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ABSTRACT

Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equiva-
lence between a simple Structured State-Space Model (SSM) and a masked at-
tention mechanism. In particular, a state-space model with a scalar-times-identity
state matrix is equivalent to a masked self-attention with a 1-semiseparable causal
mask. Consequently, the same sequence transformation (model) has two algorith-
mic realizations: a linear-time O(T’) recurrence or as a quadratic-time O(7?) at-
tention. In this work, we formalize and generalize this duality: (i) we extend SSD
from the scalar-identity case to general diagonal SSMs (diagonal state matrices);
(ii) we show that these diagonal SSMs match the scalar case’s training complexity
lower bounds while supporting richer dynamics; (iii) we establish a necessary and
sufficient condition under which an SSM is equivalent to 1-semiseparable masked
attention; and (iv) we provide a negative result that such duality is impossible to
extend to standard softmax attention due to rank explosion. Together, these results
strengthen the theoretical bridge between recurrent SSMs and Transformers, and
widen the design space for expressive yet efficient models.

1 INTRODUCTION

Structured State-Space Duality (SSD) refers to a one-to-one equivalence between a certain linear
Structured State-Space Model (SSM) and a masked self-attention mechanism (Dao & Gul 2024). In
plain terms, it means the same sequence transformation has two algorithmic realizations: either as
a recurrent state-space system or as a self-attention (matrix) operation. |Dao & Gu! (2024)) introduce
the first example of such duality: a state-space model whose state matrix is a scalar multiple of the
identity is equivalent to a causal self-attention with a rank-1 mask matrix.

In this case, we write the sequence (time) index of a matrix as a superscript (A?). Then the SSM
update hy1 = Athy + by (with h; = 0 and output y; = ctTht fort = 1,...,T) yields the closed-
form solution y; = 22:1 cg At-.. AsT1p x . Equivalently, the self-attention viewpoint treats y as
an explicit attention matrix M € R7*7T acting on z, with entries M s = cf At AsHp fors <t
(and M, ¢ = 0 for s > ¢ due to the causal mask). This attention matrix M is a rank-/N matrix with
a 1-semiseparable causal mask, where NN is the dimension of A?, also known as the
state dimension. Thus, the SSM and the masked attention realize the same function & — y: one via
a linear-time O(T') recurrence and the other via a quadratic-time O(7'?) matrix multiplication.

Remarkably, this duality bridges two disparate paradigms for sequence modeling — recurrent state-
space models and Transformer attention. State-space models update a latent state recurrently, and
hence yields linear complexity in sequence length. Attention mechanisms compute pairwise token
interactions, and hence yields quadratic complexity. The structured state-space duality unifies these
two paradigms by revealing that they implement identical functions.

Nevertheless, while Dao & Gu| (2024) conjecture that analogues duality should hold for diagonal
state-space models, there exist no formal treatment to the best of our knowledge. We give a concrete
diagonal state-space duality, and provide the regarding computation algorithm.

Contributions. In this work, we build on SSD and extend its scope in four key directions:

* General Diagonal SSMs (Sections 4.1land[4.2). We extend SSD beyond the simple (scalar) x Iy
state matrix to general diagonal state matrices. This enlarges the class of SSMs under the duality
(from a single exponential decay to /N separate diagonal dynamics), thereby supporting richer
sequence dynamics.



Under review as a conference paper at ICLR 2026

« Efficiency at Scale (Section 4.3). We prove that these more general diagonal SSMs match the
training complexity lower bound of the scalar case while offering greater expressiveness. In other
words, it is possible to train and execute the richer diagonal SSMs with the same optimal O(T'N)
time complexity as the scalar SSM, so we get additional modeling power at no extra asymptotic
cost.

« Higher-Rank Equivalence (Appendix A). We prove the conjecture of Dao & Gu|(2024) that the
equivalence between semiseparable matrices and matrices with sequential state-space representa-
tion holds not only for the rank-1 case, but also for general rank N. In other words, an SSM of
state dimension /N corresponds to an /N-semiseparable attention matrix.

+ Masked Attention Duality of General SSM (Section 4.4). While each 1-semiseparable masked
attention has an SSM dual, we provide a necessary and sufficient condition for an N-semiseparable
matrix (corresponding to an SSM of state dimension V) to have a 1-semiseparable
masked attention dual.

Together, these results strengthen the theoretical bridge between recurrent state-space models and
Transformer-style attention, and widen the design space for expressive yet efficient sequence mod-
eling. Through this generalized duality framework, we enable principled exploration of new archi-
tectures that enjoy the best of both worlds (recurrent and attentional) in terms of speed, capacity, and
strong theoretical guarantees.

Organization. We provide related work in [Section 2Jand background in We show our
main theory in and the limitations of structured state-space duality in

Notations. We denote the index set {1,...,1} by [I]. We denote vectors with lower case and
matrices with upper case. We write the sequence (time) index of a matrix as a superscript (A?). We
write the sequence (time) index of a vector or scalar as a subscript (a;). We use ® for Hadamard
multiplication. We write the input sequence of length T as [z] , 75 , ..., 2] € R™T and the output
attime t € [T] as y; € R1¥9,

2 RELATED WORK

In this section, we review related work on structured state-space models, efficient Transformers and
linear attention mechanisms, and the connections between state-space models and attention.

Structured State-Space Models (SSMs). SSMs aim to model long-range dependencies with
linear-time computation. S3 first introduced the idea of parameterizing state-space models with
structured matrices to enable efficient sequence modeling (Gu et al., 2021a). S4 introduces a state-
space layer with stable diagonalization and fast convolution, which enabled long-context training
and inference (Gu et all 2021b). S5 simplifies the design with a single multi-input multi-output
SSM and preserved O(T') scaling (Smith et al.,2023)). Mamba adds input-dependent gating on the
SSM projections and achieved strong accuracy with linear-time sequence modeling (Gu & Daol
2024). These works establish SSMs as competitive sequence models and motivate analyses that
compare their expressive power to attention.

Efficient Transformers and Linear Attention. Many works reduce the quadratic cost of self-
attention by imposing structure or approximation (Tay et al., 2022)). Linformer projects keys and
values to low rank and reduced compute and memory while preserving accuracy (Wang et al.,{2020).
Linear Transformers replace softmax by kernel feature maps and execute attention as a recurrence,
which yielded O(T") autoregressive inference (Katharopoulos et al.,2020). Performer uses random
features to approximate softmax attention with variance control and linear complexity (Choromanski
et al., 2021). Nystromformer applies Nystrom approximation to attention and obtains sub-quadratic
cost (Xiong et al., [2021). Sparse patterns such as Longformer, BigBird, and Reformer improve
scaling by local windows, global tokens, or LSH-based routing (Beltagy et al., | 2020; [Zaheer et al.,
2020; Kitaev et al.l |2020). Retentive networks propose a recurrent retention operator that matches
Transformer quality with linear-time execution (Sun et al.,[2023). These methods show that attention
admits efficient surrogates when the attention matrix has a low-rank, kernel, or sparse structure.
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Connections between SSMs and Attention. Linear attention admits a recurrent implementation
and thus links attention with RNN-style computation (Katharopoulos et al., [2020). [Dao & Gu
(2024) introduce Structured State Duality (SSD), prove the duality between scalar-identity SSMs
and masked attention with 1-semiseparable kernels, and conjectrue such duality hold in diagonal
SSM. Hydra generalizes matrix mixers beyond causal SSMs with quasi-separable structure and bidi-
rectional information flow (Hwang et al., |[2024)).

Our work differs in scope and goal: we give an algebraic duality between N-dimensional diagonal
SSM and 1-semiseparable masked attention, and we prove that diagonal SSMs match the scalar case
in training FLOPs and memory while enabling N independent state modes. These results place
diagonal SSD on a firm foundation and clarifies how SSM capacity aligns with semiseparable rank.

3 BACKGROUND

In this section, we present the foundational concepts and definitions in|[Section 3.1} Then we provide
the existing theory from (Dao & Gul [2024) for the structured state-space duality in[Section 3.2

3.1 SEMISEPARABLE MATRIX DEFINITIONS

We begin by defining the class of semiseparable (SS) matrices that prepares our theoretical develop-
ment. First, we recall the base case of 1-semiseparable matrices:

Definition 3.1 (1-Semiseparable (1-SS) Matrix.). Suppose M is a lower triangular matrix. M is
1-semiseparable (1-SS) if and only if every submatrix of M consisting of entries on or below the
main diagonal has rank at most 1.

Intuitively, a 1-SS matrix has extremely low complexity: each new row introduces at most one new
independent direction in the space of lower-triangular entries. We next define a masked attention
operator that is structured by such a matrix.

Definition 3.2 (1-SS Masked Attention.). Let Q, K € RT*YN be query and key matrices. A 1-SS
masked attention is a self-attention operation whose attention weight matrix is masked by a 1-SS
matrix M € RT*T_ In particular, the attention scores take the form M ® (QK "), i.e. the element-
wise product of QK T with the mask M (with M enforcing a causal lower-triangular structure).

We now generalize from 1-semiseparable to (higher-rank) N-semiseparable as follows. In essence,
an [V-semiseparable matrix allows up to N independent directions in each lower-triangular block.

Definition 3.3 (N-Semiseparable (IN-SS) Matrix.). A lower triangular matrix M is N-
semiseparable (N-SS) if every submatrix of M consisting of entries on or below the main diagonal
has rank at most N. The smallest such N is called the semiseparable rank (or order) of M.

Furthermore, we introduce the notion of a Sequentially SemiSeparable (SSS) representation. Impor-
tantly, SSS connects these structured matrices to state-space models:

Definition 3.4 (IV-Sequentially Semiseparable (/N-SSS) Representation.). A lower triangular ma-
trix M € RT*T has an N-sequentially semiseparable (N-SSS) representation if there exist vectors
bi,....,br €RN ci,...,cr € RY, and matrices A', ..., AT € RN*N such that

Mj;=c] Al  A*1p,, (3.1
foralll <: <53 <T.

Definition 3.5 (/V-SSS Representable Matrix.). A matrix M is N-SSS representable if it admits an
N-SSS representation (Equation (3.1)). Equivalently, M can be written in the form of (3.1).

The above definitions formalize how a structured state-space model of dimension N gives rise to
a matrix M with semiseparable rank N. In particular, any M that has an N-SSS representation is
necessarily NV-semiseparable (since each new state dimension contributes at most one new rank to
the growing matrix). We next review the known correspondence between such structured matrices
and attention mechanisms in the simplest (rank-1) case.
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3.2 EXISTING STRUCTURED STATE-SPACE DUALITY

We now describe the structured state-space duality as originally established by Dao & Gu|(2024)) for
the scalar-identity state-space case. We begin by formulating the state-space model and its induced
sequence kernel, then show how it corresponds to a masked attention operator.

Time-Varying SSM and Induced Kernel. Consider a time-varying linear state-space model
(SSM) with state dimension N, defined by the recurrence

hy == A" by 1+ b x, y = ¢ hy, for telT], (3.2)
e ad N I S
Nxd NXN Nxd Nx1 1xd 1xd 1xN Nxd

where we set by = 0 for consistency. Here, h; € RN >4 ig the hidden state, A* € RV*H s the state
transition matrix, b; € RY*! and ¢; € RV*! are input and output weight matrices. Importantly, this
recurrence defines a causal linear operator on the input sequence. Unrolling the recurrence yields an
explicit input-output relation

c:At S ASTL for t>s;

33
0, for t<s. (3:3)

t
Yt = ZMt7sl‘s, where M, ¢ = {

s=1

for1 < s <t < T. We refer to M, ; as the SSM kernel at (t,s). Let M € RT*T denote the
lower-triangular matrix of kernel coefficients, i.e. M; ¢ fort > s (and M, s = O fort < s). By
construction, M encodes the entire transformation from inputs z1, ...,z to outputs yi,...,yr.
Moreover, M is structured: since the latent state is N-dimensional, M has semiseparable rank at
most N (each row of M lies in an N-dimensional subspace). In particular, M is an N-SS matrix in

the sense of [Definition 3.3| and for this special case N = 1, M is 1-SS.

Scalar-Times-Identity State Matrix (A’ = a;Iy). A particularly simple case of the above is when
each state matrix is a scalar multiple of the identity. We call such an SSM a scalar-identity SSM,
meaning A; = a;Iy for some scalar a; € R. In this case, the recurrence (3.2) simplifies to

t
Yo=Y ar-aeic] beas, (3.4)
s=1

which is a convolution-style sum over past inputs. For example, if a; = a is constant, then (3.4)
reduces to the standard discrete-time convolution y; = Zizl at’sctT bsxs.

Scalar-Identity SSM. We call an SSM layer a scalar-identity SSM if each of the state matrices A°
is a scale multiple of the identity matrix.

Rank-1 Special Case (N = 1). In the extreme case of state dimension N = 1, the state h; is
one-dimensional. Then b; and c; are scalars for all £. We can collect the input sequence into a matrix
X = [z1;29;...;o7]) € RT*? (with z] as the ¢-th row) and similarly Y = [y3;...;yr] € RT*4
for the outputs. Let p = (by,...,bp)" € RT and ¢ = (c1,...,c7) " € RT denote the vectors of
input and output weights over time. The scalar-identity formula (3.4) then reduces to

Y =diag(p) M diag(q) X ,
Txd TxT TXT TxT Txd

where

ag-+-a for t > s;
J\I)575 = t s+1, = 9
0, for t<s.

Here M is a 1-semiseparable mask matrix (Definition [3.T). In other words, the sequence mapping
implemented by this N = 1 SSM can be viewed as a masked attention operation: M serves as a
causal mask on the outer-product matrix CB" = ¢p'. In the notation of this is a
1-SS masked attention with Q = C' and K = B.

Now we are ready to present the structured state-space duality by [Dao & Gu! (2024):
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Figure 1: M;; = ¢/ A7 ... ATt1p; Figure 2: Construction of 4" and c".

Proposition 3.6 (Dao & Gu|(2024)) Scalar-Identity State-Space Duality.). Consider the SSM defined
by (3:2) where each A* = a;Ix (i.e. a scalar-identity SSM). Let B = [by;ba;...;bp]T € RT*N

and C = [c1;¢o;5. .. er)T € RT*N be the matrices whose t-th rows are b} and ¢, respectively.
Define M € RT*T py My s = atag—1---asqp1 fort > sand My, = 0 for t < s. Then for any
input sequence X = [x1;...;x7] € RT*d with output Y = [y1;...;yr] € RTX4, the recurrence

(34) is equivalent to a 1-SS masked attention representation.:
Y =(M®(CB"))X,

where

e t> s
Mt75 — Qg As41, for Z 8
0, for t<s.

Here ® denotes elementwise (Hadamard) product. In particular, the same sequence transformation
is realizable either by the linear-time recurrence (3.2) or by the quadratic-time matrix operation on
the right-hand side.

(from[Dao & Gul(2024)) establishes a one-to-one correspondence between a simple
structured SSM and a masked self-attention operator with a 1-SS (rank-1) mask.

4 MAIN THEORY

In this section, we provide the structured state-space duality for general diagonal SSMs in
tion 4.1} structured state-space duality for diagonal SSMs with full-rank state matrices in[Section 4.2}

computational complexity of diagonal SSD in and general SSMs having 1-SS masked
attention dual in[Section 4.4

4.1 STRUCTURED STATE-SPACE DUALITY FOR GENERAL DIAGONAL SSMS

While Dao & Gul (2024)) only study state-space duality of SSM with scalar-identity state matrices,
we extend state-space duality to SSM with general diagonal state matrices.

In the case of general diagonal SSM, where each A is a diagonal matrix in (3.I), the state-space
model also has an attention-like dual.

Attention-Like Dual of Diagonal SSMs. Suppose M € RT*7 is a lower triangular matrix as in
(3:1)) regarding the state-space model. We show that M has an attention-like dual as the sum of N
attention-like matrices M™ = L™ ® (Q™ - K™T), where for all n € [N] we have Q", K™ € RT*1,

Specifically, suppose

Mj; =c/AT... A1y, (4.1)
foralll < i< j < T, whereby, - ,bp,c1, - ,cr € RY and each A* € RV*V s a diagonal
matrix. See[Figure 1]
Then we have M, ; = SN () (A7 -~ A1), (by),, forall 1 < i < j < T.

n=1
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Note that those terms are separated for different n1,no € [N]. For all n € [N], let b, ¢" € RT be
such that for all ¢t € [T, bf = (b;),, and ¢} = (¢t),. See|Figure 2|
Define 1SS(-) : RT — RT*T by

1SS(a1, a9, -+ ,ar) = M |
TxT
where
Gy Qgql, for t>s;
M, =
be {O, for t<s.
for1 < t,s < T. Then we verify that M = 3" M™, where M"™ = 1SS(A}, -+ AL ) O (0"

c*T) with simple algebra.

4.2 STRUCTURED STATE-SPACE DUALITY FOR DIAGONAL SSMS WITH FULL-RANK STATE
MATRICES

Now we use the attention-like representation of M in to construct the 1-SS masked
attention dual of M. When all the state matrices A? of the state-space model have full rank, the
attention-like dual of diagonal SSM turns into 1-SS masked attention dual.

1-SS Attention Dual of SSM with Full-Rank Diagonal State Matrices. Suppose M ¢ RT*T
has N-SSS representation as in (3.1)), where each A’ is a diagonal matrix with none-zero determi-
nant. In this case we show that M has a 1-SS masked attention dual.

Specifically, when det(A") # 0 for all ¢t € [T'], M™ has the representation of
1SS(1,1,---, 1) @ (™ - ™),

where b)" = b - (A}, --- Al ) and ¢* = ¢} /(A), ,, -+ AL ) forall t € [T]. Let B,C" € RT*V
be such that B/, = b'" and C!,, = ¢™ forall n € [N], then M = 1SS(1,1,--- ,1) ® (B"-C'").

4.3 COMPUTATIONAL COMPLEXITY OF DIAGONAL SSD

We give the concrete computation algorithm of diagonal state-space duality and evaluate its effi-
ciency in aspects of computation cost, total memory and parallelization.

Computation Algorithm. Define f : RT x RT*4 - RT*d by f(2,Y)., =2 ® (Y. ,) forall s €
[d]. Define g : RT x RT*d — RT*d by g(2,Y )1, = Y1, 9(x,Y)eq1, = 21 - 9(2, Y )i+ Yiga
for t € [T — 1]. Consider the SSM layer with state dimension N defined by (3.2), where each A’ is
a diagonal matrix. This recurrence relation also has representation

Y = M- X,
N
Txd TXT Txd
where
My = AT A,
Express M as M = YN | M™, where M" = 1SS(A, ,,--- , AT ) ® (0" - 7). Leta” € RT
denote (A} .-+, AL ) forn € [N]. Denote Y = M - X as Y = SSM(X). Then SSM(X) is

computed as the following algorithm [ATgorithm 1

Computation Cost. Since each step of |[Algorithm 1| takes computation cost of O(NTd), this
algorithm takes total computation cost of O(NTd) FLOPs.

Total Memory Cost. The memory cost of the state data A',--- AT by, --- by, c1, -+ ,crp is
TN +TN +TN = O(NT). In the first three steps of each step generates n matrices
of size T'x d, and in the lsat step of| only one matrix of size T'x d is generated. Therefore
the memory cost of the intermediate step is NT'd + NTd + NTd + T'd = O(NTd). Considering
all the memory costs above, we deduce that diagonal state-space duality has total memory cost
O(NT)+ O(NTd) = O(NTd).
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Algorithm 1 Diagonal state space dual(SSD)

procedure SSM(X)
Z™ + f(b™,X) foralln € [N] > Time O(NTd)
H™ + g(a™, Z™) foralln € [N] > Time O(NTd)
Y™« f(c",H™) foralln € [N] > Time O(NTd)
Y« yn >Time O(NTd)
return Y

end procedure

Parallelization. Note that the first 3 steps of are operated in parallel for each n € [N],
the diagonal state-space dual has separation into N parallel computation processes, each of them
costing time O(T'd). Furthermore, note from the definition of f and g that the all columns of X
are operated respectively during the whole processing of Therefore the diagonal state-

space dual has further separation into /N d parallel computation processes, each process costing time
o).

4.4 GENERAL SSMS HAVING 1-SS MASKED ATTENTION DUAL

We further study the duality between 1-SS masked attention and general SSM.

Equivalence Between NV-SS Matrices and N-SSS Representable Matrices. Firstly we state the
equivalence between the class of NV-SS matrices and the class of N-SSS representable matrices.
Note that there exists a trivial 1-1 correspondence between SSMs and N-SSS representations.

Proposition 4.1 (Proposition 3.3 in (Dao & Gu, 2024)). A lower triangular matrix is N-
semiseparable iff it is N-SSS representable.

Proof. For detailed proof, see O

Remark 4.2. We remark that [Proposition 4.1| complements the proof of Dao & Gul (2024, Propo-
sition 3.3). Our constructive proof reveals more details and gives a concrete method to derive the
corresponding N-SSS representation from an N-SS matrix.

Remark 4.3. Versions of this equivalence appear in the structured-matrix literature (semisepa-
rable/quasiseparable/SSS). We include a self-contained constructive proof tailored to the causal
setting (comnnecting to attention mechanism in transformer architectures). This makes the result
accessible to the ML audience and to enable our higher-rank SSD instantiation.

SSMs Having 1-SS Masked Attention Dual. Now that we have the equivalence between N-SS
matrices and N-SSS representable matrices, we use /N-SS matrices to study the duality between 1-
SS masked attention and general SSM. We provide a necessary and sufficient condition for an SSM
to have 1-SS masked attention dual regarding to the SSM’s corresponding attention matrix.

Suppose M € RT*T is an N-SS matrix. We study the necessary and sufficient condition for M to
have a 1-SS masked attention dual.

Definition 4.4 (Fine 1-SS Matrix.). We say a 1-SS matrix L = 18S(a1, a9, - ,a¢) is a fine 1-SS
matrix iff a1as - - - ay # 0.

Definition 4.5 (New Column of Lower Triangular Matrix.). We call M., a new column of M iff
My.741,¢ is not in M. .,’s column space.

Proposition 4.6. Suppose M € RT*T is an N-SS lower triangular matrix. Then M has represen-
tation of 1-SS masked attention L © (QK ") for some Q, K € RT*N and fine 1-SS matrix L iff it
has at most N new columns.

Proof. The proof consists of two parts.

Part 1. In this part we show that M does not have representation of fine 1-SS masked attention if
it has more than N new columns.

Suppose M = L ® QK for some Q, K € RT*N and L = 1SS(ay,az,---,ar) where
aias---ap # 0. We then multiply the ¢-th row by 1 and multiply the ¢-th column by

apaz---ag
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ajas -+ -a; for all t € [T]. Note that these operations don’t change the number of new columns of
the matrix.

After these operations we get a lower triangular matrix M’ having at least N + 1 new columns.
The lower triangular part of M’ is exactly the same as the lower triangular part of QK ". Denote
W := QK T, then W has rank at most N.

Suppose M has new columns My, ., , My, ;.- M| o forl <t <tp <-or <ty <T.
We claim that W., ,W.,,---,W. ., are linearly independent. If not so, there exist
c1,¢2, - ,cn+1 € R such that at least one of them is none-zero and ¢;W. ¢, + coW. 4, + -+ +

CN+1W,tN+1 = OT'

Suppose 7 is the largest index in [N + 1] such that ¢;, # 0. Then we have c; W. ¢, +coW. p, +-- -+
CnVV:,tn = 07.

This implies that ¢; My ., +coM{ .+ AcaMy ., = Wi, o, +caWe o+ FenWe,p, =
07—+, +1, which contradicts to the fact that M ., isanew column of M.

Then we deduce that W.;, , W. 1,,--- , W, are linearly independent. This implies that TV has

rank at least N 4 1, which contradicts to W = QK ". Therefore M doesn’t have the representation
of L® (QK ") where Q, K € RN and L is a fine 1-SS matrix.

Part 2. In this part we show that any lower triangular matrix with at most N new columns has
representation of L © (QK ") for some Q, K € RT>*¥ and fine 1-SS matrix L € RT*T.

Suppose M € RT*T is a lower triangular matrix having at most N new columns. We now change
M’s entries above the diagonal to create a matrix with rank at most N.

We change the entries column by column from the left to the right.
For t € [T7, if Mj. 4 is a new column of M, remain M, , to be 0;_1; if M. 4 is not a new column of
M, there exist ¢q, co, - - - ,c;—1 € R satisfying
t—1
Mt:,t = ZCth 5 S.
s=1

Set M, , to be

t—1

!/
§ CSM:t,sv

s=1
then M! ., and M/, have the same column rank.

Given that M has no more than N new columns, we deduce by mathematical induction that M’ has
rank at most N. Therefore there exist Q, K € RT*Y such that M’ = QK .

Then we have M = 1SS(1,1,--- ,1) ® (QK ").
This completes the proof. O

The following results are deduced from [Proposition 4.6

Lemma 4.7. Suppose M € RT*T is an N-SS lower triangular matrix. Then M has representation
of 1-SS masked attention L © (QK ") for some Q, K € RT*N iff M has several diagonal blocks
containing all the none-zero entries of M, and each of the diagonal blocks has at most N new
columns.

Theorem 4.8. Suppose M is an N-SS matrix corresponding to an SSM. This SSM has 1-SS masked
attention dual iff M has several diagonal blocks containing all the none-zero entries of M, and each
of the diagonal blocks has at most N new columns.

Remark 4.9. In we focus on fine 1-SS masked attention and in

our conclusion holds for general 1-SS masked attention, where for the causal mask L =
18S(a1, az, -+ ,ar), at is possibly O for some t € [T].
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5 LIMITATIONS OF STRUCTURED STATE-SPACE DUALITY

We study the limitation of state-space duality from two sides. (i) From the attention side, we show
impossibility of extending SSD to softmax attention; (ii) from the state-space model (SSM) side, we
show impossibility of extending to general SSM with low state dimension.

Impossibility of Extending SSD to Softmax Attention. We provide a trivial example to show
that softmax attention does not have state-space duality. Consider a matrix V' € RT*T such that
Vij = i x jforall i, € [T]. The matrix V has rank 1 because each of its column vectors is a
multiple of (1,2,---,T)T € RT. However, softmax (V) has rank 7" according to the Vandermonde
determinant, and furthermore, each submatrix of softmax (V') is full rank. This implies that even
when the attention matrix QK " has very low rank, the rank of softmax(QK ") expands to T in
most cases. Moreover, any attention matrix that has a state-space dual must be /N-semiseparable,
where N is the state dimension of the corresponding state-space model. Therefore, softmax attention
does not have a state-space dual.

Impossibility of Extending SSD to General SSM with Low State Dimension. We provide an
example to show that general SSM doesn’t have a state-space dual, even when the state dimension
is very low.

Proposition 5.1. Consider the SSM layer with state dimension N > 2 defined by (3.2), there exist
AlzTJrl7 bi.7+1, C1.:7+1 Such that the recurrence relation doesn’t have an attention dual.

Proof. According to [Proposition 4.1} there exist ALTHL b1.741,c1.741 such that the recurrence
relation (3.2) has representation Y = M - X, where M = Iy + E™! is a 2-SS matrix. Here

T1 _
Ejyi -

1, j=Tandi=1;
0, otherwise.

We claim that M doesn’t have the representation of L ® (QK ") where Q, K € RT”*Y and L is a
1-SS matrix.

Otherwise, suppose

L": aj'uaH_l, for ]Z’L,
o 0, for j <.

fori,j € [T)].

Since M1 =1, Lt = ag - - - ar is none-zero, i.e. each of as,as, - - - , ap is none-zero. From this
we deduce that forall 1 < j <i < T — 1, (QK");; = 0.

Since each diagonal element of M is none-zero, each diagonal element of QK ' is also none-zero.
Given that (QKT)i,j =0foralll1 <j<i<T —1,wededuce that QK " has rank at least 7' — 1,
which is a contradiction. O

6 DISCUSSION AND CONCLUSION

We initiate a unified framework that reveals deep structural parallels between recurrent state-space
models (SSMs) and masked attention. Specifically, we formalize and generalize the structured state-
space duality between simple recurrent SSMs and masked attention mechanisms. We extend the
duality from the scalar-identity case to general diagonal SSMs |Section 4.1| and show that these
models retain the same training-time complexity lower bounds while supporting richer, multiscale
dynamics We further provide a necessary and sufficient condition under which an SSM
corresponds to a 1-semiseparable masked attention mechanism Finally, we prove a
negative result: this duality does not extend to standard softmax attention due to a rank explosion
in the induced kernel Together, these results strengthen the theoretical bridge between
recurrent SSMs and Transformer-style attention, and broaden the design space for expressive yet
efficient sequence modeling.
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A  HIGHER-RANK EQUIVALENCE BETWEEN SEMISEPARABLE MATRICES

AND MATRICES WITH SSS REPRESENTATION.

Proof of Here is the main proof of

Proof. Our proof consists of two parts.

Part 1. In this part, we take three steps to show that any lower triangular matrix with an N-SSS
representation is /V-semiseparable.

Step 1. Express M with its N-SSS representation. Suppose M € RT*7 is a lower triangular
matrix with an V-SSS representation

Mj;=cj Aj-- Aabi, (A1)

forall i, j € [T], where by,--- ,bp,c1,--- ,cp € RV and A ... AT ¢ RVXN,

Step 2. For any submatrix .S whose entries are all on or below the diagonal of 1/, express S
with the N-SSS representation of M. Suppose S is a submatrix of M such that each entry of S
is on or below the principal diagonal line of M, we have

S = Mj,:jsirvins
forsomel§4j14<j2§T+1,1§1ll<i2§T+1andi2§j1. ,
Let St € R_(”__JI)XN be such that S'[:, j] = c;rjl‘_l_A(Jﬂl_l) o« At for j € [j2 — j1]. Let
52 € RN*(2=4) be such that S2[i,:] = At ... AGHp, . fori € [ig — iq].
Then according to (A.T)), we have

S =251 5.

Step 3. Upperbound the rank of S with S' and S2. Since S! and S? both have rank at most N,
we deduce that .S has rank at most V.

Part 2. In this part we take 4 steps to show that any /NV-semiseparable lower triangular matrix has
an N-SSS representation.Suppose M € R7*T is an N-semiseparable lower triangular matrix.

» Step 1. Divide M. ., into the product of 2 matrices of rank at most N. Since M is N-

semiseparable, M. ;11 € R(T—t+1)x? has rank at most N for each ¢ € [T']. Therefore there exist
low-rank matrices W, € R(T—t+DxN and U7, € RV ** such that

M. .s01 = Wy - Us. (A.2)
We provide a visualization in

Tt

N
A (
MeR™T|
. ¢ none-zero
|, T _—t+1- |nonezero 0 N
0
T-t+14 | My = W' U*
e
L t
JJ —
t N
t T—t+1)xN
Wt ¢ R(T-tHD Ut e RN

Figure 3: My, 441 = W' - U? Figure 4: Only the first r; columns (rows) of Wt (U?) are
non-zero.

Let r; < N denote the rank of M. .41 for all ¢ € [T']. Without loss of generality, we construct
Wy and U, to be such that only the first r, columns of W, are none-zero, and similarly, only the
first 7, rows of Uy are none-zero. We provide a visualization in[Figure 4]
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This means that the span of W;’s column vectors equals the span of My.71,1:4+1 column vectors,
and the span of U*’s row vectors equals the span of M. 41,1:4+1 TOW vectors.

o Step 2. Suppose M has N-SSS representation, analyze the condition
Al o AT by, bp,cy1,---cr should satisfy. Note that if M has an N-SSS represen-
tation, then for all ¢ € [T'], we have

by
b, A0
M. 441 = bl A2AT L (At A%y A ABcy oo Alcy o). (A3)
b}—AT LAt
We expect there exist AT+ b1.741, c1.741 satisfying
b
b;|—+1At+1
bl ATPRATL | oyt (A4)

b‘TrAT.'..Atﬂ
and
(At A%¢; At APy oo Al ) =UY, (A.5)

forall ¢t € [T].
Set W' = W3, . and Ut = U!, forallt € [T],ie. Wt is W without the first row, and U" is
U* without the last column. We provide a visualization in

Tt

—
r
M e RT*T
| Y none-zero 0
WU N
ro | T |, C y
Figure 5: Wt . Ut = Wi+l . g+l Figure 6: Set only the first r; columns and the
: /
first 74,1 rows of A**! and A'*!" to be non-

Z€ro.

Then we have W'+ . U™V = My, = WY - U
(A4) and (A3) requires W' = Wit . A1 and U+ = A1 . Ut forall t € [T — 1].

« Step 3. Verify the existence of A’ satisfying the conditions mentioned above. Next we show
that there exists A1 € RV*N forall t € [T — 1] satisfying Wt = Wi+l . A1 and Ut =
Attt
Since the column vectors of W**t! span to be the linear space containing all column vectors of
M 1..442, which also contains all column vectors of W*', there must exist A't1 ¢ RN*N
satisfying W' = Wi+l . At+1,

For the same reason there exists A+ € RN*N gatisfying U+ = A+ . U,
Without loss of generality, we set only the first r; columns and the first r; 1, rows of A**! and

li . . . . . .
A1 to be none-zero. We provide a visualization 1n
Now we deduce that

wittl AT Ut — Wttt Ut+1’

13
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- Mt+1:,:t+1

— Wt/ . Ut

_ t+1 t+1 t
= Wil At gt

where the Ist step is by Ut1 = A1 . U*, the 2nd and 3rd step is by simple algebra (see
[Figure 5), and the last step is by W' = W1 . A**1. We provide a visualization in

Tit1
— T
r —
Ty none-zero
Tti1 none-zero 0
T —t < none-zero 0 . Ne N
0
L %(—J e
— N t
N
wet At Ut
Tti1
— T
r —
ry none-zero
Ttt1 none-zero 0
= T-—-t { none-zero 0 . Ne N
0
- — nE
— N t
N
wttl ! Attt Ut

Figure 7: W1/ . At+17 . gt = Wt+1' . gt+1 .t

Since W't and U* have rank ;.1 and 7, perspectively, we deduce that A1’ = A**+1 Therefore

for any t € [T — 1], we have constructed A*t! satisfying both Wt = Witl . At+1 and UY' =
At+1’ Nisazy

* Step 4. Construct the N-SSS representation of M using A*, W' and U’. For all t € [T],
let b; be the first column of (W) T and ¢; be the last column of U*?. Let A**! be as constructed
above for ¢ € [T'— 1] and A = In. Then M,,; = c;»rAj ..« A"1p, ie., M has an N-SSS
representation.

This completes the proof. O
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