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ABSTRACT
Most work on natural language question answering today focuses
on answer selection: given a candidate list of sentences, determine
which contains the answer. Although important, answer selection
is only one stage in a standard end-to-end question answering
pipeline. �is paper explores the e�ectiveness of convolutional
neural networks (CNNs) for answer selection in an end-to-end con-
text using the standard TrecQA dataset. We observe that a simple
idf-weighted word overlap algorithm forms a very strong baseline,
and that despite substantial e�orts by the community in applying
deep learning to tackle answer selection, the gains are modest at
best on this dataset. Furthermore, it is unclear if a CNN is more
e�ective than the baseline in an end-to-end context based on stan-
dard retrieval metrics. To further explore this �nding, we conducted
a manual user evaluation, which con�rms that answers from the
CNN are detectably be�er than those from idf-weighted word over-
lap. �is result suggests that users are sensitive to relatively small
di�erences in answer selection quality.

1 INTRODUCTION
Natural language question answering (QA) over free text has a long
history that dates back many decades, but most recent studies—
especially those based on deep learning—focus almost exclusively
on the answer selection problem, which is one stage in an end-to-
end pipeline. Given a question and a number of candidate sentences,
the answer selection task is to decide which of the sentences con-
tains the correct answer. Of course, these candidates have to come
from somewhere and somehow.

�ite naturally, candidate sentences for answer selection origi-
nate from a document collection, and are typically identi�ed based
on document retrieval and some term-based passage extraction
scheme. Yet, these important parts of the QA pipeline are not
considered in most modern evaluations—most QA datasets today
encapsulate only answer selection.

In this paper, we examine the e�ectiveness of answer selection
as a component in an end-to-end question answering system, using
the widely-used TrecQA dataset. �e contribution of this work lies
in three interesting �ndings:
• Experiments on the TrecQA dataset show that scoring sentences

based on idf-weighted word overlap forms a very strong baseline,
and that the gap between this baseline and the state of the art is
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surprisingly small. �is is not a new �nding, although this result
does not appear to be widely known in the literature. Despite
substantial e�ort, mostly by the natural language processing
community, the gains from deep learning are modest at best.

• When examining the e�ectiveness of a standard convolutional
neural network for answer selection in an end-to-end context, it
is not clear if the neural network is be�er than the idf-weighted
word overlap baseline according to standard IR evaluation met-
rics. �is can be interpreted as a negative result.

• To further explore the previous �nding, we conducted a manual
evaluation, which showed that the output of the convolutional
neural network is indeed detectably be�er (by humans) than the
simple idf baseline. �is suggests that end users are quite sensi-
tive to relatively small di�erences in answer selection quality.

Taken together, these �ndings show the importance of conducting
both component-level evaluations (answer selection) as well as
end-to-end evaluations. �e la�er is ignored in most studies today,
which we feel is a major oversight. We recommend that moving
forward, such end-to-end evaluations be given more prominence.

2 BACKGROUND AND RELATEDWORK
2.1 �estion Answering Architectures
Given a question q and a candidate set of sentences {c1, c2, . . . cn },
the answer selection task is to identify sentences that contain the
answer. Answer selection forms an important component in the
standard pipeline architecture for question answering depicted in
Figure 1, adapted from Tellex et al. [20]. Although details vary from
system to system, a general QA architecture consists of a question
analysis component to convert the natural language question into
a search query, a document retrieval component to fetch a set of
documents, and an answer selection component to identify the best
sentences (or more generally, passages). In some designs, an answer
extraction component identi�es the exact natural language phrase
that answers the question [10, 22].

In this setup, answer selection putatively works on candidate
sentences retrieved from the document collection. Although nomi-
nally a classi�cation task, answer selection is usually evaluated in
terms of ranked retrieval metrics. In other words, answer selection
can be viewed as reranking the output of sentences from a previous
stage in the pipeline, similar to multi-stage ranking architectures
in the web context [3, 6, 14, 21, 25]. �e literature also refers to
this as a “telescoping” setup [11], which has emerged as a standard
way to evaluate neural ranking models [12]. �us, although our
work examines only question answering, our �ndings are likely
applicable to a broad range of information retrieval tasks.
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Figure 1: A typical question answering pipeline architecture,
adapted from Tellex et al. [20].
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Figure 2: �e overall design of our convolutional neural net-
work for answer selection.

2.2 CNN for Answer Selection
In this work, we explore the use of convolutional neural networks
(CNNs) for answer selection in an end-to-end question answering
task. Our network is shown in Figure 2, which is a slightly simpli�ed
version of the model proposed by Severyn and Moschi�i [18].

We chose to work with this particular CNN for several reasons.
It is a simple model that delivers reproducible results with multiple
implementations [16]. It is quick to train (even on CPUs), which
supports fast experimental iteration. Although its e�ectiveness
in answer section is no longer the state of the art, the model still
provides a reasonable baseline (as we show later).

Our model adopts a general “Siamese” structure [4] with two
subnetworks processing the question and candidate answer (i.e., the
“document”) in parallel. �is general architecture is fairly common
and used in a variety of othermodels as well [7–9]. �e input to each
“arm” in the neural network is a sequence of words [w1,w2, ...w |S |],
each of which is translated into its corresponding distributional
vector (i.e., from a word embedding), yielding a sentence matrix.
Convolutional feature maps are applied to this sentence matrix,
followed by ReLU activation and simple max-pooling, to arrive at
a representation vector xq for the query and xd for the candidate
answer (“document”).

Dataset Document Collections
TREC8 TREC disks 4&5 minus Congressional Record

TREC9
TREC10

AP newswire (Disks 1-3)
Wall Street Journal (Disks 1-2)
San Jose Mercury News (Disk 3)

Financial Times (Disk 4)
Los Angeles Times (Disk 5)

Foreign Broadcast Information Service (FBIS) (Disk 5)
TREC11
TREC12
TREC13

AQUAINT disks

Table 1: Source document collections for TrecQA.

Set #�estion # Pos Answers # Neg Answers
Train 1,229 6,403 47,014
Dev 82 222 926
Test 100 284 1,233
All 1,411 6,909 49,173

Table 2: Statistics for various splits of TrecQA.

At the join layer (see Figure 2), all intermediate representations
are concatenated into a single vector:

xjoin = [xTq ; xTd ; x
T
feat] (1)

�e �nal component of the input vector at the join layer consists
of “extra features” xfeat derived from four word overlap measures
between the question and the candidate sentence: word overlap
and idf-weighted word overlap between all words and only non-
stopwords. As this model is fairly well known, we refer interested
readers to the papers cited above for more details.

2.3 QA Dataset
Experiments in this paper use the popular TrecQA dataset for eval-
uating answer selection. �e TrecQA dataset was �rst introduced
by Wang et al. [26] and further elaborated by Yao et al. [29]. �e
dataset contains a set of factoid questions, each of which is associ-
ated with a number of candidate sentences that either contain or do
not contain the answer (i.e., positive and negative examples). �e
questions come from the�estion Answering Tracks from TREC 8–
13 [23, 24], and the candidate answers are derived from the output
of track participants, ultimately drawn from the collections listed
in Table 1. �e dataset comes pre-split into train, development, and
test portions, with statistics shown in Table 2.

3 EXPERIMENTS
3.1 Answer Selection Baseline
We implemented the convolutional neural network shown in Fig-
ure 2 using the PyTorch deep learning toolkit. Our implementation,
which we make available open source,1 is based on a reproducibil-
ity study of Severyn and Moschi�i’s model [18] by Rao et al. [16]
1h�p://castor.ai/

http://castor.ai/


Method MAP MRR
Word overlap 0.6496 0.6811
idf-weighted word overlap 0.7014 0.7688
Our CNN model 0.7400 0.8131
Rao et al. [15] 0.780 0.834

Table 3: Results comparing our baselines, our CNN model,
and the state of the art on the TrecQA dataset.

using the Torch deep learning toolkit (implemented in Lua).2 In
fact, our network architecture uses the best se�ing, as determined
by Rao et al. via ablation analyses. In particular, they found that
the bilinear similarity component actually decreases e�ectiveness,
and therefore is not included in our model.

We adopted the same experimental procedures and se�ings as
Rao et al. [16] and report e�ectiveness on the TrecQA dataset in
Table 3. Against this CNN for answer selection, we compared two
very simple baselines:
• Word overlap, which is the count of how many words in the

question also appear in the answer candidate (a�er removing
stopwords).

• idf-weighted word overlap, which is the same measure as
above, except that matches are weighted with the idf value of
the question word.

�e main takeaway from these results is that our CNN is only about
6% more e�ective than a simple idf-based matching technique. In
other words, our convolutional neural network is “doing a lot” for
not much gain.

Let’s take a step back and consider the broader context of these
results. We can consult an ACL wiki page that nicely summarizes
the state of the art in this answer selection task on the TrecQA
dataset [1]. In Table 3, we show the best reported results as of this
writing, which are the �gures published by Rao et al. [15] (note
this is a di�erent paper than the one cited above). We make two
interesting observations:
• �e state of the art (based on deep learning) is a measly 11%

more e�ective than the simple baseline that uses idf-weighted
word overlap.
• According to the ACL wiki page [1], which has charted the ad-

vance of the state of the art over the past decade or so, the simple
idf-weighted word overlap approach is be�er than anything re-
ported in the literature until around 2013.

Despite substantial e�ort (primarily by the natural language pro-
cessing community) in applying deep learning to tackle answer
selection, the gains are modest at best on this dataset. �is is some-
what disappointing given the promise of deep learning, and the
gains that we observe are far less impressive than improvements
reported for computer vision tasks and speech recognition.

We are not the �rst to observe the high e�ectiveness of the idf-
weighted word overlap baseline [19], although this �nding is not as
well known in the community and well reported in the literature
as it should be. Comparison against appropriate baselines is an
important component of evaluation design to ensure that reported
gains are not illusory [2].
2h�ps://github.com/castorini/SM-CNN-Torch

3.2 End-to-End Evaluation
Typically, in a pipeline architecture, component-level improve-
ments in e�ectiveness may not translate into end-to-end e�ective-
ness improvements due to the e�ects of compounding errors and
the fact that bo�lenecks lie elsewhere. Given the answer selection
results reported above, we wondered how our convolutional neural
network would fare in an end-to-end evaluation.

For these experiments, we implemented a multi-stage architec-
ture similar to the one shown in Figure 1. To start, we used our
Anserini retrieval toolkit [28],3 which is built on the open-source
Lucene search engine, to index the collections in Table 1. Each
question was used as a bag-of-words query to retrieve the top h hits
using BM25. All documents were then segmented into sentences,
and we compared the two following conditions:
• idf-reranking. All retrieved sentences are reranked using idf-

weighted word overlap. �e top k are considered for evaluation.
• idf+CNN-reranking. All retrieved sentences are �rst reranked

using idf-weighted word overlap. �e top k are then reranked
by our CNN answer selection model. All k resulting reranked
sentences are considered in the evaluation.

�ere are two wrinkles in our experimental setup. First, although
the TrecQA dataset was ultimately constructed from TREC evalua-
tions, the provenance information connecting answer candidates to
their source documents does not exist. �at is, we do not actually
know which sentences from the original collection are relevant or
not relevant. Of course, we do have the annotated sentences from
the TrecQA dataset, but due to tokenization and other sentence
processing di�erences, an exact string match is not su�cient. For
example, a candidate answer from the TrecQA dataset appears as:

In 1820 , the founder ofmodern nursing , FlorenceNightin-
gale , was born in Florence , Italy .

�e actual source sentence from the collection is as follows:
On this date: In 1820, the founder of modern nursing,
Florence Nightingale, was born in Florence, Italy.

We address this issue by computing the Jaccard similarity between
retrieved sentences from the collection and sentences in the TrecQA
dataset for which we have relevance judgments. If we �nd a match-
ing sentence with Jaccard similarity above 0.7, we use the judgment
of the matching sentence from the TrecQA dataset. If there is more
than one match, we take the judgment with the highest score.

�is simple matching technique enables end-to-end QA evalu-
ation based on the TrecQA judgments, but highlights the second
major issue with our evaluation: missing judgments. Document
retrieval followed by reranking identi�es many sentences for which
we have no relevance judgments. �ese results are shown in Ta-
ble 4 for idf-reranking and Table 5 for idf+CNN-reranking. In both
cases, we evaluate on the top 200 ranked documents (h = 200) from
the collection, reporting MAP, MRR, and rank-biased precision
(RBP) [13] with residuals in parentheses for di�erent values of k .
�e �nal column in both tables shows the number of unjudged
documents in the test set (which contains 100 questions).

Due to the sparsity of judgments, the absolute scores are low, and
furthermore it is not clear if our CNN is actually more e�ective than
idf-weighted word overlap! At least from these numbers, the gains
3h�p://anserini.io/
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k MAP MRR RBP (p = 0.5) unjudged
5000 0.1261 0.1901 0.0903 (0.8735) 478612
1000 0.1259 0.1900 0.0903 (0.8735) 99061
500 0.1259 0.1900 0.0903 (0.8735) 49305
100 0.1245 0.1893 0.0903 (0.8735) 9675
50 0.1216 0.1883 0.0903 (0.8735) 4785
10 0.1045 0.1775 0.0902 (0.8736) 914

Table 4: MAP, MRR, and RBP (residuals in parentheses) for
end-to-end QA using idf-reranking (with the number of doc-
uments retrieved h = 200).

k MAP MRR RBP (p = 0.5) unjudged
5000 0.1011 0.1721 0.0870 (0.8985) 477505
1000 0.1146 0.2029 0.1066 (0.8763) 99032
500 0.1161 0.2035 0.1066 (0.8775) 49289
100 0.1208 0.2102 0.1103 (0.8709) 9674
50 0.1260 0.2228 0.1192 (0.8558) 4785
10 0.1138 0.2314 0.1238 (0.8303) 916

Table 5: MAP, MRR, and RBP (residuals in parentheses) for
end-to-end QA using idf+CNN-reranking (with the number
of documents retrieved, h = 200).

from the CNN model in a component-level evaluation (Table 3)
seemed to have disappeared.

As a sanity check, sentence-level recall (with respect to the rel-
evant sentences in the TrecQA dataset) is shown in Figure 3 for
di�erent values of h (number of hits retrieved). �e document re-
trieval component is indeed identifying relevant candidates, but so
many unjudged sentences are brought into high ranks by the sub-
sequent reranking components that we are unable to discriminate
end-to-end e�ectiveness using standard retrieval metrics.

Let us design an evaluation setup that has the best chance of
discriminating between the e�ectiveness of the CNN and our base-
line. For this, we turn to b-pref [5], which was speci�cally created
to handle cases with missing judgments. Furthermore, instead of
evaluating only the top k results, we consider all sentences returned.
�at is, we rank and evaluate all sentences in the top h hits—once
again, comparing idf-reranking and idf+CNN-reranking. �is setup
maximizes the opportunity for pairwise comparisons that b-pref
depends on.

�e results of this experiment are shown in Figure 4. Here, we
see indeed that the CNN e�ectiveness appears to beat the baseline,
but this doesn’t capture the user’s perspective when interacting
with a QA system. We are able to obtain discrimination between
the two techniques only by reranking a large number of candidate
sentences—in reality, however, users only care about the top few
results in a QA system’s output. In a more reasonable setup of k = 5
and h = 200, idf-reranking produces a b-pref score of 0.1590 and
idf+CNN-reranking produces a b-pref score of 0.1593, which are
for all practical intents indistinguishable.

Figure 3: Recall of relevant sentences from TrecQA with dif-
ferent numbers of documents retrieved.

Figure 4: B-pref comparisons between idf-reranking and
idf+CNN-rerankingwith di�erent numbers of documents re-
trieved.

3.3 Manual Assessment
Summarizing the results so far: it is not clear if our convolutional
neural network is actually more e�ective than the idf-weighted
word overlap baseline according to standard retrievalmetrics. Given
that the di�erences in e�ectiveness are already modest in the an-
swer selection task, it is entirely possible that the di�erences are
“swamped out” by the document retrieval component.

To further examine this issue, we performed amanual assessment
of the answers returned by both the idf-reranking and the idf+CNN-
reranking conditions. We adopted a fairly standard setup (cf. [17,
27]) where the top k results from both conditions are shown to a
human assessor in a side-by-side format. Which side (le� or right)
displayed which condition was randomized and blinded from the
assessor to ensure an unbiased evaluation. For each question, the
assessor could select from four judgments:
• Le�. �e assessor prefers the answers on the le�.
• Right. �e assessor prefers the answers on the right.



Con�guration Judge1 Judge2
idf+CNN-reranking 30 39
idf-reranking 17 18
Both 14 11
Neither 39 32

Table 6: Manual assessment of the end-to-end QA results,
considering the top k = 5 answers (with the number of doc-
uments retrieved h = 200)

• Both. �e assessor expresses no preference; both answers are
equally good.

• Neither. �e assessor expresses no preference; both answers are
equally bad.

In this manual evaluation, we arbitrarily set h (number of docu-
ments retrieved) to 200 and evaluated the top �ve (k = 5) answers.
Manual assessment results by two of the co-authors are shown in
Table 6.

Based on the Wilcoxon sign test (which takes into account ties)
as well as the binomial test (where ties are discarded), we �nd that
idf+CNN-reranking is more e�ective than idf-reranking (p < 0.05).
In other words, deep learning is contributing to a human-detectable
improvement in question answering e�ectiveness.

Interestingly, we �nd that inter-annotator agreement between
the two assessors is only 0.4103 in terms of Cohen’s κ, which can be
characterized as moderate. �is means that although the assessors
agree that idf+CNN-reranking is more e�ective than idf-reranking,
they don’t necessarily agree on which answers are be�er.

4 CONCLUSIONS
�e ultimate goal of a question answering system is to address
a user’s information need, and thus it is important to evaluate a
system from an end-to-end perspective. �e literature, however,
has almost exclusively focused on the answer selection task, which
is only one component in a standard QA pipeline. Even evaluated
in isolation, the gains that have been achieved by deep learning
techniques are modest at best. However, a manual evaluation ap-
pears to show that these gains do translate into human-detectable
improvements in end-to-end answer quality.
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