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ABSTRACT

The advances in deep learning algorithms have impacted the drug discovery
pipeline in many ways. Specifically, generative artificial intelligence (AI) algo-
rithms can now explore the large chemical space and design novel and diverse
molecules. While there has been significant progress in generative AI models, it
is equally important to develop predictive models for various properties, which can
help to characterize novel drug-like molecules. Further, the predictive model acts
as a critic to design multi-property optimized molecules, which can potentially
reduce the late stage attrition of drug candidates. Nevertheless, understanding
the reason behind model predictions can guide the medicinal chemist to modify
substructures that can make the molecules undesirable during the lead optimiza-
tion stage of drug discovery. However, current explainable approaches are mostly
atom-based where, often only a fraction of a fragment is shown to be signifi-
cant. To address the above challenges, we have developed a novel domain-aware
fragment-based graph input representation based on a molecular fragmentation
approach termed pBRICS, which can fragment small molecules into their func-
tional groups. Both single and multi-task models were developed to predict var-
ious properties including ADMET properties. The fragment level explainability
were obtained using the Grad-CAM approach. The method was further validated
with the available Matched Molecular Pairs (MMP) for blood brain barrier per-
meability (BBBP) and Ames Mutagenicity.

1 INTRODUCTION

The advent of AI-based algorithms has revolutionized the complete drug design process. There has
been a significant progress in the field of generative AI to design novel drug-like molecules by effec-
tively exploring the chemical space (Segler et al. (2018)Olivecrona et al. (2017); Pope et al. (2018);
Bung et al. (2021); Born et al. (2020); Krishnan et al. (2021a); Krishnan et al. (2021b)). Some
studies have shown the potential of these models to truly accelerate the early-stage drug discov-
ery process and design drug-like molecules in few weeks (Zhavoronkov et al. (2019); Stokes et al.
(2020)). Although generation of novel drug-like small molecules specific to a target protein of inter-
est is highly essential to explore the potentially vast chemical space, it is also necessary to optimize
various physicochemical and late stage properties including absorption, distribution, metabolism,
excretion and toxicity (ADMET) to reduce the attrition rate of novel molecules during the clinical
trial process (Daoud et al. (2021); Bung et al. (2022)). The ability to accurately predict various AD-
MET properties can provide insights right from the administration of a molecule to its elimination,
along with its probable pharmacological action in the human body (Cumming et al. (2013); Van
De Waterbeemd & Gifford (2003); Selick et al. (2002)). Studies have shown that, around 50% of
potential drug candidates fail while being evaluated for their pharmacokinetic properties, leading to
a marked increase in the time taken to produce admissible drug molecules (Kola & Landis (2004);
Waring et al. (2015)). However, the recent incorporation of AI-based models to predict drug po-
tency and various other properties in parallel to the drug design phase, can eliminate undesirable
drug candidates in the early stages of the drug discovery pipeline (Siramshetty et al. (2021); Blay
et al. (2022)). One of the challenges for such predictive models is to differentiate between highly
similar molecules that can be categorized into different classes depending on their property profile.
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Even the best performing models have been shown to mispredict such cases and lead to a higher
number of false positives and false negatives. Consequently, there has been considerable interest,
to validate various machine and deep learning models by assessing their performance on classifying
similar molecules with very different potency, also known as activity cliffs (van Tilborg et al. (2022);
Tamura et al. (2023)).

Apart from measuring the performance on similar molecules, the interpretability of model pre-
dictions can accelerate the lead optimization stage of drug discovery (He et al. (2021); Vangala
et al. (2022); Baptista et al. (2022); Tian et al. (2022)). The ability to quantify the contribution
of each substructure or molecular fragment towards the property being predicted, can guide the
medicinal chemists to optimize the lead molecules. The choice of input representation of molecules
can influence what the model learns and consequently the explanations obtained for model predic-
tions. Popular input representations for development of predictive models include, the Simplified
Molecular Input Line Entry System (SMILES), atomic-level molecular graphs, fingerprints based
on functional group frequency, and descriptor-based feature vectors such as PaDEL (Yap (2011))
and Mordred (Moriwaki et al. (2018)). For models developed using each of the above input rep-
resentations, corresponding model explanations have also been extracted using gradient-based ex-
plainability methods such as Gradient-based Class Activation Mapping (Grad-CAM) and saliency
maps, and non-gradient explainability methods such as SHAPley scores (SHAP) and Local Inter-
pretable Model-agnostic Explanations (LIME). Although explanations from molecular graph rep-
resentations, typically involving coloring schemes to highlight the magnitude of gradient change,
are in good agreement with the experimental knowledgebase of medicinal chemists, these meth-
ods tend to produce partial explanations in molecules involving ring systems (Jiménez-Luna et al.
(2021)). To remedy this, functional-group level molecular graph representations could be a solution
by appropriate fragmentation of molecules, and reconstitution of the molecular graph with func-
tional groups as nodes and fragmented bonds as edges (Zhang et al. (2021b); Zhang et al. (2021a);
Hajiabolhassan et al. (2022)). However, most of the existing fragmentation methods such as BRICS,
RECAP and SynDIR (Firth et al. (2015)) lead to singleton atoms upon fragmentation, cannot handle
very small molecules, and fail to fragment all substituents of a core scaffold in a molecule. Specif-
ically, some substituents including halogen atoms, methyl and hydroxyls groups can be considered
valid fragments of interest to medicinal chemists, due to the possiblilty of extensive change in the
physicochemical and ADMET properties of a molecule upon their substitution (Gentry et al. (1999);
Cramer et al. (2019)). The above limitations necessitate the development of a novel fragmentation
method that could address the above challenges, and could be used as input to train deep learning
models by capturing a chemist’s perception.

In this study, we have addressed two challenges through the development of a novel molecular rep-
resentation: 1) training property prediction models on standardized datasets, and 2) using gradient-
based explainability methods to quantify fragment-level contributions to the property prediction. We
have developed a novel molecular fragmentation method termed pBRICS for finegrained fragmenta-
tion of any novel small molecule. With the fragments of pBRICS, a molecular graph representation
is proposed, which was used to train graph convolution network (GCN) models for prediction of over
23 different ADMET properties. The models developed were compared with an existing atom-level
graph model from literature trained using a similar architecture. Further, the explanations obtained
from the predictive models were validated based on their relevance to the existing knowledgebase
of substructure contributions using matched molecular pairs (MMP) analysis.

2 MATERIALS AND METHODS

2.1 POST-PROCESSING BRICS (PBRICS) FRAGMENTATION METHOD

In this work, we have introduced a novel fragmentation method named pBRICS. The pBRICS
method performs a post-processing of fragmentation results from the commonly used BRICS
(Breaking of Retrosynthetically Interesting Chemical Substructures) method (Degen et al. (2008)).
BRICS method considers 16 chemical environments and their corresponding fragment prototypes
for fragmentation of every bond in a molecule. Due to the expanded set of cleavage rules possible
for a molecule, the BRICS method has been shown previously (Degen et al. (2008)) to fragment 10%
more molecules than the RECAP (REtrosynthetic Combinatorial Analysis Procedure) fragmentation
method (Lewell et al. (1998)). pBRICS attempts to iteratively fragment the molecule such that, the
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smallest possible substituents of a scaffold are also enumerated, which can be of interest in building
a knowledgebase for molecular optimization problems.

Figure 1: Flowchart of the pBRICS fragmentation method.

pBRICS method uses a comprehensive library of fragments (ring systems and non-ring substituents)
manually curated from the Open Chemistry project database and literature. If a molecule can be
fragmented by the BRICS method, the resultant fragments are primarily classified into scaffolds
and substituents. The scaffold of a molecule or a fragment is defined based on the Bemis-Murcko
frameworks (Bemis & Murcko (1996)) as implemented in RDKit. The atoms corresponding to sub-
stituents are further matched against the library of fragments to obtain the largest possible fragment
match, and the process is iterated until no further fragment matches are possible. If a molecule
cannot be fragmented by the BRICS method, the atoms corresponding to scaffold and substituents
of the molecule are enumerated and the iterative fragmentation procedure is applied on the sub-
stituent atoms, instead of fragments from the BRICS method (Fig. 1). The pBRICS method was
implemented in Python using utilities from the RDKit library.

2.2 GRAPH CONSTRUCTION FROM PBRICS FRAGMENTATION OF A MOLECULE

The fragments obtained from pBRICS were used to construct a domain-aware fragment-level graph
representation. For generating the graph, fragments were considered as nodes and an edge was
defined between two nodes, if the two fragments were connected in the molecule by at least one
bond (see Fig. 2). Once the graph construction is complete, the next step is to define the feature

Figure 2: Graph construction process from pBRICS fragments and subsequent fragment graph for-
mation. The post processing of BRICS allowed the pBRICS method to further divide the molecules
into smaller and chemically interesting fragments.

vector for each node in the graph. The MACCS (Molecular ACCess System) 167 keys (Durant
et al. (2002)) and ECFP2 (Extended-connectivity fingerprints) 256 bit fingerprint (Rogers & Hahn
(2010)) representation of fragment (node) are considered as the feature vector for each node in the
graph. The type of bond connecting the fragments is encoded as a value, to be used as edge weight
while aggregating the information from neighbours.
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2.3 DATASET CURATION

To validate the method, the datasets from the ADMETLab2.0 study (Xiong et al. (2021)) were cu-
rated. The curated dataset consists of data associated with 23 pharmacokinetic properties. For each
property, the data was split into 80% for the training set, 10% for the validation set and remaining
10% for the test set for training the models. The individual datasets for these 23 properties were
further combined to form a multi-task dataset to be used for training a multi-task property prediction
model.

2.4 GRAPH CONVOLUTIONAL NETWORK (GCN)

The domain-aware graph generated using the pBRICS fragmentation method was used as input to
the deep learning models involving Graph Convolutional Network (GCN) (Kipf & Welling (2016))
layers as implemented in the Deep Graph Library (Wang (2019)). The GCN-based architecture
has been proven to yield promising results for predicting a wide range of molecular characteristics
(Wieder et al. (2020)). Typically, a graph is defined as G = (V,E), wherein fragments are nodes (V)
and bonds connecting them are edges (E). GCN layer modifies each node’s embedding in the fol-
lowing way: 1) Using the node feature matrix X ∈ Fn×d and an adjacency matrix A ∈ {0, 1}n×n,
GCN aggregates the information from neighbouring nodes (Buffelli & Vandin (2020)). 2) Applies
a non-linear activation function to the aggregated feature vector embedding of nodes (Buffelli &
Vandin (2020)) to get the prediction.

2.5 RELATIONAL GRAPH CONVOLUTIONAL NETWORK (RGCN)

The Relational Graph Convolutional Network (RGCN) (Schlichtkrull et al. (2018)) was introduced
to capture the relations among different nodes of the complex graph unlike in GCN network only
one relation that exists between nodes (whether the node is a neighbour or not). An RGCN layer
transforms the embedding of each node almost similar to a GCN layer with one major change in
the way the aggregation happens. RGCN layer aggregates the information from neighbouring nodes
(or atoms), via an adjacency matrix A ∈ {0, 1}n×n×r where, r corresponds to each relation in the
graph, and a node feature matrix X ∈ Fn×d. The RGCN layer was implemented using the Deep
Graph Library (DGL) (Wang (2019)).

2.6 CONSTRUCTING THE MULTI-TASK GRAPH NEURAL NETWORK FRAMEWORK

The multi-task graph neural network model (Fig. 3) was prepared so as to benefit from the related
tasks and improve the prediction for the task with low data. Nevertheless, single task models were
also built to quantify the difference in performance compared to the multi-task model. The multi-
task model can be used for predicting both classification and regression properties simultaneously,
unlike the single task predictive models where individual models have to be built independently
for each task of interest. Recent studies have shown that multi-task models can outperform single
task models, as the hidden layers are shared among all the tasks thereby, helping the model to learn
more about the related tasks, which will improve the performance for the task in hand. In the multi-
task model, a batch of fragment graphs are first passed into a 2-layered RGCN/GCN each of size
64. The aggregated feature vector from the final RGCN/GCN layer for each graph is multiplied by
their respective attention weight, and the resultant vector is fed into an independent stack of fully
connected (FC) layers (one FC stack per property). Here, all FC stacks share an aggregated feature
vector from the final RGCN/GCN layer, enabling the model to learn common features between
all combinations of properties involved. The architecture of multi-task model can be converted to
single task models by considering only one FC stack in the final layer instead of 23, as in case of the
multi-task model.

2.7 EVALUATION METRICS

The binary cross-entropy-loss (BCE) between the actual values and model predictions is calculated
for each of the 23 classification tasks mentioned in Table 2. The loss is back-propagated to update
the weights of the neurons in the fully connected layers and GCN layers. Area Under Receiver
Operating System Curve (auROC) was used for measuring the performance of the classification
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Figure 3: Multi-task graph neural network framework proposed in this study for simultaneous pre-
diction of 23 pharmacokinetic properties.

models in this study.

BCE = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (1)

N : number of samples, ŷ : predicted value, y : true value

2.8 EXPLAINABILITY OF MODEL PREDICTIONS USING GRADIENT CLASS ACTIVATION MAP
(GRAD-CAM)

To interpret the predictions obtained from the deep learning model, the Gradient Class Activation
Map (Grad-CAM) method was used. The Grad-CAM method was initially developed for analysing
convolutional neural network (CNN) models, and was later adapted to work with graph convolu-
tional networks (GCN) (Pope et al. (2018)). Here, consider c to be the class for which explanations
are generated, L to be the final GCN layer of the model, αL,c

k to be the Grad-CAM weight for the
kth feature of class c at layer L, N to be the number of nodes, and FL

k,n be the feature map of kth

feature map at layer L of node n:

αL,c
k =

1

N

N∑
n=1

∂yc

∂FL
k,n

(2)

Node level importance scores for a graph obtained using the Grad-CAM method are given by the
following equation 2. Based on these scores, one can identify the fragments (nodes) contributing
positively to the class c.

Lc
Grad−CAM [L, n] =

∑
k

αL,c
k FL

k,n(X,A) (3)

2.9 VALIDATION OF THE PBRICS METHOD WITH MATCHED MOLECULAR PAIRS (MMP)
ANALYSIS

Matched Molecular Pairs (MMP) (Kenny & Sadowski (2005)) are experimentally validated pair of
molecules that differ by a single substitution of functional group/atom, which leads to conflicting
chemical properties. Since one of the major challenges for these predictive models is to be able
to correctly predict similar molecules that belong to conflicting classes in a classification problem,
MMPs provide an opportunity to validate such models by testing their ability to differentiate similar
molecules belonging to opposite classes. Further, by extracting the corresponding reasoning from
explainable AI methods, model predictions can also be justified.
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Figure 4: An example of a matched molecular pair (MMP) from the ChEMBL database. where,The
the substitution (here, Hydrogen to amino) make the molecule pair active to inactive or vice-versa.
which acts as the MMP transformation for this pair is highlighted in yellow circle.

Table 1: Comparison of the performance metrics between different fragmentation methods on the
ChEMBL database.

Metric pBRICS BRICS RECAP SynDiR

No.of uncut molecules 5,908 55,677 152,177 97,823
Total no.of fragments generated (with duplicates) 11,913,61 8,328,962 4,964,387 5,672,031
No of unique fragments 120,552 242,208 242,208 342, 263
Average heavy atom count for the unique fragments 12,201 15,593 15,911 17,693

3 RESULTS AND DISCUSSION

3.1 BENCHMARKING PBRICS AGAINST OTHER FRAGMENTATION METHODS

The pBRICS fragmentation approach proposed in this study was compared with the existing frag-
mentation methods namely, BRICS, RECAP and SynDiR, in terms of four metrics defined earlier
(Firth et al. (2015)) with the ChEMBL dataset as the benchmark dataset (Table 1). Based on the
comparison results it is notable that, pBRICS generates the least number of unique fragments with
smallest heavy atom count, resulting in a more generic fragment library due to the fine-grained
fragmentation procedure developed. Further, pBRICS can fragment 16-times, 5-times and 10-times
more molecules than RECAP, BRICS and SynDiR methods, respectively. Several examples were
identified wherein, only pBRICS could fragment the molecule of interest (see SI Fig. S1).

3.2 PERFORMANCE OF THE MULTI-TASK PROPERTY PREDICTION MODEL

As mentioned in the methods section, both multi-task and single task-models were trained for pre-
dicting 23 properties that are crucial for small molecules to be considered as drug-like molecule. The
multi-task and single-task predictive models trained using the domain-aware molecular graph rep-
resentation based on the pBRICS method and GCN are referred to as MT-FraGCN and ST-FraGCN
models, respectively. And MT-FraRGCN in Table 2 referred to pBRICS methods with RGCN. The
performance of multi-task models on the 23 properties is summarized in Table 2.

The performance of the domain-aware fragment-based multi-task model was compared with the
atom-level graph-based multi-task model from ADMETLab2.0. The ADMETLab2.0 model was
retrained on the multi-task property prediction dataset, using an atom-level graph-based input rep-
resentation. MT-FraRGCN model after hyperparameter tuning achieved a mean auROC of 84.47%,
which is 1.12% higher than that of the ADMETLab2.0 model (83.35%) and 1.53% higher than that
of the MT-FraGCN model (82.94%). The increase in performance of the MT-FraRGCN model can
be attributed to the different relations it considers among fragments as shown in ADMETLab2.0
such as, bond type, type of atoms forming the bond, and stereochemistry. For each property pro-
vided in Table 2, a separate single task GCN (ST-FraGCN) model was also trained and compared
with the multi-task model. For the 23 properties considered in the study, it was observed that there
is no significant difference in the performance of single-task and multi-task models. To validate the
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Table 2: Comparison of the performance of different models developed in this study with that of the
multi-task (MT) model developed with the ADMETlab2.0 source code (Xiong et al. (2021)).

Property MT-FraGCN MT-FraRGCN ST-FraGCN ADMETLab2.0

Ames Mutagenicity 87.75 89.42 88.18 86.57
Carcinogenicity 63.97 74.98 67.65 71.62
CYP1A2 92.31 95.44 93.41 92.65
CYP2C19 79.91 81.11 80.82 80.67
CYP2C9 83.65 84.24 84.01 84.91
CYP2D6 84.91 85.41 81.36 87.03
CYP3A4 90.13 88.45 89.24 89.57
Eye Corrosion 98.53 99.04 97.73 97.89
Eye Irritation 96.14 95.93 95.44 96.13
Respiratory Toxicity 83.28 89.41 82.19 81.07
BBBP 88.81 89.75 88.21 88.57
NR-AR 75.71 74.31 76.07 77.72
NR-AR-LBD 79.51 84.58 79.36 76.46
NR-AhR 85.04 85.51 85.36 85.72
NR-Aromatase 83.38 81.85 76.93 77.71
NR-ER 66.35 68.21 67.71 67.38
NR-ER-LBD 81.78 84.58 79.64 83.84
NR-PPAR-gamma 73.86 79.85 82.27 79.40
SR-ARE 79.32 78.59 76.65 80.47
SR-ATAD5 86.46 81.61 82.78 82.72
SR-HSE 74.43 78.47 71.23 75.73
SR-MMP 88.37 87.19 85.53 86.17
SR-p53 84.11 84.83 77.19 87.37
Mean auROC (%) 82.94 84.47 82.12 83.35

pBRICS method, Matched Molecular Pairs (MMP) dataset was curated for each property. However,
except for BBB permeability and Ames mutagenicity, there were not many MMP pairs for rest of
the properties.

3.3 MATCHED MOLECULAR PAIRS (MMP) ANALYSIS FOR BBB PERMEABILITY (BBBP)

The challenge for the predictive model is to accurately predict small molecules that belong to the
MMP dataset and are not part of the same class. The MMP dataset for BBBP property consists
of 102 unique pairs of molecules along with their corresponding ground-truth labels. To check the
model performance on the MMP dataset, the molecules from all pairs of MMP entries were com-
bined to form a unique set of 110 molecules. The MMPs identified were supplied to the two trained
models namely, MT-FraGCN and ADMETLab2.0, and one external model (SwissADME (Daina
et al. (2017))) to get the predictions. The corresponding results are summarized in SI Table S1. Gra-
dient Class Activation Map (Grad-CAM) algorithm was applied on all the molecules in the MMP
dataset to get the gradient weights corresponding to each node (fragment) in the graph. Correct
predictions are defined as cases where the positively labelled molecules obtain a positive gradient
or weight for the corresponding MMP transformation identified and vice versa. Fig. 5 depicts two
examples of correctly predicted MMP pairs from the dataset, whose Grad-CAM values were found
to match with their labels. In MMP A (Fig. 5a), adding a hydroxyl group to the molecule trans-
formed the molecule from BBB permeable to BBB impermeable, and in another case (Fig. 5b),
replacing the halogen (Fluorine) with hydrogen atom transformed the molecules from BBB perme-
able to BBB impermeable. It is notable that these transformations are also experimentally proven to
disrupt BBBP property of a molecule (Gentry et al. (1999)). To understand the false positives and
false negatives from the Grad-CAM analysis, incorrectly predicted MMPs were analyzed to justify
the rationale behind the model prediction. This analysis showed that the prediction was mostly in-
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Figure 5: Examples of correctly predicted MMPs (a & b) and incorrectly predicted MMPs (c) using
the MT-FraGCN model for BBB property. The MMP transformation is highlighted in yellow.

Table 3: Top MMP transformations identified for the BBB dataset.

ID MMP Transformation Active to Inactive (I) Inactive to Active (A) Count (C) Mean Change (ratio = (A – I) / C)

1 *—CH3−→ *—Cl 0 8 8 Inactive to Active (1.00)
2 *—OH −→ *—H 0 7 7 Inactive to Active (1.00)
3 *—F −→ *—H 5 1 6 Active to Inactive (-0.66)

fluenced by the scaffold of the molecule even though the corresponding MMP fragment got a correct
weight for the label.

In Fig. 5c, although the second molecule is BBB impermeable, the model predicted it as a BBB
permeable molecule. Grad-CAM analysis showed that scaffold of the corresponding molecule got a
positive Grad-CAM score, while the MMP transformation got a negative score. Since the frequency
of the corresponding scaffold was found to be higher in the set of BBB permeable molecules com-
pared to the fragment involved in the MMP transformation, the model could have interpreted it as a
BBB permeable molecule.

For each MMP transformation present in the BBBP dataset, the number of MMP pairs with matching
model predictions were identified and filtered to extract entries with at least 5 matches (Table 3),
which are considered to be significant. Here, the transformation of C[*] to [*]Cl, was observed to
change the label from impermeable to permeable. If the mean label of a transformation was positive,
then the corresponding transformation was considered to have a significant effect in transforming
the impermeable molecules to permeable molecules and vice versa.

3.4 MATCHED MOLECULAR PAIRS (MMP) ANALYSIS FOR AMES MUTAGENICITY

A similar analysis of MMP dataset was performed for Ames mutagenicity property. The Ames
mutagenecity consists of 600 unique pairs of molecules along with their corresponding ground-truth
labels. To check the model performance on the MMP dataset, the molecules from all pairs of MMP
entries were combined to form a unique set of 712 molecules. The MMPs identified were supplied
to both trained models and one external model similar to the BBBP property model, to obtain the
predictions and corresponding results (SI table S2). It was observed that FraGCN could correctly
predict maximum MMP pairs (SI table S2). Based on Grad-CAM analysis, replacing an amino
group with methyl group in the molecule transformed the molecule from mutagen to non-mutagen
(Fig. 6a), and replacing an amino with hydrogen atom transformed the molecules from mutagen to
non-mutagen (Fig. 6b). Similar to the BBB model, we have also analysed the Grad-CAM scores for
few of the incorrect predictions. The analysis again confirmed that the graph model’s predictions
are influenced by the scaffold of the corresponding molecule. In Fig. 6c, the molecule on the right
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Figure 6: Examples of correctly predicted MMPs (a & b) and incorrectly predicted MMPs (c) using
the MT-FraGCN model. The MMP transformation is highlighted in yellow.

Table 4: Top MMP transformations for Ames Mutagenicity.

ID MMP Transformation Active to Inactive (I) Inactive to Active (A) Count (C) Mean Change (ratio = (A – I) / C)

1 *—NH2 −→ *—H 72 8 80 Active to Inactive (- 0.80)
2 *—Cl −→ *—CH3 11 4 15 Active to Inactive (-0.46)
3 *—Cl −→ *—OH 14 1 15 Active to Inactive (-0.88)
4 *—NH2 −→ *—CH3 9 4 13 Active to Inactive (-0.38)
5 *—CH3 −→ *—OH 12 0 12 Active to Inactive (-1.00)
6 *—NH2 −→ *—OH 10 1 11 Active to Inactive (-0.82)
7 *—CH3 −→ *—NH2 2 8 10 Inactive to Active (0.60)

is a non-mutagen, but was predicted to be an Ames Mutagen. However, a large part of the molecule
(i.e., scaffold) was found to have a positive Grad-CAM score, since it was found to be most frequent
in the mutagen set of molecules.

For each MMP transformation in the Ames Mutagenicity dataset, the number of MMPs with match-
ing model predictions were identified and filtered to extract the entries with at least 10 matching
labels (Table 4). Here the transformation of Chlorine to hydroxyl, methyl or hydrogen, was fre-
quently found to change the label from mutagen to non-mutagen.

4 CONCLUSION

In summary, we have proposed a new fragmentation method named pBRICS for representing small
molecules such that it captures a chemist’s intution. The performance of the model trained using
pBRICS fragments is higher when compared to atom-based representation. Also, the multi-task
property prediction model showed marginal improvement over the corresponding single task mod-
els. Further, the explanations obtained from the trained model are easily interpretable by a medicinal
chemist. While there was some success with the prediction of MMP for BBB permeability and Ames
mutagenicity, the predictive performance is limited due to the amount of data that is available to train
AI-based models. The proposed pBRICS method could guide the optimization of lead molecules,
where the explanation obtained from deep learning models can be used to improve molecular prop-
erties.
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SUPPLEMETARY INFORMATION

Figure S1: Examples of small molecules where only pBRICS can fragment the scaffold and sub-
stituents in comparison with BRICS, RECAP and SynDiR methods.

Table S1: MMP Analysis for BBB Permeability.

Task Model Performance

MT-FraGCN 68 / 110
Combined SMILES list of all pairs of MMPs ADMETLab2.0 80 / 110

swissADME 60 / 110

MT-FraGCN 22 / 102
Matching both labels of MMPs ADMETLab2.0 31 / 102

swissADME 33 / 102

Table S2: MMP Analysis for Ames Mutagenicity.

Task Model Performance

MT-FraGCN 433 / 712
Combined SMILES list of all pairs of MMPs ADMETLab2.0 436 / 712

swissADME 405 / 712

MT-FraGCN 135 / 600
Matching both labels of MMPs ADMETLab2.0 98 / 600

swissADME 33 / 102
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