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ABSTRACT

Long-context language models unlock advanced capabilities in reasoning, code
generation, and document summarization by leveraging dependencies across ex-
tended spans of text. However, much readily available long-text data does not
genuinely require extended context, as most spans can be predicted with only
short-range context while only a small fraction truly depends on long-distance de-
pendencies, making it important to identify and select training data with stronger
long-context dependencies. Therefore, we introduce LongFilter, a framework for
curating training data tailored to long-context pretraining. LongFilter measures
the information gain provided by extended context by contrasting model predic-
tions under long-context versus short-context settings, thereby identifying samples
where long-range dependencies are essential. Experiments with LLaMA-3-8B,
extending its context length from 8K to 64K, show that LongFilter efficiently se-
lects high-quality data and yields substantial improvements on benchmarks such
as HELMET, LongBench, and RULER. Moreover, our analyses further confirm
that different types of text segments vary in their reliance on extended context,
highlighting which data truly benefits from long-context modeling.

1 INTRODUCTION

Modern large language models have shown remarkable capabilities when processing short spans of
text, but many real-world tasks, such as reasoning across documents, generating long codebases, or
summarizing entire chapters—require understanding and integrating information over much longer
contexts. To enable these capabilities, models are typically first trained on standard short-context
corpora and then further pre-trained on long-context data, which activates their long-context rea-
soning abilities. Recent techniques, including modifications to RoPE (Su et al., 2024) and attention
interpolation (Peng et al., 2023; Ding et al., 2024), can accelerate this process and reduce overall
training costs.

While existing methods improve long-context pretraining efficiency, the quality of long-context
training data remains a critical factor for unlocking a model’s long-context abilities. Current data en-
gineering approaches primarily focus on sequence length, for example by increasing the proportion
of long sequences in the training set (Fu et al., 2024; Abdin et al., 2024; Yang et al., 2025) or adjust-
ing the ratio between long and short sequences (Gao et al., 2024). However, relying solely on se-
quence length cannot distinguish truly long-context-dependent data from long sequences that largely
consist of repetitions, independent contexts, or tokens predictable from short preceding spans. Con-
sequently, a substantial portion of long sequences in widely used corpora does not require extended
context, and even high-quality data may be better suited for short-text training rather than long-text
pretraining.

For instance, consider books and poetry collections. Individual poems, even by the same author,
often lack inter-poem dependencies, and their relatively short length makes them suitable for short-
context models. In contrast, textbooks are more appropriate for long-context pretraining, as chapters
are tightly interconnected and understanding one chapter often requires access to preceding chapters.
These examples illustrate that not all long sequences provide meaningful long-context information,
and including sequences that do not require extended context can dilute the training signal.
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Existing long-text pretraining strategies can be viewed as a “0-to-1” step: by increasing the propor-
tion of long sequences, the model begins to learn long-context dependencies. However, because the
training loss is averaged over all tokens, sequences that do not truly depend on long-range context
contribute equally to the learning signal, which is suboptimal. In this work, we take a “1-to-2” step
by further increasing the proportion of sequences that genuinely require long-context understanding.
This approach assigns more learning signal to tokens that depend on extended context, improving
the efficiency of long-context pretraining and enabling the model to better leverage long-range de-
pendencies.

To distinguish truly useful long-context data from merely long-length sequences, we propose Long-
Filter, a data selection framework for continued pre-training. Our method is founded on a simple yet
powerful principle: data is valuable for long-context training only if the long context actually helps
the model make better predictions. We operationalize this insight by developing a scoring function
to quantify this “information gain.” The score’s formulation is derived from the Kullback-Leibler
(KL) divergence between a model’s next-token prediction distributions conditioned on a long ver-
sus a short context. A high score signifies that the extended context provides crucial information,
making the sequence a high-quality candidate for training.

Contributions

1. This paper suggests that long-context continued pretraining should be conducted on data
whose extended context provides additional information for next-token prediction.

2. We propose LongFilter, a data curation method that quantifies the information gain pro-
vided by an extended context. Using a transformer-based causal language model, LongFil-
ter efficiently scores and selects high-quality long-context pre-training data.

3. Extensive experiments show that, without modifying the model or training setup, simply
selecting training data with richer long-range information can substantially improve a lan-
guage model’s long-text processing ability during continued pre-training. Models trained
on LongFilter-selected data achieved average gains of over 2 points on benchmarks includ-
ing HELMET, LongBench, and RULER.

2 RELATED WORK

2.1 LONG-CONTEXT LANGUAGE MODEL PRETRAINING

Long-context language models have garnered significant attention within the community in recent
years due to their high practical value in applications such as code generation and reasoning. A
current mainstream approach involves extending the context of an existing language model with
short-term context. On top of this, certain techniques have been developed to reduce the amount of
training required. For example, some works employ position interpolation (Chen et al., 2023; Peng
et al., 2023; Bertsch et al., 2023; Ding et al., 2024; Liu et al., 2024b; Zhang et al., 2024; Zhu et al.,
2024) on RoPE (Su et al., 2024) to enable the model to better adapt to the positional encoding of
extended context, or manipulating attention module (Xiong et al., 2025; Jin et al., 2024; Bertsch
et al., 2023). Some of these methods have been applied in certain enterprise-level models (Liu et al.,
2024a; Yang et al., 2025).

2.2 DATA CURATION AND FILTERING FOR LANGUAGE MODEL PRETRAINING

The quality of data exerts a direct influence on the performance of language models. This has be-
come a standard process for enterprise-level langauge models (Gunasekar et al., 2023; Abdin et al.,
2024; Abouelenin et al., 2025). Typically, this complex process involves multiple steps, including
heuristic approaches (Gao et al., 2020; Laurençon et al., 2022; Rae et al., 2021), data quality classi-
fication (Longpre et al., 2024; Wettig et al., 2024; Xie et al., 2023), domain-specific selection (Feng
et al., 2022), deduplication (Borgeaud et al., 2022; Abbas et al., 2023), multilingual filtering (Wen-
zek et al., 2019), removing toxic content (Penedo et al., 2023; Jansen et al., 2022). These methods
have achieved tremendous success in short-context model pretraining, yet few of them are specifi-
cally designed for long-context data.

2
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2.3 DATA ENGINEERING FOR LONG-CONTEXT PRETRAINING

Existing data engineering approaches for long-context pretraining primarily focus on the length of
training data, specifically by adjusting data proportions to increase the proportion of longer-length
training examples within the text corpus (Abdin et al., 2024; Yang et al., 2025). Fu et al. (2024)
recommends increasing the proportion of data with longer length while maintaining domain balance.
Gao et al. (2024) investigated the impact of the ratio of long-to-short data mixing and the data source
on the performance of long-text pretraining. A similar idea to this paper is LongWanjuan (Liu et al.,
2024c), which proposes several metrics to measure the quality of long text data. However, most
of its metrics are also applicable to short texts, and the context length of the model-based filtering
method used in its paper is too short (the longest window in its paper is as short as the short windows
in this paper). Another related approach, LongAttn (Wu et al., 2025), uses attention scores to model
long-range dependencies, but studies have shown that these attention scores do not reliably capture
token importance.

3 METHODOLOGY

Our method, LongFilter, is designed to identify and select training data where long-range depen-
dencies are semantically meaningful and essential for accurate token prediction. The core insight is
to quantify the “information gain” provided by an extended context. We formalize this gain as the
Kullback-Leibler (KL) divergence between the predictive distributions of a language model given a
long context versus a short one. Based on this principle, our framework follows a three-step pipeline:
(1) score each data instance for its long-context informational value using our proposed metric, (2)
rank the instances by this score, and (3) select a high-scoring subset for continued pre-training.

3.1 EVALUATING THE INFORMATION CONTRIBUTION OF EXTENDED CONTEXT

We operate within the standard causal language modeling framework, where the objective is to
predict the next token xt given a preceding context x<t.

Let a sequence of tokens be denoted by X = (x1, x2, . . . , xN ). For any given token xt in the
sequence, we define two distinct context windows:

• Short Context (S): The sequence of ℓShort tokens immediately preceding xt. Formally,
S(t) = (xt−ℓShort

, . . . , xt−1).
• Long Context (L): The sequence of ℓLong tokens immediately preceding xt, where
ℓLong > ℓShort. Formally, L(t) = (xt−ℓLong

, . . . , xt−1).

The extended context, denoted E, is the portion of the long context that precedes the short context,
i.e., E(t) = (xt−ll , . . . , xt−ls). The long context is therefore the concatenation of the extended and
short contexts, L = E ◦ S. See Figure 1.

I hate this -?-  
The plot was a mess and the acting was terrible. I hate this -?- 
The plot was a mess and the acting was terrible. 

-?-

  
Short context 
Long context  

Extended context 
Predicted Token

song 
movie 
thing

Figure 1: An illustration of the token-level long-context information gain. Given only the Short
Context (S) “I hate this”, the predictive distribution for the next token has high entropy, as many
words (‘song’, ‘thing’, ‘movie’) are plausible. The Extended Context (E), “The plot was a mess...”,
provides critical information that reduces this entropy, concentrating the probability on “movie”.

Given a pre-trained language model M , we can obtain two conditional probability distributions for
the next token:

Pshort(·) = PM (· | S(t)) and Plong(·) = PM (· | L(t))
The central question LongFilter addresses is:

How can we quantify the additional information that the extended context E provides for predicting
xt beyond what is already available in the short context S?

3
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3.2 INFORMATION-THEORETIC FORMULATION OF CONTEXTUAL GAIN

The ideal theoretical tool to answer our question is Conditional Mutual Information (CMI). The CMI
I(T ;E | S) measures the reduction in uncertainty about a target variable T (the next token) after
observing an extended context E, given that a short context S is already known (Cover & Thomas,
2006).

The CMI can be expressed in two well-known, equivalent forms. The first defines CMI as the
reduction in conditional entropy:

I(T ;E | S) = H(T | S)−H(T | S,E) (1)

where H(· | ·) is the conditional entropy. A second, equivalent formulation expresses the CMI as the
expected Kullback-Leibler (KL) divergence between the predictive distributions with and without
the extended context:

I(T ;E | S) = Ep(s,e)

[
DKL

(
p(T | S = s,E = e) ∥ p(T | S = s)

)]
(2)

This second form is particularly insightful, as it frames the information gain as the expected “dis-
tance” between the posterior belief p(T | S,E) and the prior belief p(T | S). For completeness, we
derive the equivalence of these two definitions in Appendix C.

For a given context instance (e∗, s∗), to evaluate the effect of the extended context e∗ on the next
token T prediction, we consider the one sample estimate of the above CMI:

Î(T ;E = e∗ | S = s∗) = DKL

(
p(T | S = s∗, E = e∗) ∥ p(T | S = s∗)

)
(3)

3.3 A PRACTICAL SCORING FUNCTION FOR CONTEXTUAL GAIN

Expanding the KL divergence by its definition in equation 3, we have

DKL

(
p(T | S = s∗, E = e∗) ∥ p(T | S = s∗)

)
=
∑
t∈V

p(t | s∗, e∗) log p(t | s∗, e∗)
p(t | s∗)

. (4)

This formula has two drawbacks: does not leverage the ground-truth information of T = t∗, i.e., the
value of DKL

(
p(T | S = s∗, E = e∗) ∥ p(T | S = s∗)

)
does not depend on t∗ and it requires a

costly summation over the entire vocabulary V . To create a practical score for a single ground-truth
instance (t∗, s∗, e∗), we focus on the term corresponding to t∗, which yields a surrogate for KL
divergence:

score(t∗, s∗, e∗) = p(T = t∗ | E = e∗, S = s∗) log
p(T = t∗ | E = e∗, S = s∗)

p(T = t∗ | S = s∗)
(5)

This score can be interpreted as the gain for predicting the specific target t∗ that is contributed by
the extended context e∗, given that s∗ was already observed. A positive value indicates that e∗ made
the correct target s∗ more likely, while a negative value indicates it was made less likely.

To score an entire document X∗ = (x∗
1, . . . , x

∗
N ), we average the per-token scores defined in equa-

tion 5. The final LongFilter score is

Score(X∗) =
1

N

N∑
i=1

score(x∗
i−ℓLong:i−ℓShort−1, x

∗
i−ℓShort:i−1, x

∗
i )

=
1

N

N∑
i=1

p(x∗
i | x∗

i−ℓLong:i−1) log
p(x∗

i | x∗
i−ℓLong:i−1)

p(x∗
i | x∗

i−ℓShort:i−1)

(6)

For a more practical perspective, we can reformulate the LongFilter score in terms of the standard
per-token cross-entropy loss, which is equivalent to the negative log-likelihood. Let Llong and Lshort

be the losses for predicting the ground-truth token x∗
i given the long and short contexts, respectively:

Llong
i = Hc

(
1{xi = x∗

i }, p(· | x∗
i−ℓLong:i−1)

)
= − log p(x∗

i | x∗
i−ℓLong:i−1),

Lshort
i = Hc

(
1{xi = x∗

i }, p(· | x∗
i−ℓShort:i−1)

)
= − log p(x∗

i | x∗
i−ℓShort:i−1),

4
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where Hc(p, q) = −Ep log q denotes the cross-entropy of the distribution q relative to p.

Then we have

Score(X∗) =
1

N

N∑
i=1

exp(−Llong
i )(Lshort

i − Llong
i ). (7)

This loss-based view offers a clear interpretation: the score gives preference to examples where the
reduction in prediction loss from using a longer context (the term Lshort − Llong) is large. This
loss reduction is then weighted by the model’s confidence on the token given the full context
(exp (−Llong) = p(x∗

i | x∗
i−ℓLong:i−1)), ensuring that the gains are on tokens the model consid-

ers plausible.

3.4 LONGFILTER

The framework of LongFilter is shown in Figure 2. LongFilter utilizes a pre-trained causal language
model to estimate the distribution of the next token across varying context lengths. LongFilter
consists of three steps: Long-context Modeling, Short-Context Modeling, and LongFilter Scoring.

Sliding Window Sliding Window

Low Contextual 
Information Gain

High Contextual 
Information GainLongFilter Scoring

Long Context Modeling

Short Context Modeling

p( ⋅ ∣ and the acting)

p( ⋅ ∣ The plot was a... acting)

p( ⋅ ∣ I hate this)

p( ⋅ ∣ The plot was a... I hate this)
Aggregation of  

Token-Level Scoring

KL div. ≈ 0 KL div. ≫ 0

The plot was a mess and the acting was . I hate this movie .terrible

The plot was a mess and the acting was . I hate this movie .terrible

Next-token prediction distribution Next-token prediction distribution 

Next-token prediction distribution Next-token prediction distribution 

Probability of 
predicting movie

Probability of 
predicting was

Figure 2: The Upper part computes the next-token probability distribution using a short-context
sliding window (shown as 4 tokens for illustration, though our experiments use 4K), while the Lower
part computes it using the full long context. LongFilter then scores the information gain (Middle
part) by calculating a token-level surrogate KL divergence between these two distributions. This
gain is low for locally predictable tokens (such as ‘was’), but high for tokens that require extended
context (such as ‘movie’). Finally, these token-level scores are aggregated to produce a single score
for the entire data instance.

Long-Context Modeling For an input sequence, we compute the probability distribution obtained
by predicting the next token for each position based on its prefix context, in a manner analogous to
the training stage of causal language model. The process of getting the next token distribution in the
long context utilizes the prefix context from all positions.

Short-Context Modeling For predicting the distribution of the next token in a short context, the
LongFilter first segments the entire text into shorter chunks. Each short chunk is then fed into a
pre-trained causal language model, thereby constraining the context of the predicted output to the
boundaries of the short chunk. To avoid predicting tokens with insufficient context at the beginning
of each short chunk, we chose to introduce overlap between different chunks during segmentation.

LongFilter Scoring After obtaining the probabilities for predicting the next token from both short
and long contexts, the final score is calculated using Equation 6. All scores are sorted, and a portion
of the higher-scoring entries are selected as the chosen data.

5
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4 EXPERIMENTS

4.1 SETUP

We conduct experiments by continually pre-training LLaMA-3-8B (Dubey et al., 2024), which has
an initial effective context length of 8K, on different training datasets to extend its context length
to 64K. For each dataset, we pack the tokenized text into sequences of 64K tokens and score each
sample with LongFilter. The model is then continually pre-trained on these filtered samples, and
its performance is evaluated on long-context benchmarks to assess the effectiveness of the data
selection process. As this study focuses on the pre-training stage, our evaluation targets fundamental
long-context capabilities; we exclude reasoning and open-ended generation tasks, which typically
necessitate post-training.

Datasets We use SlimPajama-627B (Soboleva et al., 2023) as the primary source
for long-context pretraining. LongFilter is applied to extract high-quality long-
text samples from this dataset. SlimPajama has been widely adopted in recent
long-context data engineering works (e.g., Gao et al. (2024), Fu et al. (2024)).

Table 1: Number of Long Context Tokens

Name #Tokens
SlimPajama-Book 19,535,822,848
SlimPajama-Arxiv 19,489,295,000
SlimPajama-CommonCrawl 19,284,099,072

Specifically, we select three corpora from
SlimPajama, that is ArXiv, Books, and
CommonCrawl, for our experiments. We
similarly categorized each corpus by
length, selecting thresholds of 16K, 64K,
and 32K for long and short texts in ArXiv,
Book, and CommonCrawl, respectively.
After applying these thresholds, the vol-
ume of data classified as long texts was
approximately 19 billion tokens. We con-
structed the model training dataset with 80% long texts and 20% short texts. Data selection was
applied exclusively to the long text portion.

Model and Training Configuration For training, we adopt the same configurations as Pro-
Long (Gao et al., 2024) when scaling LLaMA-3-8B from an 8K to a 64K context, including op-
timizer, learning rate, and RoPE base frequency. The only difference lies in our choice of training
data, which is guided by LongFilter-based selection. Apart from increasing the RoPE base frequency
from 5×105 to 8×106, we made no further modifications to the model in our experiments. Drawing
on configurations from previous studies on long text training (Fu et al., 2024), we set the batch size
to 4M tokens and trained for 1,000 steps, processing a total of 4B tokens.

Baselines We compare our method against two baselines. We first compared our model with
ProLong (Gao et al., 2024), but unified the training data to three corpora from the SlimPajama dataset
and adopted the same short-to-long ratio. For a fair comparison, we did not use ProLong’s ShortMix
dataset. ProLong’s training data was sampled from all training data, while LongFilter’s training data
was sampled from the selected data. We did not exclude the selected data from ProLong’s training
set, meaning ProLong and LongFilter share a portion of high-quality long-context training data.
We also compared our approach with LongWanjuan (Liu et al., 2024c), conducting comparative
experiments using their best-performing aggregated and holistic data ratio of 1:1 as specified in
their paper.

Setting of LongFilter We set the short context window to 4K and the long context window
to 64K, using the Llama-3.1-8B model (which supports 128K contexts) for scoring. We sorted the
scores and selected the top 20% of data as the final training dataset of LongFilter. We run LongFilter
on 32 NVIDIA H100 GPUs, enabling each corpus to complete all scoring within a single day.

4.2 EVALUATION ON RECALL (NEEDLE-IN-A-HAYSTACK) TASKS

We first report the performance of different data strategies on a series of Recall tasks. This series
of tasks has also been referred to as Needle-in-a-Haystack (NIAH) (Kamradt, 2023). This type of
tasks directly tests a model’s ability to utilize information from any position, often serving as one of
the most important metrics for evaluating a model’s performance on long text.

6
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Figure 3: Performance on Recall tasks (Needle-in-a-Haystack) w.r.t trained tokens

Specifically, we reported on the SubEM of Recall task within the HELMET benchmark (Yen et al.,
2025), which encompasses four distinct NIAH tasks: JsonKV, Needle retrieval with multiple keys,
UUID retrieval with multiple keys, and value retrieval with multiple keys. Experimental results are
shown in Figure 3.

Across the three experimental settings with different type of training data, we consistently observe
that LongFilter achieves the best overall performance and exhibits the most stable improvement as
the training scale increases. For example, in all three groups, LongFilter rapidly surpasses both
ProLong and LongWanjuan at small scales (0.5B–1B) and maintains a clear advantage when scaling
up to 4B, reaching performance above 90 in every case. This indicates that filtering with LongFilter
can effectively enhance data quality and maximize the benefits of scaling.

Figure 4: Performance on HELMET w.r.t trained tokens

4.3 EVALUATION ON LONG-CONTEXT BENCHMARKS

To validate whether the data selection strategy of LongFilter is beneficial for training long-text lan-
guage models, we evaluate the continually pre-trained models on 3 widely used long-context bench-
marks: HELMET (Yen et al., 2025), LongBench (Bai et al., 2024), and RULER (Hsieh et al., 2024).
Since RULER and LongBench require language models to comprehend instructions, we SFT models
with 1B data using UltraChat dataset (with settings consistent with Gao et al. (2024)).

The final reported score is the average of all non-model-based evaluation metrics across all tasks
in HELMET, encompassing five tasks: Recall, RAG, Re-rank, ICL, and QA. We report the overall
performance on HELMET benchmark with respect to the number of trained tokens in Figure 4.

According to the experimental results, the quality of long-text training data undergoes a clear, signifi-
cant, and sustained improvement after LongFilter’s data selection. LongFilter significantly improves
training efficiency. Compared to unfiltered data, length extension training with 1.5B filtered tokens
already achieves performance comparable to training on 3-4B tokens, indicating that only about half
the data is required to reach the same level of effectiveness.

7
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Table 2: Experimental Result on LongBench

Dataset & Model SingleQA MultiQA Summ ICL Synthetic Code Overall
Arxiv

ProLong 25.26 16.24 24.83 63.04 51.76 68.69 38.58
LongWanjuan 28.43 18.25 25.09 62.85 49.92 69.22 39.36
LongFilter 28.32 17.99 24.48 63.15 51.41 70.00 39.52

Book
ProLong 21.25 15.06 23.64 62.60 52.41 69.76 37.47
LongWanjuan 22.33 14.84 22.75 63.46 52.62 70.05 37.69
LongFilter 26.58 20.14 24.36 62.69 53.58 70.08 39.81

CC
ProLong 21.95 16.83 25.03 63.87 52.18 69.33 38.37
LongWanjuan 33.64 18.58 25.18 61.95 47.87 69.79 40.02
LongFilter 30.54 17.21 25.58 62.84 57.02 69.11 40.66

On LongBench, the three methods demonstrate different trade-offs across datasets. LongFilter con-
sistently achieves the highest overall scores, showing its robustness across diverse domains. In
particular, it yields notable gains in Synthetic tasks (e.g., 57.02 on CC) and maintains competitive
performance in Code, where both categories heavily rely on the model’s ability to leverage informa-
tion from arbitrary positions within the context. This suggests that LongFilter effectively improves
the long-range information of training data, thereby benefiting tasks needs long-range dependency.

Table 3: Experimental Result on RULER

Dataset & Model NIAH
Single

NIAH
MultiKey

NIAH
MultiValue

NIAH
MultiQuery Other Overall

Arxiv
ProLong 77.90 85.40 89.35 85.73 47.12 69.28
LongWanjuan 83.8 80.57 83.16 85.04 49.15 69.69
LongFilter 78.68 86.20 89.76 86.92 48.07 70.13

Book
ProLong 93.83 83.80 92.76 95.08 46.56 73.35
LongWanjuan 90.08 91.03 91.38 82.75 48.23 73.74
LongFilter 95.33 97.87 93.15 80.10 54.71 78.95

CommonCrawl
ProLong 91.31 86.58 94.32 77.87 47.54 72.59
LongWanjuan 90.85 84.65 89.76 80.49 41.25 74.08
LongFilter 92.58 94.50 94.80 77.80 31.71 75.37

On the RULER benchmark, LongFilter consistently achieves the highest overall scores across all
three datasets. Its advantage is particularly pronounced in structured data tasks, such as MultiKey,
MultiValue, and MultiQuery, where careful filtering likely enhances the model’s ability to capture
long-range information.

Overall, these results reinforce the pattern observed in LongBench: data quality and filtering (Long-
Filter) provide more consistent and robust improvements than original training data and LongWan-
juan.

4.4 CASE STUDY: TOKEN-LEVEL ANALYSIS

In this case study, we analyze a subset of the processed SlimPajama-Arxiv dataset containing 1000
samples, each a sequence of 65536 tokens. The analysis is presented in Figure 5. The token-level
score is visualized by color intensity in Figure 5a (prose) and Figure 5b (code), where darker text
indicates a higher score. These results support the intuition that repetitive content like TikZ code,
which lacks long-range semantic structure, receives low scores. Figure 5c shows the token-level

8
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scores for the top-three and bottom-three ranked documents. The abrupt score jumps seen in plots
of Rank 1 and 3 are artifacts created by concatenating multiple .tex files from a single arXiv
submission during data preprocessing.

(a) High-score text segment: Thesis (b) Low-score text segment: TikZ codes
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(c) Context Score at each token position for documents of varying ranks.

Figure 5: Token-level context score analysis on a subset of the processed SlimPajama-Arxiv dataset.
In the top examples, the color of each token is determined by its score: the darker the color, the
higher the score. (a) A high-scoring segment of well-formed academic prose from a PhD thesis. (b)
A low-scoring segment containing non-prose LaTeX TikZ drawing commands. (c) Context Scores
across the full token sequence for documents of the top three ranks and the bottom three ranks.

5 CONCLUSION

This paper proposes a data filtering framework tailored for pretraining long-context language mod-
els. Unlike short-context language models, long-context models require leveraging semantic in-
formation from longer range of positions. Based on intuition, we recommend that long-context
language models should be trained on data where this additional length provides information for the
next word prediction.

We formalize this process as identifying training data where additional context yields higher con-
ditional mutual information for predicting the next token. Based on this formulation, we develop
a scoring function that estimates the informational gain of context using a trained language model.
To apply this method to practical data filtering, we design a model called LongFilter to score the
informational value of additional context in long training data, recommending training on data with
higher scores.

Sufficient experimental resutls demonstrates the effectiveness of LongFilter. We achieve sustained
and significant improvements in long-text capabilities for long-text models solely through data filter-
ing. After expanding the Llama-3-8B model from 8K to 64K context, experiments on benchmarks
like HELMET, LongBench, and RULER demonstrate that this simple yet effective method yields up
to a 10% accuracy gain on recall tasks when training on 1B tokens.
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A REPRODUCIBILITY

All code and scripts used in this work are publicly available at:
https://anonymous.4open.science/r/LongFilter.

This repository contains all necessary files for data preprocessing, model training, evaluation, and
visualization.

B USE OF LLM

During the preparation of this paper, a large language model (LLM) was used solely for the following
purposes:

• Sentence-level polishing of grammar and wording.

• Translation.

The LLM was not used to generate original content, draft sections of the paper, or make any scientific
claims. The authors take full responsibility for all content in the submission.

C EQUIVALENCE OF TWO DEFINITIONS OF CONDITIONAL MUTUAL
INFORMATION

The equivalence of Eq. equation 1 and Eq. equation 2 can be shown by expanding the definition of
entropy:

I(T ;E | S) = H(T | S)−H(T | S,E)

=

(
−
∑
s,t

p(s, t) log p(t | s)

)
−

(
−
∑
s,e,t

p(s, e, t) log p(t | s, e)

)
= −

∑
s,e,t

p(s, e, t) log p(t | s) +
∑
s,e,t

p(s, e, t) log p(t | s, e)

=
∑
s,e,t

p(s, e, t) (log p(t | s, e)− log p(t | s))

=
∑
s,e,t

p(s, e, t) log
p(t | s, e)
p(t | s)

(8)

=
∑
s,e

p(s, e)
∑
t

p(t | s, e) log p(t | s, e)
p(t | s)

=
∑
s,e

p(s, e)DKL

(
p(T | S = s, E = e) ∥ p(T | S = s)

)
= Ep(s,e)

[
DKL

(
p(T | S,E) ∥ p(T | S)

)]
.

D ADDITIONAL EXPERIMENTS

D.1 USING SMALLER MODELS TO SCORE DATA IN ORDER TO TRAIN LARGER MODELS.

We conduct experiments to investigate how using smaller scoring models affects the performance
of LongFilter. Specifically, we perform experiments with Qwen3-0.6B(Yang et al., 2025), a model
containing only 0.6B parameters. All other experimental settings remain the same as those described
in Section 4. The experimental results are shown in Figure 6.

The experimental results show that LongFilter remains effective even when using a smaller model
as the scoring model, yielding a clear improvement in data quality compared to using unfiltered
data. However, compared with the 8B model, the 0.6B model performs worse in data selection.
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We believe this is because LongFilter relies on the language model’s ability to capture long-range
dependencies, and in this regard the 0.6B model cannot match the capabilities of the 8B model.
Overall, the results demonstrate that smaller language models can still be used as scoring models to
improve data efficiency for continued long-context pretraining of larger models.

Figure 6: LongFilter Performance on HELMET Benchmark When Scored by a 0.6B-Parameter
Model.

D.2 EXPERIMENTS ON THE PROPORTION OF DATA SELECTED

We conducted experiments to examine how selecting different proportions of data affects the fi-
nal results. In the experiments described in Section 4, we used the top 20% of data selected by
LongFilter as the dataset for continued long-context pretraining. In this experiment, we additionally
selected the top 30% and 40% of the data to observe how these selection ratios influence the final
continued-pretraining performance. The experimental results are shown in Figure 7.

Figure 7: Performance comparison under different data-selection ratios. We vary the proportion of
top-ranked data selected by LongFilter (20%, 30%, 40%, and 100%) to evaluate its robustness to
selection ratio.

The experimental results show that LongFilter remains effective across a fairly wide range of data-
selection ratios. We recommend that users choose the selection ratio based on how many training
tokens they ultimately need for their application.

E DISCUSSION ON AN ALTERNATIVE SCORING FORMULATION

In this section, we discuss an alternative score formulation which removes the penalty weighting
term in equation 7 and equation 5:

score(t∗, s∗, e∗) = log
p(T = t∗ | E = e∗, S = s∗)

p(T = t∗ | S = s∗)
= Lshort − Llong (9)
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(b) Error Distribution

Figure 8: Approximation Fidelity of Scoring Formulations relative to KL Divergence. We eval-
uate the absolute error of the raw loss difference (Lshort −Llong) versus the weighted loss difference
(exp(−Llong) · (Lshort − Llong)) relative to the ground truth KL divergence. (a) Pairwise Compari-
son. A heatmap visualizing 100 randomly selected sequences (y-axis) across 200 consecutive token
positions (x-axis, indices 50k–50.2k). Pixels are colored by the method with the lower absolute
error: Blue indicates the weighted score is closer to the true KL, Orange indicates the raw score is
closer, and White indicates equality (difference < 10−11). The weighted score outperforms the raw
score in 75.2% of instances. (b) Global Error Distribution. Violin plots illustrating the density
of log10 absolute errors computed over the full validation set. The weighted formulation (right) ex-
hibits a significantly lower error profile (lower mean and median) compared to the raw formulation
(left), validating the effectiveness of the exponential weighting term.

We empirically demonstrate that the weighted loss difference defined in equation 5 serves as a
superior surrogate for the KL divergence compared to the unweighted variant. Following the setup
in Section 4, we analyze a subset of 1000 samples from the processed SlimPajama-Arxiv dataset.

To establish a ground truth, we compute the full probability distribution over the vocabulary (using
the same model as Section 4) at each position to derive the exact KL divergence between Pshort
and Plong. We compare this against two candidate scores derived only from the probability of the
ground-truth token in the data sequence: the raw loss difference (Lshort − Llong) and the weighted
loss difference (exp(−Llong) · (Lshort − Llong)). The results, illustrated in Figure 8, indicate that the
weighted formulation approximates the KL divergence with consistently higher fidelity. We attribute
this to the theoretical properties of the metrics: while the raw score captures the pointwise log-
likelihood ratio (which can be noisy for low-probability tokens), the weighted score scales this ratio
by the token probability. This effectively approximates the term-wise contribution to the expected
KL divergence, thereby suppressing outliers in the distribution’s tail.
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