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Abstract

With the rapid advancement of generative models, the realism of
Al-generated images has significantly improved, posing critical chal-
lenges for verifying digital content authenticity. Current deepfake
detection methods often depend on datasets with limited generation
models and content diversity that fail to keep pace with the evolv-
ing complexity and increasing realism of the Al-generated content.
Large multimodal models (LMMs), widely adopted in various vision
tasks, have demonstrated strong zero-shot capabilities, yet their po-
tential in deepfake detection remains largely unexplored. To bridge
this gap, we present DFBench, a large-scale DeepFake Benchmark
featuring (i) broad diversity, including 540,000 images across real,
Al-edited, and Al-generated content, (ii) latest model, the fake
images are generated by 12 state-of-the-art generation models, and
(iii) bidirectional benchmarking and evaluating for both the
detection accuracy of deepfake detectors and the evasion capability
of generative models. Based on DFBench, we propose MoA-DF,
Mixture of Agents for DeepFake detection, leveraging a combined
probability strategy from multiple LMMs. MoA-DF achieves state-
of-the-art performance, further proving the effectiveness of leverag-
ing LMMs for deepfake detection. Database and codes are publicly
available at https://github.com/IntMeGroup/DFBench.
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1 Introduction

The rapid advancement of generative models [2, 8, 14, 28, 31, 49, 57,
63] has significantly improved the ability to generate highly realistic
images. However, these advancements raise serious concerns of the
generated images regarding misinformation, social manipulation,
and erosion of public trust. These concerns have driven the devel-
opment of deepfake detection models [4, 7, 15, 16, 26, 36, 40, 47].
These models are typically trained on datasets containing real and
fake images [5, 17, 44, 46, 60], with the goal of distinguishing be-
tween real and fake content. Thus, the generalization ability of
these deepfake image detection models remains questionable.
Existing deepfake detection datasets and benchmarks [11, 17, 46,
54, 56] exhibit several critical limitations: (1) Limited generative
models: most datasets [5, 17, 44, 46, 60] rely on a small number
of generative methods. Moreover, many of the generative mod-
els [6, 13, 19, 27, 39] used in earlier datasets are now outdated, often
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Figure 1: We present the DFBench, a large dataset for benchmarking deepfake image detection capabilities. (a) 45K real and 15K
Al-edited images are collected from 8 sources. (b) 480K fake images are generated using 12 state-of-the-art generation models
based on 40K prompts from Flickr8k. (c) The database enables evaluation for both detection models and generation models.

Table 1: An overview of fake image detection datasets.

Dataset Image AT Generation Cate%org Public Database Al Fake Total
Content ully eneration artia iting  Avalibility Real Sources Models Images Images
UADFV [60] Face 4 X X Real face 1 252 493

FakeSpotter [54] Face v v X CelebA, FFHQ 5,000 11,000
DFFD [11] Face v X v CelebA, FFHQ, FaceForensics++ 4 240,336 299,039
DeepFakeFace [46] Face v X v IMDB-WIKI 3 90,000 120,000
APFDD [17] Face v X X CelebA 1 5,000 10,000
DeepArt [56] Art v X v LAION-5B 5 73,411 137,890
IEEE VIP Cup [50] General v X X FFHQ, Imagenet, COCO, LSUN 5 7,000 14,000
DE-FAKE [44] General v X X MSCOCO, Flickr30k 2 60,000 80,000
CiFAKE [5] General v X v CIFAR 1 60,000 120,000
SID-Set [25] General v v v COCO, Flickr30k, MagicBrush 1 200,000 300,000
DFBench (Ours)  General v 4 v 8 Datasets 12 495,000 540,000

producing images with visible distortions, unnatural textures, or
structural inconsistencies [51, 52, 52, 59]. (2) Limited content di-
versity: existing datasets for deepfake detection focus mainly on
facial imagery [11, 17, 46, 54, 60], overlooking the growing threat
of non-facial manipulations. In addition, most datasets include ei-
ther fully real or fully fake images [44, 50, 56], lacking examples of
partially Al-edited content where only specific regions are manipu-
lated [1, 10, 43]. Furthermore, the real images in current datasets
are often clean and undistorted [34, 41], making detection easier.
(3) Limited evaluation scope: Large multimodal models (LMMs)
have demonstrated strong zero-shot capabilities in vision tasks, yet
their potential in deepfake detection remains largely unexplored.
DFBench is specifically designed to overcome the key limitations
of existing datasets. (1) To improve generative diversity, fake im-
ages are generated using 12 state-of-the-art models, covering a
wide range of generation contents. (2) DFBench enhances content
diversity by including partially manipulated images where only
specific regions are edited and real images with natural distortions
(e.g., blur, compression) to better reflect real-world scenarios. (3) DF-
Bench adopts a bidirectional evaluation protocol that assesses
both the detection ability of conventional detectors and LMMs, and
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the evasion ability of generative models in fooling these detectors.
As shown in Figure 1, DFBench includes highly deceptive examples
that challenge deepfake detection models. Table 1 further highlights
its advantages in scale, diversity, and evaluation design compared
to existing benchmarks. Based on DFBench, we propose MoA-DF,
Mixture of Agents for DeepFake detection, leveraging a combined
probability strategy from multiple LMMs and achieves state- of-the-
art performance, proving the effectiveness of LMMs in deepfake
detection tasks. In summary, our main contributions are:

e We introduce DFBench, a large-scale and diverse bench-
mark, featuring the largest scale of fake images generated
by 12 state-of-the-art generative models, and rich content
including Al-edited images and real-world image distortions
(e.g., blur, noise, compression, color distortions).

e We present a bidirectional evaluation protocol that bench-
marks both the detection accuracy of deepfake detectors
and the evasion capability of generative models.

e We propose MoA-DF, a novel mixture of agents method that
combines the probabilistic outputs of LMMs to achieve more
robust and accurate deepfake detection.
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Figure 2: Visualization of images on the DFBench dataset.
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Figure 3: Feature distribution of the DFBench. (a) Feature distribution of real images with no distortion. (b) Feature distribution
of real images with distortions. (c) Feature distribution of Al-edited images. (d) Feature distribution of Al-generated images.

i Input m Model Pool i Loka, CLIVE [18], KonIQ-lOk [2.3], and Flickr8k [21]. Except for Flickr8k,
- <image> #& W InternvL | | 1 i all other datasets include images affected by various forms of degra-
Is this a real image, InternVL25 | | .A . dation that simulate real-world image quality impairments, includ-
apartially AI-edited b In:ernVL il .loigltsA Wlogitss ing compression artifacts, blur, noise, color distortions, and etc.
'r;‘;?‘:‘ Z:: dfil:rl\lglg:,"}- InternVL3 | The Al-edited images are from EPAIQA-15K [43]. To construct a
T @naEr wit AV ' pY Py xN y diverse and challenging set of fake images, we utilize 12 statef:fof-the-
[Aired |[ B ¥ art open-source image generation models, including 10 diffusion-
A r‘: ::B P\=Sum (p)) Py Slﬂt}n]( p‘%) based models: PixArt-sigma [8], Playground [31], Kolors [49], SD3.5-
s Large [14], SD3-Medium [14], LaVi-Bridge [63], Kandinsky-3 [2],
Figure 4: Overview of the MoA-DF architecture. Three LMMs Flux-schnell [28], Flux-dev [28], Janus [57], and two AR-based mod-
are chosen as core detectors. Each model independently pro- els: NOVA [12] and Infinity [20]. To maintain fairness, all generative
duces log-probabilities of the input image corresponding to models are employed using their official default weights without
A (real) or B (fake). The final decision is made based on the further adaptation or tuning. Using 40K prompts from Flickr8k [21],
aggregation of these probabilities across all models. we generated a total of 480K images (12 models x 40,000 images).
2 RELATED WORK ]t::ach of the 12 mf)dels is prc?vided with the same set of prompts
rom real-world image captions, as shown in Figure 2. Notably,
A variety of datasets have been developed to advance deepfake models such as SD3.5-Large [14] and Flux-dev [28] are capable of
image detection. Early datasets like UADFV [60], FakeSpotter [54], producing highly detailed outputs that even surpass the real source
and DFFD [11] focused mainly on facial forgeries, but are limited images, posing substantial challenges to deepfake detection models.
in both scale and diversity. Later works such as DeepFakeFace [46] .
and APFDD [17] remained face-centric, while DeepArt [56] and DE- 3.2 Database Analysm
FAKE [44] explored artistic or caption-driven generation. Datasets As illustrated in Figure 3, we analyze the feature distribution of real
like CiFAKE [5] and IEEE VIP Cup [50] attempt broader coverage distortion-free, real distorted, Al-edited, and Al-generated images
but often rely on low-resolution images or limited models. SID- in the DFBench across four image quality-related features, including
Set [25] introduces partial edits but uses only a single generation colorfulness, brightness, contrast, and spatial information (SI). It
model and is still limited in scale. Our dataset DFBench stands out can be observed that distorted real images generally exhibit lower
by its largest scale and broad diversity, including real, Al-edited, colorfulness and higher SI values compared to distortion-free real
and fully generated images constructed from 8 sources. images, likely due to the presence of noise, blur, or compression
3 Database Construction artifacts. Al-generated images exhibit the highest SI, reflecting

their rich spatial detail. Al-edited images exhibit feature values

3.1 Image Collection and Generation between real and synthetic content, due to their mixed authentic

To ensure content diversity and realism, DFBench incorporates and manipulated content. The broad range of feature distributions
real images from seven well-known public natural image datasets, establishes DFBench as a comprehensive benchmark for evaluating
including LIVE [45], CSIQ [29], TID2013 [42], KADID-10k [33], deepfake detection under realistic and challenging conditions.
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Table 2: Performance benchmark on real image subsets. VConventional deepfake detection models, % open-source and Aclose-
source LMMs. ¢* refers to finetuned models. Best and second-best zero-shot results. Best and second-best finetuned results.

Methods / Datasets LIVE [45] | CSIQ [29] | TID2013 [42] | KADID [33] | CLIVE [18] | KonIQ-10k [23] | Flickr8k [21] | Overall
OCnnSpott [16] 99.80% 96.89% 99.37% 99.83% 99.74% 99.72% 99.65% 99.29%
QAntifakePrompt [7] 81.36% 70.44% 93.23% 93.02% 68.52% 81.82% 89.17% 82.51%
©Gram-Net [36] 86.97% 75.78% 93.30% 83.40% 86.83% 85.21% 84.29% 85.11%
QUnivFD [40] 91.24% 86.22% 92.43% 91.79% 99.66% 98.38% 99.83% 94.22%
OLGrad [47] 82.89% 54.22% 99.53% 70.14% 72.88% 77.14% 45.83% 71.81%
" % Llava-one-vision (0.5B) [30] ~ ~ ~ | 99.80% | 98.44% | ~ 100.0% | ~98.23% | ~100.0% | 99.88% | 99.96% | 99.47%
% DeepSeekVL (7B) [37] 88.90% 87.11% 79.43% 83.95% 96.82% 97.83% 99.68% 90.53%
% LLaVA-1.5 (7B) [35] 93.38% 96.33% 91.30% 95.72% 100.0% 99.28% 100.0% 96.57%
% Llava-one-vision (7B) [30] 79.53% 76.33% 74.43% 77.47% 99.40% 98.52% 99.91% 86.51%
% mPLUG-OwI3 (7B) [61] 75.76% 76.44% 65.41% 65.32% 97.59% 96.17% 99.73% 82.35%
% Qwen2.5-VL (7B) [3] 77.70% 76.44% 72.00% 74.89% 96.39% 96.20% 99.23% 84.69%
% CogAgent (18B) [22] 81.98% 91.11% 77.83% 84.41% 99.40% 98.67% 99.86% 90.47%
% InternVL2.5 (8B) [9] 78.21% 80.67% 75.67% 70.96% 95.78% 94.14% 99.69% 85.02%
% InternVL3 (9B) [55] 72.40% 73.89% 63.83% 60.77% 94.23% 92.80% 99.62% 79.65%
% InternLM-XComposer2.5 (7B) [62] 90.43% 93.89% 89.60% 92.81% 99.83% 99.33% 100.0% 96.05%
% LLaVA-NeXT (8B) [32] 74.85% 73.22% 68.13% 75.81% 90.71% 84.94% 98.16% 80.83%
% Llama3.2-Vision (11B) [38] 53.56% 49.78% 50.52% 45.65% 66.67% 59.35% 68.39% 56.27%
% Qwen2-VL (72B) [53] 77.60% 76.80% 73.20% 89.60% 95.40% 48.43% 97.20% 86.40%
% Qwen2.5-VL (72B) [3] 79.23% 71.80% 71.60% 90.60% 96.80% 48.35% 98.40% 86.43%
% Llava-one-vision (72B) [30] 77.49% 74.20% 70.60% 92.75% 99.20% 48.32% 99.60% 87.35%
% InternVL2.5 (78B) [9] 67.82% 68.60% 64.40% 84.00% 94.00% 47.19% 95.60% 80.17%
% InternVL3 (78B) [55] 69.25% 96.00% 64.60% 86.00% 96.00% 92.60% 97.80% 86.04%
" AGeminil.5-pro [48] ~ ~ ~ T T T ] 97.45% | "97.00% | ~ 91.96% |~ 9170% | ~100.0% |~ 99.60% | 100.0% ~ | 96.82%
AGrok2 Vision [58] 76.48% 74.67% 63.27% 67.22% 76.48% 94.31% 98.28% 78.67%
" Model Average (Zero-shot) | 81.42% | 7985% | 7857% | 81.92% | 92.60% | 79.14% | 9458% | 84.91%
#LGrad” [47] 56.52% 53.33% 99.00% 97.85% 68.24% 92.53% 81.94% 78.49%
#InternVL2.5* (8B) [9] 91.30% 99.45% 99.83% 99.85% 95.34% 99.86% 99.20% 97.83%
#InternVL3* (9B) [55] 83.33% 98.91% 99.02% 99.81% 96.17% 99.38% 99.94% 96.65%
#Qwen2.5-VL* (7B) [3] 52.17% 98.33% 100.0% 99.17% 90.56% 98.84% 92.16% 90.18%
#MoA-DF (Ours) 90.91% 100.0% 100.0% 99.90% 98.30% 99.91% 99.82% 98.41%

Table 3: Performance benchmark on Al-edit subsets, including real source and four editing types. ¢” refers to finetuned models.

Dimension Object Enhance | Object Operation | Semantic Change | Style Change Real Source Overall
Methods / Metrics [ Acc(%)T ~ FI1" T Acc(%)T ~ ~ F1T ~ T Acc(%)T ~— ~ F1T ~ T Acc(%)T ~ FI1~ [[Acc(%)T ~ FI1T 7| Acc(%)1~ "FIT
©CnnSpott [16] 0.661 0.013 0.861 0.017 1.131 0.022 1.184 0.023 99.90 0.629 50.43 0.324
QAntifakePrompt [7] 43.64 0.479 40.15 0.443 24.14 0.339 25.36 0.340 65.32 0.531 49.32 0.465
©Gram-Net [36] 10.66 0.176 11.29 0.185 9.641 0.164 9.389 0.161 89.28 0.603 49.76 0.387
QUnivFD [40] 5.372 0.101 9.103 0.166 12.52 0.220 14.02 0.243 98.54 0.646 54.39 0.414
OLGrad [47] 52.07 0.577 59.15 0.627 63.36 0.729 63.98 0.708 76.06 0.679 67.85 0.670

" % Llava-one-vision (0.5B) [30] ~ ~ ~ | "0.820° ~ 0.016 | 0.983" = 0.019 | 2439 ~ 0048 | 1611 ~ 0.032 | 99.80 0627 | 50.63 0328
% DeepSeekVL (7B) [37] 1.983 0.037 3.509 0.065 6.507 0.119 7.560 0.136 95.85 0.621 50.37 0.355
% LLaVA-1.5 (7B) [35] 0.909 0.018 1.225 0.024 2.856 0.055 3.484 0.067 99.45 0.630 50.78 0.335
% Llava-one-vision (7B) [30] 4.711 0.087 6.620 0.121 13.97 0.241 16.77 0.281 96.97 0.640 53.74 0.411
% mPLUG-OwI3 (7B) [61] 5.207 0.092 6.819 0.120 14.96 0.247 17.39 0.280 91.69 0.619 51.39 0.402
* Qwen2.5-VL (7B) [3] 18.10 0.291 21.28 0.334 35.15 0.500 38.04 0.527 92.16 0.651 60.15 0.532
* CogAgent (18B) [22] 6.116 0.112 9.864 0.176 19.62 0.324 21.60 0.349 97.23 0.651 55.77 0.446
% InternVL2.5 (8B) [9] 10.80 0.182 12.62 0.212 20.47 0.324 21.34 0.335 91.49 0.611 53.90 0.437
% InternVL3 (9B) [55] 14.07 0.229 15.87 0.255 23.58 0.361 24.93 0.376 89.43 0.606 54.52 0.456
% InternLM-XComposer2.5 (7B) [62] 0.530 0.010 0.572 0.011 1.047 0.020 1.499 0.029 97.86 0.626 49.39 0.322
% LLaVA-NeXT (8B) [32] 34.05 0.433 36.31 0.469 43.53 0.546 43.80 0.545 77.96 0.624 58.69 0.561
% Llama3.2-Vision (11B) [38] 43.68 0.484 43.26 0.481 48.56 0.551 49.88 0.557 61.35 0.544 53.85 0.531
* Qwen2-VL (72B) [53] 8.683 0.143 15.97 0.249 24.63 0.364 27.89 0.402 91.20 0.724 55.25 0.507
* Qwen2.5-VL (72B) 3] 12.28 0.193 18.99 0.286 27.41 0.384 32.04 0.437 88.74 0.719 55.71 0.522
% Llava-one-vision (72B) [30] 8.982 0.150 14.84 0.241 26.95 0.395 31.64 0.454 92.99 0.736 56.80 0.523
% InternVL2.5 (78B) [9] 35.76 0.404 40.63 0.460 55.22 0.603 57.63 0.606 74.02 0.693 60.66 0.606
% InternVL3 (78B) [55] 20.06 0.276 28.68 0.386 38.89 0.494 42.04 0.523 84.48 0.719 58.45 0.569

" AGeminil.5-pro [48] ~ T T [ 13217~ 0.026 | 3257 ~ T0.063° | 4501 ~ 0086 | 6374 ~0.120 [ 9956 0.634 | 5171 = 0354

_sGroka Vision [s8] | . 4083 0533 | 4648 _ 0597 | 60.19 _ 0714 | 6222 0727 | 8899 0735 | 70.71 _0.689
Model Average (Zero-shot) 15.89 0.211 18.68 0.250 24.22 0.327 25.90 3441 89.18 0.646 55.18 0.464
#LGrad™ [47] 68.24 0.742 65.54 0.711 79.32 0.829 75.48 0.801 72.15 0.771 77.39 0.770
¢InternVL2.5* (8B) [9] 97.27 0.976 92.98 0.952 96.82 0.976 96.34 0.974 95.85 0.970 96.84 0.968
#InternVL3* (9B) [55] 92.16 0.934 85.92 0.896 96.30 0.965 93.88 0.950 92.06 0.936 93.46 0.934
#Qwen2.5-VL* (7B) [3] 81.57 0.847 85.12 0.879 93.62 0.931 93.00 0.928 88.33 0.896 89.08 0.891
#MoA-DF (Ours) 96.08 0.972 93.27 0.955 97.85 0.983 96.51 0.976 95.93 0.971 97.07 0.970

4 The MoA-DF Method

To leverage the strong zero-shot capabilities of LMMs for robust

and log p;(B) for model i, which are then normalized using softmax:

) _

elogpa

() _

elogpn

deepfake detection, we propose the MoA-DF, mixture of agents for Pa =S PR T oo o (1)
i i A elOgPA + elOgPB elOgPA + elOgPB
deepfake detection that integrates the knowledge of multiple state- ’
of-the-art LMMs. Specifically, we select Qwen2.5 (7B), InternVL2.5 We then aggregate the predictions from all N = 3 models:
(8B), and InternVL3 (9B) as the core detection agents. Each model N N
outputs log-probabilities of A (real) or B (fake), denoted as log p; (A) Py = Z p(i), Pp = Z pl(ai) )
i=1 i=1
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Table 4: Performance benchmark on Al-generated subsets. VDeepfake detection models, % open-source and Aclose-source

LMM:s. ¢* refers to finetuned models. Best and second-best zero-shot results. Best and second-best finetuned results.

Datasets Playground SD3.5_Large PixArt-Sigma Infinity Kandinsky-3 Flux_Schnell Kolors
Methods / Metrics [ Acc(®@)T ~ FI1 [ Acd®T  FIT | Acc#)]”  FIT | Acc@) ~ FIT~ [ Acc(®T ~ Fil | Acc%)] FIT | Acc®)] FIT
OCnnSpott [16] 0.000 0.000 0.363 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
©AntifakePrompt [7] 0.913 0.016 4.775 0.083 1.113 0.020 0.638 0.011 1.625 0.029 7.763 0.131 1.150 0.021
©Gram-Net [36] 1098  0.173 | 4.800 0.080 | 2213 0375 | 2425 0041 | 0113  0.001 | 0050  0.001 | 0.025  0.000
QUnivFD [40] 0.063 0.001 0.100 0.002 0.563 0.011 0.063 0.001 0.113 0.002 0.050 0.001 0.025 0.000
OLGrad [47] 70.54 0.626 70.73 0.627 35.89 0.376 89.94 0.735 87.74 0.724 67.29 0.606 5.088 0.064
" % Llava-one-vision (0.5B) [30] | 0.000 ~ 0.000 [ 0.000 0.000 | 0.000  0.000 | 0.000  0.000 | 0.000 ~ 0.000 | 0.000 0.000 | 0.000  0.000
% DeepSeekVL (7B) [37] 8513  0.156 | 0725 0014 | 1654  0.283 | 3.488 0067 | 1475 0256 | 1.525  0.030 | 5763  0.109
% LLaVA-1.5 (7B) [35] 2.038 0.040 0.113 0.002 3.375 0.065 1.875 0.037 13.21 0.233 0.438 0.009 1.413 0.028
% Llava-one-vision (7B) [30] 1288 0228 | 1.063  0.021 | 2415 0390 | 6.050 0.114 | 16.64 0285 | 4488  0.086 | 8.850  0.162
% mPLUG-Owl3 (7B) [61] 19.66 0.328 2.213 0.043 42.15 0.592 16.94 0.289 19.30 0.323 13.03 0.230 20.48 0.339
* Qwen2.5-VL (7B) [3] 54.94 0706 | 1546  0.266 | 66.60  0.796 | 27.44 0428 | 3459 0511 | 28.60 0442 | 4594  0.626
% CogAgent (18B) [22] 10.86 0.196 1.175 0.023 23.80 0.384 3.763 0.072 16.76 0.287 1.463 0.029 8.100 0.150
% InternVL2.5 (8B) [9] 40.13 0571 | 5013  0.095 | 4444 0614 | 1778 0301 | 27.70 0433 | 1330 0234 | 2039  0.338
% InternVL3 (9B) [55] 41.28 0.583 6.325 0.119 48.66 0.653 22.63 0.368 30.24 0.463 13.69 0.240 26.88 0.422
% InternLM-XComposer2.5 (7B) [62] | 15.69 ~ 0.294 | 1.150  0.023 | 1951 0327 | 4.025 0.077 | 1620 0279 | 1875 0037 | 8438  0.156
% LLaVA-NeXT (8B) [32] 30.16 0.457 4.738 0.089 35.21 0.514 10.00 0.179 23.79 0.379 4.550 0.086 18.78 0.311
% Llama3.2-Vision (11B) [38] 90.21 0.816 | 64.08 0.658 | 89.08 0812 | 91.29 0818 | 8150 0.765 | 81.95 0.768 | 83.64 0.79
* Qwen2-VL (72B) [53] 45.60 0.624 14.00 0.244 53.20 0.692 42.80 0.597 43.80 0.607 27.20 0.426 40.00 0.569
* Qwen2.5-VL (72B) [3] 86.60 0.920 | 19.60 0323 | 92.40 0953 | 7200 0.829 | 6460 0.777 | 5200 0.677 | 91.00 0.945
% Llava-one-vision (72B) [30] 33.40 0.499 4.200 0.080 48.60 0.652 25.80 0.409 26.80 0.421 18.80 0.315 22.00 0.359
s InternVL2.5 (78B) [9] 69.60  0.800 | 29.80 0444 | 87.40 0911 | 81.00 0.874 | 7480 0.835 | 5220  0.667 | 78.80  0.860
% InternVL3 (78B) [55] 41.28 0.583 6.235 0.119 48.66 0.653 22.63 0.368 30.24 0.463 13.69 0.240 26.88 0.422
" AGeminil.5-pro [48]  ~ T ]~ 9538  0.175 | 0.675 0.013 | 1739 0297 | 4.663 ~ 0.089 | 14.83 0258 | 1.250  0.025 | 6.800  0.128
AGrok2 Vision [58] 32.45 0.484 11.96 0.211 46.23 0.625 23.44 0.375 30.86 0.466 19.96 0.328 58.64 0.451
“ Model Average (Zero-shot) ~ ~ ~ | 30.30  0.387 | 1122 0.149 | 3530 0444 | 2378  0.295 | 27.92 0367 | 1810 0.240 | 2422 0304
#LGrad” [47] 98.69 0.904 98.11 0.901 95.75 0.889 99.88 0.910 100.0 0.911 98.25 0.902 98.19 0.902
#InternVL2.5* (8B) [9] 100.0 0.996 99.81 0.995 100.0 0.996 100.0 0.996 100.0 0.996 99.94 0.996 100.0 0.996
¢InternVL3* (9B) [55] 99.88  0.999 | 99.25 0996 | 99.81  0.999 | 99.88  0.999 | 99.94 0999 | 99.44 0997 | 100.0  1.000
#Qwen2.5-VL* (7B) [3] 100.0 0.962 99.94 0.961 100.0 0.962 100.0 0.962 100.0 0.962 100.0 0.962 100.0 0.962
#MoA-DF (Ours) 100.0 0.998 99.85 0.997 100.0 0.998 100.0 0.998 100.0 0.998 100.0 0.998 100.0 0.998
Datasets SD3_Medium Flux_dev NOVA LaVi-Bridge Janus Real Source Overall
Methods / Metrics [ Acc(@)T ~ FI1 [ Ac®)T ~ FIT | Accw)]  FIT | Acc@)} FII [ Acc(@)] ~ FI1~ [Acc(®T FIf | Ace®)]  FIf
©CnnSpott [16] 0.025 0.000 0.000 0.000 0.275 0.005 0.013 0.000 0.925 0.018 99.65 0.668 7.789 0.054
©AntifakePrompt [7] 4.588 0.079 5.713 0.098 0.963 0.017 0.013 0.000 0.863 0.015 89.17 0.625 9.176 0.088
©Gram-Net [36] 2.688 0.045 0.700 0.012 0.938 0.016 0.450 0.008 7.888 0.127 84.29 0.603 9.918 0.102
©UnivFD [40] 0.088  0.002 | 0.000 0.000 | 2638 0051 | 0313 0006 | 29.63 0456 | 99.83  0.675 | 10.27  0.093
©LGrad [47] 47.16 0467 | 8534 0711 | 2360 0265 | 8171 0693 | 2518 0.280 | 4583 0488 | 56.62  0.512
" % Llava-one-vision (0.5B) [30] | 0.000 ~ 0.000 [ 0.000 ~ 0.000 | 0.000 0.000 | 0.000  0.000 | 0.000 ~ 0.000 [ 0.000 0.000 | 0.000  0.000
% DeepSeekVL (7B) [37] 0.688 0.014 6.800 0.127 10.20 0.185 52.78 0.689 12.35 0.219 99.68 0.693 17.98 0.219
% LLaVA-1.5 (7B) [35] 0.125  0.002 | 4.025 0077 | 4050 0078 | 4288 0600 | 5450  0.103 | 100.0 0.684 | 13.77  0.151
% Llava-one-vision (7B) [30] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.225 0.004 99.96 0.669 7.707 0.052
% mPLUG-OwI13 (7B) [61] 2.763 0.054 14.09 0.246 31.16 0.474 84.59 0.915 36.76 0.537 99.73 0.729 30.99 0.392
* Qwen2.5-VL (7B) [3] 19.69 0327 | 33.08 0494 | 3235 0486 | 86.03 0921 | 2669 0419 | 9923 0766 | 43.89  0.553
% CogAgent (18B) [22] 1.100 0.022 7.163 0.134 26.84 0.423 69.61 0.820 47.55 0.644 99.86 0.711 24.47 0.300
s InternVL2.5 (8B) [9] 9.625  0.175 | 18.83 0316 | 18.94 0318 | 76.71  0.867 | 17.98 0304 | 99.69  0.730 | 3158  0.407
s InternVL3 (9B) [55] 9.288  0.169 | 17.85 0304 | 31.00 0472 | 8434 0913 | 2370 0382 | 99.62  0.740 | 3504  0.448
% InternLM-XComposer2.5 (7B) [62] 0.925 0.018 7.213 0.135 7.813 0.145 31.83 0.483 2.830 0.055 100.0 0.712 17.47 0.216
% LLaVA-NeXT (8B) [32] 5238  0.098 | 7.725 0.173 | 31.95 0478 | 87.09 0922 | 4746 0.636 | 98.16 0727 | 31.14  0.388
% Llama3.2-Vision (11B) [38] 71.14 0.702 | 90.80 0.816 | 66.60 0671 | 8560 0787 | 51.20  0.560 | 68.39 0726 | 78.11 0.746
% Qwen2-VL (72B) [53] 14.80 0.256 40.80 0.577 37.20 0.540 85.20 0.917 37.40 0.542 98.96 0.654 44.69 0.557
% Qwen2.5-VL (72B) [3] 3000 0456 | 76.60 0.860 | 71.80  0.828 | 98.00 0.982 | 2560 0403 | 9840  0.843 | 67.58  0.754
% Llava-one-vision (72B) [30] 6.000 0.113 13.60 0.239 37.60 0.545 89.00 0.940 49.20 0.658 99.60 0.742 36.51 0.459
% InternVL2.5 (78B) [9] 3840 0538 | 61.20 0.739 | 63.00 0.753 | 98.40 0.970 | 65.40 0.770 | 9560 0.835 | 68.89  0.769
s InternVL3 (78B) [55] 2500 0393 | 39.00 0552 | 51.80 0.673 | 93.80 0957 | 57.40 0719 | 97.80  0.860 | 55.98  0.666
" AGeminil.5-pro [48] | 0.600 ~ 0.012 | 7475 ~0.139 | 10.19 ~ 0.185 | 4538 ~ 0.624 | 50.19 ~ 0.669 | 100.0 0.7027| 20.69 ~ 0.255
AGrok2 Vision [58] 12.65 0.221 46.38 0.374 34.25 0.504 74.11 0.840 60.06 0.742 98.28 0.709 42.25 0.487
" Model Average (Zero-shot) = | 1264  0.174 | 2468 0303 | 2559 0351 | 5956  0.651 | 29.79 ~ 0.407 | 94.65 0.708 | 3272 0373
#LGrad” [47] 9631 0.892 | 99.69 0909 | 91.38  0.866 | 99.69  0.909 | 9563  0.889 | 81.94 0.890 | 9642  0.898
¢InternVL2.5* (8B) [9] 99.94 0996 | 100.0 0996 | 99.81  0.995 | 1000 0996 | 98.76  0.990 | 99.20  0.995 | 99.80  0.995
#InternVL3* (9B) [55] 99.88 0.999 99.88 0.999 99.83 0.999 100.0 1.000 99.31 0.996 99.94 0.999 99.77 0.998
#Qwen2.5-VL* (7B) [3] 100.0 0.962 100.0 0.962 99.81 0.961 100.0 0.962 100.0 0.962 92.16 0.959 99.38 0.962
#MoA-DF (Ours) 100.0 0.998 100.0 0.998 99.85 0.998 100.0 0.998 99.69 0.997 99.70 0.998 99.92 0.998
The final decision D is made: 5 Benchmark and Evaluation
N i We benchmark and evaluate the performance of various deepfake
A (Real), if Py > Pp 3) detection models across three subsets of DFBench: real, Al-edited,
B (Fake), otherwise and Al-generated images.

This ensemble strategy effectively leverages the diverse strengths

and perspectives of multiple large models by fusing their soft pre-
dictions. By combining probabilistic outputs, MoA-DF mitigates
individual model biases and uncertainties, resulting in enhanced

robustness and improved overall detection accuracy.

5.1 Experiment Setup

We evaluate the models’ ability to correctly classify real and fake
images using two standard metrics: accuracy (Acc) and F1-score.

Accuracy is defined as the proportion of correctly identified real or
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Figure 5: (a) Performance comparison of image generation models (b) Performance comparison of image detection models

fake images out of all relevant samples in the dataset, computed as:
- TPT+PFN @
TP (True Positives) denotes the number of real or fake images cor-
rectly identified by the model, while FN (False Negatives) represents
the number of images incorrectly classified as the opposite cate-
gory. To provide a balanced evaluation that considers both precision
and recall, we also calculate the F1-score, the harmonic mean of
precision and recall, defined as:

Acc

_ 2 X Precision X Recall

F1 ()

For conventional deepfake detection models, we directly utilize
publicly available pre-trained weights to conduct inference on the
test datasets. For large multimodal models, inference is performed
via a prompt-based question-answering approach. We fine-tune
three of the LMMs with LoRA [24] (r=8) and LGrad [47] using
the same training and testing split (4:1). We set the number of
finetuning epoch to 1 for LMMs and 50 for LGrad [47]. The models
are implemented with PyTorch and trained on a 40GB NVIDIA RTX
A6000 GPU with batch size of 4. The initial learning rate is set to
le-5 and decreased using the cosine annealing strategy.

Precision + Recall

5.2 Benchmark on Real Datasets

From the performance results presented in Table 2, it is evident
that most models exhibit strong zero-shot identification capabilities
on real image datasets. However, detection accuracy generally de-
clines on datasets containing various distortions, such as CSIQ [29]
and TID2013 [42], when compared to the distortion-free Flickr8k
dataset [21], indicating that image degradations such as noise, blur
or compression can impact model reliability and increase the chance
of misclassification. CnnSpott [16] and Llava-one-vision (0.5B) [30]
perform well on real images mainly because they tend to classify
most inputs as real, but may reduce robustness in fake detection.

5.3 Benchmark on Al-edit Datasets

We further evaluate the performance of different detection models
on Al-edit subsets. As shown in Table 3, the high performance of
CnnSpott [16] and Llava-one-vision (0.5B) [30] on real source im-
ages significantly drops on Al-edited images, resulting in relatively
lower F1 scores. The Al-edit datasets consist of four categories:
object enhancement, object operation, style change, and seman-
tic change, each posing different challenges for detection models.
Among these, models achieve the highest average accuracy on style
change and the lowest on the object enhancement category, which
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involves subtle modifications to the appearance of individual ob-
jects. These results suggest that subtle changes at the object level
are more difficult for detection models to identify compared to style
changes. Models show significant improvements after fine-tuning,
especially LMMs trained for 1 epoch outperform conventional best
network LGrad [47] trained for 50 epochs, highlighting the effec-
tiveness of LMMs in deepfake detection tasks.

5.4 Benchmark on Al-generation Datasets

From Table 4, we can observe that the detection accuracy on Al-
generated datasets is generally lower compared to real image datasets,
highlighting the remarkable realism achieved by current generative
models and their strong capability to evade detection. Traditional
deep learning-based detection models trained on specific deepfake
datasets show limited zero-shot generalization, reflecting their in-
sufficient scaling-up capacity to handle more advanced fakes. In
contrast, large multimodal models, despite lacking task-specific
training for real-fake discrimination, demonstrate relatively ro-
bust zero-shot detection performance. Among these, InternVL2.5
(78B) [9] achieves the best results, suggesting that larger parameter
scales contribute to better generalization capabilities. On the gen-
eration side, detection accuracy also serves as an indirect measure
of generative models’ evasion effectiveness. As shown in Figure 5,
SD3.5-Large [14] attains the lowest detection accuracy, indicating
its superior capacity for generating highly realistic images that ef-
fectively fool detectors, while LaVi-Bridge [63] exhibits the poorest
evasion performance.

6 CONCLUSION

In this paper, we introduce DFBench, a comprehensive benchmark
designed to advance deepfake image detection. DFBench features
the largest scale of fake images generated by 12 state-of-the-art
generative models, and rich content spanning Al-edited images
and real-world image distortions. we introduce a bidirectional eval-
uation protocol that assesses both the detection performance of
deepfake models and the evasion strength of generative models. Ad-
ditionally, we propose MoA-DF, a novel mixture of agents method
that integrates LMMs within a unified probabilistic framework,
achieving state-of-the-art performance and demonstrating the ef-
fectiveness of LMMs for deepfake detection. Through extensive
experiments, we demonstrate the increasing realism of generative
models and the limited generality of current detection methods.
LMMs manifest strong zero-shot generalization ability, highlight-
ing their potential as a promising foundation for developing more
robust and generalizable deepfake detection systems.
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