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Abstract

We address stance dissonance detection, the
task of detecting conflicting stance between
two input statements. Computational models
for traditional stance detection have typically
been trained to indicate pro/con for a given tar-
get topic (e.g. gun control) and thus do not
generalize well to new topics. In this paper,
we systematically evaluate the generalizability
of this task to situations where examples of
the topic has not been seen at all (zero-shot)
or only a few times (few-shot). We first build
a large-scale dataset of stance dissonance de-
tection from an online debate platform, con-
sisting of 23.8k pairs of statements from 34
diverse topics. We show that stance disso-
nance detection models trained only on a small
number of non-target topics already perform
as well as those trained on a target topic. We
also show that adding more non-target topics
further boosts the performance, indicating the
generalizability of non-target topics to a target
topic in the stance dissonance detection task.

1 Introduction

It has been suggested that the main point of hu-
man reasoning is to support stance argumentation
(Mercier and Sperber, 2011). Techniques to bet-
ter capture stance and argumentation have wide
ranging applications from an educational strategy
for facilitating learning (Schwarz and Asterhan,
2010; Scheuer et al., 2010) to tracking political
opinions (Thomas et al., 2006).

We address the problem of identifying
(dis)agreement between utterances that express
stances towards a topic (Bar-Haim et al., 2017;
Xu et al., 2019; Korner et al., 2021) (henceforth,
stance dissonance detection). Given two claims
c1, co under topic t, the task is to classify them into
either (i) CONSONANCE if the stance suggested
by c; towards ¢ is the same as that by cg, (i) D1S-
SONANCE if the stance suggested by c; towards
t is the opposite to that by sg, or (iii) NEITHER

(see Table 1 for examples). This is a challenging
task that tries to understand (dis)agreement
between consecutive utterances where the topic
of contention (henceforth, target topic) is not
always explicitly stated. Such instances are found
abundantly in comments, replies and responses
to videos, news articles and other online media
content.

Stance detection (Kii¢iik and Can, 2020) is con-
ventionally modeled as a single document (topic-
dependent) classification task, whereby models are
trained for each potential target topic (e.g. gun
control, abortion, etc.) (Hasan and Ng, 2013; Mo-
hammad et al., 2016; Xu et al., 2019). However,
such an approach can only be applied to topics
that are pre-specified and for which training data
is available. Yet one can express stance on endless
topics — local, situational, or new — for which
training data is not available.

To address this issue, stance detection has also
been studied in the fopic-zero-shot (TZS) and topic-
few-shot (TFS) settings (Xu et al., 2018; Stab et al.,
2018; Zhang et al., 2020; Allaway and McKeown,
2020; Allaway et al., 2021; Hardalov et al., 2021;
Reuver et al., 2021), where only training data from
non-target topics is available (TZS), or only a small
number of training data from target topics is avail-
able (TFS). The main limitation of these studies
is that they experiment on a small number of non-
target topics (up to eight topics): it is still unclear
how a larger number of non-target topics is gener-
alized in the stance detection task.

Here, we conduct a large-scale empirical study
on how training data from non-target topics im-
pacts on TzS and TFS stance dissonance detection
models. Our contributions are:

* We evaluate the topic generalizability of
stance dissonance detection models on a topic-
diverse, large-scale corpus. Our dataset (§3)
consists of 23.8k claim pairs from 34 diverse
topics, larger than existing studies using, e.g.,



eight (Reuver et al., 2021), five (Xu et al.,
2019) or two topics (Korner et al., 2021)).

* We show that TZS stance dissonance detection
models trained on a small number (only 4) of
non-target topics already perform as well as
those trained on a target topic (§4).

* We show that adding more non-target topics
further boosts the performance, indicating the
generalizability of non-target topics to unseen
topics in the stance dissonance detection task.

2 Related work

Stance detection is the problem of identifying the
stance expressed by a text towards a target (Kiiciik
and Can, 2020), which is often generalized as
stance dissonance detection (Rosenthal and McK-
eown, 2015; Xu et al., 2019; Korner et al., 2021).
Bar-Haim et al. (2017) introduce contrast detection
between two short, concise topic phrases, whereas
more recent work (Xu et al., 2019; Korner et al.,
2021) examines the claim-pair stance in the context
of a topic and examines cross-topic transferability
among two topics.

While conventional stance detection models are
trained for a specific target topic, recent work has
explored topic-general stance detection models in
a cross-target setting (Xu et al., 2018; Stab et al.,
2018; Zhang et al., 2020; Hardalov et al., 2021;
Kaushal et al., 2021; Reuver et al., 2021) and
TzS/TFS settings (Allaway and McKeown, 2020;
Allaway et al., 2021). For example, Xu et al. (2018)
examine the cross-target applicability and transfer-
ability of traditional stance detection tasks. Zhang
et al. (2020) incorporate external emotion, senti-
ment lexicon, and world knowledge to achieve bet-
ter performance on the cross-target setting. All-
away et al. (2021) eliminate any topic-specific
information from models using adversarial train-
ing. However, most of these studies use a corpus
comprising a small number of topics, such as the
SemEval-2016 Task 6 corpus (Mohammad et al.,
2016) which contains six topics. In contrast, we
explore the impact of non-target topics on a corpus
of 32 topics, many more than prior studies.

An exception is Allaway and McKeown (2020),
who introduce a corpus for TZS/TFS stance de-
tection consisting of 23.5k statements over (possi-
bly semantically overlapping) 5,634 topics (4 state-
ments per topic on avg.). In contrast, our dataset
is designed to have diverse 34 topics and is more

topic-dense (700 claim pairs per topic; see §3),
which provides us a more direct route to explore
the generalizability of non-target topics at scale.

Our task is also similar to a broad range of NLP
tasks seeking to identify some type of relation
between spans of text. Notable instantiations of
this problem include Discourse Relation Identifica-
tion (Prasad et al., 2008; Bosc et al., 2016), Seman-
tic Textual Similarity (Cer et al., 2017), and Textual
Entailment Task (Bowman et al., 2015; Williams
et al., 2018). However, few studies have inves-
tigated generalizability of models.! Our work is
particularly pertinent to the argument mining com-
munity, where most existing work focuses on dis-
course level or long-form texts for a limited num-
ber of targets or topics (Menini and Tonelli, 2016;
Cocarascu and Toni, 2017; Menini et al., 2018).
Some work has sought to annotate and classify
discourse arguments in tweets that support or at-
tack each other (Bosc et al., 2016), but focused on
argumentation-level support/attack, as opposed to
a generalized, topic-level approach.

3 Data collection

3.1 Source data

To build a dataset for stance dissonance detection
with a large number of diverse topics, we extract ar-
guments from Kialo?, one of the popular online
debate platforms. The arguments on Kialo are
tree-structured: given a topic claim (i.e. a starting
statement which is being debated, such as Should
vaping be banned?), users write claims, explicitly
labeling their stance (either pro or con) on the topic
claim. Other users can also reply to each claim
with pro/con labels. At the time of submission,
Kialo has 16,884 topic claims and 637,383 pro/con
claims.

3.2 Extracting claim pairs

Our goal is to collect claim pairs from diverse top-
ics. To this end, we manually choose seed 72 topics
which are semantically dissimilar to each other, and
then extract any claim pairs in a parent-child rela-
tionship. Given a claim pair ¢y, co, we label them
as (i) CONSONANCE if ¢; is a pro claim for ¢, or
(i1) DISSONANCE if ¢; is a con claim for c¢s.

"Williams et al. (2018) created a large-scale corpus of tex-
tual entailment from diverse sources of texts including govern-
ment websites and telephone conversations, and analyzed the
domain-generalizability of textual entailment models. How-
ever, domain here is a type of document rather than a topic.

https://www.kialo.com/


https://www.kialo.com/

Label # topics  # claim pairs

Example (topic: Should Zoos be banned?)

CONSONANCE 34 7,559

c1: Animals in zoos are not usually trained to do tricks, and when they

are in contemporary zoos, it is done through a reward based system as an
enrichment exercise. co: Trainers reinforce desirable behavior with a variety
of rewards, and do not draw attention to undesirable behavior.

DISSONANCE 34 8,289

c1: Zoos cause suffering and harm to animals. c2: We are unable to under-

stand how, or even if, animals feel pain in a way that is remotely similar to
how humans do. We should therefore prioritise quantifiable human utility.

NEITHER 34 7,952

c1: Dogs were created by humans selectively breeding wolves. c2: Humans

do not have a right to breed, capture and confine other animals, even if they

are endangered.

Table 1: Summary of the constructed dataset. Our dataset has a diverse, larger number of topics, and each topic

has 700 labeled claim pairs.

To ensure that the absence of a relation between
any two unrelated claims is also captured by stance
dissonance detection models, we artificially created
pairs of claims randomly chosen from the same
topic and labeled them as NEITHER.

3.3 Postprocessing

To ensure a reasonable number of claims for each
topic, we eliminate topics consisting of fewer than
700 claim pairs. To balance the number of claim
pairs per topic, we randomly sample 700 claim
pairs from each topic for use in our experiments.

Our final dataset consists of 34 topics, each of
which consists of 700 claim pairs. This enables a
large-scale empirical study on the impact of non-
target topics for TZS/TFS stance dissonance detec-
tion models. The summary statistics of our dataset
along with examples are shown in Table 1.

4 Experiments

4.1 Model

We use RoBERTA-base (Liu et al., 2019) to obtain
a representation of each input claim pair. Given
a pair of claim cy, cg, the input to the model is
of the following form: “[CLS]c; [SEP] c3 [SEP]”.
We then take the contextualized word embedding
x € R? of [CLS] in the final layer and feed it into
the linear classifier: y = softmax(WWx+b), where
W € R¥3, b € R3 is a learned model parameter.

We trained the model parameters (along with all
weights in ROBERTa) with a cross entropy loss for
10 epochs, using AdamW with the learning rate of
3 x 1075, the batch size of 16 and warm up ratio
of 0.1.3 To avoid overfitting, we use early stopping
(patient of 5) with a macro-averaged F1.

3We used huggingface’s transformer https: //github.

com/huggingface/transformers.

4.2 Target topics

To explore the generalizability of topics in the
stance dissonance detection task, we select a di-
verse set of target topics that are dissimilar to each
other. In our experiment, we encode all topics
into sentence embeddings with Sentence Trans-
formers (Reimers and Gurevych, 2019)* and apply
k-means clustering (k = 5). We then identify one
topic closest to the centroid of each cluster.

This yields the following five, mutually exclu-
sive target topics: (i) Should Zoos Be Banned?,
(i1) Was Donald Trump a Good President?, (iii)
Free Will or Determinism, (iv) Should "women-
only" spaces be open to anyone identifying as a
woman?, and (v) Should European Monarchies Be
Abolished?. As a final result, we report an average
of Macro-F1s for each target topic.

4.3 Training configurations

For each target topic, we train stance dissonance
detection models with the following configurations.

Topic-Zero-Shot (TzZS) To explore the pure gen-
eralizability of non-target topics, we use only train-
ing data from 33 (=34-1) non-target topics and do
not use any training data from the target topic.

Topic-Few-Shot (TFS) In practice, it is not diffi-
cult to create a small number of training instances
for a given target topic. We train on a small number
of claim pairs from the target topic in addition to
pairs from 33 non-target topics. In our experiments,
we randomly sample 20 (TFs-20) or 50 instances
(TFs-50) from the target topic.

Full-Shot (FL) To estimate the baseline perfor-
mance, we train the model only on the target topic
(FL-0). This roughly corresponds to conventional

*all-mpnet-base-v2 at https: / /www.sbert .net /.
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Figure 1: Effect of non-target topics in the topic-zero-
/few-shot setting. The models trained only on a small
number of non-target topics (TzS,TFs-20/50) already
perform as well as those trained only on the target topic
(FL-0). Adding more non-target topics further boosts
the performance of TZS/TFS models. The shaded area
is the standard error of 25 trials (5 targets x 5 trials).

stance detection models. To estimate the upper
bound performance, we also train the model on
all topics including both the target topic and 32
non-target topics (FL-32).

To see the effect of non-target topics, we vary
the number of non-target topics from 2 to 32. For
each size k, we create a five random set of k topics
and average Macro Fl1s over these trials.

4.4 Results

Fig. 1 shows the effect of increasing number of non-
target topics under the TZS/TFs setting. Surpris-
ingly, the TFs-50 trained on only two non-target
topics and 50 target-topic samples has already F1
comparable to the full-shot model (FL-0). The
other models also outperform the full-shot model
when trained on a sufficient number of non-target
topics (> 4). As the number of non-target top-
ics increases, the performance further improves:
even TZs significantly outperforms FL-0 at 32 top-
ics. This indicates the great potential of non-target
topic samples: there are a large amount of topic-
independent cues in stance dissonance detection,
which are seemingly captured by the model.

This begs the question of how well these ap-
proaches compare to training with all the topics,
including the target topic. The performance loss of
TzS/TFS models compared to the full-shot model
using 32 non-target samples is shown in Table 2.
Surprisingly, the drop in performance observed
when cutting down the target-specific training sam-
ples from 560 (FL-32) to 50 samples (TFS-50) is

Setting  # non-target # target Target-topic F1
topics samples  (avg.)

FL-32 32 560 0.747

TFS-50 32 50 0.732 (4 0.015)

TFs-20 32 20 0.729 (4 0.018)

Tzs 32 0 0.718 (4 0.029)

Table 2: Performance loss of TzS/TFS models from
the full-shot model (FL-32) under 32 non-target topics.
The few-shot models trained on only 20 or 50 exam-
ples from a target topic (TFS-20/50) has a significantly
small loss from the full-shot model (FL-32). Standard
error for all these settings is 0.003.

comparable to further reducing target-specific sam-
ples to 20 (TFs-20).

The results show that the stance dissonance de-
tection models trained on a small number of top-
ics exhibit an impressive ability to generalize to
previously unseen target topics and exhibit further
performance gains when exposed to a small num-
ber of samples from the target topic. This indicates
that the model learns topic-independent cues, and
that underlying patterns of arguments to signify
the dissonance between claims can be successfully
captured with non-target topics.

5 Conclusions

This paper weighs in on a key problem as NLP ex-
pands more and more from word-level models into
models describing semantic discourse relations: the
role of topic diversity at training time for gener-
alizing to new topics. To this end, we have ad-
dressed the problem of stance dissonance detection
in the TZS/TFS setting. To investigate the impact of
non-target topics for stance dissonance detection,
we have built a large-scale dataset of stance dis-
sonance detection from an online debate platform,
consisting of 23.8k claim pairs from 34 diverse top-
ics. In the case of consonance and dissonance of
stance, we find that models continue to improve
under a “topic independent setting” (i.e. with zero-
or few-shots of the topic) all the way up to having
learned from 32 non-target topics. Our experiments
also revealed that TZS/TFS stance dissonance de-
tection models trained on only a small number of
non-target topics already perform as well as those
trained on a target topic, and that adding more non-
target topics further boosts performance, indicating
the generalizability of non-target topics to unseen
topics in the stance dissonance detection task.



Ethical Considerations

To create the dataset (§3), we use publicly avail-
able dataset on the web. We are restricted to only
document-level information; No user-level infor-
mation is used.
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