
 102 features to approximate softmax attention with variance control and linear complexity (Choromanski
 103 et al., 2021). Nyströmformer applies Nyström approximation to attention and obtains sub-quadratic
 104 cost (Xiong et al., 2021). Sparse patterns such as Longformer, BigBird, and Reformer improve
 105 scaling by local windows, global tokens, or LSH-based routing (Beltagy et al., 2020; Zaheer et al.,
 106 2020; Kitaev et al., 2020). Retentive networks propose a recurrent retention operator that matches
 107 Transformer quality with linear-time execution (Sun et al., 2023). These methods show that attention
 admits efficient surrogates when the attention matrix has a low-rank, kernel, or sparse structure.

108 **Connections between SSMs and Attention.** Linear attention admits a recurrent implementation
 109 and thus links attention with RNN-style computation (Katharopoulos et al., 2020). Dao & Gu
 110 (2024) introduce *Structured State Duality* (SSD), prove the duality between scalar-identity SSMs
 111 and masked attention with 1-semiseparable kernels, and conjecture such duality hold in diagonal
 112 SSM. Hydra generalizes matrix mixers beyond causal SSMs with quasi-separable structure and bidirectional
 113 information flow (Hwang et al., 2024).

114 Our work differs in scope and goal: we give an algebraic duality between N -dimensional diagonal
 115 SSM and 1-semiseparable masked attention, and we prove that diagonal SSMs match the scalar case
 116 in training FLOPs and memory while enabling N independent state modes. These results place
 117 diagonal SSD on a firm foundation and clarifies how SSM capacity aligns with semiseparable rank.
 118

119 3 BACKGROUND

120 In this section, we present the foundational concepts and definitions in Section 3.1. Then we provide
 121 the existing theory from (Dao & Gu, 2024) for the structured state-space duality in Section 3.2.
 122

123 3.1 SEMISEPARABLE MATRIX DEFINITIONS

124 We begin by defining the class of semiseparable (SS) matrices that prepares our theoretical development.
 125 First, we recall the base case of 1-semiseparable matrices:

126 **Definition 3.1** (1-Semiseparable (1-SS) Matrix.). *Suppose M is a lower triangular matrix. M is
 127 1-semiseparable (1-SS) if and only if every submatrix of M consisting of entries on or below the
 128 main diagonal has rank at most 1.*

129 Intuitively, a 1-SS matrix has extremely low complexity: each new row introduces at most one new
 130 independent direction in the space of lower-triangular entries. We next define a masked attention
 131 operator that is structured by such a matrix.

132 **Definition 3.2** (1-SS Masked Attention.). *Let $Q, K \in \mathbb{R}^{T \times N}$ be query and key matrices. A 1-SS
 133 masked attention is a self-attention operation whose attention weight matrix is masked by a 1-SS
 134 matrix $M \in \mathbb{R}^{T \times T}$. In particular, the attention scores take the form $M \odot (QK^\top)$, i.e. the element-
 135 wise product of QK^\top with the mask M (with M enforcing a causal lower-triangular structure).*

136 We now generalize from 1-semiseparable to (higher-rank) N -semiseparable as follows. In essence,
 137 an N -semiseparable matrix allows up to N independent directions in each lower-triangular block.
 138

139 **Definition 3.3** (N -Semiseparable (N -SS) Matrix.). *A lower triangular matrix M is N -
 140 semiseparable (N -SS) if every submatrix of M consisting of entries on or below the main diagonal
 141 has rank at most N . The smallest such N is called the semiseparable rank (or order) of M .*

142 Furthermore, we introduce the notion of a *Sequentially SemiSeparable* (SSS) representation. Importantly, SSS connects these structured matrices to state-space models:

143 **Definition 3.4** (N -Sequentially Semiseparable (N -SSS) Representation.). *A lower triangular ma-
 144 trix $M \in \mathbb{R}^{T \times T}$ has an N -sequentially semiseparable (N -SSS) representation if there exist vectors
 145 $b_1, \dots, b_T \in \mathbb{R}^N$, $c_1, \dots, c_T \in \mathbb{R}^N$, and matrices $A^1, \dots, A^T \in \mathbb{R}^{N \times N}$ such that*

$$146 \quad M_{j,i} = c_j^\top A^j \cdots A^{i+1} b_i, \quad (3.1)$$

147 for all $1 \leq i \leq j \leq T$.

148 **Definition 3.5** (N -SSS Representable Matrix.). *A matrix M is N -SSS representable if it admits an
 149 N -SSS representation (Equation (3.1)). Equivalently, M can be written in the form of (3.1).*

150 The above definitions formalize how a structured state-space model of dimension N gives rise to
 151 a matrix M with semiseparable rank N . In particular, any M that has an N -SSS representation is
 152 necessarily N -semiseparable (since each new state dimension contributes at most one new rank to
 153 the growing matrix). We next review the known correspondence between such structured matrices
 154 and attention mechanisms in the simplest (rank-1) case.

162 3.2 EXISTING STRUCTURED STATE-SPACE DUALITY
163

164 We now describe the structured state-space duality as originally established by Dao & Gu (2024) for
165 the scalar-identity state-space case. We begin by formulating the state-space model and its induced
166 sequence kernel, then show how it corresponds to a masked attention operator.

167 **Time-Varying SSM and Induced Kernel.** Consider a time-varying linear state-space model
168 (SSM) with state dimension N , defined by the recurrence

$$170 \quad \underbrace{h_t}_{N \times d} := \underbrace{A^t}_{N \times N} \underbrace{h_{t-1}}_{N \times d} + \underbrace{b_t}_{N \times 1} \underbrace{x_t}_{1 \times d}, \quad \underbrace{y_t}_{1 \times d} = \underbrace{c_t^\top}_{1 \times N} \underbrace{h_t}_{N \times d}, \quad \text{for } t \in [T], \quad (3.2)$$

173 where we set $h_0 = 0$ for consistency. Here, $h_t \in \mathbb{R}^{N \times d}$ is the hidden state, $A^t \in \mathbb{R}^{N \times N}$ is the state
174 transition matrix, $b_t \in \mathbb{R}^{N \times 1}$ and $c_t \in \mathbb{R}^{N \times 1}$ are input and output weight matrices. Importantly, this
175 recurrence defines a causal linear operator on the input sequence. Unrolling the recurrence yields an
176 explicit input-output relation

$$177 \quad y_t = \sum_{s=1}^t M_{t,s} x_s, \quad \text{where } M_{t,s} := \begin{cases} c_t^\top A^t \cdots A^{s+1} b_s, & \text{for } t \geq s; \\ 0, & \text{for } t < s. \end{cases} \quad (3.3)$$

181 for $1 \leq s \leq t \leq T$. We refer to $M_{t,s}$ as the *SSM kernel* at (t, s) . Let $M \in \mathbb{R}^{T \times T}$ denote the
182 lower-triangular matrix of kernel coefficients, i.e. $M_{t,s}$ for $t \geq s$ (and $M_{t,s} = 0$ for $t < s$). By
183 construction, M encodes the entire transformation from inputs x_1, \dots, x_T to outputs y_1, \dots, y_T .
184 Moreover, M is structured: since the latent state is N -dimensional, M has semiseparable rank at
185 most N (each row of M lies in an N -dimensional subspace). In particular, M is an N -SS matrix in
186 the sense of Definition 3.3, and for this special case $N = 1$, M is 1-SS.

187 **Scalar-Times-Identity State Matrix** ($A^t = a_t I_N$). A particularly simple case of the above is when
188 each state matrix is a scalar multiple of the identity. We call such an SSM a *scalar-identity SSM*,
189 meaning $A_t = a_t I_N$ for some scalar $a_t \in \mathbb{R}$. In this case, the recurrence (3.2) simplifies to

$$190 \quad y_t = \sum_{s=1}^t a_t \cdots a_{s+1} c_t^\top b_s x_s, \quad (3.4)$$

193 which is a convolution-style sum over past inputs. For example, if $a_t = a$ is constant, then (3.4)
194 reduces to the standard discrete-time convolution $y_t = \sum_{s=1}^t a^{t-s} c_t^\top b_s x_s$.

196 **Scalar-Identity SSM.** We call an SSM layer a scalar-identity SSM if each of the state matrices A^t
197 is a scale multiple of the identity matrix.

199 **Rank-1 Special Case ($N = 1$).** In the extreme case of state dimension $N = 1$, the state h_t is
200 one-dimensional. Then b_t and c_t are scalars for all t . We can collect the input sequence into a matrix
201 $X = [x_1; x_2; \dots; x_T] \in \mathbb{R}^{T \times d}$ (with x_t^\top as the t -th row) and similarly $Y = [y_1; \dots; y_T] \in \mathbb{R}^{T \times d}$
202 for the outputs. Let $p = (b_1, \dots, b_T)^\top \in \mathbb{R}^T$ and $q = (c_1, \dots, c_T)^\top \in \mathbb{R}^T$ denote the vectors of
203 input and output weights over time. The scalar-identity formula (3.4) then reduces to

$$204 \quad \underbrace{Y}_{T \times d} = \underbrace{\text{diag}(p)}_{T \times T} \underbrace{M}_{T \times T} \underbrace{\text{diag}(q)}_{T \times T} \underbrace{X}_{T \times d},$$

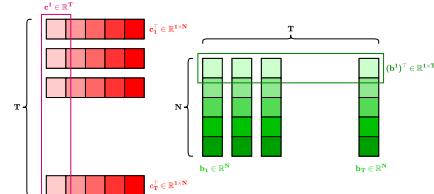
207 where

$$209 \quad M_{t,s} := \begin{cases} a_t \cdots a_{s+1}, & \text{for } t \geq s; \\ 0, & \text{for } t < s. \end{cases}$$

211 Here M is a 1-semiseparable mask matrix (Definition 3.1). In other words, the sequence mapping
212 implemented by this $N = 1$ SSM can be viewed as a masked attention operation: M serves as a
213 causal mask on the outer-product matrix $CB^\top = qp^\top$. In the notation of Definition 3.2, this is a
214 1-SS masked attention with $Q = C$ and $K = B$.

215 Now we are ready to present the structured state-space duality by Dao & Gu (2024):

216 $M_{j,i} = c_j^\top A^j \cdots A^{i+1} b_i$
 217
 218
 219
 220
 221
 222
 223
 224 $c_j^\top \in \mathbb{R}^{1 \times N}$ $A^j \cdots A^{i+1} \in \mathbb{R}^{N \times N}$ $b_i \in \mathbb{R}^N$

Figure 1: $M_{j,i} = c_j^\top A^j \cdots A^{i+1} b_i$ Figure 2: Construction of b^n and c^n .

Proposition 3.6 (Dao & Gu (2024) Scalar-Identity State-Space Duality.). *Consider the SSM defined by (3.2) where each $A^t = a_t I_N$ (i.e. a scalar-identity SSM). Let $B = [b_1; b_2; \dots; b_T]^\top \in \mathbb{R}^{T \times N}$ and $C = [c_1; c_2; \dots; c_T]^\top \in \mathbb{R}^{T \times N}$ be the matrices whose t -th rows are b_t^\top and c_t^\top , respectively. Define $M \in \mathbb{R}^{T \times T}$ by $M_{t,s} = a_t a_{t-1} \cdots a_{s+1}$ for $t \geq s$ and $M_{t,s} = 0$ for $t < s$. Then for any input sequence $X = [x_1; \dots; x_T] \in \mathbb{R}^{T \times d}$ with output $Y = [y_1; \dots; y_T] \in \mathbb{R}^{T \times d}$, the recurrence (3.4) is equivalent to a 1-SS masked attention representation:*

$$Y = (M \odot (CB^\top))X,$$

where

$$M_{t,s} := \begin{cases} a_t \cdots a_{s+1}, & \text{for } t \geq s; \\ 0, & \text{for } t < s. \end{cases}$$

Here \odot denotes elementwise (Hadamard) product. In particular, the same sequence transformation is realizable either by the linear-time recurrence (3.2) or by the quadratic-time matrix operation on the right-hand side.

Proposition 3.6 (from Dao & Gu (2024)) establishes a one-to-one correspondence between a simple structured SSM and a masked self-attention operator with a 1-SS (rank-1) mask.

4 MAIN THEORY

In this section, we provide the structured state-space duality for general diagonal SSMs in Section 4.1, structured state-space duality for diagonal SSMs with full-rank state matrices in Section 4.2, computational complexity of diagonal SSD in Section 4.3, and general SSMs having 1-SS masked attention dual in Section 4.4.

4.1 STRUCTURED STATE-SPACE DUALITY FOR GENERAL DIAGONAL SSMs

While Dao & Gu (2024) only study state-space duality of SSM with scalar-identity state matrices, we extend state-space duality to SSM with general diagonal state matrices.

In the case of general diagonal SSM, where each A^t is a diagonal matrix in (3.1), the state-space model also has an attention-like dual.

Attention-Like Dual of Diagonal SSMs. Suppose $M \in \mathbb{R}^{T \times T}$ is a lower triangular matrix as in (3.1) regarding the state-space model. We show that M has an attention-like dual as the sum of N attention-like matrices $M^n = L^n \odot (Q^n \cdot K^{n\top})$, where for all $n \in [N]$ we have $Q^n, K^n \in \mathbb{R}^{T \times 1}$.

Specifically, suppose

$$M_{j,i} = c_j^\top A^j \cdots A^{i+1} b_i \tag{4.1}$$

for all $1 \leq i \leq j \leq T$, where $b_1, \dots, b_T, c_1, \dots, c_T \in \mathbb{R}^N$ and each $A^t \in \mathbb{R}^{N \times N}$ is a diagonal matrix. See Figure 1.

Then we have $M_{j,i} = \sum_{n=1}^N (c_j)_n (A^j \cdots A^{i+1})_{n,n} (b_i)_n$ for all $1 \leq i \leq j \leq T$.

270 Note that those terms are separated for different $n_1, n_2 \in [N]$. For all $n \in [N]$, let $b^n, c^n \in \mathbb{R}^T$ be
 271 such that for all $t \in [T]$, $b_t^n = (b_t)_n$ and $c_t^n = (c_t)_n$. See Figure 2.
 272

273 Define $\text{1SS}(\cdot) : \mathbb{R}^T \rightarrow \mathbb{R}^{T \times T}$ by

274
$$\text{1SS}(a_1, a_2, \dots, a_T) = \underbrace{M}_{T \times T},$$

 275

276 where

277
$$M_{t,s} := \begin{cases} a_t \cdots a_{s+1}, & \text{for } t \geq s; \\ 0, & \text{for } t < s. \end{cases}$$

 278

280 for $1 \leq t, s \leq T$. Then we verify that $M = \sum_{n=1}^N M^n$, where $M^n = \text{1SS}(A_{n,n}^1, \dots, A_{n,n}^T) \odot (b^n \cdot c^{n\top})$ with simple algebra.
 281

283 **4.2 STRUCTURED STATE-SPACE DUALITY FOR DIAGONAL SSMs WITH FULL-RANK STATE
 284 MATRICES**

286 Now we use the attention-like representation of M in Section 4.1 to construct the 1-SS masked
 287 attention dual of M . When all the state matrices A^t of the state-space model have full rank, the
 288 attention-like dual of diagonal SSM turns into 1-SS masked attention dual.

289 **1-SS Attention Dual of SSM with Full-Rank Diagonal State Matrices.** Suppose $M \in \mathbb{R}^{T \times T}$
 290 has N -SSS representation as in (3.1), where each A^t is a diagonal matrix with none-zero determin-
 291 ant. In this case we show that M has a 1-SS masked attention dual.

293 Specifically, when $\det(A^t) \neq 0$ for all $t \in [T]$, M^n has the representation of

294
$$\text{1SS}(1, 1, \dots, 1) \odot (b'^n \cdot c'^{n\top}),$$

 295

296 where $b'_t^n = b_t^n \cdot (A_{n,n}^1 \cdots A_{n,n}^t)$ and $c'_t^n = c_t^n / (A_{n,n}^1 \cdots A_{n,n}^t)$ for all $t \in [T]$. Let $B', C' \in \mathbb{R}^{T \times N}$
 297 be such that $B'_{:,n} = b'^n$ and $C'_{:,n} = c'^n$ for all $n \in [N]$, then $M = \text{1SS}(1, 1, \dots, 1) \odot (B' \cdot C'^\top)$.
 298

299 **4.3 COMPUTATIONAL COMPLEXITY OF DIAGONAL SSD**

300 We give the concrete computation algorithm of diagonal state-space duality and evaluate its effi-
 301 ciency in aspects of computation cost, total memory and parallelization.
 302

303 **Computation Algorithm.** Define $f : \mathbb{R}^T \times \mathbb{R}^{T \times d} \rightarrow \mathbb{R}^{T \times d}$ by $f(x, Y)_{:,s} = x \odot (Y_{:,s})$ for all $s \in$
 304 $[d]$. Define $g : \mathbb{R}^T \times \mathbb{R}^{T \times d} \rightarrow \mathbb{R}^{T \times d}$ by $g(x, Y)_{1,:} = Y_{1,:}$, $g(x, Y)_{t+1,:} = x_{t+1} \cdot g(x, Y)_{t,:} + Y_{t+1,:}$
 305 for $t \in [T-1]$. Consider the SSM layer with state dimension N defined by (3.2), where each A^t is
 306 a diagonal matrix. This recurrence relation also has representation

307
$$\underbrace{Y}_{T \times d} = \underbrace{M}_{T \times T} \cdot \underbrace{X}_{T \times d},$$

 308

309 where

311
$$M_{j,i} = c_j^\top A^j \cdots A^{i+1} b_i.$$

 312

313 Express M as $M = \sum_{n=1}^N M^n$, where $M^n = \text{1SS}(A_{n,n}^1, \dots, A_{n,n}^T) \odot (b^n \cdot c^{n\top})$. Let $a^n \in \mathbb{R}^T$
 314 denote $(A_{n,n}^1, \dots, A_{n,n}^T)$ for $n \in [N]$. Denote $Y = M \cdot X$ as $Y = \text{SSM}(X)$. Then $\text{SSM}(X)$ is
 315 computed as the following algorithm Algorithm 1.

316 **Computation Cost.** Since each step of Algorithm 1 takes computation cost of $\mathcal{O}(NTd)$, this
 317 algorithm takes total computation cost of $\mathcal{O}(NTd)$ FLOPs.
 318

319 **Total Memory Cost.** The memory cost of the state data $A^1, \dots, A^T, b_1, \dots, b_T, c_1, \dots, c_T$ is
 320 $TN + TN + TN = \mathcal{O}(NT)$. In the first three steps of Algorithm 1, each step generates n matrices
 321 of size $T \times d$, and in the last step of Algorithm 1, only one matrix of size $T \times d$ is generated. Therefore
 322 the memory cost of the intermediate step is $NTd + NTd + NTd + Td = \mathcal{O}(NTd)$. Considering
 323 all the memory costs above, we deduce that diagonal state-space duality has total memory cost
 $\mathcal{O}(NT) + \mathcal{O}(NTd) = \mathcal{O}(NTd)$.
 324

Parallelization. Note that the first 3 steps of Algorithm 1 are operated in parallel for each $n \in [N]$, the diagonal state-space dual has separation into N parallel computation processes, each of them costing time $\mathcal{O}(Td)$. Furthermore, note from the definition of f and g that the all columns of X are operated respectively during the whole processing of Algorithm 1. Therefore the diagonal state-space dual has further separation into Nd parallel computation processes, each process costing time $\mathcal{O}(T)$.

4.4 GENERAL SSMs HAVING 1-SS MASKED ATTENTION DUAL

We further study the duality between 1-SS masked attention and general SSM.

Equivalence Between N -SS Matrices and N -SSS Representable Matrices. Firstly we state the equivalence between the class of N -SS matrices and the class of N -SSS representable matrices. Note that there exists a trivial 1-1 correspondence between SSMs and N -SSS representations.

Proposition 4.1 (Proposition 3.3 in (Dao & Gu, 2024)). *A lower triangular matrix is N -semiseparable iff it is N -SSS representable.*

Proof. For detailed proof, see Appendix A.

Remark 4.2. We remark that Proposition 4.1 complements the proof of Dao & Gu (2024, Proposition 3.3). Our constructive proof reveals more details and gives a concrete method to derive the corresponding N -SSS representation from an N -SS matrix.

Remark 4.3. Versions of this equivalence appear in the structured-matrix literature (semiseparable/quasiseparable/SSS). We include a self-contained constructive proof tailored to the causal setting (connecting to attention mechanism in transformer architectures). This makes the result accessible to the ML audience and to enable our higher-rank SSD instantiation.

SSMs Having 1-SS Masked Attention Dual. Now that we have the equivalence between N -SS matrices and N -SSS representable matrices, we use N -SS matrices to study the duality between 1-SS masked attention and general SSM. We provide a necessary and sufficient condition for an SSM to have 1-SS masked attention dual regarding to the SSM's corresponding attention matrix.

Suppose $M \in \mathbb{R}^{T \times T}$ is an N -SS matrix. We study the necessary and sufficient condition for M to have a 1-SS masked attention dual.

Definition 4.4 (Fine 1-SS Matrix.). We say a 1-SS matrix $L = 1SS(a_1, a_2, \dots, a_t)$ is a fine 1-SS matrix iff $a_1 a_2 \dots a_t \neq 0$.

Definition 4.5 (New Column of Lower Triangular Matrix.). We call $M_{t:t}$ a new column of M iff $M_{t:T+1,t}$ is not in $M_{t:t}$'s column space.

Proposition 4.6. Suppose $M \in \mathbb{R}^{T \times T}$ is an N -SS lower triangular matrix. Then M has representation of 1-SS masked attention $L \odot (QK^\top)$ for some $Q, K \in \mathbb{R}^{T \times N}$ and fine 1-SS matrix L iff it has at most N new columns.

Proof. The proof consists of two parts.

Part 1. In this part we show that M does not have representation of fine 1-SS masked attention if it has more than N new columns.

376 Suppose $M = L \odot QK^\top$ for some $Q, K \in \mathbb{R}^{T \times N}$ and $L = \text{1SS}(a_1, a_2, \dots, a_T)$ where
377 $a_1 a_2 \dots a_T \neq 0$. We then multiply the t -th row by $\frac{1}{a_1 a_2 \dots a_T}$ and multiply the t -th column by

378 $a_1 a_2 \cdots a_t$ for all $t \in [T]$. Note that these operations don't change the number of new columns of
 379 the matrix.

380 After these operations we get a lower triangular matrix M' having at least $N + 1$ new columns.
 381 The lower triangular part of M' is exactly the same as the lower triangular part of QK^\top . Denote
 382 $W := QK^\top$, then W has rank at most N .

383 Suppose M' has new columns $M'_{t_1:,t_1}, M'_{t_2:,t_2}, \dots, M'_{t_{N+1},t_{N+1}}$ for $1 \leq t_1 < t_2 < \dots < t_{N+1} \leq T$.

384 We claim that $W_{:,t_1}, W_{:,t_2}, \dots, W_{:,t_{N+1}}$ are linearly independent. If not so, there exist
 385 $c_1, c_2, \dots, c_{N+1} \in \mathbb{R}$ such that at least one of them is non-zero and $c_1 W_{:,t_1} + c_2 W_{:,t_2} + \dots +$
 386 $c_{N+1} W_{:,t_{N+1}} = \mathbf{0}_T$.

387 Suppose n is the largest index in $[N+1]$ such that $c_{t_n} \neq 0$. Then we have $c_1 W_{:,t_1} + c_2 W_{:,t_2} + \dots +$
 388 $c_n W_{:,t_n} = \mathbf{0}_T$.

389 This implies that $c_1 M'_{t_n:,t_1} + c_2 M'_{t_n:,t_2} + \dots + c_n M'_{t_n:,t_n} = c_1 W_{t_n:,t_1} + c_2 W_{t_n:,t_2} + \dots + c_n W_{t_n:,t_n} =$
 390 $\mathbf{0}_{T-t_n+1}$, which contradicts to the fact that $M'_{t_n:,t_n}$ is a new column of M' .

391 Then we deduce that $W_{:,t_1}, W_{:,t_2}, \dots, W_{:,t_{N+1}}$ are linearly independent. This implies that W has
 392 rank at least $N + 1$, which contradicts to $W = QK^\top$. Therefore M doesn't have the representation
 393 of $L \odot (QK^\top)$ where $Q, K \in \mathbb{R}^{T \times N}$ and L is a fine 1-SS matrix.

394 **Part 2.** In this part we show that any lower triangular matrix with at most N new columns has
 395 representation of $L \odot (QK^\top)$ for some $Q, K \in \mathbb{R}^{T \times N}$ and fine 1-SS matrix $L \in \mathbb{R}^{T \times T}$.

396 Suppose $M \in \mathbb{R}^{T \times T}$ is a lower triangular matrix having at most N new columns. We now change
 397 M 's entries above the diagonal to create a matrix with rank at most N .

398 We change the entries column by column from the left to the right.

399 For $t \in [T]$, if $M_{:,t}$ is a new column of M , remain $M'_{:,t}$ to be $\mathbf{0}_{t-1}$; if $M_{:,t}$ is not a new column of
 400 M , there exist $c_1, c_2, \dots, c_{t-1} \in \mathbb{R}$ satisfying

$$401 \quad M_{:,t} = \sum_{s=1}^{t-1} c_s M_{:,s}.$$

402 Set $M'_{:,t}$ to be

$$403 \quad \sum_{s=1}^{t-1} c_s M'_{:,s},$$

404 then $M'_{:,t+1}$ and $M'_{:,t}$ have the same column rank.

405 Given that M has no more than N new columns, we deduce by mathematical induction that M' has
 406 rank at most N . Therefore there exist $Q, K \in \mathbb{R}^{T \times N}$ such that $M' = QK^\top$.

407 Then we have $M = 1\text{SS}(1, 1, \dots, 1) \odot (QK^\top)$.

408 This completes the proof. □

409 The following results are deduced from Proposition 4.6.

410 **Lemma 4.7.** Suppose $M \in \mathbb{R}^{T \times T}$ is an N -SS lower triangular matrix. Then M has representation
 411 of 1-SS masked attention $L \odot (QK^\top)$ for some $Q, K \in \mathbb{R}^{T \times N}$ iff M has several diagonal blocks
 412 containing all the non-zero entries of M , and each of the diagonal blocks has at most N new
 413 columns.

414 **Theorem 4.8.** Suppose M is an N -SS matrix corresponding to an SSM. This SSM has 1-SS masked
 415 attention dual iff M has several diagonal blocks containing all the non-zero entries of M , and each
 416 of the diagonal blocks has at most N new columns.

417 **Remark 4.9.** In Proposition 4.6 we focus on fine 1-SS masked attention and in Lemma 4.7
 418 our conclusion holds for general 1-SS masked attention, where for the causal mask $L =$
 419 $1\text{SS}(a_1, a_2, \dots, a_T)$, a_t is possibly 0 for some $t \in [T]$.

432

5 LIMITATIONS OF STRUCTURED STATE-SPACE DUALITY

433

434 We study the limitation of state-space duality from two sides. (i) From the attention side, we show
435 impossibility of extending SSD to softmax attention; (ii) from the state-space model (SSM) side, we
436 show impossibility of extending to general SSM with low state dimension.

437 **Imp possibility of Extending SSD to Softmax Attention.** We provide a trivial example to show
438 that softmax attention does not have state-space duality. Consider a matrix $V \in \mathbb{R}^{T \times T}$ such that
439 $V_{ij} = i \times j$ for all $i, j \in [T]$. The matrix V has rank 1 because each of its column vectors is a
440 multiple of $(1, 2, \dots, T)^\top \in \mathbb{R}^T$. However, $\text{softmax}(V)$ has rank T according to the Vandermonde
441 determinant, and furthermore, each submatrix of $\text{softmax}(V)$ is full rank. This implies that even
442 when the attention matrix QK^\top has very low rank, the rank of $\text{softmax}(QK^\top)$ expands to T in
443 most cases. Moreover, any attention matrix that has a state-space dual must be N -semiseparable,
444 where N is the state dimension of the corresponding state-space model. Therefore, softmax attention
445 does not have a state-space dual.

446 **Imp possibility of Extending SSD to General SSM with Low State Dimension.** We provide an
447 example to show that general SSM doesn't have a state-space dual, even when the state dimension
448 is very low.

449 **Proposition 5.1.** *Consider the SSM layer with state dimension $N \geq 2$ defined by (3.2), there exist
450 $A^{1:T+1}, b_{1:T+1}, c_{1:T+1}$ such that the recurrence relation doesn't have an attention dual.*

451 *Proof.* According to Proposition 4.1, there exist $A^{1:T+1}, b_{1:T+1}, c_{1:T+1}$ such that the recurrence
452 relation (3.2) has representation $Y = M \cdot X$, where $M = I_{T \times T} + E^{T,1}$ is a 2-SS matrix. Here

453
$$E_{j,i}^{T,1} = \begin{cases} 1, & j = T \text{ and } i = 1; \\ 0, & \text{otherwise.} \end{cases}$$
454

455 We claim that M doesn't have the representation of $L \odot (QK^\top)$ where $Q, K \in \mathbb{R}^{T \times N}$ and L is a
456 1-SS matrix.

457 Otherwise, suppose

458
$$L_{j,i} = \begin{cases} a_j \cdots a_{i+1}, & \text{for } j \geq i; \\ 0, & \text{for } j < i. \end{cases}$$
459

460 for $i, j \in [T]$.

461 Since $M_{T,1} = 1, L_{T,1} = a_2 \cdots a_T$ is none-zero, i.e. each of a_2, a_3, \dots, a_T is none-zero. From this
462 we deduce that for all $1 \leq j < i \leq T - 1, (QK^\top)_{i,j} = 0$.

463 Since each diagonal element of M is none-zero, each diagonal element of QK^\top is also none-zero.
464 Given that $(QK^\top)_{i,j} = 0$ for all $1 \leq j < i \leq T - 1$, we deduce that QK^\top has rank at least $T - 1$,
465 which is a contradiction. \square

466

6 DISCUSSION AND CONCLUSION

467

468 We initiate a unified framework that reveals deep structural parallels between recurrent state-space
469 models (SSMs) and masked attention. Specifically, we formalize and generalize the structured state-
470 space duality between simple recurrent SSMs and masked attention mechanisms. We extend the
471 duality from the scalar-identity case to general diagonal SSMs Section 4.1 and show that these
472 models retain the same training-time complexity lower bounds while supporting richer, multiscale
473 dynamics Section 4.3. We further provide a necessary and sufficient condition under which an SSM
474 corresponds to a 1-semiseparable masked attention mechanism Section 4.4. Finally, we prove a
475 negative result: this duality does not extend to standard softmax attention due to a rank explosion
476 in the induced kernel Section 5. Together, these results strengthen the theoretical bridge between
477 recurrent SSMs and Transformer-style attention, and broaden the design space for expressive yet
478 efficient sequence modeling.

486
487
ETHIC STATEMENT488
489
490
491
492
493
494
495
496
497
498
499
500
This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.501
502
REPRODUCIBILITY STATEMENT503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.500
501
502
REFERENCES503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. In *arXiv preprint arXiv:2004.05150*, 2020.
Krzysztof Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamás Sarlós, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Łukasz Kaiser, David Belanger, Lucy Colwell, and Adrian Weller. Rethinking attention with performers. In *International Conference on Learning Representations*, 2021.
Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through structured state space duality. *arXiv preprint arXiv:2405.21060*, 2024.
Albert Gu and Tri Dao. Linear-time sequence modeling with selective state spaces. *arXiv preprint arXiv:2312.00752*, 2024.
Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. *arXiv preprint arXiv:2111.00396*, 2021a.
Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. In *Advances in Neural Information Processing Systems*, volume 34, 2021b.
Sukjun Hwang, Aakash Lahoti, Tri Dao, and Albert Gu. Hydra: Bidirectional state space models through generalized matrix mixers. *arXiv preprint arXiv:2407.09941*, 2024.
Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In *Proceedings of the 37th International Conference on Machine Learning*, pp. 5156–5165. PMLR, 2020.
Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In *International Conference on Learning Representations*, 2020.
Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for sequence modeling. In *International Conference on Learning Representations*, 2023.
Zhiqing Sun, Li Dong, Hongkun Ye, Shaohan Wang, Songhao Piao, Shuming Ma, Hao Zhou, Wanxiang Che, and Furu Wei. Retentive network: A successor to transformer for large language models. In *Advances in Neural Information Processing Systems*, 2023.
Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. *ACM Computing Surveys*, 55(6), April 2022. doi: 10.1145/3530811.
Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear complexity. *arXiv preprint arXiv:2006.04768*, 2020.
Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. *arXiv preprint arXiv:2102.03902*, 2021.

540 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
541 Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
542 formers for longer sequences. In *Advances in Neural Information Processing Systems*, volume 33,
543 pp. 17283–17297, 2020.
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 **A HIGHER-RANK EQUIVALENCE BETWEEN SEMISEPARABLE MATRICES**
 595 **AND MATRICES WITH SSS REPRESENTATION.**
 596

597 **Proof of Proposition 4.1.** Here is the main proof of Proposition 4.1.
 598

599 *Proof.* Our proof consists of two parts.
 600

601 **Part 1.** In this part, we take three steps to show that any lower triangular matrix with an N -SSS
 602 representation is N -semiseparable.
 603

- 604 **• Step 1. Express M with its N -SSS representation.** Suppose $M \in \mathbb{R}^{T \times T}$ is a lower triangular
 605 matrix with an N -SSS representation

$$606 \quad M_{j,i} = c_j^\top A_j \cdots A_{i+1} b_i, \quad (\text{A.1})$$

607 for all $i, j \in [T]$, where $b_1, \dots, b_T, c_1, \dots, c_T \in \mathbb{R}^N$ and $A^1, \dots, A^T \in \mathbb{R}^{N \times N}$.
 608

- 609 **• Step 2. For any submatrix S whose entries are all on or below the diagonal of M , express S
 610 with the N -SSS representation of M .** Suppose S is a submatrix of M such that each entry of S
 611 is on or below the principal diagonal line of M , we have

$$612 \quad S = M_{j_1:j_2, i_1:i_2},$$

613 for some $1 \leq j_1 \leq j_2 \leq T + 1$, $1 \leq i_1 < i_2 \leq T + 1$ and $i_2 \leq j_1$.
 614 Let $S^1 \in \mathbb{R}^{(j_2 - j_1) \times N}$ be such that $S^1[:, j] = c_{j+j_1-1}^\top A^{(j+j_1-1)} \cdots A^{j_1+1}$ for $j \in [j_2 - j_1]$. Let
 615 $S^2 \in \mathbb{R}^{N \times (i_2 - i_1)}$ be such that $S^2[i, :] = A^{j_1} \cdots A^{(i+i_1)} b_{i+i_1-1}$ for $i \in [i_2 - i_1]$.
 616 Then according to (A.1), we have

$$618 \quad S = S_1 \cdot S_2.$$

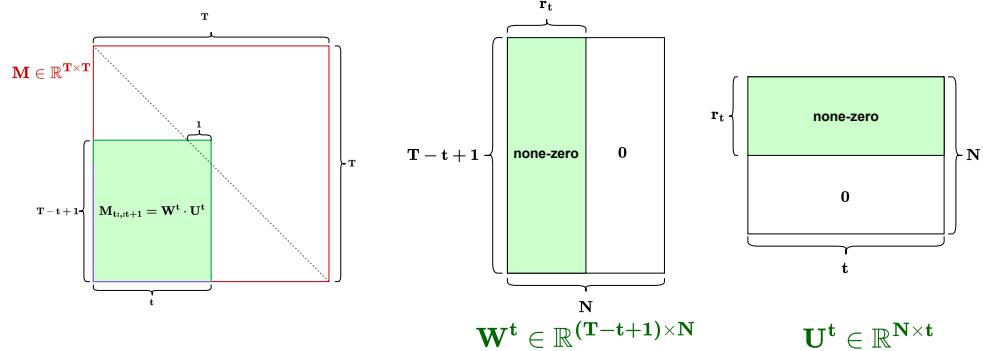
- 619 **• Step 3. Upperbound the rank of S with S^1 and S^2 .** Since S^1 and S^2 both have rank at most N ,
 620 we deduce that S has rank at most N .
 621

622 **Part 2.** In this part we take 4 steps to show that any N -semiseparable lower triangular matrix has
 623 an N -SSS representation. Suppose $M \in \mathbb{R}^{T \times T}$ is an N -semiseparable lower triangular matrix.
 624

- 625 **• Step 1. Divide $M_{t::, t+1}$ into the product of 2 matrices of rank at most N .** Since M is N -
 626 semiseparable, $M_{t::, t+1} \in \mathbb{R}^{(T-t+1) \times t}$ has rank at most N for each $t \in [T]$. Therefore there exist
 627 low-rank matrices $W_t \in \mathbb{R}^{(T-t+1) \times N}$ and $U_t \in \mathbb{R}^{N \times t}$ such that

$$628 \quad M_{t::, t+1} = W_t \cdot U_t. \quad (\text{A.2})$$

629 We provide a visualization in Figure 3.
 630



643 Figure 3: $M_{t::, t+1} = W^t \cdot U^t$

644 Figure 4: Only the first r_t columns (rows) of W^t (U^t) are
 645 non-zero.

646 Let $r_t \leq N$ denote the rank of $M_{t::, t+1}$ for all $t \in [T]$. Without loss of generality, we construct
 647 W_t and U_t to be such that only the first r_t columns of W_t are non-zero, and similarly, only the
 648 first r_t rows of U_t are non-zero. We provide a visualization in Figure 4.

648 This means that the span of W_t 's column vectors equals the span of $M_{t:T+1,1:t+1}$ column vectors,
 649 and the span of U^t 's row vectors equals the span of $M_{t:T+1,1:t+1}$ row vectors.
 650

651 **• Step 2. Suppose M has N -SSS representation, analyze the condition**
 652 $A^1, \dots, A^T, b_1, \dots, b_T, c_1, \dots, c_T$ **should satisfy.** Note that if M has an N -SSS representation, then for all $t \in [T]$, we have

$$654 \quad 655 \quad 656 \quad 657 \quad 658 \quad 659 \quad M_{t,:t+1} = \begin{pmatrix} b_t^\top \\ b_{t+1}^\top A^{t+1} \\ b_{t+2}^\top A^{t+2} A^{t+1} \\ \vdots \\ b_T^\top A^T \dots A^{t+1} \end{pmatrix} \cdot (A^t \dots A^2 c_1 \quad A^t \dots A^3 c_2 \quad \dots \quad A^t c_{t-1} \quad c_t). \quad (\text{A.3})$$

660 We expect there exist $A^{1:T+1}, b_{1:T+1}, c_{1:T+1}$ satisfying

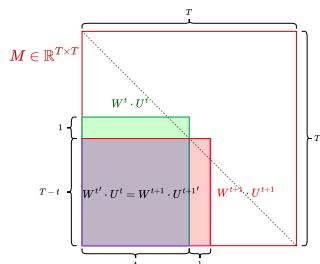
$$661 \quad 662 \quad 663 \quad 664 \quad 665 \quad 666 \quad \begin{pmatrix} b_t^\top \\ b_{t+1}^\top A^{t+1} \\ b_{t+2}^\top A^{t+2} A^{t+1} \\ \vdots \\ b_T^\top A^T \dots A^{t+1} \end{pmatrix} = W^t, \quad (\text{A.4})$$

667 and

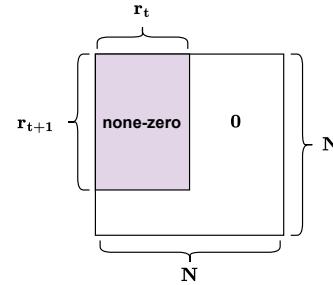
$$668 \quad (A^t \dots A^2 c_1 \quad A^t \dots A^3 c_2 \quad \dots \quad A^t c_{t-1} \quad c_t) = U^t, \quad (\text{A.5})$$

669 for all $t \in [T]$.

670 Set $W^{t'} = W_{2:,:}^t$ and $U^{t'} = U_{:,t}^t$ for all $t \in [T]$, i.e. $W^{t'}$ is W^t without the first row, and $U^{t'}$ is
 671 U^t without the last column. We provide a visualization in Figure 5.



672 Figure 5: $W^{t'} \cdot U^t = W^{t+1} \cdot U^{t+1'}$



673 Figure 6: Set only the first r_t columns and the
 674 first r_{t+1} rows of A^{t+1} and $A^{t+1'}$ to be non-
 675 zero.

676 Then we have $W^{t+1} \cdot U^{t+1'} = M_{t+1,:t+1} = W^{t'} \cdot U^t$.

677 (A.4) and (A.5) requires $W^{t'} = W^{t+1} \cdot A^{t+1}$ and $U^{t+1'} = A^{t+1} \cdot U^t$ for all $t \in [T-1]$.

678 **• Step 3. Verify the existence of A^t satisfying the conditions mentioned above.** Next we show
 679 that there exists $A^{t+1} \in \mathbb{R}^{N \times N}$ for all $t \in [T-1]$ satisfying $W^{t'} = W^{t+1} \cdot A^{t+1}$ and $U^{t+1'} =$
 680 $A^{t+1} \cdot U^t$.

681 Since the column vectors of W^{t+1} span to be the linear space containing all column vectors of
 682 $M_{t+1,:t+2}$, which also contains all column vectors of $W^{t'}$, there must exist $A^{t+1} \in \mathbb{R}^{N \times N}$
 683 satisfying $W^{t'} = W^{t+1} \cdot A^{t+1}$.

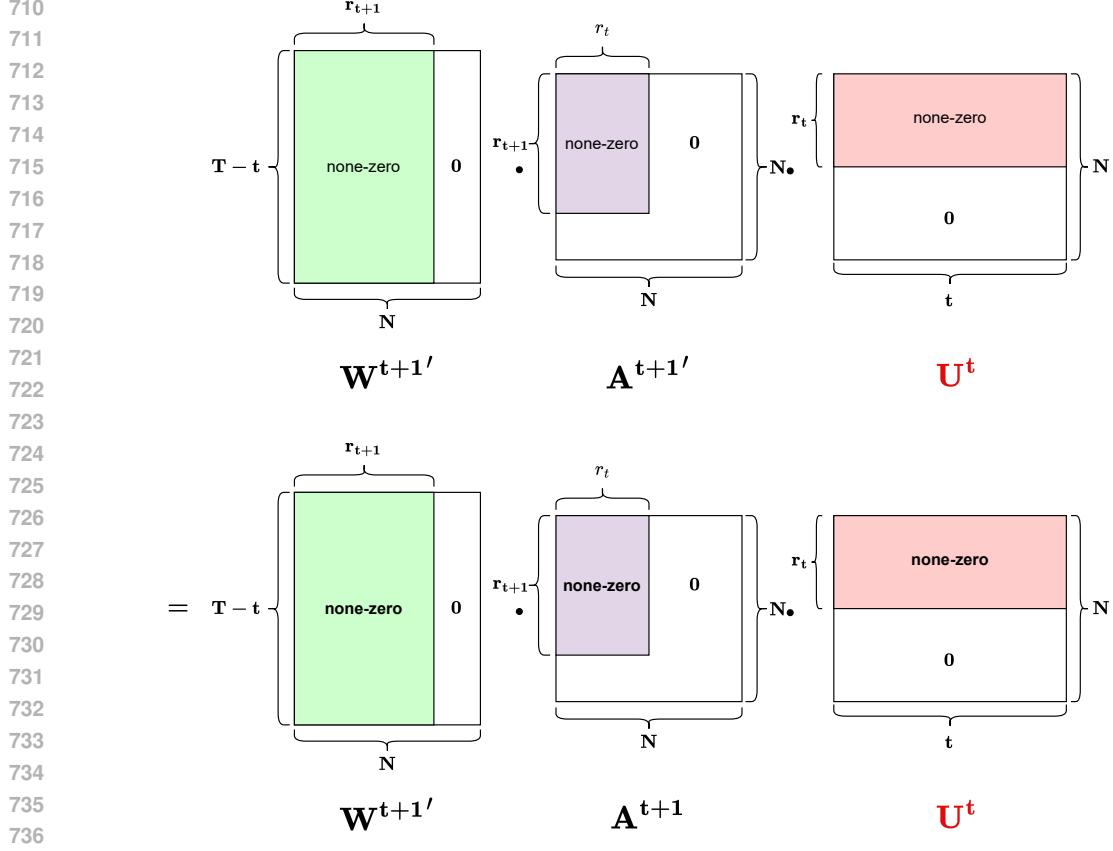
684 For the same reason there exists $A^{t+1'} \in \mathbb{R}^{N \times N}$ satisfying $U^{t+1'} = A^{t+1'} \cdot U^t$.

685 Without loss of generality, we set only the first r_t columns and the first r_{t+1} rows of A^{t+1} and
 686 $A^{t+1'}$ to be non-zero. We provide a visualization in Figure 6.

687 Now we deduce that

$$688 \quad W^{t+1} \cdot A^{t+1'} \cdot U^t = W^{t+1} \cdot U^{t+1'}$$

702
 703
 704
 705
 706
 707 where the 1st step is by $U^{t+1'} = A^{t+1'} \cdot U^t$, the 2nd and 3rd step is by simple algebra (see
 708 Figure 5), and the last step is by $W^{t'} = W^{t+1} \cdot A^{t+1}$. We provide a visualization in Figure 7.
 709



740 Since W^{t+1} and U^t have rank r_{t+1} and r_t respectively, we deduce that $A^{t+1'} = A^{t+1}$. Therefore
 741 for any $t \in [T-1]$, we have constructed A^{t+1} satisfying both $W^{t'} = W^{t+1} \cdot A^{t+1}$ and $U^{t'} =$
 742 $A^{t+1'} \cdot U^{t+1}$.
 743

- **Step 4. Construct the N -SSS representation of M using A^t , W^t and U^t .** For all $t \in [T]$, let b_t be the first column of $(W^t)^\top$ and c_t be the last column of U^t . Let A^{t+1} be as constructed above for $t \in [T-1]$ and $A^1 = I_N$. Then $M_{j,i} = c_j^\top A^j \cdots A^{i+1} b_i$, i.e., M has an N -SSS representation.

748 This completes the proof. □
 749

750
 751
 752
 753
 754
 755