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ABSTRACT

The growing magnitude of investments in global markets has intensified the need
for sophisticated risk mitigation strategies in portfolio optimization. Traditional
portfolio optimization models that seek to minimize risk for a specified return
frequently incorporate cardinality constraints, rendering them as Mixed-Integer
Quadratic Programming (MIQP) challenges. These constraints elevate the prob-
lem to NP-Hard status, complicating the solution process. While heuristic meth-
ods have historically been favored for their direct approach to MIQP problems, re-
laxation techniques offer a strategic alternative by simplifying MIQP into a more
tractable Quadratic Programming (QP) problem. We first introduce an approach
that facilitates the conversion of MIQP to QP by relaxing integer constraints into
continuous domains and integrating integer conditions into the objective function
using Lagrange multipliers. This dual application not only eases the computa-
tional burden but preserves the integrity of the original problem’s structure. An
innovative diagonalization technique applied to the covariance matrix further re-
fines our method, enhancing the fit for integer variables, as Lagrange multipliers
are inherently biased towards continuous variables. We present a comparative
analysis of three distinct models, Linear, Dual, and Diagonal or Diag, each em-
ploying a unique relaxation strategy. Our research evaluates their efficacy in ad-
dressing the MIQP problem under cardinality constraints. In conjunction with
heuristic methods, the refined solutions from our exact relaxation models serve as
a starting point for further refinement using Genetic Algorithm and Neighborhood
Searching Algorithm. This hybrid methodology yields results that not only rival
but occasionally surpass those achieved by the latest models and the commercial
solver CPLEX. Our findings endorse the potential of combining exact and heuris-
tic techniques in portfolio optimization, marking a significant advancement in the
field.

1 INTRODUCTION

With trillions of dollars circulating in global stock markets, investors are increasingly seeking port-
folios that not only generate strong returns but also mitigate risk, making their investments safer.
The challenge lies in identifying the optimal combination of assets that maximizes expected returns
while minimizing risk, often measured by the variance of the portfolio. Striking the right balance
between return and risk is crucial for developing effective portfolio strategies.

Markowitz (1952) introduced a model that examines the relationship between expected return and
risk, measured by variance, based on the different weights assigned to securities or assets. This
mean-variance (MV) model uses historical prices to estimate expected returns and asset correlations
to calculate variance. By optimizing either the sum of expected returns or minimizing total variance,
the optimal weight for each asset can be determined. Later, Markowitz (1956) extended this work by
providing an optimization approach for quadratic functions, specifically variance, subject to linear
constraints and a fixed expected return. This formulation, a Quadratic Programming (QP) problem,
also introduced the concept of “efficient points,” which form what is now known as the Efficient
Frontier (EF).
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While the Mean-Variance (MV) model is foundational, it lacks realism without incorporating prac-
tical constraints. For instance, Grazia Speranza (1996) introduced minimum transaction units and
bounds on asset weights into the model, and Chang et al. (2000) emphasized the importance of re-
stricting the number of selected assets, making the model more applicable to real-world scenarios.
The inclusion of constraints, particularly cardinality constraints, transforms the MV model from a
Quadratic Programming (QP) problem into a Mixed-Integer Quadratic Programming (MIQP) prob-
lem, which is NP-Hard (Pia et al., 2017). Several studies, including Guzelsoy & Ralphs (2007),
Guzelsoy & Ralphs (2011), and Feizollahi et al. (2017), have conducted extensive research on MIQP
using Lagrange duality models. Building on this work, Shaw et al. (2008) explored how embedding
the constraints into the original primal model through Lagrange multipliers forms a relaxed duality
model or Dual Model. Although these relaxations introduce errors and gaps in the solutions, they
make it feasible to find solutions within a practical time frame. Shaw et al. (2008) demonstrated a
significant reduction in solution time using CPLEX, and further research by Xu et al. (2024) showed
that the Dual Model can help establish a lower bound for the primal, facilitating solution approaches.
In addition to Dual Models, various heuristic methods have been proposed to tackle more realistic
models with constraints.

Numerous heuristic and meta-heuristic approaches have been applied to MIQP portfolio optimiza-
tion. Woodside-Oriakhi et al. (2011) explored Genetic Algorithms, Tabu Search, and Simulated
Annealing metaheuristics, achieving better results than previous heuristic methods. Building on
this, Deng et al. (2012) introduced an Improved Particle Swarm Optimization (PSO) technique,
which enhanced the robustness and effectiveness of portfolios, particularly in low-variance condi-
tions. Similarly, Lwin & Qu (2013) achieved competitive results using a Hybrid Algorithm. Further
advancements came with the Artificial Bee Colony (ABC) Algorithm, where Tuba & Bacanin (2014)
demonstrated a smaller Euclidean distance between solutions compared to prior methods. This ap-
proach was later refined by Kalayci et al. (2017), who added a feasibility enforcement procedure
to the ABC Algorithm. Recently, Kalayci et al. (2020) reintroduced the Hybrid Algorithm, con-
structing an efficient metaheuristic combining Ant Colony Optimization, Genetic Algorithms, and
ABC Optimization, yielding promising results. In addition to the growth of ABC-based methods,
Baykasoğlu et al. (2015) developed a Greedy Randomized Adaptive Search Procedure (GRASP),
while Ertenlice & Kalayci (2018) explored swarm intelligence (SI) to address time complexity is-
sues. Furthermore, Akbay et al. (2020) proposed a new method, the Parallel Variable Neighborhood
Search Algorithm, which demonstrated high efficiency in solving MIQP problems.

Although these heuristic methods have gained relatively high results, most only focus on the origi-
nal primal problem, and their relaxation models also only respect the Primal Model. However, for
Primal Model itself, it is not a solvable model as NP-Hard, and those heuristic methods also cannot
guarantee for the solutions. Here is where exact methods are introduced. That is, the cardinality
constraint could be relaxed into a linear constraint, which transforms the MIQP into a solvable QP.
Once the model is solved, the modified linear constraint then could be discretized back into the orig-
inal cardinality constraint. That would be a logical way for solving MIQP models. Considering all
the constraints including the cardinality constraint, using Lagrange multipliers, all constraints are
able to be embedded into the objective function, transforming it into a Dual Model. By pre-solving
the cardinality constraint or deriving its optimal values ahead to further refining the process, this
allows us MIQP to be solved without the cardinality constraint directly. The Lagrange approach
helps derive the expressions for the integer variables. Previous work by Fisher (1981); Nemhauser
& Wolsey (1988) has demonstrated that this Dual Model effectively relaxes the problem, offering a
pathway to approach the solution by solving with respecting to the multiplier variables. Addition-
ally, Li et al. (2006); Shaw et al. (2008) have provided substantial evidence supporting the efficiency
of this method. Furthermore, recognizing that Lagrange multipliers are more suited for continuous
variables, potential inefficiencies might happen when dealing with integer variables. To mitigate
errors introduced by the multipliers for discrete variables, a employment of a more advanced relax-
ation could help the model approach the solution better. Xu et al. (2024) proposed a method using
the diagonalization of the covariance matrix, establishing lower bounds for the diagonal matrix in
correlation and ensuring feasible solutions for MIQP.

Analyzing MIQP is not only valuable for portfolio optimization but also has broad applications
across various fields. For example, the most recent advancements include a real-time, mixed-integer
programming-based decision-making system for automated driving (Quirynen et al., 2024), and op-
timization in scheduling, such as solving job-shop scheduling problems (Ajagekar et al., 2022).
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MIQP is also increasingly relevant in machine learning, where it is used for solving decision prob-
lems in which the objective function is a machine learning model (Anderson et al., 2020), processing
images and conducting gap analysis (Wang, 2022; 2024), and embedding the model as a layer within
neural networks to improve training outcomes (Ferber et al., 2020).

In this paper, we introduce a trio of exact relaxation techniques for the cardinality constrained
Mixed-Integer Quadratic Programming (MIQP) problem: the Linear Model, Dual Model, and Diag
Model, corresponding to linear, dual, and diagonal relaxations of the primal problem, respectively.
These methodologies offer a novel perspective on addressing the complexities inherent in MIQP. To
augment the precision of these exact relaxations, we have innovatively combined them with heuris-
tic methods, thereby crafting an approach that leverages the strengths of both exact and heuris-
tic optimization techniques. Our comprehensive evaluation extends beyond mere application; we
meticulously define and examine the optimality gaps between the solutions of the primal problem
and those of the relaxed models. This gap analysis is critical for understanding the effectiveness
of our proposed models and for quantifying the enhancements provided by the heuristic methods.
The synthesis of exact relaxations with heuristic strategies, as presented in this work, showcases a
significant advancement in the pursuit of solving MIQP problems. The integration not only fortifies
the theoretical underpinnings of the relaxation models but also amplifies their practical application.
Through rigorous testing and gap analysis, we demonstrate that our approach yields a more robust
and effective means of navigating the complex landscape of MIQP, setting a new benchmark for
future research in the field.

The remainder of this paper is organized as follows: In Section 2, we formally define and formulate
our models and gaps for later justification, and in Section 3 we state the detailed approach to how
we get our results using the models. Then in Section 4 we run our approach and examine the
effectiveness of our method. For Section 5 we drop out the conclusion with our results.

2 PROBLEM FORMULATION

2.1 PRIMAL MODEL

For Primal Model, or original cardinality constrained portfolio optimization problem, it can be de-
fined as:

min
wi

v =

n∑
i=1

n∑
j=1

Ci,jwiwj ,

s.t.

n∑
i=1

riwi = r,

n∑
i=1

wi = 1,

bi ∈ B,
n∑

i=1

bi = k,

libi ≤ wi ≤ uibi, i = 1, . . . , n.

(1)

where n is the total number of assets; Ci,j is the element i, j of the covariance matrix C, wi is the
element i of the weight vector w, the weight of i-th element in the list,

∑n
i=1

∑n
j=1 Ci,jwiwj is the

sum of the variance or risk v and minwi
shows that we want to minimize it respecting to w; ri is the

element i of the expected return vector r,
∑n

i=1 riwi = r means the sum of weighted return should
be the expected total return r;

∑n
i=1 wi = 1 means the sum of weight for all elements should be

1; for bi ∈ B we define a binary variable bi in the binary domain B where the asset i is chosen if
bi = 1, otherwise bi = 0;

∑n
i=1 bi = k refer to the total number of assets we would choose is k;

and libi ≤ wi ≤ uibi we bound the weight for every asset with bi, meaning if bi = 0 we force the
weight to 0 since the asset is not chosen.
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2.2 LINEAR MODEL

For Linear Model, or linear relaxation on the Primal Model, the cardinality constraint has been
relaxed from integer or binary numbers to real numbers. This could turn the MIQP to QP making
the problem solvable. That is, the integer or binary variables bi is linearized to bli. After solving bli
on the solvable model, bli is discretized back to bi getting the relaxed solution:

min
wi

v =

n∑
i=1

n∑
j=1

Ci,jwiwj ,

s.t.

n∑
i=1

riwi = r,

n∑
i=1

wi = 1,

bli ∈ [0, 1],
n∑

i=1

bli = k,

lib
l
i ≤ wi ≤ uib

l
i, i = 1, . . . , n,

bi = 1bli∈topk{bl}.

(2)

where the formulas are defined similarly to the Primal Model with a replacement of bi by linear
temporary variables bli ranged from 0 to 1; and bi = 1bli∈topk{bl} implies that bli is tuned with the
top k elements to 1 and the rest are 0 to form bi. In general, we linearize bi to [0, 1] variables, then
discretize them back to B after choosing the top k results.

2.3 DUAL MODEL

For Dual Model, we introduce Lagrange multipliers:

max
αi,βi≥0,λ0,λ1,λ2∈R

min
wi∈R,bi∈B

n∑
i=1

n∑
j=1

Ci,jwiwj + λ1(

n∑
i=1

riwi − r) + λ2(

n∑
i=1

wi − 1)

+ λ0(

n∑
i=1

bi − k) +

n∑
i=1

αi(wi − uibi) +

n∑
i=1

βi(libi − wi)

(3)

where we introduce scalar multipliers λ1, λ2, λ0, and vector multipliers α, β, after minimizing
wi ∈ R, bi ∈ B, we can derive wi =

1
2

∑n
j=1 C

−1
i,j (βj − αj − λ1rj − λ2), then get:

max
αi,βi≥0,λ0,λ1,λ2∈R

− 1

4

n∑
i=1

n∑
j=1

(βi − αi − λ1ri − λ2)C
−1
i,j (βj − αj − λ1rj − λ2)

+

n∑
i=1

(βili − αiui + λ0)− λ0k − λ1r − λ2

s.t.βili − αiui + λ0 ≤ 0.

bi =

{
1, βili − αiui + λ0 < 0

0, βili − αiui + λ0 = 0

(4)
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2.4 DIAG MODEL

In order to cover all the primal solutions using gaps, some relaxations is preferred for their wider
range with a small increase of time finding the solutions. Thus, we introduce a new dummy covari-
ance matrix D with same apposition where wT (D −C)w ≤ 0 for any w ∈ Rn:

Di,j =

{
0, i ̸= j

1∑n
k=1 |C−1

i,k |
, i = j (5)

Since we need the gap not to be too large, we just want to partially substitute this dummy matrix, so
we insert it into our previous Dual Model:

max
αi,βi≥0,λ0,λ1,λ2∈R

−
n∑

i=1

n∑
j=1

Di,jwiwj +

n∑
i=1

(βili − αiui + λ0)− λ0k − λ1r − λ2

s.t.wi =
1

2

n∑
j=1

C−1
i,j (βj − αj − λ1rj − λ2)

βili − αiui + λ0 ≤ 0.

bi =

{
1, βili − αiui + λ0 < 0

0, βili − αiui + λ0 = 0

(6)

With a deeper analysis, we are also able to bound the Dual Model with a lower bound:

max
αi,βi≥0,λ0,λ1,λ2∈R

− 1

4

n∑
i=1

n∑
j=1

(βi − αi − λ1ri − λ2)D
−1
i,j (βj − αj − λ1rj − λ2)

+

n∑
i=1

(βili − αiui + λ0)− λ0k − λ1r − λ2

s.t.βili − αiui + λ0 ≤ 0.

bi =

{
1, βili − αiui + λ0 < 0

0, βili − αiui + λ0 = 0

(7)

which is almost the same as the Dual Model but with the total substitution of C with D. With a
further relaxation, the Lagrange multipliers, which used to fit with continuous variables the best, are
able to cover the integer or binary variables and approach the solution better.

3 PROPOSED SOLUTION APPROACH

To solve the problem, we employ a multistep approach integrating several methods. First, the Primal
Model is relaxed into QP models. Starting with random initial solutions, with solutions generated
by the QP models, an environment is created. Second, a Genetic Algorithm (GA) is applied to this
environment, where a series of fitness evaluations are conducted, and the best GA solution is selected
for further refinement. Third, the solution is improved using a neighborhood search algorithm, which
enhances its accuracy. Finally, the refined solution from the neighborhood search is used to restrict
the original MIQP to a QP formulation, yielding the optimal asset weights. The following sections
provide a detailed explanation of each step.

3.1 ORIGINAL SOLUTIONS GENERATION

For the input parameters, we require the expected returns for each asset and the covariance matrix
between assets. Additionally, we must specify the target total return, the number of assets to select,
and the upper and lower bounds for asset weights.

5
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Figure 1: A schematic visualizing our approach. Supported by Open-Source Excalidraw.

Given that CPLEX cannot efficiently handle large-scale MIQP problems, we first relax the Primal
MIQP Model into three models: the Linear Model, Dual Model, and Diag Model. Using the prede-
fined parameters, we can generate initial solutions from these relaxed models. Simultaneously, we
generate MRandom random initial solutions following these rules: the solution vector size should be
n, each element in the vector must be either 0 or 1, exactly k values in the vector should be 1, and
each value has an equal probability of being 1. This gives us a total of M = MRelax +MRandom

solutions, which are then assigned to the environment for further processing.

3.2 GENETIC ALGORITHM APPROACH

After generating solutions within the environment, we evaluate their competitiveness using a fitness
function. This fitness function is defined as follows: given a solution vector b, we introduce a new
constraint into the Primal Model, requiring that the selected variables in the Primal Model match the
values in b. This transforms the problem into a QP. By solving this QP, we obtain the variance v,
which is used as the measure of competitiveness. The fitness function is therefore f(b) = v, where
a lower value of f(b) indicates a more competitive solution.

Using this fitness function, we conduct a competition among the solutions in the environment.
We retain the top p% of the solutions based on fitness and discard the rest. Next, we per-
form a fitness check, where the difference between the worst and best solutions must not be
too large. Specifically, we require that l ≥ (max{f(b)|b ∈ environment} − min{f(b)|b ∈
environment})/min{f(b)|b ∈ environment} for solutions within the environment. If this con-
dition is met, the best solution is selected for the next step. Otherwise, two-parent solutions are
randomly selected, and we apply a crossover operation to generate a new solution.

The crossover is performed under the following rules: the new solution vector size is n, each element
in the vector must be either 0 or 1, and exactly k elements should be 1. If both parents have bfatheri =
bmother
i = 1, then bsoni = 1. For positions where bfatheri ̸= bmother

i , bsoni is assigned a value of 1 with
equal probability. The new solution is also subjected to a mutation with a probability of m%, where
one index with bi = 1 and another with bi = 0 are swapped.

Once the new solution is generated, it, along with its parent solutions, is reintroduced into the envi-
ronment, and the competition is repeated. This process continues iteratively until the fitness check
condition is satisfied.

6
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3.3 NEIGHBORHOOD SEARCH ALGORITHM APPROACH

With the best solution generated by the Genetic Algorithm (GA) approach, which is either very
close to or equal to the optimal primal solution, we can apply neighborhood searching to refine the
solution further. In this approach, the GA solution is initially treated as the “neighborhood solution”
or neighboring solution 1.

To generate neighboring solution 2, we randomly select two values in the neighborhood solution:
one with a value of 1 and another with a value of 0. We then swap their positions. After that, we
compare the fitness of neighboring solution 2 with that of the initial neighborhood solution. If the
fitness of neighboring solution 2 is better (i.e., lower), it becomes the new neighborhood solution,
and we repeat the process.

If neighboring solution 2 is not better, we proceed by generating neighboring solution 3 in the same
manner—swapping the values of 1 and 0 based on neighboring solution 2 and comparing it with the
neighborhood solution. This iterative process continues until either an improvement is found or a
predefined limit is reached.

4 EXPERIMENT RESULTS

4.1 DATASET DESCRIPTION

Our approach and later gap analysis are based on weekly price data from March 1992 to September
1997 of the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (UK), S&P 100 (USA) and
Nikkei 225 (Japan) (Chang et al., 2000) from OR library. The size of each dataset is ranged from
n = 31 for Hang Seng to n = 225 for Nikkei. We set the global upper bound for each asset as
ui = 1 and the lower bound as li = 0.01, and the total number of assets we would choose is k = 10.

4.2 EFFICIENT FRONTIERS AND PERCENTAGE ERRORS

Figure 2: EF and solutions generated by different approaches. Supported by Matplotlib.

Based on 5 datasets above, the given unconstrained efficient frontier (UEF) as an upper bound is
drawn as a line in each figure. For comparing and visualizing the effect of Linear, Dual, Diag, and

7
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Ours Models, we sample 50 points respecting to returns from the domain of the UEF and then mark
the points on each figure. In all the figures, the risks have a positive correlation with returns, which
means higher returns come with higher risks, and our approach based on Linear, Dual, and Diag
Models should remain left which is the closest to the upper bound line. The features shown in the
figures logically make sense.

Table 1: Percentage Errors of different approaches

PE CPLEX GA TS SA Linear Dual Diag Ours

Port 1 Mean 0.5208 0.8510 0.8234 1.0589 0.7929 0.5232 0.9131 0.5231
Median 0.4147 0.5873 0.3949 0.5355 0.4317 0.4147 0.6223 0.3356

Port 2 Mean 1.6584 0.7740 0.7190 1.0267 4.8232 5.8435 10.3267 0.6050
Median 1.2513 0.2400 0.4298 0.8682 4.3321 2.9218 6.0821 0.1502

Port 3 Mean 1.2011 0.1620 0.3930 0.8952 4.7993 4.0280 6.2230 0.1598
Median 2.8221 0.0820 0.2061 0.3944 5.3894 2.8866 9.7862 0.3217

Port 4 Mean 2.7642 0.2922 1.0358 3.0952 5.5428 5.8134 8.9946 0.2272
Median 2.6479 0.1809 1.0248 2.1064 4.2753 5.3949 11.0371 0.9978

Port 5 Mean 0.1417 0.3353 0.7838 1.1193 1.3079 1.7143 2.0529 0.1368
Median 0.1039 0.3040 0.6525 0.6877 0.4247 0.3827 1.7317 0.1363

Then Table 1 reflects the percentage error from point to the EF line in the figures. In the table, Linear,
Dual, and Diag models as relaxation models cannot always have a good effect on solution generation.
But our approach based on these exact solutions, and with heuristics, gains a good effect. At the same
time, we introduce more heuristics like Genetic Algorithm (GA), Tabu search(SA), and Simulated
Annealing (SA) to compare and verify our approach. Compared with CPLEX optimal solutions and
others heuristics (Woodside-Oriakhi et al., 2011), our approach gains a close but mostly a better
effect. To be more specific, mostly we reach a mean percentage errors, implying that our method
has fewer outliners and thus has a more stable results.

To be more specific, our approach outperforms the solutions in larger datasets. For portfolio 2, we
achieve a value of 0.6050, for portfolio 3, 0.1598, for portfolio 4, 0.2272, and for portfolio 5, 0.1368,
in terms of the mean. With respect to the median, we attain the best result for portfolio 2 with 0.1502
and maintain strong performance across other datasets, even though we do not always achieve the
best result.

4.3 MODELS GAP FORMULATION

Since we always compare and analyze our gaps between one of the relaxed models and CPLEX
optimal Model, we define the gaps for them as gRelaxed = bRelaxed − bCPLEX, where bRelaxed

stands for the choice binary variables’ solution for one of the relaxed models, and bCPLEX stands
for CPLEX optimal’s. Since dRelaxed is a differences vector between two binary vectors, we de-
fine variable gRelaxed = 1

2 |g
Relaxed| = 1

2

∑n
i=1 |bRelaxed

i − bCPLEX
i | to analyze the number of all

differences between two solutions. To be more specific:

gLinear = bLinear − bCPLEX

gDual = bDual − bCPLEX

gDiag = bDiag − bCPLEX

(8)

In this way, we are able to quantify and analyze the binary gaps. Our results show in Table 2.

The Table 2 reflects the relations between solution generated by relaxed models and our models with
CPLEX Optimal solution. Most of them reflects that our approaches is closer to CPLEX optimal
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Table 2: Gaps of different approaches

Gaps Linear Dual Diag Ours

Port 1 Mean 0.0213 0.0426 1.7447 0.0213
Median 0.0000 0.0000 2.0000 0.0000

Port 2 Mean 1.2083 2.1042 4.0625 0.5000
Median 1.0000 2.0000 4.0000 0.0000

Port 3 Mean 1.5833 2.5625 3.6458 0.6250
Median 2.0000 3.0000 4.0000 0.0000

Port 4 Mean 1.5714 2.3878 4.6735 0.5510
Median 1.0000 3.0000 5.0000 0.0000

Port 5 Mean 0.9796 1.3469 2.6531 0.4694
Median 0.0000 1.0000 3.0000 0.0000

than Linear, Dual, and Diag Models. But for port 1 the outliner seems to show ours method do not
have any improve than Linear Model. But reflecting this point, we found that at this point, actually
our approaches find a better solution than CPLEX. The Table 3 shows the detailed data. In others
portfolios, the data shows that our method is able to make a further improvement based on the exact
relaxation models.

Table 3: The sample point of gaps in port 1

Method Solution Risk-Variance

CPLEX [0, 0, 0, ..., 0, 0, 0, ..., 1, 1, 1, 0, ..., 0, 1, 1, 1, 1] 0.000650258
Linear [0, 0, 0, ..., 0, 1, 0, ..., 1, 1, 1, 0, ..., 0, 0, 1, 1, 1] 0.000759962
Dual [0, 0, 0, ..., 0, 1, 0, ..., 1, 1, 0, 0, ..., 0, 1, 1, 1, 1] 0.000650130
Diag [0, 1, 0, ..., 0, 1, 0, ..., 1, 0, 0, 0, ..., 0, 1, 1, 1, 1] 0.000657009
Ours [0, 0, 0, ..., 0, 1, 0, ..., 1, 1, 0, 0, ..., 0, 1, 1, 1, 1] 0.000650130

5 CONCLUSION

In this study, we have explored the cardinality constraint of Mixed-Integer Quadratic Programming
(MIQP) in depth, investigating various exact relaxation models, namely the Linear, Dual, and Diag
Models. We have unveiled the unique properties and features of these models, laying the ground-
work for the development of more refined solution strategies. Building on this foundation, we intro-
duced an innovative approach that integrates the strengths of exact relaxation models with heuristic
algorithms, specifically the Genetic Algorithm and Neighborhood Search Algorithm. This synergy
allows us to harness the precision of exact methods to approximate true solutions, while the heuris-
tic enhancements facilitate the discovery of solutions in proximity to those approximations. Our
rigorous testing, conducted using datasets from the OR Library, positions our method against the
renowned commercial solver CPLEX as well as other heuristic techniques, including Genetic Algo-
rithm (GA), Tabu Search (TS), and Simulated Annealing (SA). The empirical evidence demonstrates
that our approach not only competes with but also surpasses state-of-the-art results. The efficacy of
our method is clear; it consistently identifies superior solutions for MIQP problems, underscoring
the potential of combining exact relaxations with heuristic algorithms as a powerful tool for solving
complex optimization challenges.

In conclusion, the contributions of this paper offer a novel perspective on MIQP solutions, providing
a compelling case for the integration of exact and heuristic methodologies. Our findings pave the
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way for future research to further refine and expand upon the strategies presented, with the potential
to revolutionize approaches to MIQP and related optimization problems.
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