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Abstract

We address stance dissonance detection, the001
task of detecting conflicting stance between002
two input statements. Computational models003
for traditional stance detection have typically004
been trained to indicate pro/con for a given tar-005
get topic (e.g. gun control) and thus do not006
generalize well to new topics. In this paper,007
we systematically evaluate the generalizability008
of this task to situations where examples of009
the topic has not been seen at all (zero-shot)010
or only a few times (few-shot). We first build011
a large-scale dataset of stance dissonance de-012
tection from an online debate platform, con-013
sisting of 23.8k pairs of statements from 34014
diverse topics. We show that stance disso-015
nance detection models trained only on a small016
number of non-target topics already perform017
as well as those trained on a target topic. We018
also show that adding more non-target topics019
further boosts the performance, indicating the020
generalizability of non-target topics to a target021
topic in the stance dissonance detection task.022

1 Introduction023

It has been suggested that the main point of hu-024

man reasoning is to support stance argumentation025

(Mercier and Sperber, 2011). Techniques to bet-026

ter capture stance and argumentation have wide027

ranging applications from an educational strategy028

for facilitating learning (Schwarz and Asterhan,029

2010; Scheuer et al., 2010) to tracking political030

opinions (Thomas et al., 2006).031

We address the problem of identifying032

(dis)agreement between utterances that express033

stances towards a topic (Bar-Haim et al., 2017;034

Xu et al., 2019; Körner et al., 2021) (henceforth,035

stance dissonance detection). Given two claims036

c1, c2 under topic t, the task is to classify them into037

either (i) CONSONANCE if the stance suggested038

by c1 towards t is the same as that by c2, (ii) DIS-039

SONANCE if the stance suggested by c1 towards040

t is the opposite to that by s2, or (iii) NEITHER041

(see Table 1 for examples). This is a challenging 042

task that tries to understand (dis)agreement 043

between consecutive utterances where the topic 044

of contention (henceforth, target topic) is not 045

always explicitly stated. Such instances are found 046

abundantly in comments, replies and responses 047

to videos, news articles and other online media 048

content. 049

Stance detection (Küçük and Can, 2020) is con- 050

ventionally modeled as a single document (topic- 051

dependent) classification task, whereby models are 052

trained for each potential target topic (e.g. gun 053

control, abortion, etc.) (Hasan and Ng, 2013; Mo- 054

hammad et al., 2016; Xu et al., 2019). However, 055

such an approach can only be applied to topics 056

that are pre-specified and for which training data 057

is available. Yet one can express stance on endless 058

topics — local, situational, or new — for which 059

training data is not available. 060

To address this issue, stance detection has also 061

been studied in the topic-zero-shot (TZS) and topic- 062

few-shot (TFS) settings (Xu et al., 2018; Stab et al., 063

2018; Zhang et al., 2020; Allaway and McKeown, 064

2020; Allaway et al., 2021; Hardalov et al., 2021; 065

Reuver et al., 2021), where only training data from 066

non-target topics is available (TZS), or only a small 067

number of training data from target topics is avail- 068

able (TFS). The main limitation of these studies 069

is that they experiment on a small number of non- 070

target topics (up to eight topics): it is still unclear 071

how a larger number of non-target topics is gener- 072

alized in the stance detection task. 073

Here, we conduct a large-scale empirical study 074

on how training data from non-target topics im- 075

pacts on TZS and TFS stance dissonance detection 076

models. Our contributions are: 077

• We evaluate the topic generalizability of 078

stance dissonance detection models on a topic- 079

diverse, large-scale corpus. Our dataset (§3) 080

consists of 23.8k claim pairs from 34 diverse 081

topics, larger than existing studies using, e.g., 082
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eight (Reuver et al., 2021), five (Xu et al.,083

2019) or two topics (Körner et al., 2021)).084

• We show that TZS stance dissonance detection085

models trained on a small number (only 4) of086

non-target topics already perform as well as087

those trained on a target topic (§4).088

• We show that adding more non-target topics089

further boosts the performance, indicating the090

generalizability of non-target topics to unseen091

topics in the stance dissonance detection task.092

2 Related work093

Stance detection is the problem of identifying the094

stance expressed by a text towards a target (Küçük095

and Can, 2020), which is often generalized as096

stance dissonance detection (Rosenthal and McK-097

eown, 2015; Xu et al., 2019; Körner et al., 2021).098

Bar-Haim et al. (2017) introduce contrast detection099

between two short, concise topic phrases, whereas100

more recent work (Xu et al., 2019; Körner et al.,101

2021) examines the claim-pair stance in the context102

of a topic and examines cross-topic transferability103

among two topics.104

While conventional stance detection models are105

trained for a specific target topic, recent work has106

explored topic-general stance detection models in107

a cross-target setting (Xu et al., 2018; Stab et al.,108

2018; Zhang et al., 2020; Hardalov et al., 2021;109

Kaushal et al., 2021; Reuver et al., 2021) and110

TZS/TFS settings (Allaway and McKeown, 2020;111

Allaway et al., 2021). For example, Xu et al. (2018)112

examine the cross-target applicability and transfer-113

ability of traditional stance detection tasks. Zhang114

et al. (2020) incorporate external emotion, senti-115

ment lexicon, and world knowledge to achieve bet-116

ter performance on the cross-target setting. All-117

away et al. (2021) eliminate any topic-specific118

information from models using adversarial train-119

ing. However, most of these studies use a corpus120

comprising a small number of topics, such as the121

SemEval-2016 Task 6 corpus (Mohammad et al.,122

2016) which contains six topics. In contrast, we123

explore the impact of non-target topics on a corpus124

of 32 topics, many more than prior studies.125

An exception is Allaway and McKeown (2020),126

who introduce a corpus for TZS/TFS stance de-127

tection consisting of 23.5k statements over (possi-128

bly semantically overlapping) 5,634 topics (4 state-129

ments per topic on avg.). In contrast, our dataset130

is designed to have diverse 34 topics and is more131

topic-dense (700 claim pairs per topic; see §3), 132

which provides us a more direct route to explore 133

the generalizability of non-target topics at scale. 134

Our task is also similar to a broad range of NLP 135

tasks seeking to identify some type of relation 136

between spans of text. Notable instantiations of 137

this problem include Discourse Relation Identifica- 138

tion (Prasad et al., 2008; Bosc et al., 2016), Seman- 139

tic Textual Similarity (Cer et al., 2017), and Textual 140

Entailment Task (Bowman et al., 2015; Williams 141

et al., 2018). However, few studies have inves- 142

tigated generalizability of models.1 Our work is 143

particularly pertinent to the argument mining com- 144

munity, where most existing work focuses on dis- 145

course level or long-form texts for a limited num- 146

ber of targets or topics (Menini and Tonelli, 2016; 147

Cocarascu and Toni, 2017; Menini et al., 2018). 148

Some work has sought to annotate and classify 149

discourse arguments in tweets that support or at- 150

tack each other (Bosc et al., 2016), but focused on 151

argumentation-level support/attack, as opposed to 152

a generalized, topic-level approach. 153

3 Data collection 154

3.1 Source data 155

To build a dataset for stance dissonance detection 156

with a large number of diverse topics, we extract ar- 157

guments from Kialo2, one of the popular online 158

debate platforms. The arguments on Kialo are 159

tree-structured: given a topic claim (i.e. a starting 160

statement which is being debated, such as Should 161

vaping be banned?), users write claims, explicitly 162

labeling their stance (either pro or con) on the topic 163

claim. Other users can also reply to each claim 164

with pro/con labels. At the time of submission, 165

Kialo has 16,884 topic claims and 637,383 pro/con 166

claims. 167

3.2 Extracting claim pairs 168

Our goal is to collect claim pairs from diverse top- 169

ics. To this end, we manually choose seed 72 topics 170

which are semantically dissimilar to each other, and 171

then extract any claim pairs in a parent-child rela- 172

tionship. Given a claim pair c1, c2, we label them 173

as (i) CONSONANCE if c1 is a pro claim for c2, or 174

(ii) DISSONANCE if c1 is a con claim for c2. 175

1Williams et al. (2018) created a large-scale corpus of tex-
tual entailment from diverse sources of texts including govern-
ment websites and telephone conversations, and analyzed the
domain-generalizability of textual entailment models. How-
ever, domain here is a type of document rather than a topic.

2https://www.kialo.com/
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Label # topics # claim pairs Example (topic: Should Zoos be banned?)

CONSONANCE 34 7,559 c1: Animals in zoos are not usually trained to do tricks, and when they
are in contemporary zoos, it is done through a reward based system as an
enrichment exercise. c2: Trainers reinforce desirable behavior with a variety
of rewards, and do not draw attention to undesirable behavior.

DISSONANCE 34 8,289 c1: Zoos cause suffering and harm to animals. c2: We are unable to under-
stand how, or even if, animals feel pain in a way that is remotely similar to
how humans do. We should therefore prioritise quantifiable human utility.

NEITHER 34 7,952 c1: Dogs were created by humans selectively breeding wolves. c2: Humans
do not have a right to breed, capture and confine other animals, even if they
are endangered.

Table 1: Summary of the constructed dataset. Our dataset has a diverse, larger number of topics, and each topic
has 700 labeled claim pairs.

To ensure that the absence of a relation between176

any two unrelated claims is also captured by stance177

dissonance detection models, we artificially created178

pairs of claims randomly chosen from the same179

topic and labeled them as NEITHER.180

3.3 Postprocessing181

To ensure a reasonable number of claims for each182

topic, we eliminate topics consisting of fewer than183

700 claim pairs. To balance the number of claim184

pairs per topic, we randomly sample 700 claim185

pairs from each topic for use in our experiments.186

Our final dataset consists of 34 topics, each of187

which consists of 700 claim pairs. This enables a188

large-scale empirical study on the impact of non-189

target topics for TZS/TFS stance dissonance detec-190

tion models. The summary statistics of our dataset191

along with examples are shown in Table 1.192

4 Experiments193

4.1 Model194

We use RoBERTA-base (Liu et al., 2019) to obtain195

a representation of each input claim pair. Given196

a pair of claim c1, c2, the input to the model is197

of the following form: “[CLS]c1 [SEP] c2 [SEP]”.198

We then take the contextualized word embedding199

x ∈ Rd of [CLS] in the final layer and feed it into200

the linear classifier: y = softmax(Wx+b), where201

W ∈ Rd×3,b ∈ R3 is a learned model parameter.202

We trained the model parameters (along with all203

weights in RoBERTa) with a cross entropy loss for204

10 epochs, using AdamW with the learning rate of205

3 × 10−5, the batch size of 16 and warm up ratio206

of 0.1.3 To avoid overfitting, we use early stopping207

(patient of 5) with a macro-averaged F1.208

3We used huggingface’s transformer https://github.
com/huggingface/transformers.

4.2 Target topics 209

To explore the generalizability of topics in the 210

stance dissonance detection task, we select a di- 211

verse set of target topics that are dissimilar to each 212

other. In our experiment, we encode all topics 213

into sentence embeddings with Sentence Trans- 214

formers (Reimers and Gurevych, 2019)4 and apply 215

k-means clustering (k = 5). We then identify one 216

topic closest to the centroid of each cluster. 217

This yields the following five, mutually exclu- 218

sive target topics: (i) Should Zoos Be Banned?, 219

(ii) Was Donald Trump a Good President?, (iii) 220

Free Will or Determinism, (iv) Should "women- 221

only" spaces be open to anyone identifying as a 222

woman?, and (v) Should European Monarchies Be 223

Abolished?. As a final result, we report an average 224

of Macro-F1s for each target topic. 225

4.3 Training configurations 226

For each target topic, we train stance dissonance 227

detection models with the following configurations. 228

Topic-Zero-Shot (TZS) To explore the pure gen- 229

eralizability of non-target topics, we use only train- 230

ing data from 33 (=34-1) non-target topics and do 231

not use any training data from the target topic. 232

Topic-Few-Shot (TFS) In practice, it is not diffi- 233

cult to create a small number of training instances 234

for a given target topic. We train on a small number 235

of claim pairs from the target topic in addition to 236

pairs from 33 non-target topics. In our experiments, 237

we randomly sample 20 (TFS-20) or 50 instances 238

(TFS-50) from the target topic. 239

Full-Shot (FL) To estimate the baseline perfor- 240

mance, we train the model only on the target topic 241

(FL-0). This roughly corresponds to conventional 242

4all-mpnet-base-v2 at https://www.sbert.net/.
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Figure 1: Effect of non-target topics in the topic-zero-
/few-shot setting. The models trained only on a small
number of non-target topics (TZS,TFS-20/50) already
perform as well as those trained only on the target topic
(FL-0). Adding more non-target topics further boosts
the performance of TZS/TFS models. The shaded area
is the standard error of 25 trials (5 targets × 5 trials).

stance detection models. To estimate the upper243

bound performance, we also train the model on244

all topics including both the target topic and 32245

non-target topics (FL-32).246

To see the effect of non-target topics, we vary247

the number of non-target topics from 2 to 32. For248

each size k, we create a five random set of k topics249

and average Macro F1s over these trials.250

4.4 Results251

Fig. 1 shows the effect of increasing number of non-252

target topics under the TZS/TFS setting. Surpris-253

ingly, the TFS-50 trained on only two non-target254

topics and 50 target-topic samples has already F1255

comparable to the full-shot model (FL-0). The256

other models also outperform the full-shot model257

when trained on a sufficient number of non-target258

topics (≥ 4). As the number of non-target top-259

ics increases, the performance further improves:260

even TZS significantly outperforms FL-0 at 32 top-261

ics. This indicates the great potential of non-target262

topic samples: there are a large amount of topic-263

independent cues in stance dissonance detection,264

which are seemingly captured by the model.265

This begs the question of how well these ap-266

proaches compare to training with all the topics,267

including the target topic. The performance loss of268

TZS/TFS models compared to the full-shot model269

using 32 non-target samples is shown in Table 2.270

Surprisingly, the drop in performance observed271

when cutting down the target-specific training sam-272

ples from 560 (FL-32) to 50 samples (TFS-50) is273

Setting # non-target
topics

# target
samples

Target-topic F1
(avg.)

FL-32 32 560 0.747

TFS-50 32 50 0.732 (↓ 0.015)
TFS-20 32 20 0.729 (↓ 0.018)
TZS 32 0 0.718 (↓ 0.029)

Table 2: Performance loss of TZS/TFS models from
the full-shot model (FL-32) under 32 non-target topics.
The few-shot models trained on only 20 or 50 exam-
ples from a target topic (TFS-20/50) has a significantly
small loss from the full-shot model (FL-32). Standard
error for all these settings is 0.003.

comparable to further reducing target-specific sam- 274

ples to 20 (TFS-20). 275

The results show that the stance dissonance de- 276

tection models trained on a small number of top- 277

ics exhibit an impressive ability to generalize to 278

previously unseen target topics and exhibit further 279

performance gains when exposed to a small num- 280

ber of samples from the target topic. This indicates 281

that the model learns topic-independent cues, and 282

that underlying patterns of arguments to signify 283

the dissonance between claims can be successfully 284

captured with non-target topics. 285

5 Conclusions 286

This paper weighs in on a key problem as NLP ex- 287

pands more and more from word-level models into 288

models describing semantic discourse relations: the 289

role of topic diversity at training time for gener- 290

alizing to new topics. To this end, we have ad- 291

dressed the problem of stance dissonance detection 292

in the TZS/TFS setting. To investigate the impact of 293

non-target topics for stance dissonance detection, 294

we have built a large-scale dataset of stance dis- 295

sonance detection from an online debate platform, 296

consisting of 23.8k claim pairs from 34 diverse top- 297

ics. In the case of consonance and dissonance of 298

stance, we find that models continue to improve 299

under a “topic independent setting” (i.e. with zero- 300

or few-shots of the topic) all the way up to having 301

learned from 32 non-target topics. Our experiments 302

also revealed that TZS/TFS stance dissonance de- 303

tection models trained on only a small number of 304

non-target topics already perform as well as those 305

trained on a target topic, and that adding more non- 306

target topics further boosts performance, indicating 307

the generalizability of non-target topics to unseen 308

topics in the stance dissonance detection task. 309
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Ethical Considerations310

To create the dataset (§3), we use publicly avail-311

able dataset on the web. We are restricted to only312

document-level information; No user-level infor-313

mation is used.314
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