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ABSTRACT

Machine unlearning is the process of efficiently removing the influence of a training
data instance from a trained machine learning model without retraining it from
scratch. A popular subclass of unlearning approaches is exact machine unlearning,
which focuses on techniques that explicitly guarantee the removal of the influence of
a data instance from a model. Exact unlearning approaches use a machine learning
model in which individual components are trained on disjoint subsets of the data.
During deletion, exact unlearning approaches only retrain the affected components
rather than the entire model. While existing approaches reduce retraining costs,
it can still be expensive for an organization to retrain a model component as
it requires halting a system in production, which leads to service failure and
adversely impacts customers. To address these challenges, we introduce an exact
unlearning framework — Sequence-aware Sharded Sliced Training (S*T), which
is designed to enhance the deletion capabilities of an exact unlearning system
while minimizing the impact on model’s performance. At the core of S3T, we
utilize a lightweight parameter-efficient fine-tuning approach that enables parameter
isolation by sequentially training layers with disjoint data slices. This enables
efficient unlearning by simply deactivating the layers affected by data deletion.
Furthermore, to reduce the retraining cost and improve model performance, we train
the model on multiple data sequences, which allows S3T to handle an increased
number of deletion requests. Both theoretically and empirically, we demonstrate
that ST attains superior deletion capabilities across a wide range of settings.

1 INTRODUCTION

In recent years, the growing success of machine learning (ML) has led to its widespread deployment
across a range of applications (Achiam et al., 2023; Team et al., 2023; Qayyum et al., 2020; Surden,
2021). Once a machine learning model has been trained, it is often necessary to unlearn specific
training data instances for various reasons, like complying with user data deletion requests (Mantelero,
2013; European Parliament & Council of the European Union; Shastri et al., 2019; Achille et al., 2024),
removing stale or corrupt data (Biggio et al., 2012; Steinhardt et al., 2017), etc. Retraining an ML
model entirely from scratch with each deletion request is expensive, especially for modern large-scale
models (Brown et al., 2020; Achiam et al., 2023; Team et al., 2023). Machine unlearning (Nguyen
et al., 2022; Xu et al., 2023) techniques focus on efficiently unlearning the influence of a data instance
from a trained machine learning model.

Machine unlearning techniques are classified into two broad categories: approximate and exact
unlearning (Xu et al., 2024). Approximate unlearning techniques (Guo et al., 2020; Liu et al.,
2024a) modify the parameters of a trained model to reduce the influence of the deleted data instance.
While cost-effective, approximate unlearning cannot guarantee the complete removal of an instance’s
influence and it may still retain non-zero influence on the model. Moreover, auditing approximate
unlearning is challenging due to the stochastic nature of ML optimization (Thudi et al., 2022).
An alternative approach is exact unlearning (Cao & Yang, 2015; Bourtoule et al., 2021; Golatkar
et al., 2023), which can guarantee the removal of a data instance’s influence from a trained model.
Exact unlearning techniques use a modular system, where different components within the system
are trained on disjoint data subsets. When a deletion request occurs, only the affected component
needs to be retrained. However, in real-world settings, halting a production system to even retrain
a single component can result in service failure. The alternative is to function without the affected
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component, which may result in reduced performance, ultimately impacting consumers. To address
these challenges, we introduce a novel exact unlearning framework, Sequence-aware Sharded Sliced
Training (S*T), which enhances the deletion capability while minimizing performance impact.

The key idea behind our ST framework is to perform additional offline training before deploying the
initial model to reduce retraining costs. At the core of ST, we leverage a novel lightweight fine-tuning
approach that allows parameter isolation by sequentially training model layers using disjoint data
slices. Due to this parameter isolation, we efficiently perform exact unlearning by deactivating the
layers associated with the deleted instance, rather than discarding the entire checkpoint. We efficiently
train multiple models using different sequences of the same data slices depending on a training budget.
We show that increasing the training budget before deployment can significantly reduce retraining
costs and improve the model’s performance. We also observe that it is important to train the model
using diverse sequences and provide several approaches for selecting diverse sequences using graph
matching (Cormen et al., 2022). Furthermore, we theoretically show that ST achieves provably
better deletion guarantees than existing approaches. We conduct extensive empirical evaluations to
evaluate the effectiveness of ST using Transformers with parameter counts ranging from 86M to
13B on a range of tasks. Additionally, we empirically validate the sequence selection algorithm and
show that S3T has superior deletion performance compared to existing methods.

The rest of the paper is organized as follows: (a) We introduce the prior literature related to ap-
proximate and exact machine unlearning (Section 2), (b) We describe the problem setup for exact
unlearning (Section 3.1), (¢) We introduce the fine-tuning approach, S3T, and sequence selection
algorithm under budget constraints (Section 3.2 & 3.3), (d) We theoretically analyze several properties
of S3T (Section 3.4), and (e) We present experiments to evaluate the effectiveness of S*T’s fine-tuning
approach, deletion performance and sequence selection algorithm (Section 4).

2 BACKGROUND

Machine unlearning techniques for deep learning is broadly classified into two categories: approxi-
mate and exact unlearning (Xu et al., 2024). Approximate unlearning techniques focus on reducing
the influence of a deleted instance from a model after it has been trained. Exact unlearning techniques
provide unlearning guarantees by ensuring model components trained on a deleted instance are not
used during inference. In this section, we discuss each of these categories in detail.

Approximate Machine Unlearning. These techniques focus on approximating the model parameters
as if the deleted data instance was not there in the training set from the beginning (Guo et al., 2020).
These techniques typically quantify the influence of an instance (Koh & Liang, 2017) and perform
gradient ascent for unlearning (Golatkar et al., 2020a;b; Neel et al., 2021; Sekhari et al., 2021; Gupta
etal., 2021; Suriyakumar & Wilson, 2022; Liu et al., 2024a). In contrast to these approaches, (Graves
et al., 2021) stores the exact gradients encountered during training and uses them directly for gradient
ascent. Another line of work (Tarun et al., 2023a;b; Jia et al., 2023; Chen & Yang, 2023; Eldan &
Russinovich, 2023; Patil et al., 2023; Kurmanji et al., 2024; Liu et al., 2024b) focuses on unlearning
in a batch setting, where they assume access to both a retention set and a forget set of data instances
for approximate unlearning. While efficient in practice, auditing approximate unlearning techniques
is challenging due to the stochastic nature of the optimization process (Thudi et al., 2022; Wang et al.,
2024) and may have weak privacy guarantees in practice (Hayes et al., 2024).

Exact Machine Unlearning. These techniques focus on developing a modular machine learning
system, where individual components are trained using disjoint subsets of the data. Such a system
offers the advantage that when a deletion request is received for an input instance, we only need to
retrain the affected component rather than the entire model. However, these systems require modifying
the original training process of the model. The seminal work for such a modular unlearning system is
Sharded, Isolated, Sliced, and Aggregated training (SISA) (Bourtoule et al., 2021). SISA uses an
ensemble of models each trained on a disjoint shard of the dataset as shown in Figure 1 (left). To
further reduce retraining costs, each shard is divided into slices, and the models are incrementally
trained on these slices, with their checkpoints stored sequentially (shown in Figure 1 (right)). If
a deletion request is received for a data instance within 4t glice of a shard, we must retrieve
the checkpoint from the 3" slice and retrain using the remaining data within that shard. Several
approaches focus on improving the components within SISA in application-specific settings like
enhancing the dataset partitioning mechanism (Aldaghri et al., 2021; Yan et al., 2022), the retraining
efficiency using light-weight adapters (Kumar et al., 2023; Dukler et al., 2023), or extending the
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Figure 1: Schematic diagram of the Sharded, Isolated, Sliced, and Aggregated training (SISA) (Bour-
toule et al., 2021) framework. An ensemble of models is individually trained on disjoint shards. (Left)
Each shard is further divided into slices. (Right) Each model is sequentially trained on the slices and
checkpoints are stored. After deletion, retraining resumes from the best available checkpoint.
modular approach for vision tasks by using compartmentalized diffusion models (Golatkar et al.,
2023). However, these approaches are orthogonal to our work since they do not fundamentally modify
the functioning of SISA and therefore can be easily incorporated within our proposed framework.

SISA is a well-known framework that can guarantee exact unlearning and has found widespread
applications. However, using SISA within production systems is challenging because retraining even
a single component would result in system downtime. Furthermore, in the worst-case scenario, if
deletion requests impact the first slice in all the shards, the entire service goes down, necessitating
retraining the model from scratch. In this work, we leverage parameter-efficient fine-tuning to
introduce a framework that improves upon the service availability and deletion capabilities of SISA.

3 SEQUENCE-AWARE SHARDED SLICED TRAINING (S3T)

In this section, we describe the functioning of our proposed exact unlearning framework, Sequence-
aware Sharded Sliced Training (S°T).

3.1 PROBLEM SETTING

We consider the general setting where the user fine-tunes a pre-trained model like BERT (Devlin
et al., 2019) or Llama (Touvron et al., 2023) on private data using PEFT techniques. We assume that
the deletion requests affect only the private fine-tuning data, not the pre-training data. In S3T, we
partition a dataset D = {Dy, ..., D,,} into m disjoint shards. Each shard is further divided into L
slices: D; = {S1,...,Sr}. ST trains a separate model per shard and uses their aggregate decision.

Existing unlearning frameworks SISA (Bourtoule et al., 2021) use a similar setup described above.
In SISA, within each shard, the model is trained in multiple stages sequentially on the slices (training
stages are Slice 1, Slice 1+2, and so on), and their checkpoints are stored. However, a key weakness
of SISA is that if deletion requests affect Slice 1 of all shards, then the entire service goes down
necessitating retraining from scratch. Another drawback of SISA is that individual models within
the ensemble need to be retrained whenever a deletion request is executed. Retraining even on a
single slice is expensive for large-scale models in production serving a huge customer base. A naive
alternative would be to use the last known usable checkpoint and perform retraining after regular
intervals. For example, in Figure | (right), if a deletion request arrives for a data instance in Slice 4,
the model in production can be replaced with the checkpoint obtained after Slice 3. It is easy to see
that the performance of the overall model will degrade with the number of deletion requests.

We present an exact unlearning framework, S*T, to address these challenges. The core idea involves
training several copies of each model (within the ensemble) that are trained using different slice
sequences. When deletion requests occur, we utilize the model that minimizes performance degrada-
tion. To further reduce the training cost, we leverage PEFT techniques and present a novel sequential
slice-wise fine-tuning strategy in Section 3.2. Our training strategy allows us to use the same model
by deactivating certain layers without the need to swap checkpoints in case of a deletion. In the
following sections, we introduce the fine-tuning strategy and sequence selection process.
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Figure 2: (Left) We show the schematic diagram of the slice-wise training strategy in S*T. We
incrementally train the model — i layer (from the top) using slices S;.; while keeping the other layers
fixed. (Right) We show the impact of deletion on models trained on different permutations of slices.

3.2 SEQUENTIAL SLICE-WISE TRAINING

In this section, we introduce Sequence-aware Sharded Sliced Training (S*T) a lightweight fine-tuning
approach for efficient exact unlearning. This fine-tuning approach enables parameter isolation by
sequentially training PEFT layers using different data slices. Due to this parameter isolation, it is
possible to efficiently handle deletion requests by deactivating layers associated with the instance.

We describe S°T using the PEFT technique, LoRA (Hu et al., 2021), but our method is general can be
easily extended to other PEFT techniques. LoRA introduces a small number of trainable low-rank
(r < d) parameters, (X,Y), while the pre-trained weights W remains fixed as shown below:

W =W+ X'"Y, where X, Y € R"*¢ W e R4, (1)

Our key idea involves training different LoRA layers using different data slices. This approach allows
us to selectively deactivate (zero out) the LoRA parameters (X or Y) associated with a particular
layer in the event of data deletion from that slice. In Figure 2 (left), we illustrate the training process
in detail, where we follow a sequential top-to-bottom training approach. At stage 1, we train the final
model layer (Layer 1 in the figure) using slice 1 while LoRA parameters from all other layers are
switched off. In the next stage, we train second last layer (Layer 2) using slices 1 & 2, while keeping
the LoRA parameters from the Layer 1 frozen. This process continues for the rest of the layers. Note
that the training does not need to proceed in a single layer-wise fashion, we can even train multiple
LoRA layers per slice. We discuss more details about the design choice in Appendix C.2.

The sequential slice-wise training process ensures that the LoORA parameter updates at the ¢-th layer
are a function of the data instances within slices {1, ..., 4}. Therefore, if a deletion request affects
the i-th slice, the same model can still be used by deactivating the LoORA parameters corresponding
to slices {4, ..., L} (see details in Algorithm 4). For example, if a deletion request affects slice S3
only the subsequent LoRA layers need to be deactivated to ensure exact unlearning, as shown in the
first example of Figure 2 (right). This is because during training the parameters of layers 1 & 2 were
not affected by instances in S3. During this deletion process, we use the same model checkpoint and
switch off LoRA layers, resulting in an L-time reduction in storage cost compared to SISA.

Now we consider the scenario where deletion requests affect multiple slices. This is shown in the
2" sequence of Figure 2 (right), where slices S; and S are affected. In this case, we observe that
a model trained on the default ordering of the sequence {51, ..., S} is rendered useless when S;
and S5 are affected. This motivates us to train multiple models using different permutations of the
slices. This would enhance the service time and system performance by selecting a model trained
with the most effective ordering (e.g., the 3™ sequence in Figure 2 (right) yields the best-performing
model). However, training on all L! slice permutations is prohibitively expensive. In the following
section 3.3, we present strategies to select a diverse set of permutations under budget constraints.
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Figure 3: Illustration of the slice sequence selection problem with uniform deletion prior under a
budget constraint, B. (Left) A permutation tree with L = 3 and a diverse set of sequences for budget
B = 3 is shown in green. (Center) We show the functioning of the cyclic rotation algorithm, where
we generate cyclic permutations of the original sequence. (Right) We iteratively extend the algorithm
when budget B > L by generating cyclic rotations of the subsequences.
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Figure 4: Illustration of the BMS algorithm. BMS selects one element for each permutation at a time.
This is done by constructing a bipartite graph with all feasible edges to the next node, where edge
weights are the current sequence scores. We compute the maximum weight matching on this graph.
The dark gray arrows (—) indicate the selected edges and dotted arrows (--+ ) the feasible ones.

Using these selection approaches, in Section 3.4 we theoretically show that we do not need more than
L sequences to achieve the optimal deletion performance.

3.3 TRAINING UNDER BUDGET CONSTRAINTS

In this section, we discuss strategies to select sequences under a budget, B (maximum number of
sequences that can trained). First, we show that there exists an optimal subset of sequences and
randomly selecting B sequences may not be effective. To illustrate this idea, we use a permutation
tree (Bhattacharya, 1994), where all possible permutations are embedded into a tree structure.

In Figure 3 (left), we show an example of a permutation tree with L = 3 slices, paths from the root
to the leaves correspond to unique permutation sequences (51, Sz, S3), (S1,.53,.52), and so on. We
know that the topmost slice is most sensitive because if a deletion request affects the topmost slice
the entire model needs to be retrained (shown in Figure 2 (right)). To address this and reduce the
retraining cost, we should ensure we train models on sequences with different top slices. Building
on this intuition, in the general setting we should train the model on diverse permutation sequences.
Two sequences are considered diverse if no element appears at the same position, e.g., (S1, Sa, S3)
and (S2, S3,.51). An example is illustrated in Figure 3 (left), where a diverse set of 3 sequences is
marked in green (where no identical slices occupy the same position). Selecting diverse permutations
is challenging as relying solely on random sampling may not always yield the best results. Moreover,
in certain scenarios, it is possible to have prior knowledge about the deletion probabilities of data
slices; for example, younger users might be more likely to request data deletion than older users.
Therefore, we present two strategies for selecting diverse permutation sequences for a budget B,
depending on whether or not prior deletion probabilities are available.

Uniform Deletion Prior. In the setting, where each slice has a uniform (or unknown) deletion prior,
we can generate diverse sequences by using cyclic permutations of the original sequence. Given a
sequence (51, Sa, S3), the cyclic permutations are (shown in Figure 3 (middle)):

(S1,82,53) = (53,51, 52) = (S2, S3,51). (2)
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The above approach guarantees that no element is repeated in the same position. However, it can only
generate up to L different sequences. For budget B > L, we extend the cyclic rotation algorithm
to generate more sequences. In Figure 3 (right), we generate new sequences by iterating over the
existing sequences and performing cyclic rotations of the subsequences. For example, for (51, Sa, S3)
we perform cyclic rotation of the 2™ and 3™ element to obtain the sequence: (Si, S3,S2) (more
examples in Figure 8). We provide the general iterative cyclic rotation algorithm in Appendix B.1.

Non-uniform Deletion Prior. In scenarios, where we have prior knowledge of the deletion probabil-
ities, sequences generated by cyclic rotation may not be ideal. For example, consider the deletion
probabilities are: (S7: 0.5, S3: 0.4, S3: 0.1). Then, the first sequence in Eq. 2 is a bad choice because
two of the slices most likely to be deleted are placed at the top. It is possible to select better sequences
while satisfying the diversity criteria (no repeated slices at the same position). We score a sequence
with deletion probabilities: S = (p1,...,pr) by computing the expected number of functioning
. t
slices after ¢ deletions: score[S,t] = Zle i. (1 — i1 pj) .
We present a bipartite-matching based sequence (BMS) selection algorithm. We will provide
an intuitive explanation of the algorithm here and refer to Appendix B.2 for complete details.
An illustration of BMS is shown in Figure 4. BMS iteratively selects elements of sequences by
constructing a bipartite graph between one level to the next one (where edges are incident on feasible
elements for the current sequence). The edges are weighted by the score of the current sequence,
score[S, t]. Selecting the next element then is equivalent to finding a maximum weight perfect
matching (Galil, 1986) using the Hungarian algorithm (Kuhn, 1955) shown by the bold lines in
Figure 4. This continues till all sequences have L elements. For a budget B > L, we use conditional
sampling to randomly generate sequences according to their deletion probabilities (see Appendix B.2).

3.4 THEORETICAL ANALYSIS

In this section, we theoretically analyze the performance of exact unlearning systems. For this,
introduce the definition of deletion rate for exact unlearning systems.

Definition 1 (Deletion Rate). The deletion rate, §(S), of an exact unlearning system S, is the expected
number of deletion requests until the system needs to be retrained from scratch.

The deletion rate captures the effectiveness of an exact unlearning system by quantifying the expected
number of deletion requests it can handle. Next, we quantify the deletion rate for ST and SISA.

Lemma 1. For dataset size N > r, where r is the number of deletion requests, the deletion rate of
3T is §(S°T) ~ O(mLlog(mmin(B, L))) and for SISA it is 5(SISA) ~ O(mLlogm), where m
is the number of shards and L is the number of slices per shard.

This result shows that the deletion rate doesn’t improve by increasing the budget B beyond L (proof
in Appendix A.1). This shows that the optimal deletion rate can be achieved using only L sequences
(instead of L!). Next, we analyze the impact of deletion requests on the system’s performance. We
perform a fine-grained analysis focusing on the performance of an individual shard. In this setting, we
consider the real-world scenario where we do not retrain every time a slice is impacted instead work
with the best available model. For S*T, this means switching off the necessary PEFT layers, while
for SISA, it means reverting to the best available checkpoint. The unlearning system experiences
performance degradation with an increasing number of deletion requests, as we are compelled to
utilize a model trained on fewer data slices (we show this empirically in Section 4). To quantify the
performance retention we use a monotonically increasing function F'(k), which indicates a model’s
performance when trained on k slices. The exact formulation of F'(-) depends on several factors like
the dataset, model size, etc. We analyze the performance retention while processing deletion requests.

Lemma 2 (Performance Retention). Given a set of randomly selected B > 1 sequences and uniform
deletion prior of slices, the difference between the probability that a shard retains a performance,
F,(+), of at least F (k) after r deletion requests between ST and SISA is shown below

Vk € [1... L], [P[F.(S°T) > F(k)] = P[F,(SISA) > F(k)] =¢(1-¢P7Y), (3
where ( =1 — (1 — k/L)" is a positive fraction and B’ = min {B7 (L%'k),}

This above result shows that compared to SISA, ST enhances performance by increasing the
probability that the system maintains at least F'(k) by a factor of B’ (proof in Appendix A.2).
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Figure 5: Comparison of the performance between ST training and full training (FT) on vision, GLUE
& SuperGLUE benchmarks. We report the Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for other tasks. We observe that S3T achieves similar performance to FT.

4 EXPERIMENTS

In this section, we outline the experimental setup and evaluate the unlearning performance of S3T
across various setups. Specifically, we design experiments to answer the following research questions:

(RQ1) Does S3T training (Section 3.2) impact the model’s performance compared to full training?
(RQ2) Does S°T enhance the deletion capabilities of unlearning, and what is its cost tradeoff?
(RQ3) Is the sequence permutation selection algorithm (Section 3.3) effective in practice?

Sequential Slice-wise Training Performance. The objective of the experimental setup is to demon-
strate that ST can achieve performance comparable to full training. The goal of ST is to achieve
parameter isolation for data slices without impacting the overall performance. We perform a range of
experiments with different Transformer model sizes ranging from 86M up to 13B. The details of the
experimental setup are in Appendix C.1.

In Figure 5, we report the performance on vision, GLUE, and SuperGLUE benchmarks. We use
ViTgase (Dosovitskiy et al., 2020) (for CIFAR10 & CIFAR100 (Krizhevsky et al., 2009)), ViTL ArGE
(for Tiny ImageNet (Le & Yang, 2015)), and RoOBERTay argg (Liu et al., 2019) (for GLUE (Wang et al.,
2018) & SuperGLUE (Wang et al., 2019)). We observe that S>T achieves comparable performance
to full training (FT) across all settings. In some of the settings, we also observe that S*T is able to
outperform FT (e.g., ST obtains 2.5% accuracy gain on TinyImagenet using Vi T-1arge). Next, we
conduct experiments to evaluate the effectiveness of ST while using large language models (LLMs).
Specifically, we perform instruction tuning of Llama2-7B (Touvron et al., 2023), Llama2-13B, and
Llama3-8B using Alpaca dataset (Taori et al., 2023). Then, we evaluate each instruction-tuned
model on a range of tasks to evaluate the model’s general/world knowledge (MMLU (Hendrycks
et al., 2020), OpenBookQA (Mihaylov et al., 2018)), truthfulness in QA (Truthful QA (Lin et al.,
2022)), and commonsense reasoning (PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
Winogrande (Sakaguchi et al., 2021), ARC (Clark et al., 2018)). We use LLM-evaluation suite (Gao
et al., 2023) to report the performance and report the zero-shot performance for all datasets. Similar
to the previous setup, in Table 3, we observe that S*T achieves comparable performance to full
finetuning across all datasets and even outperforms FT on many datasets across different model sizes.
These experiments provide the answer to (RQ1) demonstrating that S*T is an effective way to achieve
parameter isolation for data slices without impacting the model’s performance.

Deletion Performance. In this section, we evaluate the performance of ST as deletion requests
are received. In Figure 6 (left), we report the performance of ST and baselines SISA (Bourtoule
et al., 2021) and ProtoSISA (Yan et al., 2022) (m = 5 shards, L = 4 slices) on CIFAR-10 and
CIFAR-100 datasets. In this experiment, we use a uniform deletion prior over slices. We also report
the performance of full re-training, which retrains the model after each deletion request and serves
as an upper performance bound. We report S*T’s performance under various budgets. We observe
that S*T can achieve very close performance to the full budget (B = 24) with a significantly smaller
budget, B = 4. For SISA and ProtoSISA, we observe that the plot ends after approximately 40
deletion requests as these systems do not have functioning models beyond this point. We observe that
S3T can handle more deletion requests while consistently outperforming the baseline approaches.
Note that increasing the budget B > L does not help improve the deletion rate but increases the
probability of a better-performing model (as observed in Lemma 1). Next, we extensively evaluate the
impact of increasing the training budget B on the deletion rate (with m = 5 shards & L = 64 slices).
In Figure 6 (right), we observe that there is a steady growth in the deletion rate with an increasing
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Figure 6: (Left) We report the impact on performance of S3T and baselines with an increasing number
of deletion requests. S°T handles a higher number of deletion requests while maintaining high
performance with a relatively low budget ((X) indicates the failure point for the system). (Right) We
report the deletion rate of S3T with an increasing budget and observe steady growth.
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Figure 7: We evaluate the performance of iterative cyclic rotation and bipartite matching-based
selection (BMS). (Left) We observe that cyclic rotation selection consistently outperforms random
sampling for all budgets, 1 < B < 120 (with fixed L = 5). (Center) We evaluate the average edit
distance of the sequences generated by BMS and observe that it achieves the optimal edit distance
(L). (Right) We also observe that sequences from BMS achieves higher scores than random sampling.

budget. The growth is slightly higher in the initial stages when the budget is low and slows down
gradually. This experiment provides empirical evidence to our theoretical result in Lemma 2, which
claims that the performance improves with an increased budget.

Sequence Selection. We evaluate the quality of the sequences generated by the iterative cyclic
rotation and BMS algorithm (Section 3.3). Ideally, we want the selected sequences to be diverse and
have a high edit distance between sequences. Therefore, we report the average edit distance within a
selected subset, O: E,co[deqit (0, 0')]. First, when the deletion prior is uniform and compare cyclic
rotation with random sampling. In Figure 7 (left), we report the average edit distance with varying
budget (B) while the slice count (L) is fixed. We observe that cyclic rotation produce significantly
better sequences than random sampling. Second, we consider slices associated with a deletion prior.
We present the results by averaging over 10 deletion priors sampled from a Dirichlet distribution. In
Figure 7 (center & right), we observe that BMS consistently outperforms random sampling both in
terms of diversity (avg. edit distance) and chosen sequence scores (score[S, t]).

5 CONCLUSION

In this paper, we introduced S3T, an effective framework for performing exact unlearning. ST uses a
modular machine learning model that is trained using disjoint shards of the data. Each shard is used
to train a different model using a lightweight fine-tuning approach that enables parameter isolation,
which allows us to execute unlearning requests efficiently. The key idea behind S3T is to train multiple
models using different sequences of slices before deploying the system. This helps reduce retraining
costs and improve the model’s performance while the model is in production. Both theoretically and
empirically, we show that S3T has significantly improved deletion capabilities compared to existing
approaches. Future work can focus on developing techniques for finer-grained parameter isolation to
further improve S3T’s performance.
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A  MATHEMATICAL PROOFS
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A.1 PROOF OF LEMMA 1

In S3T, since the sequences are selected to be diverse (Figure 4), the topmost slice in each sequence is
different. Therefore, we have B’ = min(B, L) different slices at the topmost position. This implies
that for S3T to encounter service failure, a total of m B’ slices must be affected by deletion requests,
where m is the number of shards. Considering deletion requests affect all slices uniformly we need to
compute the expected time till all slices are affected. This setup is similar to the coupon collector
problem (Blom et al., 1994).

Proof. The deletion rate is the expected number of requests to delete all mB’ slices (m shards, B’
unique slices per shard). Using linearity of expectation, the deletion rate or total time is:

§(S°T) =E[T) =E[t; + ...+ tmp] )

=E[t1] + ...+ E[tmp], 5)

where E[t;] = 1/p;, where p; is the probability that the i-th slice is affected after (i — 1) slices are

deleted. Let N = |D| the dataset size and r be the number of deletion requests seen so far. The
expression of p; is shown below:

o {mB" — (i —1)}sp

i 6
p N (6)
Nmin(B/L,1) — (i — 1)s

po = Nmin(B/L,1) = (= D o
—r
~ min(B/L,1) - (i — 1)/(mL)
pi = —_ ®)
mB' — (i—1
pix UL ©)
mL
where sy, is the size of each slice. Replacing this result in Eq. 5, we get:
3 mL mL mL
: < .. T
§(ST)_mB,_O+mB,_1+ + (10)
1 1 1
—mL(1+2+...+mB/> (11)
= mL.HmB/ (12)
= mLlog(mB’) + L+1+O L (13)
= mL]log(m ym 5 )

where H,, g/ denotes the m B’-th Harmonic number and - is the Euler’s constant (Lagarias, 2013).
The above result proves the first portion of the lemma, §(S*T) ~ O(mLlogmB’).

The second part of the lemma is about SISA. For SISA to experience failure, only the first slice of
each shard (total of m slices) needs to be affected by deletion. In this case, we can write:
{m—(i—-1)}sy N/L—(i—1)s, 1—(G—1)/m _ m—(i—1)

= - = > 14
P N—r N—r L(1—7/N) = mL 14
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Replacing the above result in Eq. 5, we get:

1 1 1
5(SISA) < mL < Fo4t > (15)
1 2 m
= mL-HnL (16)
1 1
=mLlog(m)+~ym+ = + O () . (17)
2 m
This proves the second portion of the lemma: §(SISA) ~ O(mLlogm). O

A.2 PROOF OF LEMMA 2

We begin by proving the retention result for SISA as it is simpler to understand. Each model within
SISA is trained on a single sequence of slices.

Proof. The probability it maintains performs better than F'(k) is equivalent to showing that none of
the top-k elements (out of L) are affected after r deletion requests:

k T
P[F.(SISA) > F(k)] = (1 — L) . (18)
In S3T, each model is trained on B such sequences. Therefore, we need to compute the probability
that at least one sequence is better than F'(k), which is:

P[F.(S°T) > F(k)] =1 - (1 - (1 - §>r>3 : (19)

However, the above result suggests that the probability can be increased indefinitely by increasing
B. This is inaccurate because to maintain a performance of F'(k) there has to be at least one prefix
L!

of length k that has not been affected. Since there only P(L, k) = =01 permutations of length &

extending the budget beyond P(L, k) doesn’t work. Therefore, the correct probability is:

P[F.(S’T) > F(k)] =1 - (1 - <1 - i)) " , (20)

where B’ = min {B, P(L, k)}.
Taking the difference between Eq. 20 and Eq. 18 and setting o = (1 — k/L)", we get:

P [F.(S°T) > F(k)] — P[F.(SISA) > F(k)] =1— (1- )" - 3
=(1-p{1-01-8"""}
=¢1=¢"7, @

where ( =1 —a =1— (1 —k/L)". This completes the proof. O
Discussion. In the above proof, we assumed that B sequences are selected randomly. In practice, we
select diverse sequences using the iterative cyclic rotation algorithm. However, deriving a closed-
form theoretical performance bound for the sequences generated using cyclic rotation is non-trivial.
Intuitively, we expect the performance to be better as selecting diverse sequences means that the

probability of a length-£ prefix getting affected is reduced. Empirically, we observe performance
improvements in Figure 7. We leave the theoretical proof of these results to future work.

A.3 PROOF OF LEMMA 3

This lemma states that BMS selects the most diverse sequences. First, we revisit our definition
of sequence diversity. Two sequences are considered diverse if no element appears at the same
position, e.g., (S1, S2, S5, S4) and (S, Ss, Sy, S1). Since we want diverse sequences, BMS performs
maximum weight perfect matching, ensuring that no two elements appear in the same position.
Therefore, in this proof, we show that perfect matching exists at all levels, [1, L], in Algorithm 2.
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Proof. Let the bipartite graph, G, consist of vertices V' U V”, such that the edges £ C V' x V’. For a
perfect matching to exist, every subset W C V should satisfy:

|[W| < Ne(W), (22)
where N¢(+) is the neighbourhood defined using the graph, G.

In our setup, the graph G has vertices V = {1,...,L} and V' = {1’,..., L'}, which indicate the
elements in the permutation sequence. Every vertex v € V has (L — i 4+ 1) edges to unique vertices
in V' at the i-th iteration of the algorithm. Therefore, for all iterations ¢« € {2,..., L} (shown in
Line 6 in Algorithm 2) the condition in Eq. 22 is satisfied and a perfect matching exists.

Since perfect matching selects a unique element in V', therefore no element is repeated at the same
position in the BMS output. Therefore, BMS generates diverse sequences. O

15
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Algorithm 1 Iterative Cyclic Rotation
1: function CYCLICPERMUTATION(Permutation P)

2 R = {} // set of all rotations
3 fori e {1,...,Plength} do
4: R=RUP
5: P = rotateRight(P)
6 end for
7 return R
8: end function
9:
10: function ITERATIVECYCLICROTATION(Slice count: [, Budget: B)
11: O = CyclicPermutation([1, ..., L]) / initialize the set with L cyclic permutations
12: niter = 0// set the iteration count
13: while |O| < B do
14: Niter = Niter + 1
15: for o € O do // iteratively expand each of the existing permutation
16: prefix, suffix = o[: niger], 0[Niter 3] // set the prefix and suffix
17: // rotate the suffix with same prefix
18: P = {prefix U p for p € CyclicPermutation(suffix)}
19: O=0UP
20: end for
21: end while
22: return O: B] // return B output permutations

23: end function

B IMPLEMENTATION DETAILS

In this section, we discuss the details of various algorithms and workflows within S3T.

CONTENTS
B.1 TIterative Cyclic Rotation . . . . ... ... ... ... ... . ..... 16
B.2 Bipartite-matching based Sequence Selection . . . . .. ... ... ... .. ... 17
B.3 S3T Training Procedure . . . . . . . . . .. i 19
B.4 Deletion Procedure . . . . ... ... .. 19

B.1 ITERATIVE CYCLIC ROTATION

In the setting, where the deletion probabilities are uniform we use the cyclic rotation algorithm to
select diverse permutations. In Figure 3 (middle), we observe that we can easily generate L diverse
sequences using cyclic permutation of the original sequence. We can iteratively expand on this idea to
generate more sequences when the budget, B > L. An illustration of the different sequences selected
using iterative cyclic rotation for different budgets is shown in Figure 8.

We present the pseudocode of the iterative cyclic rotation mechanism in Algorithm 1. First, we set the
initial set to cyclic permutations of the original sequence (Line 11). If the budget exceeds the current
set of output permutations, we iteratively expand the selected permutations by rotating their suffixes
(Line 18). This continues till the output set has at least B sequences. Please note that Algorithm 1 is
a simplified version of the actual algorithm. For some corner case budget values, we apply certain
heuristics to select the right permutations to expand (Line 18). Empirically, we observe that iterative
cyclic permutation significantly outperforms random sampling (Figure 7). We conjecture that iterative
cyclic rotation generates the most diverse set of B permutations when all L slices have equal deletion
probabilities. We will leave the theoretical proof to future research.
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Budget B = 4

Figure 8: An illustration of the sequences selected by the iterative cyclic rotation algorithm for
different budgets. We observe that for budget B < L the algorithm selects sequences generated
by rotating the entire sequence. For budget L < B < L(L — 1), the algorithm generates newer
sequences by rotating the rotating subsequences starting from the second element. This continues as
the budget increases and smaller subsequences are rotated.

B.2 BIPARTITE-MATCHING BASED SEQUENCE SELECTION

Before describing the bipartite selection algorithm, we discuss the scoring function for sequences with
given deletion probabilities. Given a slice sequence with deletion probabilities S = (p1, p2, p3, p4),
the scoring function computes the expected number of surviving slices after ¢ deletions:

score[S,t] = 4.(1—p1 —p2 —p3 —p1) +3.(1—p1 —p2—p3)  +2.(1—p1 —p2) + (1 —p1)". (23)

The above equation is a function of ¢, which needs to be set by the user. In the general case, Eq. 23
can be written as:

t
n

score[S,t] = Zl 1- ij . (24)
j=1

i=1

Next, we describe the details of the Bipartite-matching based selection (BMS) algorithm in Algo-
rithm 2. The objective of BMS is to select a set of B diverse permutation sequences where sequences
have a high score (Eq. 24). This algorithm starts by selecting L different starting elements for the
sequences in Line 4. Then, BMS iteratively selects the next element within each sequence. This
involves constructing a bipartite graph between the last elements of the sequences seen so far and the
next set of elements. The edge weights are set to the score of the sequence that is a concatenation of
the current sequence, o, and the next node, v’. The edges incident on feasible next elements (elements
not seen in a permutation sequence so far) as shown in Line 12. We perform a maximum weight
perfect graph matching on the graph, G, using the Hungarian algorithm (Kuhn, 1955). Based on the
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Algorithm 2 BMS Sequence Selection Algorithm
1: function BMS(Slice count: L, Budget: B)

2: 0={}
3: forl € {1,...,L} do// initializing the sequence set with first element
4: O=0uU{l}
5: end for
6: for i € {2,..., L} do// iterations to select the 2" to the L-th element
7 G = {} // Initialize Graph
8: for o € O do // Iterate over sequences
9: v = o.pop() // Collect final element of each sequence
10: forv' € {1,...,L} do// Iterate and add all feasible edges
11: w = scorefo U v'] // compute score for the sequence o U v (Eq. 24)
12: if v’ ¢ o then G.add_edge(v,v’, w) // check for feasibility
13: end for
14: end for
15: (V, V') = MaximumWeightMatching(G) // use Hungarian algorithm (Kuhn, 1955)
16: foro € O do
17: /I select vertex associated with each sequence from perfect matching
18: v* ={v[v' € V' ANv=o.pop()}
19: 0 = oUwv* //add to sequence
20: end for
21: end for
22: Op = {0 € O|o is among top B sequence with highest score[o]}
23: return Op

24: end function

Figure 9: Illustration of conditional sampling of slice sequences. For each sequence, one slice is
sampled at a time based on their deletion probabilities. We observe that conditional sampling selects
sequences that has slices with relatively lower deletion probabilities towards the top.

matching, we select the next element for each permutation sequence (Line 18). BMS continues this
process till all sequences o € O have L elements. Based on the budget, we output B sequences from
O that have the highest sequence scores. For maximum weight perfect matching, (Tomizawa, 1971)
provides an efficient algorithm with time complexity O(n?), where n is the number of nodes. Using
this algorithm, the overall time complexity of BMS is O(L*), where L is the number of slices. The
following result shows that BMS generates the most diverse sequence set.

Lemma 3. For a budget B < L, BMS returns the most diverse set of B permutations.

We also validate the above result empirically and find that BMS produces a range of sequences with
high scores (Figure 7). However, it remains an open question whether these outputs are optimal
(while considering both diversity and scores).

The BMS algorithm can output up to L diverse permutations. Extending it for a budget B > L is
non-trivial. Therefore, in this setting, we use a conditional sampling approach to generate diverse
sequences. In conditional sampling, for each sequence, we sample slices one at a time based on
their deletion probabilities (low deletion probabilities have a higher chance of being sampled). If a
sampled sequence already exists in the selected set, it is discarded. An illustration of the conditional
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Algorithm 3 S3T Training Procedure
1: Input: Dataset D, Shard Count: m, Slice Count: L, Budget: B
2: F = {} // initializing model set
3: ford € {Dy,..., Dy} do// partition the dataset into shards and iterate over them

4: 8§ ={51,..., S} // partition into slices, U;S = d

5: IT = Select TrainingSequences(L, B) // using cyclic or BMS algorithm
6: for m € Il do

7: Sy = ©(8) // order the slices according to the permutation 7

8: f = SliceWiseTraining(Sr)

9: F=FUf
10: end for

11: end for

12: return F

Algorithm 4 S3T Deletion Procedure
1: Imput: Model set F, Deletion instance: x
2: m’ = LocateShard(z) // get original shard ID, m/
3: F = {} // set of modified models
4: for f € F,,» do// iterate over models trained on m/-th shard
5: I = LocateSlice(x, f) // get original slice 1D, I, of = within f
6.
7
8

forl e {l',...,L} do
DeactivateLayer(f,1) / deactivate PEFT layers

: end for o
9: if I’ > 0 then F = F U f // ensuring all layers aren’t switched off
10: end for

11: F = F \ Fp // remove older models
12: F = F \ F // introduce updated models
13: return F

sampling approach is shown in Figure 9. We observe that the selected samples (shown in green) has
slices with relatively lower deletion probabilities at the top.

B.3 S3T TRAINING PROCEDURE

In this section, we provide an outline for the training procedure within the S3T framework in
Algorithm 3. ST proceeds by dividing the entire dataset into 1 shards. Each shard is further divided
into L disjoint slices. Based on the budget B, we obtain the permutation sequences to perform
slice-wise training. We train each model f on a unique sequence of slice sequence, 7(S). We return
the complete set of models, F. During inference, the user selects the best performing model within
each shard and deploys an ensemble of those models to production.

B.4 DELETION PROCEDURE

In this section, we describe the procedure when a deletion request arrives for an instance x in
Algorithm 4. We first locate the shard ID, m’, where the instance x belonged and iterate over all
models trained on that shard. For each of these models, we locate the slice ID, I/, of x and deactivate
all layers {l’, ..., L} (as shown in Line 7). After that, if the model f is still active, we add it to the
set of modified models, 7. S>T uses the updated set to perform inference till a new deletion request
arrives. Note that the deletion process can occur entirely offline without impacting the production
system, provided that the deleted instance does not influence any of the ensemble models.

Overall Workflow. So far, we have discussed the sequential training procedure and the sequence
selection approach within a budget. Here, we will bring all of the components together and illustrate
the functioning of S*T using a simple example. We consider a setting with m = 3 shards, L = 4
slices, and budget B = 4. Initially, for every shard, the available models are trained on sequences:

(1,2,3,4),(4,1,2,3),(3,4,1,2), (2,3,4,1)
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Next, if a deletion request affects slice 1 for the 3" shard. Then, the available models for the 3™ shard
are: (4),(3,4),(2,3,4). Notice how all the PEFT layers at or below slice 1 have been switched off.
In this scenario, S*T doesn’t perform any retraining but continues to function with the best available
model (2, 3,4) (as it is trained on maximum slices). If the following deletion requests affect slice 2,
then the available models are: (4), (3,4). S’T continues to function with the best model (3, 4). This
continues until no models are available in any shard, at which point S*T is retrained from scratch.

20



Under review as a conference paper at ICLR 2025

Table 1: We report the hyperparameters used in our experiments for fine-tuning S*T across different
benchmarks and Transformer model variants.
# SLICES # LAYERS/ LORA LORA LEARNING

DATASET MODEL (L) SLICE RANK (’I‘) (a) RATE EpoCHS
GLUE Benchmark

SST-2 RoOBERTa; pArGE 7 3 16 32 10° 10
COLA RoBERTa; aArGE 7 2 8 16 4.1074 30
STS-B RoBERTa; ArGE 7 3 16 32 104 30
QNLI RoBERTa; aARGE 7 3 8 16 5.107° 30
QQP RoBERT2; arGE 7 3 16 32 5.107° 30
MRPC RoBERTa; aArGE 7 3 16 32 5.107° 30
MNLI RoBERTay srGE 7 3 16 32 10~4 30
SuperGLUE Benchmark

RTE RoBERTay srGE 8 4 16 32 107° 30
WIC RoBERTa; arGE 12 2 16 32 104 30
CB RoOBERTa; pArGE 12 2 16 32 10~ 30
COPA RoBERTa; arGE 12 2 32 64 107 30
BoolQ RoBERTa; ArGE 7 3 16 32 104 30
MultiRC RoBERTa; aARGE 7 3 16 32 1074 30
Vision Benchmark

CIFAR-10 ViTgase 6 2 16 32 2.1073 15
CIFAR-100 ViTgasg 6 2 16 32 2.1073 15
TinyImagenet ViTiARGE 6 4 16 32 2.1073 15
Instruction Tuning

Alpaca Llama2-7B 4 8 32 64 2.107° 3
Alpaca Llama2-13B 4 10 32 64 2.107° 3
Alpaca Llama3-8B 4 8 32 64 2,105 3

C EXPERIMENTS

In this section, we describe our experimental setup and present additional analysis experiments to
evaluate the functioning of S3T.

C.1 EXPERIMENTAL SETUP

We perform all experiments using PyTorch (Paszke et al., 2019) and Huggingface (Wolf et al., 2019)
framework. Our experiments were run on NVIDIA A6000 GPUs. In Table 1, we report the common
set of hyperparameters for S3T fine-tuning experiments. All hyperparameters were set using a grid
search with the Weights & Biases framework. We use an AdamW optimizer with the corresponding
learning rates for each dataset (reported in Table 1). During fine-tuning of the models, we perform
full-precision training for all settings except instruction tuning where we use 8-bit training.

C.2 DESIGN CHOICES

We discuss the rationale behind the design choices for the proposed slice-wise training approach.
First, we use top-to-bottom fine-tuning because we found the top layers were easier to train at the
start and a bottom-up approach didn’t converge. Note that our training process does not need to
proceed in a layer-wise fashion, we can even train multiple LoRA layers per slice. Second, we train
layers in a cumulative manner where the i-th layer is trained using slices {1, .. .,7}. We found that
this way of training helps in better convergence compared to the setup where we train every layer
using a different slice. Third, we analyze the cost of slice-wise training and find it to be comparable
to full training. Considering that training cost is ¢ = O(nl), where n is the dataset size and [ is the
number of trainable layers (empirical evidence in Appendix C.3). For slice-wise training, we observe

thatc = 3% (22)(L) = O (), which is of the same order as full training.
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Figure 10: Relative performance drop with an increasing number of deleted slices. We observe a
relatively small performance drop for image classification and instruction tuning tasks, while noticing
a considerable drop for few of the text classification datasets.
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Figure 11: Performance impact of ST when allocated a different number of layers per slice: We
observe that simply increasing the number of slices can lead to a significant performance drop. There
is an optimal tradeoff between the total number of slices and the number of layers per slice.

C.3 ADDITIONAL EXPERIMENTS

In this section, we report analysis experiments to evaluate the S3T’s deletion capabilities and training.

Performance Degradation with Slice Deletion. In Figure 10, we report the relative performance
drop with an increasing number of slices affected by deletion requests. For vision datasets in
Figure 10 (left), we only observe a small drop in performance (<5%). For instruction tuning in
Figure 10 (middle), we observe a negligible performance drop for most datasets except MMLU &
ARC, which are more challenging open-ended QA benchmarks. For text classification in Figure 10
(right), we observe an increased drop in performance for a few of the datasets. We hypothesize
that this occurs because the ROBERTa argg (used in text classification tasks) is a relatively weaker
pre-trained model compared to Llama and ViT, which may explain this behavior. We also observe
that the performance can vary based on the task and overall it is dependent on both the task and the
model being fine-tuned. For unlearning, a lower performance drop is better as it suggests that we can
continue using the same model without retraining for a longer time.

Layer Allocation per Slice. This experiment aims to answer the question: how many slices can we
pack into a model while still achieving good performance? We conduct an experiment where we
allocate different numbers of PEFT layers per slice and also vary the number of slices. We report the
results on RTE dataset using ROBERTay argg in Figure 11. We observe that the performance is poor
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Figure 13: (Left) Comparison of sequential training with S*T using a PEFT model. We observe
that S*T’s performance gradually improves as it is trained on a larger number of slices, ultimately
achieving similar performance to sequential training while being more efficient.

when the number of layers per slice is low. For example, when the number of layers per slice = 1, the
performance improves as we increase the number of slices but again drops when the slice count is too
high. This shows that it may not be feasible to train the model using a large number of slices without
a drop in performance. Overall, the performance variation depends on the underlying task and model,
so the developer should select these hyperparameters based on their performance requirements.

Sequence-based Training. In this experiment, we compare S*T’s performance with sequential
training. Sequential training involves training the entire PEFT model on a sequence of slices. This
was used in (Kumar et al., 2023) to improve the retraining efficiency of SISA. In Figure 13, we report
the performance of ST and sequential training using ViTgasg on CIFAR-10 and CIFAR-100 datasets.
We observe that the performance of S3T gradually increases as it is trained on more slices. Overall,
we observe that S3T achieves quite similar or outperforms sequential training. It is important to
note that ST trains a significantly smaller number of parameters (L times reduction compared to
sequential training) but still achieves competitive performance.

BMS vs. Cyclic rotation with Deletion prior. In

this setting, we compare the BMS selection algorithm 250
with a variant of cyclic rotation when the prior deletion
probabilities are available. We perform cyclic rota- 2001
tion by first sorting the slices based on their deletion
probabilities. For example, we sort the sequence with
deletion probabilities: (S1: 0.5, So: 0.4, S3: 0.1) as: 1001
(S3,S2,57). Then, for a budget B = 3, the stored se-
quences are: (S3, 52, 51), (51, 53, 52), (52,51, 53). In 501
this variant, the slices most likely to be deleted are not
at the top of any sequences. We follow the experimen-
tal setup and sample deletion priors using a Dirichlet
distribution (over 10 runs). In Figure 12, we report the
total sequence scores (Eq. 24) obtained by BMS and
sorted cyclic rotation for a budget, B = L. We observe
that BMS consistently outperforms sorted cyclic rota-
tion for all budgets. Please note that the average edit
distance achieved by both methods are the same as cyclic rotations are guaranteed to produce the
maximum diversity for budgets: B < L.

— BMS
—— Sorted Cyclic Rotation

10 20 30 40 50 60
Slice count
Figure 12: We compare the scores (Eq. 24)
of the generated sequences by BMS and
sorted cyclic rotation. We observe BMS
consistently outperforms cyclic rotation.

Training Time. In this experiment, we evaluate the training time with a varying number of PEFT
layers. In Figure 13 (right), we report the average training time over a constant number of steps using
RoBERTa; srge model. We observe that training time linearly increases as an increased number of
LoRA layers are trained. This shows the effectiveness of our proposed S*T framework, which only
trains a small number of PEFT layers at each training stage.

Storage Costs. In this experiment, we evaluate how the storage cost of S*T grows with an increasing
budget and its effect on the overall deletion rate. In Table 2, we report the storage costs and deletion
rate of training ViTpargg model with m = 5 shards and L = 6 slices per shard. We observe that the
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Table 2: Storage cost of S*T under different training budgets. We show how the deletion rate increases
with an increased storage cost. The overall storage cost of PEFT layers is minimal and is equivalent
to storing an additional model.

Budget Model (GB) PEFT (GB) Del. Rate

B=1 1.2 0.21 66.4
B=2 1.2 0.42 86.9
B=3 1.2 0.63 100.8
B=4 1.2 0.84 107.8
B=5 1.2 1.05 110.1
B=6 1.2 1.26 124.1
1200 S°TBound  ——- SISABound » 2000{ —— 3T (Budget = 8) 10007 557 (Budget = 8)
N 1750/ = S°T (Budget = 16) —— ST (Budget = 16)
1000 H —— S3T (Budget = 24) 8001 —— S3T (Budget = 24)
2 H e 1500) . 3T (Budget = 32) i —— 3T (Budget = 32)
T ¢ ® —— SISA H —— SISA
o e . e 1250 23)( H 600
s * 1000 V
B 600 § 750 400
[}
[a] 500
400 ’_i_‘ 1.6 250 200
| v 0
SISA S3T (B=8) S3T (B=32) 2 10 5 10 15 20 25 30

4 6
Number of Shards Number of Slices

Figure 14: We report the deletion rate of S*T and compare it with baselines. (Left) We compare the
deletion rates of S3T under varying budgets with SISA and observe significant gains. (Center) We
report the deletion rates with an increasing number of shards and (Right) an increasing number of
slices. In both scenarios, we observe that S*T’s deletion rate grows significantly faster than SISA.

Model MMLU HellaSwag PIQA Winogrande ARC-¢c ARC-e TruthfulQA OBQA

Llama2-7B 41304y  76.004y  79.1(10) 69.101.3) 46315 74.6(09) 39.01.4) 44222
Llama2—7B (FT) 43.3(044) 77.4(0,4) 79.9(049) 69.6(]43) 50.4(] .5) 74.7(0.9) 46.3(1.6) 46.8(2,2)
Llama2-7B (SgT) 43.6(()_4) 77.7(()_4) 79.7(()_9) 70.5( 1.3) 51.4( 1.5) 74. 1(()_9) 43 .0(1 5) 46.4(2_2)

Llama2-13B 50.5(()_4) 79.4(()_4) 80.5(()_()) 72.2(]_3) 49.0(]_5) 77.5([)_9) 36.9(1_4) 45.2(12)
Llama2-13B (FT) 51-8(()_4) 81.3(0_4) 82.0(0_9) 72.2(1_3) 55.0(1_5) 79.3(0_8) 38.8(1,5) 46.6(2_2)
Llama2-13B (S3T) 51.6(()_4) 80.9(0_4) 81.8(0_9) 72.8(1_3) 54.5(1_5) 80.6(()_8) 39.6(1.5) 46.2(22)

Llama3-8B 62.2(()'4) 79.1(0_4) 80.6(()'9) 73.6(1'2) 53.2(1_5) 77.6((;,\)) 43.9“‘4) 45‘0(2,2)
Llama3-8B (FT) 59.2(()_4) 80.8(()_4) 80.9(()_9) 72.2( 1.3) 59.0( 1.4) 79.6(0_3) 46.6(1 .6) 46.8(2_2)
Llama3-8B (S3T) 59.6(()‘4) 80.2(0.4) 82.4(09) 73.8( 1.2) 57 .0( 1.5) 80.5(0.8) 48.5( 1.6) 47.0(2‘2)

Table 3: Performance comparison of LLMs before and after instruction tuning using Alpaca dataset. We report
the performance of Llama2-7B, Llama2-13B, and Llama3-8B models for the following settings: pre-trained
model, full training (FT), and slice-wise training (S’T). We observe ST achieves comparable performance to
FT, even outperforming FT’s performance in several datasets.

storage cost of PEFT layers (with LoRA rank=16) is considerably less compared to the full model
size. As the budget and storage cost increases there is an improvement in the deletion rate. However,
the rate of improvement of the deletion rate slows down with an increased budget, indicating there is
a lesser return on increasing the budget.

Deletion Ablations. We evaluate the deletion capabilities of S*T and compare with the theoretical
bounds. In Figure 14 (left), we report the deletion rate of S*T and SISA for the setup (with m = 5
shards, L = 32 slices). We observe that with a small budget B = 8, S3T can achieve 1.6x gains in
the number of deletion requests handled. We also plot the theoretical bounds derived in Section 3.4
and show that they hold in practice.

In Figure 14 (center & right), we report the model performance with varying shard and slice counts.
As expected, we observe that both increasing the shards and slicing the data more helps in improving
the deletion performance. However, the rate of growth in deletion rate is more significant for S3T
resulting in up to 2.3x and 3x gains over SISA for the same number of shards and slices respectively.
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Figure 15: We compare the deletion time as the number of deletion requests increases. ST requires
the lowest deletion time compared to SISA and full re-training.

Deletion Time. Unlearning in S3T is cost-effective; it primarily involves selecting the best checkpoint
and swapping with the current one. The main cost is incurred when a large number of deletion
requests necessitate re-training of the system from scratch. In Figure 15, we report the total deletion
time as the number of deletion requests increases. In this experiment, we compare the deletion time
of ST with SISA and full re-training on CIFAR10 dataset. Full re-training retrains the model after
each deletion request. For SISA and ST, the step jumps indicate that the system requires retraining.
Overall, S3T achieves the lowest deletion time. ST reduces the total deletion time (after 1000
requests) by 2.8x compared to SISA and 25x compared to full retraining. This experiment shows the
efficacy of S*T in reducing the overall deletion time during exact unlearning.

D LIMITATIONS

In this paper, we present a novel exact unlearning framework, S*T. S*T improves the deletion rate
of existing unlearning systems at the cost of additional offline training. The training process can
be time-consuming if we are fine-tuning larger models and have a higher performance requirement
(thereby high budget B). However, this is an inherent tradeoff between offline training and losing
revenue due to re-training costs. The developer should adjust their budget according to the tradeoff in
their specific application.

E BROADER IMPACT

We present a scalable approach to perform exact unlearning in production systems. We hope that

this framework will be adopted by organizations and enable a cost-effective way to ensure the
privacy requests of various users. In general, unlearning systems are susceptible to attacks where
the adversary may design deletion requests in a way to modify the model behaviour according to
their needs. Therefore, it is important to ensure that the deletion requests executed on the unlearning
system are not malicious. However, this is a limitation of unlearning systems in general and not
specific to our proposed framework, S3T. Future works can focus on the identification of malicious
unlearning requests.
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