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Abstract

Accurate 3D object detection in LiDAR point clouds is crucial for autonomous driv-
ing systems. To achieve state-of-the-art performance, the supervised training of detec-
tors requires large amounts of human-annotated data, which is expensive to obtain and
restricted to predefined object categories. To mitigate manual labeling efforts, recent un-
supervised object detection approaches generate class-agnostic pseudo-labels for mov-
ing objects, subsequently serving as supervision signal to bootstrap a detector. Despite
promising results, these approaches do not provide class labels or generalize well to static
objects. Furthermore, they are mostly restricted to data containing multiple drives from
the same scene or images from a precisely calibrated and synchronized camera setup.

To overcome these limitations, we propose a vision-language-guided unsupervised
3D detection approach that operates exclusively on LiDAR point clouds. We transfer
CLIP knowledge to classify point clusters of static and moving objects, which we dis-
cover by exploiting the inherent spatio-temporal information of LiDAR point clouds for
clustering, tracking, as well as box and label refinement. Our approach outperforms state-
of-the-art unsupervised 3D object detectors on the Waymo Open Dataset (+23 AP3p)
and Argoverse 2 (+7.9 AP3p) and provides class labels not solely based on object
size assumptions, marking a significant advancement in the field. Code is available at
https://github.com/chreisinger/ViLGOD.

1 Introduction

For safe navigation and efficient path planning, autonomous vehicles critically rely on 3D
object detection, i.e. they must accurately identify the location, size, and type of objects
(e.g. vehicle, cyclist, pedestrian) in the surrounding traffic environment. Recent 3D object
detectors [12, 23, 40, 41, 42, 55] operate on the single modality of LiDAR point clouds [4,
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14] and require supervised training with vast amounts of manually annotated data, which
is time-consuming and cost-intensive to obtain at a sufficient quality level. Furthermore,
despite their impressive performance, fully supervised 3D detectors lack the flexibility to
cope with changing target data caused, for example, by different sensor setups [49] or unseen
object classes. Re-annotation of this data would be necessary.

Annotation-efficient solutions, such as semi-supervised approaches [47, 59, 64] that re-
quire fewer manually labeled samples, or weakly-supervised methods employing techniques
like click supervision [24, 31, 32] already target these issues. However, these methods still
require human interaction in the form of either hand-labeled data or a human-in-the-loop
setup. Recent unsupervised 3D object detection approaches [2, 29, 34, 50, 62, 66] exhibit
impressive performance in automatic labeling, requiring no prior knowledge other than the
movement assumption' and object size priors [29]. However, such methods suffer from two
major restrictions: First, they focus on localization and bounding box estimation, but do not
provide class labels. Second, due to the lack of category information, they can merely dis-
cover moving objects, thus missing the detection of static foreground objects, which must
be obtained in another fashion, e.g. via repeated self-training [2, 66]. Furthermore, exist-
ing methods mostly require multiple drives from the same scene [29, 62], demanding high-
precision mapping equipment, additional camera images that are precisely calibrated and
synchronized [50], or precise scene flow estimates [2, 34]. However, an unsupervised, class-
aware detector using LiDAR scans from a single drive would be preferable for cost and
performance reasons.

This paper addresses these issues by proposing Vision-Language Guidence for Unsuper-
vised LiDAR-based 3D Object Detection - VILGOD. Drawing inspiration from the recent
success of vision-language foundation models, we employ CLIP [37] to classify objects from
LiDAR point clouds in-the-wild. Specifically, we first propose spatio-temporal clustering
over multiple frames incorporating motion cues to retrieve object proposals with high pre-
cision. After filtering common-sense background samples, we project the remaining object
proposal clusters into 2D image space to generate smooth depth maps from multiple views.
This simplification to the image domain allows us to obtain embeddings from the image path
of the vision-language model. By matching the visual embeddings against pre-processed
text embeddings from the text path, we can acquire corresponding classification scores for
the object proposals, independent of their movement status, resulting in zero-shot detections.

The characteristics of LiDAR sensing, however, impose two unique challenges for pro-
jecting point clusters (see Fig. 1) to leverage 2D vision-language models, which are not
handled by existing approaches that deal only with CAD point clouds [68, 73]: 1) LiDAR
scans are 2.5D, i.e. only the surface visible to the sensor is measured. This incomplete re-
construction restricts the variety in view points that is needed by [68, 73] to fully exploit the
2D visual embeddings. 2) As the distance to the sensor increases, LIDAR scans become in-
creasingly sparse, making it more difficult to identify the projected objects. To mitigate these
problems, we exploit the fact that LIDAR recordings are sequential. We design a simple but
effective tracking and propagation module that allows the generation of different temporal
views of the same object. This module enables, on the one hand, a more robust classification
of objects and, on the other hand, the propagation of class labels. We further exploit temporal
object dependencies to create bounding boxes and propagate them within tracks.

Our contributions are four-fold: (1) ViLGOD is the first unsupervised but class-aware
3D object detection method for outdoor LiDAR point clouds that provides class labels not

IThe scene contains moving objects recognizable by point traces throughout a sequence of LiDAR scans.
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Figure 1: Comparison of point projections. We illustrate two projection examples from
LiDAR clusters of the WOD [46] (top row) and sampled CAD models [52] (bottom row)
evaluated in [73], in three different views. While points sampled from CAD models pro-
duce consistently good results, LIDAR point cluster projections are negatively affected by
incomplete clusters through self-occlusion (car, top left) and sparsity (pedestrian, top right).

solely based on object size heuristics. (2) VILGOD operates on the single modality of LiDAR
point clouds, and requires neither multiple drives throughout the same scene nor additional
camera images. (3) In addition to moving objects, VILGOD also localizes static objects
through CLIP classification, thus provides valuable pseudo labels without the need for re-
peated self-training cycles. (4) Lastly, our detailed evaluations on the Waymo Open Dataset
and Argoverse 2 demonstrate that even in the class-agnostic setup, VILGOD outperforms the
current state-of-the-art unsupervised 3D object detectors.

2 Related Work

Fully supervised LiDAR-based 3D object detection. Current state-of-the-art 3D object
detection networks [12, 41, 42, 55, 61, 72] typically rely on supervised learning methods
and extensive quantities of human-annotated data [4, 30, 46] to achieve peak performance.
Depending on how they handle the sparse and unordered LiDAR point cloud input, these
methods can be broadly divided into grid-based [12, 23, 39, 55, 61, 71, 72], point-based [40,
43, 57, 70], and hybrid methods [41, 42, 61]. Instead of human annotations, all of these
architectures can be trained with our high-quality pseudo-labels in a self-supervised fashion.

Label-efficient 3D object detection. Weakly-supervised methods learn from a limited
amount of annotated data supplemented with auxiliary information, often by indirect super-
vision through image-level labels, coarse object locations, or scene-level annotations rather
than 3D bounding boxes [19, 24, 31, 32, 47, 64]. Semi-supervised methods, on the other
hand, leverage a small amount of labeled data in conjunction with a large volume of unla-
beled data [5, 36, 56, 59]. Lastly, unsupervised methods strive to learn directly from the raw,
unlabeled data, capitalizing on the inherent structure and distribution of the data and geomet-
ric properties. These methods frequently employ clustering techniques [7, 60], contrastive
learning [17, 26, 27, 60] or masking [3, 22, 33, 53] to derive meaningful representations
from the data. Although all these methods have shown the potential to reduce the need for
exhaustive manual annotations, they still require supervision in any form.
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Unsupervised 3D object detection. Early methods for 3D object detection in LiDAR
data [15, 45, 67] introduced the generic pipeline — ground removal, clustering, bounding
box fitting, and tracking — which is the foundation for all recent unsupervised methods to ac-
quire initial detections [2, 10, 29, 34, 38, 50, 62, 66]. They then train deep neural networks
with the initially generated pseudo labels to steadily improve the performance. However,
existing methods are class-agnostic and thus lack the ability to find static objects in the ini-
tial label generation phase. Multiple rounds of self-training aim at mitigating this issue. For
example, MODEST [62] and DRIFT [29] leverage datasets with multiple drives of the same
scene to detect moving objects. Recently, OYSTER [66] leverages track consistency to find
reliable pseudo-labels and introduces beam dropping for self-training to enhance detection
quality in far ranges. Another line of work leverage 3D scene flow [2, 34] and camera im-
ages [50]. In contrast, our VILGOD already localizes and classifies both static and moving
objects without training and does not require multiple drives or additional sensor modalities.

CLIP for 3D understanding. Explorations of transferring CLIP knowledge for 3D under-
standing start with basic tasks of 3D object classification in zero-shot [18, 54, 65, 68, 73],
few-shot [18, 65, 68, 73] and fully-supervised settings [18]. Recent approaches apply CLIP
on non-trivial prediction tasks for 3D scene understanding in indoor environments [11, 16,
20, 28, 35, 58]. However, only few approaches transfer CLIP for outdoor scene understand-
ing on LiDAR point clouds: Peng et al. [35] align 3D point cloud features with correspond-
ing camera images via a distillation loss and evaluate on outdoor open-vocabulary semantic
segmentation. Chen et al. [8] deploy an annotation-free semantic segmentation pipeline by
enforcing consistency between point cloud features and the corresponding image features.
All these works rely on multi-modal inputs, utilizing the 2D images as a bridge to connect
the point cloud and the language modality. In contrast, our method operates exclusively on
LiDAR point clouds and exploits relatively simple techniques [68, 73] for transferring CLIP
knowledge to 3D data without requiring additional camera images. However, careful adjust-
ments are needed to deal with clustering errors, increasing sparsity for distant objects, and
incomplete objects that all arise from 2.5D LiDAR scans.

3 Vision-Language Guided 3D Object Detection

We aim to detect 3D objects solely from LiDAR point clouds, without training on labeled
data. To realize this fully unsupervised, yet class-aware approach, we leverage the spatial
and temporal cues inherently available in sequential LiDAR scans in combination with the
powerful multimodal capabilities of recent vision-language models, as illustrated in Fig. 2.
In particular, we first extract object proposals for both, moving and static objects, by spatio-
temporal clustering, filtering and bounding box fitting (Section 3.1). To obtain category
estimates for these discovered proposals, we then employ the vanilla image-text founda-
tion model CLIP to classify depth map projections in a multi-view aggregation setup (Sec-
tion 3.2). In the final step, we leverage the temporal knowledge to refine and propagate
bounding boxes and class labels throughout the LiDAR sequence, resulting in improved pre-
dictions even for distant objects. We demonstrate that our training-free zero-shot detection
results can be leveraged as pseudo labels for any supervised 3D detector (Section 3.3).


Citation
Citation
{Himmelsbach, Hundelshausen, and Wuensche} 2010

Citation
Citation
{Sualeh and Kim} 2019

Citation
Citation
{Zhang, Song, Shao, Zhao, and Shibasaki} 2013

Citation
Citation
{Baur, Moosmann, and Geiger} 2024

Citation
Citation
{Dewan, Caselitz, Tipaldi, and Burgard} 2016

Citation
Citation
{Luo, Liu, Chen, You, Benaim, Phoo, Campbell, Sun, Hariharan, and Weinberger} 2023

Citation
Citation
{Najibi, Ji, Zhou, Qi, Yan, Ettinger, and Anguelov} 2022

Citation
Citation
{Seidenschwarz, OÅ¡ep, Ferroni, Lucey, and Leal-TaixÃ©} 2024

Citation
Citation
{Wang, Chen, and Zhang} 2022

Citation
Citation
{You, Luo, Phoo, Chao, Sun, Hariharan, Campbell, and Weinberger} 2022{}

Citation
Citation
{Zhang, Yang, Xiong, Casas, Yang, Ren, and Urtasun} 2023

Citation
Citation
{You, Luo, Phoo, Chao, Sun, Hariharan, Campbell, and Weinberger} 2022{}

Citation
Citation
{Luo, Liu, Chen, You, Benaim, Phoo, Campbell, Sun, Hariharan, and Weinberger} 2023

Citation
Citation
{Zhang, Yang, Xiong, Casas, Yang, Ren, and Urtasun} 2023

Citation
Citation
{Baur, Moosmann, and Geiger} 2024

Citation
Citation
{Najibi, Ji, Zhou, Qi, Yan, Ettinger, and Anguelov} 2022

Citation
Citation
{Wang, Chen, and Zhang} 2022

Citation
Citation
{Huang, Dong, Yang, Huang, Lau, Ouyang, and Zuo} 2023

Citation
Citation
{Xue, Gao, Xing, Mart{í}n-Mart{í}n, Wu, Xiong, Xu, Niebles, and Savarese} 2023

Citation
Citation
{Zeng, Jiang, Mao, Han, Ye, Huang, Yeung, Yang, Liang, and Xu} 2023

Citation
Citation
{Zhang, Guo, Zhang, Li, Miao, Cui, Qiao, Gao, and Li} 2022{}

Citation
Citation
{Zhu, Zhang, He, Zeng, Zhang, and Gao} 2023

Citation
Citation
{Huang, Dong, Yang, Huang, Lau, Ouyang, and Zuo} 2023

Citation
Citation
{Zeng, Jiang, Mao, Han, Ye, Huang, Yeung, Yang, Liang, and Xu} 2023

Citation
Citation
{Zhang, Guo, Zhang, Li, Miao, Cui, Qiao, Gao, and Li} 2022{}

Citation
Citation
{Zhu, Zhang, He, Zeng, Zhang, and Gao} 2023

Citation
Citation
{Huang, Dong, Yang, Huang, Lau, Ouyang, and Zuo} 2023

Citation
Citation
{Ding, Yang, Xue, Zhang, Bai, and Qi} 2023

Citation
Citation
{Huang, Pan, Zheng, Jiang, Xie, Wu, Song, and Huang} 2024{}

Citation
Citation
{Huang, Li, Qu, He, Zuo, and Ouyang} 2024{}

Citation
Citation
{Lu, Xu, Wei, Xie, Tomizuka, Keutzer, and Zhang} 2023

Citation
Citation
{Peng, Genova, Jiang, Tagliasacchi, Pollefeys, and Funkhouser} 2023

Citation
Citation
{Yao, Zhang, Yin, Luo, Ouyang, and Huang} 2022

Citation
Citation
{Peng, Genova, Jiang, Tagliasacchi, Pollefeys, and Funkhouser} 2023

Citation
Citation
{Chen, Liu, Kong, Zhu, Ma, Li, Hou, Qiao, and Wang} 2023

Citation
Citation
{Zhang, Guo, Zhang, Li, Miao, Cui, Qiao, Gao, and Li} 2022{}

Citation
Citation
{Zhu, Zhang, He, Zeng, Zhang, and Gao} 2023


FRUHWIRTH-REISINGER, LIN, MALIC, BISCHOF, POSSEGGER: VILGOD

Ground removal

Point-wise motion score

Spatio-temporal clustering

Text prompts

a point
representation
of <class>
car
pedestrian
pole
|
Point-] le\e] motion Project to depth maps
é ﬁ. % i‘l—!’ 4 : ‘
'. ) E ¥ Similarity
Coherem omlmouon A H ¥ ®
[ Reliable object track Y Y VY VY Y VY scores -
08 0.8 08 08 1\ 0 )8 0.1 0.1 05 0.7 02 o
IR R BhyEEE
:"'-.!?-?'5.- £ f R R oS R

Temporal label refinement

CLIP classification

Point cloud sequence

Figure 2: VILGOD overview. After proposal generation (top row), we project 3D point
clusters into 2D depth maps, subsequently fed to CLIP for zero-shot recognition. Objects
close to the ego-vehicle result in smooth depth maps, which can be correctly classified with
high certainty, e.g., the light blue car. Distant objects, however, are more challenging and
require temporal label refinement to improve classification results, e.g. the green pedestrian.
We omit bounding box fitting and refinement visualizations to enhance clarity.

3.1 Unsupervised Object Discovery

We denote a LiDAR point cloud sequence with T frames as P = {P'}_,, where the point
cloud in the ¢-th frame is denoted as P’ = {pt il 1, which represents a set of 3D points

€ R3. In order to enable the unsupervised clustering of spatially related objects, we first
remove ground points in each LiDAR scan. Specifically, we perform ground segmentation
with Patchwork++ [25] that applies plane fitting on concentric zone patches, and outputs a
set of ground points G'. We apply RANSAC [13] to fit a ground plane O, with the ground
points. To find moving objects, we derive the point-level motion information by identifying
ephemeral points [1] in consecutive frames with the persistence point scores (PP-score) [62,
63]. The PP-score is computed as a measure of persistency for a 3D point by counting
the number of its local neighbors across adjacent frames. Subsequently, we perform object
discovery on non-ground points P' = P"\ G'.

Proposal generation. Given that 3D semantic entities consist of spatially related points,
we follow previous work [66] and apply HDBSCAN [6] for clustering. However, to reduce
over-segmentation and noise, we first transform 7 frames of non-ground points */*" into
the reference frame ', sub-sample each frame by 1 /n and concatenate the remaining points
into a single frame 75(’) In addition, we keep all points of frames where the PP-score indicates
motion since moving points most likely belong to objects of interest. As input for clustering,
we use the spatial position (x, y, z), the PP-score and the time difference At w.r.t. the reference
frame for each point p!. The additional temporal input features help the clustering algorithm
to distinguish 1) moving from static objects and 2) moving from moving objects which oc-
cupy the same space at different times (e.g. crossing pedestrian trajectories). As a result, we
receive cluster segments for ', In a preliminary filtering step, we eliminate the most prob-
able background objects. These are objects that either do not contain a minimum number of
points, or are not located on the ground plane O,. This filtering results in a reduced set of
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segments &' = {S! }ff |- Afterwards, we apply simple L-Shape fitting [69] to obtain oriented
3D bounding boxes B = {b%}M for all segments in S’. We denote the i-th bounding box as
b} = (by,by, by, by, by, by,by) " € B' where by, by, b, are the center coordinates, and by, b,
by, by the length, width, height and orientation, respectively.

Temporal coherence. In order to distinguish between moving and static objects, we further
exploit the temporal coherence in LiDAR sequences. First, we gather the point-level motion
information within each segment S! to determine the motion status of the corresponding
bounding box b}. Specifically, if there is a percentile o of points within S' which have
PP-scores above a threshold &, we consider bi- static, and moving otherwise. Second, we
perform multi-target tracking on all bounding boxes throughout the LiDAR sequence with
greedy assignment. Tracks are terminated when they have not been matched with any new
incoming bounding box after a certain period, and each unassigned bounding box initiates
a new track. We determine that a track and its bounding boxes are static if 1) all of its
bounding boxes overlap with the largest box of the track and 2) none of the bounding boxes
was considered moving according to the PP-scores. This distinction provides us with groups
of moving and static objects, which we assign class labels in the following.

3.2 Vision-Language Guided Object Classification

CLIP preliminary. CLIP [37]is a large-scale vision-language model massively pre-trained
via contrastive learning on 400M web image-text pairs, matching web images with their lan-
guage descriptions. CLIP has a dual-encoder architecture comprising a visual encoder ¢,
and a text encoder ¢,. Given an input query image x and a set of category text prompts
T = {tc}ﬁli 1> we denote the L2-normalized visual and text features as z, = ¢,(x) and Z;, =
{o (zc)}’fg ;- The zero-shot image classification is performed by selecting the class prompt
with the maximum similarity to the visual representation, i.e. ¢ = argmax, ¢, (x) " ¢, ().

Transfer CLIP knowledge for 3D recognition. A vision-language foundation model like
CLIP cannot be directly applied for recognition tasks on 3D LiDAR point clouds. Therefore,
we project the zero-centered 3D points within each bounding box into natural-looking 2D
depth maps to mitigate the modality gap between unordered sparse point clouds and grid-
based dense image pixels. Specifically, we follow the shape projection proposed for dense
CAD point clouds [73], which consists of voxelization, densification, and smoothing, to
project a 3D object instance into realistic depth maps. To preserve the 3D information, we
generate the depth maps from multiple views after rotating and tilting the points in each
bounding box. Examples of projected depth maps are illustrated in Figure 1. We denote
the number of views as K, and the set of K depth maps projected from points in the i-th
bounding box as &; = {xf‘ }le. For the category text prompts 7. € T, we use a 3D-specific
prompt template a point representation of <class>. Then, the zero-shot class label for the

k-th view of the i-th object instance is ¢¥ = argmax, ¢, (x¥) " ¢, (¢.).

Category text refinement. For an improved zero-shot classification with CLIP, we refine
the original category names. Particularly, we replace the coarse category name vehicle with
a set of refined classes such as car, truck, bus, and van. Similarly, we replace the abstract
category background with instantiations of common non-traffic-participant objects such as
traffic light, traffic sign, fence, pole, etc. Finally, we add relevant synonyms, e.g. human
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body for pedestrian. The detailed text refinement strategy is elaborated in the supplemental
material. After performing zero-shot classification on the expanded new category space, we
merge the prediction results onto the fewer coarse classes in the original category space.

Multi-view label voting. To improve the prediction accuracy, [73] proposed aggregating
the weighted class predictions of all K views projected from a CAD point cloud. Due to the
different sensing characteristics, however, CLIP predictions for LiDAR-based projections
vary largely depending on the view point. To mitigate this, we vote for the mostly predicted
class label ¢; within K views of an object i and set y; to the mean prediction score of the K
views with the same class label, i.e. y; = ¥; /K, where y¥ = ¢,(x) " ¢ (t;,). If the number
of votes are equal, we assign the class label with the maximum mean score.

Temporally-coherent label refinement. For unsupervised LiDAR segmentations, the pro-
jected depth maps suffer from degraded quality due to clustering errors, sparsity of distant
objects, and incomplete objects of the 2.5D scans, as illustrated in the top-right of Figure 2.
This leads to erroneous recognition results, especially on distant or incomplete objects. To
compensate for this, we leverage the multi-target tracking results from Section 3.1 and ap-
ply a refinement strategy to propagate category labels and refined bounding box estimates
throughout tracks of moving and static objects: For each track, we propagate the most con-
fident CLIP label along the track if it is reliable w.r.t. the temporal progression of the track.
A reliable class prediction means that it appears for at least 60 % of the track. We observed
that CLIP prediction scores for smaller and less well-represented classes (e.g. pedestrians,
cyclists, and background classes) are generally lower than those of vehicles. Thus, we prop-
agate vehicle labels if the predicted score exceeds 0.5 and other labels if they exceed 0.3.
Since moving objects are most certainly objects of interest in our traffic scenario, we aim to
label all of these. If we can not obtain a reliable CLIP prediction, but the object is moving,
we assign the class (vehicle, pedestrian, or cyclist) based on the observed object size.

Not only the correct classification of the object is important, but also its size and position.
To reliably estimate the bounding boxes even for occluded or incompletely observed objects,
we apply a temporal refinement: We first calculate the median box of the M box candidates
which contain the most cluster points within a track. For static object tracks, we propagate
this box estimate at the median position and obtain the orientation as the majority vote among
the M boxes. For moving object tracks, we follow OYSTER [66] and propagate the box not
with the center but along the tracking direction, aligning the box with the closest corner to
the ego-vehicle.

3.3 Self-training

Our training-free unsupervised detection approach provides high quality pseudo-labels for
the supervised training of any arbitrary 3D object detection architecture. We demonstrate
this by leveraging the unsupervised detection results as pseudo ground truth in a supervised
learning setting without bells and whistles. In particular, we train Centerpoint [61] with
our pseudo-labels in a supervised and class-aware setup. We neither do multiple rounds of
training and refinement [2, 29, 62] nor do we require additional augmentations [66].
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Dataset: Waymo Open Dataset (WOD) Argoverse 2

Motion Category: Movable Moving Static Movable

Average Precision: BEV 3D BEV 3D BEV 3D BEV 3D
— DBSCAN [6] 2.7 0.8 0.9 0.0 2.7 0.6 54 2.0
§ RSF [9] 3.0 2.0 8.0 5.5 0.0 0.0 7.4 5.5
% SeMoLi [38] - 19.5 - 57.5 - - - -
= LISO-CP [2] 29.2 21.1 272 204 208 14.0 - -

VILGOD i 363 323 28.0 240 327 311 25.1 22.5
£ OYSTER-CP[66]  21.7 84 15.1 62 176 5.6 38.1 15.0
2  LISO-CP[2] 380 308 350 296 322 255 44.8  36.7
% VILGOD-CP % 564 538 540 521 465 454 464  44.6

Table 1: Class-agnostic evaluation following the protocols of [2, 38] for WOD [46] (i.e.
AP for BEV and 3D, difficulty level L2, IoU 0.4) and [2] for Argoverse 2 [51] (i.e. AP for
BEV and 3D, IoU 0.3). Results for DBSCAN, RSF, OYSTER-CP taken from [2], §: Results
from [38]. #: Method uses CLIP, unsupervised pre-trained on text-image pairs.

4 Experiments

To demonstrate the capabilities of our VILGOD, we conduct experiments on two large-scale
LiDAR datasets. First, we compare our method to state-of-the-art unsupervised object de-
tectors in a class-agnostic setup, where we merge all predicted foreground objects into a
single class. Second, we compare our class-aware results to class-agnostic approaches with
assigned ground truth labels. Finally, we provide a detailed ablation on the separate compo-
nents of our ViLGOD.

Datasets. We conduct our evaluations on the challenging Waymo Open Dataset (WOD) [46]
and Argoverse 2 [51]. WOD contains 1000 publicly available sequences with approximately
200 frames each. It is separated into 798 training and 202 validation sequences. We follow
the evaluation protocol of [2, 34], i.e. evaluating the area of 100m x 40m around the ego
vehicle and reporting average precision (AP) with an intersection over union (IoU) threshold
of 0.4 in 3D and BEV. Following [2, 38], objects that move faster than 1m/s are considered
moving. Full-range evaluations and additional APH (Average precision and heading) scores
are included in the supplemental material. Argoverse 2 contains 700 training and 150 val-
idation sequences with approximately 150 frames each. We follow the evaluation protocol
of [2] and evaluate the area of 100m x 100m around the ego vehicle and report AP with an
IoU threshold of 0.3 in BEV. For the sake of comparability, we merge objects with the ability
to move into the single class movable. In WOD, this affects all relevant object classes; in
Argoverse 2, we exclude, for example, Barrier, Traffic cone, but also bicycle since the object
is not moveable without a rider (i.e. the separate cyclist class).

Implementation Details. We build our detection pipeline on top of the OpenPCDet [48]
framework (v0.6.0) and conduct all experiments with the provided base models. We utilize
Centerpoint [61] for the supervised pseudo-label training. For these experiments, we follow
the standard protocol of OpenPCDet and optimize with Adam [21] in a one-cycle policy [44]
with a maximum learning rate of 0.003. However, we train for only 10 epochs on 50% of the
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Object Class: Vehicle Pedestrian Cyclist
Average Precision: BEV 3D BEV 3D BEV 3D
GT class labels
7; DBSCAN [6] 18.4 4.8 0.2 0.0 0.1 0.0
‘> RSF[9] 10.9 7.4 0.0 0.0 0.2 0.0
2, LISO-CP[2] 60.7 44.0 29 0.9 1.0 0.4
é Predicted class labels
ViLGOD 49.0 448 168 14.1 7.6 7.4
GT class labels
OYSTER-CP [66] 56.2 204 0.0 0.0 0.0 .
LISO-CP [2] 69.5 543 55 3.7 2.2 1.6

Self-train

Predicted class labels
ViLGOD-CP % 644 624 388 359 7.5 7.5

Table 2: Class-aware evaluation on WOD [46] following the protocol of [2] (i.e. AP
scores for BEV and 3D, difficulty level L2, IoU 0.4). Results for DBSCAN, RSF, OYSTER-
CP taken from [2]. {: Method uses CLIP, unsupervised pre-trained on text-image pairs.

training data and do not sample from a pseudo-label database. We ran all our experiments
on 4 NVIDIA® RTX"™ A6000 GPUs. Further implementation details and parameters can be
found in the supplemental material.

Class-agnostic Results. The unsupervised 3D object detection results on the WOD valida-
tion set are shown in Table 1. The direct comparison among all unsupervised methods shows
their object discovery capabilities: Our vision-language guidance allows ViILGOD to locate
both moving and static objects in a single pass without requiring any re-training cycles. By
leveraging the temporal coherence, we are also able to obtain accurate 3D bounding box esti-
mates as indicated by the small gap between AP BEV to AP 3D. Thus, our VILGOD excels in
retrieving object candidates that can be used as pseudo labels to train a detector. To demon-
strate this, we use these object proposals to train a Centerpoint [61] detector from scratch
(denoted ViLGOD-CP). The results for this self-training in Table 1 show that our object pro-
posals lead to a substantially improved detection performance, despite training Centerpoint
for only 10 epochs (without augmenting samples from the pseudo-label database).

Class-aware Results. Table 2 shows the results for our zero-shot detections (i.e. class-
aware predictions) in comparison to existing class-agnostic approaches with assigned ground
truth (GT) labels. The consistently high AP 3D scores show that our VILGOD provides ac-
curate object proposals that are well suited for training a detector. In particular, our ViL-
GOD enables, for the first time, the training of a class-aware detector in an efficient manner:
Without any manual human intervention and without time-consuming repeated self-training
cycles. Notably, our approach leads to remarkable improvements in detecting the vulnerable
road user classes (i.e. pedestrians and cyclists).
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Movable Vehicle Pedestrian  Cyclist

BEV 3D BEV BEV BEV
Baseline 199 183 32.0 4.6 1.3
+ Filtering 222 19.0 349 4.9 1.6
+ Corner alignment 25.1 205 359 8.0 1.4
+ Class label refinement 30.1 252 39.0 16.3 6.4
+ Bounding box refinement 363 323 49.0 16.8 7.6

Table 3: Ablation study following the protocols of [2, 34] on the WOD [46] (i.e. AP for
BEV and 3D, difficulty level L2, IoU 0.4). The baseline includes spatio-temporal clustering,
CLIP [37] classification, and L-shape bounding box fitting [69]. The ablations are split into
filtering (see Section 3.1) and temporally coherent refinement steps, i.e., corner alignment,
class label refinement, bouncing box refinement (see Section 3.2).

Ablation Study. We conduct a detailed ablation study to show the contribution of each step
of our approach. Table 3 lists the zero-shot detection results (pseudo-labels) on the WOD
validation set. In addition to class-agnostic scores, we provide class-aware results, as our
method provides zero-shot class-label predictions, allowing for better analysis.

The baseline represents a simple combination of spatio-temporal clustering, CLIP [37]
classification, and L-shape box fitting [69]. As shown by the results, all steps contribute to
the effectiveness of our unsupervised detection approach ViLGOD, allowing us to surpass
the current state-of-the-art in unsupervised (class-agnostic) 3D object detection. The sim-
ple preliminary filtering not only increases the performance by 2.3 APggy / 0.7 AP3p but
also speeds up the entire detection process by significantly reducing the number of remain-
ing cluster segments. The corner-aligned box fitting [66] for moving objects particularly
affects the detection quality of pedestrians. With an overall increase in performance by
2.9 APggy / 1.5 AP3p for movable objects, pedestrians benefit the most with an increase of
63.3% from 4.9 APggy to 8.0 APpgy. The most significant step, however, is the class label
refinement. It increases the performance for all object classes, doubling the performance on
pedestrians, and enables the detection of at least some cyclists. Finally, the propagation of
adjusted bounding boxes is especially advantageous for vehicles. Incorporating this final re-
finement step improves the overall performance by 6.2 APggy / 7.1 AP3p and thus represents
the greatest overall improvement in absolute terms. Note that the largest improvement stems
from the vehicle class, which represents the largest proportion of the classes in the WOD.

5 Conclusion

We proposed VILGOD, the first fully unsupervised, yet class-aware 3D object detection
method for LiDAR data. We combine the strong representation capabilities of vision-language
models with unsupervised object discovery for both static and moving objects. This enables
zero-shot detections, which result in reliable pseudo labels when propagated throughout Li-
DAR sequences. These pseudo-labels can be directly utilized to train a 3D object detector in
a supervised manner, without the need for multiple self-training iterations. Our evaluations
demonstrate the potential of this fully unsupervised data exploration strategy to significantly
reduce the manual annotation costs needed to obtain sufficient amounts of data to train cur-
rent state-of-the-art detectors.
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