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Abstract

Recent advancements in LLMs have sig-
nificantly improved mathematical problem-
solving, with models like GPT-4 achieving
human-level performance. However, profi-
ciently solving mathematical problems differs
fundamentally from effectively teaching math-
ematics. To bridge this gap, we introduce the
Bi-GSMS8K benchmark, a bilingual English-
Korean dataset enriched with teacher solutions,
student solutions, and annotations marking stu-
dents’ initial errors. This dataset is designed
to evaluate two core capabilities of LLMs:
(1) measuring similarity between student and
teacher solutions, and (2) identifying the initial
error point in student solutions. Our method
achieves high agreement with human judg-
ments, with Pearson 0.89 and Spearman 0.88
on English, and Pearson 0.89 and Spearman
0.87 on Korean. It also offers significantly
lower latency and resource usage than commer-
cial APIs, demonstrating strong computational
efficiency. In the error detection task, open-
source models achieved approximately 86% ac-
curacy, with performance within 10% points of
commercial LLMs API, suggesting strong prac-
tical potential. Our key contributions include
the open-source release of Bi-GSMS8K, novel
evaluation metrics, and comparative analyses
of LLM performance across languages.

1 Introduction

Recent advancements in LLMs have led to signif-
icant progress in mathematical problem-solving
tasks. Notably, GPT-4 has achieved accuracy rates
of 97% and 86% on GSM8K and MMLU bench-
marks, respectively, demonstrating performance
comparable to expert human levels. Additionally,
OpenAl’s ol model has attained an accuracy of
74.4% (pass@1) on the AIME problems, fur-
ther evidencing its advanced reasoning capabili-
ties (Zhong et al., 2024; Achiam et al., 2023; Ope-
nAl, 2024b). These results indicate that LLMs have

evolved from mere language-understanding tools
into sophisticated instruments capable of logical
reasoning and computational problem-solving.

However, effectively solving mathematical prob-
lems and proficiently teaching mathematics to stu-
dents constitute fundamentally distinct tasks. Prior
research has established that the competencies in-
volved in effectively solving mathematical prob-
lems, termed Common Content Knowledge (CCK),
differ significantly from the Mathematical Knowl-
edge for Teaching (MKT) required for effective
pedagogical practice (Understand, 1986; Ball et al.,
2008). Within educational contexts, this implies
that merely providing correct answers is insuf-
ficient; it is crucial to understand the student’s
thought processes and diagnose their errors accu-
rately (Copur-Gencturk and Tolar, 2022; Daheim
et al., 2024; Sonkar et al., 2024).

This perspective is increasingly prevalent in con-
temporary research on mathematics education us-
ing LLMs. In particular, there is a growing consen-
sus that aligning LLMs to think like experienced
educators rather than merely serving as answer-
generating machines maximizes educational effec-
tiveness. Recent studies have emphasized that, sim-
ilar to human teachers, LLMs must engage in di-
agnosing errors and providing feedback based on
students’ solution processes when imparting Ped-
agogical Content Knowledge (PCK) (Jiang et al.,
2024; Hu et al., 2025).

In this context, from a learning efficiency per-
spective, we emphasize the necessity for evalua-
tion metrics that assess LLMs beyond simply pro-
viding direct answers. Specifically, such metrics
should measure (1) whether LLMs can evaluate
the similarity between student and teacher solu-
tions with human-level precision, and (2) the accu-
racy with which LLMs can identify the initial error
point in student solutions. To facilitate such eval-
uation, it is essential to first establish evaluation
datasets that include authentic solution processes



generated by teachers. However, existing datasets,
such as GSMS8K, contain only mathematical prob-
lems accompanied by solved answers, lacking gen-
uine teacher-generated solution processes (Cobbe
et al.,, 2021). To address this gap, we augment
the GSMS8K dataset by incorporating real teacher-
generated solutions, thus creating the Bi-GSM8K
benchmark. Furthermore, we extend this bench-
mark to include student solution processes anno-
tated explicitly with labels marking students’ initial
errors. Finally, we translate the augmented dataset
into a bilingual Korean-English corpus, enabling
the analysis of linguistic differences in mathemati-
cal problem-solving.

Using this benchmark, we evaluated how well
various LLMs measure similarity between student
and teacher solutions compared to human annota-
tors. Our method achieved Pearson correlations of
0.89 and Spearman correlations of 0.88 on the En-
glish subset, and Pearson 0.89 and Spearman 0.87
on the Korean subset. The approach also demon-
strated shorter computational latency than com-
mercial APIs while maintaining comparable ac-
curacy, indicating its practicality for real-time edu-
cational feedback. Additionally, leveraging annota-
tions of students’ initial error points, we assessed
LLMs’ ability to diagnose errors, with GPT-40
achieving approximately 95% accuracy and the
best-performing open-source model attained 86%
accuracy. The key contributions of this study are as
follows:

¢ Construction and release of Bi-GSMS8K, a
bilingual Korean—English math education
benchmark including teacher solutions, stu-
dent solutions, and annotations of students’
initial error locations.

* Proposal of a novel step-alignment metric for
evaluating the logical similarity between stu-
dent and teacher solutions in the mathematical
problem-solving process.

 Evaluation of the accuracy in diagnosing ini-
tial error points in student solutions to verify
the error analysis capabilities of LLMs.

2 Related Work

In this section, we review existing research related
to mathematical education and LLMs by analyzing
the characteristics influenced by problem-solving
approaches, instructional methods, and linguistic
differences.

2.1 Utilization and Limitations of LLMs in
Mathematics Education

LLMs have shown promise in mathematics edu-
cation, especially in problem-solving and tutor-
ing. They achieve around 85.5% accuracy in al-
gebraic problem-solving but lower performance
in educational dialogue generation (Gupta et al.,
2025). Stepwise error detection models improve
the accuracy and pedagogical quality of LLM feed-
back (Daheim et al., 2024). Fine-tuning on datasets
like MATHDIAL enhances feedback accuracy but
challenges remain in error prevention, correction,
and fully replacing human instruction (Macina
et al., 2023). Limitations include difficulty han-
dling novel errors, diagnosing student cognition,
and filtering irrelevant content (Gupta et al., 2025;
Daheim et al., 2024; Macina et al., 2023).

2.2 Challenges in Non-English Educational
Environments

LLM performance on non-English math problems
is still limited. GPT-4 achieved over 60% accu-
racy on the Chinese CMATH dataset (Wei et al.,
2023), while other models performed worse. Chat-
GPT showed 66.7% accuracy on Korean secondary
math problems (Nguyen et al., 2025), indicating
some utility despite lower performance than En-
glish tasks. Multimodal assessments with datasets
like KoNET reveal significant performance degra-
dation in Korean high school settings (Park and
Kim, 2025), underscoring persistent limitations in
non-English contexts.

2.3 Research Trends of LLMs for Educational
Purposes

Research on employing LLMs for educational
purposes broadly divides into two streams. The
first stream emphasizes enhancing mathematical
problem-solving skills, utilizing LLMs to gener-
ate customized mathematical problems or solution
methods to fine-tune student models and boost
learning effectiveness (Liang et al., 2023). The sec-
ond stream employs LLMs as tutors to simulta-
neously enhance students’ learning outcomes and
feedback generation capabilities (Scarlatos et al.,
2025). Approaches include training LLLMs using
students’ learning outcomes as reward signals, as
well as employing schema-based strategies and
role-based prompts to generate structured and ped-
agogically beneficial feedback (Dixit and Oates,
2024; Hu et al., 2025; Scarlatos et al., 2025).



These studies indicate the potential utility of
LLMs in diverse pedagogical practices within math-
ematics education, such as problem generation,
problem-solving, feedback provision, and instruc-
tional design. Nevertheless, concerns remain re-
garding the accuracy of generated outputs, the sup-
port for autonomous learning, and overall research
reliability, underscoring ongoing areas for improve-
ment.

3 The Bi-GSMS8K Dataset

What considerations are essential for LLMs to ef-
fectively teach mathematical problem-solving in a
manner comparable to human instructors? A core
prerequisite lies in the development of rigorous
evaluation methodologies capable of assessing the
degree to which LLM-generated responses emu-
late genuine teacher reasoning. In particular, these
methodologies must facilitate the alignment of
student-generated solutions with teacher-authored
exemplars and enable the precise identification of
the initial point of error.

To support learning and evaluation in intelli-
gent tutoring systems, we introduce Bi-GSM8K, a
bilingual dataset comprising elementary-level math
problems, teacher solutions, and simulated student
solutions. This dataset was initially constructed
entirely in Korean by mathematics education ex-
perts and subsequently translated into English us-
ing GPT-4o, resulting in a high-quality bilingual
resource.

Bi-GSMSK is built upon the existing English-
based GSM8K dataset, which was systematically
reconstructed to align with the Korean curriculum
after automatic translation. The reconstruction pro-
cess involved refining proper nouns, units, and vo-
cabulary, as well as correcting unnatural expres-
sions arising from translation. Mathematical ex-
pressions were standardized using the « » notation
format consistent with GSM8K. The final dataset
consists of 7,985 JSON-formatted entries, each
containing curriculum-linked metadata, problem
statements, teacher-authored correct solutions (cor-
rect_solution), intentionally flawed student solu-
tions (error_solution), and annotations of students’
initial error points.

The correct_solution entries were authored by
mathematics education and dataset construction ex-
perts and underwent rigorous review to ensure both
computational accuracy and pedagogical validity.
The error_solution entries were created by anno-

{

"area": "problem”,

"problem”: "Byeongjin went fishing with his family
yesterday. Byeongjin caught 4 fish, his wife caught 1,
the eldest son caught 3, the younger son caught 2, and
the youngest daughter caught 5. Unfortunately, 3 of the
fish were too small and were released back. If each
fish yields 2 fillets, how many fillets can Byeongjin’s
family make?",

"solution”: "Four hats with 3 stripes each have a
total of 4x3=«43=12»12 stripes.\n Three hats with 4
stripes each have a total of 3x4=«34=12»12 stripes.\n
Six hats with no stripes have 6x0=«60=0»0 stripes.\n
And two hats with 5 stripes each have 2x5=«25=10»10
stripes.\n The total number of stripes on Byungjin’s
hats is 12+12+0+10=«12+12+0+10=34»34 stripes.\n ####
34",

"correct_solution": {

"step_1": "Byung-jin’s family caught 4 + 1 + 3 + 2
+ 5 = «4+1+3+2+5=15»15 fish."”,
"step_2": "15 - 3 = «15-3=12» I stored 12 fish."”,

"step_3": "Since you can obtain 2 fillets from each
fish, for 12 fish, you have 12 fish x 2 fillets per fish
= 24 fillets."”

D
"error_solution”: {
"step_1": "4+1+3+2+5 = 15",
"step_2": "15 * 2 = 30",
"step_3": "Answer: 30 fillets”
3
3

Figure 1: In the proposed Bi-GSMS8K dataset, exam-
ples are expanded beyond the original GSM8K format,
which included only “Problem” and “Solution” fields.
Bi-GSMSK additionally provides the teacher solution
(correct_solution) and an erroneous student solu-
tion (error_solution). Furthermore, the Bi-GSM8K
dataset is offered as a bilingual Korean-English corpus.

tators with expertise in education rather than real
student data, designed to incorporate realistic math-
ematical misconceptions reflecting typical student
errors. (In this paper, “student solutions” denote
expert-crafted simulations of student errors, not
real student answers.)

For initial error point annotation, annotators ex-
plicitly marked the first step at which a numeri-
cal or logical inconsistency occurred, regardless
of consistency in subsequent steps. Minor expres-
sion variations, omissions, or stylistic changes were
not considered errors. In cases with multiple errors,
only the earliest logical error was annotated to align
with the goal of initial error detection.

All annotations were cross-validated by mathe-
matics education experts to ensure inter-annotator
consistency and reliability. Representative exam-
ples are presented in Figure 1.

The Bi-GSMS8K dataset offers the following key
features:

* Curriculum-Aligned Translation: GSMSK
was automatically translated into Korean and
refined to match the national curriculum, with



Student Solution (s;)

D = the time (in minutes) it takes to clean the downstairs,
so the upstairs cleaning time is 2D + 5 minutes.

Thus, 3D = 38.

Therefore, the time it takes to clean the downstairs is D
=38/3 = 13 minutes.

Answer Solution (s;)

matching
D = the time (in minutes) it takes to clean the downstairs,
so the upstairs cleaning time can be expressed as 2D + 5
minutes.

missing

The total cleaning time is 38 minutes, so we set up the
equation: 3D +5 = 38.

matching

Subtracting 5 from both sides gives us: 3D = 33.
matching

Dividing both sides by 3, we get: D = 11 minutes.

missing
Therefore, the upstairs cleaning time is (2 * 11) + 5 = 27
minutes, so Dad took 27 minutes to clean the upstairs.

Figure 2: Upon submission of a student’s solution to the system, an initial comparison and alignment with the
answer solution is performed. This alignment employs Language Models (LMs), similarity functions, and the NW
algorithm to systematically analyze omitted steps or extraneous information in the student’s solution. Subsequently,
an independent LL.M-based error detection model operates separately from the alignment process to precisely
identify the initial point of error within the student’s solution.

corrections to proper nouns, units, and transla-
tion errors. Correct solutions were thoroughly
reviewed for accuracy.

* Simulated Student Solution: Incorporating
consultation and review from mathematics ed-
ucation experts, we constructed student solu-
tion data that includes diverse error simula-
tions designed to realistically emulate actual
student responses.

* Initial Error Annotation: Each item iden-
tifies the first error in the student’s solution,
supporting fine-grained error diagnosis and
targeted remediation by models.

4 Evaluation Metric

The Bi-GSM8K benchmark proposed in this study
provides data enabling the evaluation of solu-
tion processes generated by LLMs by directly
comparing them with those produced by experi-
enced human teachers. To achieve this compara-
tive evaluation, appropriate assessment methodolo-
gies are necessary. Specifically, this study intro-
duces two similarity-based evaluation methods: (1)
Ground Truth Alignment (GTA), which assesses
how closely generated solutions align with correct
teacher-generated solutions, and (2) Solution Error
Detection (SED), which identifies the initial error
point within student-generated solutions, thereby
systematically evaluating the capabilities of lan-
guage models.

4.1 Ground Truth Alignment

Evaluating narrative-style solutions of mathemat-
ical problems quantitatively is inherently chal-

lenging. Therefore, we propose GTA, which as-
sesses solution quality based on the similarity be-
tween student solutions and ground-truth solutions.
The similarity measurement involves three key
steps: (1) Semantic similarity between solutions
is measured using metrics such as cosine similar-
ity of mean-pooled embeddings, Pearson correla-
tion of mean-pooled embeddings, SemScore, and
BERTScore (Salton et al., 1975; Pearson, 1895;
Aynetdinov and Akbik, 2024; Zhang et al., 2019).
(2) Based on the computed semantic similarity, the
Needleman-Wunsch (NW) algorithm (Needleman
and Wunsch, 1970) is applied to align the step se-
quences of teacher and student solutions. (3) Struc-
tural similarity is then evaluated based on the align-
ment results. The selection of similarity metrics
utilized in this module, the approach to employing
LLMs, and the specific manner in which LLMs
are applied to compute each metric are comprehen-

sively detailed in Appendix C.
In this study, we modified the conventional NW

algorithm specifically for aligning mathematical
solution processes. The NW algorithm numerically
quantifies the similarity between two strings and
identifies the most similar alignment, making it
suitable for static similarity comparisons of lengthy
texts. Typically, when comparing two texts, the NW
algorithm assigns fixed penalty scores for charac-
ter insertions or deletions. However, mathematical
solution processes inherently involve both sequen-
tial order and detailed semantic content. Therefore,
we adjusted gap penalties according to semantic
similarity metrics, assigning smaller penalties to
semantically similar sentences and larger penalties
to dissimilar ones. Additionally, matching scores
are computed based on substring similarities, en-



Algorithm 1 NW Algorithm with Semantic Similarity for Ground Truth Align-
ment

. Input: s1, s2, sim_m, sim_th
. Output: x_aln, y_aln
©m <+ len(sl), n < len(s2)
. Initialize bt_table of size (m + 1,n + 1)
for i = 0 to m do
bt_table[i][0] < 1
. end for
. for j = 0tondo
bt_table[0][j] + 2
. end for
11: fori = 1tomdo
12:  forj=1tondo
13: m_sc < scoreli — 1][j — 1] + sim_m[i — 1][j — 1]
14: gap_p < gap_u X (1 — sim_ml[i — 1][7 — 1])
15: u_sc <+ scoreli — 1][j] — gap_p
16: l_sc < scoreli][j — 1] — gap_p
17: bt_table[i][j] < argmax(m_sc, u_sc, l_sc)
18: end for
19: end for
20: i+ m,j+<n
21: Initialize z_aln, y_aln
22: whilei > Oorj > 0do
23:  ifbt_table[i][j] = O then

> From up

> From left

24 if sim_m[i — 1][j — 1] > sim_th then
25: Append aligned values to z_aln, y_aln
26: end if

27: end if

28: Update indices % and j

29: end while

30: Reverse z_aln, y_aln
31: Return z_aln, y_aln

abling natural and precise alignment between solu-
tion steps. This allows clear identification of differ-
ences between two solutions and facilitates align-
ment consistent with the problem-solving flow.

Algorithm 1 describes the proposed procedure
for computing alignment scores between two solu-
tions (examples in Figure 2). Here, s; represents
the teacher-generated solution with m steps, and so
denotes the student-generated solution with n steps.
The inputs are two sequences (s1, S2), a similarity
matrix (s¢m_m) indicating semantic similarities
between solution steps, and a similarity threshold
(sim_th). A backtracking table bt_table for dy-
namic programming is initialized (line 4) with di-
mensions (m + 1) x (n + 1), storing directional
moves for reconstructing optimal alignments. The
first row and column of b¢_table are initialized to
represent leftward and upward movements, respec-
tively.

Next, a backtracking table bt_table for dynamic
programming is initialized (line 4). The table has
dimensions (m+1) x (n+1), with each cell record-
ing the optimal move direction for backtracking.
The first row and first column of bt_table are ini-
tialized with left (represented by 2) and upward
(represented by 1) movements, respectively.

Subsequently, the remainder of bt_table is
filled using two nested loops. At each cell (7, j),
values for three possible movements are calcu-
lated, and the maximum value is selected and

recorded in bt_table[i|[j]. Diagonal movements
(matches) add the value from the diagonal cell
and sim_m/[i—1][j—1]; upward movements (dele-
tions) add penalties to values from the cell above;
leftward movements (insertions) add penalties to
values from the cell to the left. Once the table is
fully populated, an optimal alignment between the
sequences is determined by backtracking through
bt_table.

During the backtracking phase, alignments are
determined according to each cell’s recorded move-
ment direction. For diagonal movements (repre-
sented by 0), if the similarity is below the thresh-
old sim_th, the element s;[i—1] is aligned as
an "omission". If the similarity meets or exceeds
stm_th, the algorithm checks for duplicate align-
ments. Specifically, if so[j—1] is already aligned
with another element in y_aln, the algorithm com-
pares similarity scores between the existing and
current alignments. If the existing alignment has a
higher similarity score, the current element s; [i—1]
is aligned as an "omission"; otherwise, the existing
alignment is replaced with the current one. If no
duplication occurs, the two elements are directly
aligned. For upward movements (represented by
1), the element s;[i—1] is aligned as an "omis-
sion". For leftward movements (represented by
2), an "unnecessary" is aligned with the element
s9[j—1]. After backtracking completes, the aligned
sequences x_aln.reverse() and y_aln.reverse(),
along with the similarity matrix si¢m_m, are re-
turned in the correct order.

Based on the alignment results, a score of 1 is
assigned to each matched step between the teacher
and student solutions, while unmatched or extra-
neous steps are assigned a score of 0. The final
similarity score is computed by summing the indi-
vidual step scores and dividing by the total number
of steps, yielding a value between 0 and 1.

The proposed method, GTA, evaluates logical
consistency by precisely aligning reasoning steps,
thereby enabling fine-grained diagnosis of student
errors and facilitating personalized feedback. The
resulting similarity scores can be used to track
learner understanding, analyze problem difficulty,
improve automated grading, and enhance adaptive
learning, supporting personalized education.

4.2 Solution Error Detection

Identifying the initial error step is particularly cru-
cial in personalized tutoring scenarios. Precisely
pinpointing the moment when a student deviates



from the correct problem-solving strategy enables
the system to gain deeper insights into the student’s
conceptual understanding. This module aims to
accurately identify the initial erroneous step in a
student’s mathematical problem-solving process.
The initial error detection module proposed in
this study employs a 3-shot learning approach uti-
lizing open-source LLMs, enabling accurate error
identification with only a small number of exam-
ples. Figure 3 illustrates a partial structure of the
prompt, which presents three exemplars. Each ex-
emplar consists of a mathematical problem, a cor-
rect solution (Answer Solution), a student solution
(Student Solution), and a question (Q) asking for
the step at which the student’s first error occurs.
The model compares the teacher’s solution with
the student’s solution to predict the step number of
the initial error, returning O if no error is detected.

You are given a math problem, a correct answer solution, and a
student solution. Your task is to compare the correct solution to the
student solution and output the step number where the student’s error
begins. If the student’s solution is completely correct, output 0.
Problem: Seongjin is stranded on a deserted island. He needs salt to
season fish. He collected 2 liters of seawater in an old bucket. If the
water contains 20% salt, how many milliliters of salt will Seongjin
get when all the water evaporates?
Answer Solution:
{

"step_1":"First, find out how many liters of the seawater is salt: 2L
*20% = «2%0.2=0.4»0.4L",

"step_2":"Then, multiply this amount by 1000 ml/L to find how
much salt Seongjin gets: 0.4L * 1000ml/L = «0.4*1000=400»400ml"

Student Solution:

{
"step_1":"220 = «220=40»40ml of salt is obtained."

}

Q: Is the Student Solution incorrect? Write only the step number
with the first error or 0 if no error is found.
A:l

Problem: {problem}

Answer Solution: {answer_solution}

Student Solution: {student_solution}

Q: Is the Student Solution incorrect? Write only the step number with
the first error or O if no error is found.

A:

Figure 3: Prompt used for initial error detection in Bi-
GSMS8K.

Due to space constraints, the complete prompt
and the rationale behind exemplar selection are pro-
vided in Appendix G. Furthermore, to analyze the
impact of including the teacher’s solution on model
performance, experiments were also conducted us-
ing prompt versions excluding the teacher’s solu-
tion; detailed results are presented in Appendix D.

5 Experiment

5.1 Experiment Settings and Models

In this study, we evaluated various open-source
LLMs using the mathematical Bi-GSMS8K dataset.

The models selected for experimentation were as-
sessed comprehensively based on multilingual pro-
cessing capabilities, mathematical reasoning abili-
ties, response consistency, and computational effi-
ciency. Models ranging from 7B to 8B parameters
were specifically chosen due to their balance be-
tween performance and practicality, making them
suitable for real-world educational contexts. In ad-
dition, the GTA module employs various semantic
similarity functions to perform step-level alignment
between student solutions and reference answers.
These functions are used to identify semantically
similar step pairs, facilitating the alignment pro-
cess based on their degree of semantic closeness.
Among them, the BERTScore experiments lever-
age multiple pretrained transformer models to en-
able fine-grained semantic analysis. The primary
hyperparameters for the open-source models were
set to a temperature of 1, a top_p of 0.75, a top_k
of 40, and num_beams of 4. For GPT-4o0, the tem-
perature was adjusted to 0.75 to enhance response
consistency and stability.

5.2 Ground Truth Alignment

This section presents an analysis of similarity eval-
uation performance between student and teacher
solutions using the Bi-GSM8K dataset. Table 1
summarizes the performance of the GTA module
across various similarity metrics, model config-
urations, and threshold settings on both English
and Korean datasets, alongside computational effi-
ciency metrics such as latency and peak memory us-
age. Performance was evaluated by comparing the
similarity scores predicted by the models against
those provided by five human annotators using
Pearson (Pearson, 1895) and Spearman (Spearman,
1961) correlation coefficients. Detailed evaluation
guidelines and inter-annotator agreement analyses
are provided in Appendix E and Appendix F, re-
spectively. All threshold and efficiency metrics are
reported based on the average values over both
language datasets.

The evaluation was conducted on 500 randomly
selected problems from Bi-GSM8K. Considering
the sensitivity of similarity-based evaluation to
threshold settings, experiments were performed
over five predefined thresholds within the range
[0.5, 0.6, 0.7, 0.8, 0.9]. Table 1 reports only the
results corresponding to the optimal threshold for
each model. All evaluations were carried out using
the same test set and consistent hyperparameter set-
tings to prevent overfitting. Examples of alignment



Similarity Model Threshold Pearson Spearman Latency Peak Memory
EN KO EN KO (sec) (MB)
GPT-40 (Hurst et al., 2024) - 0.8645 0.9168 | 0.8605 0.9394 | 3.372 -
GPT-40-mini (OpenAl, 2024a) - 0.8887 0.9249 | 0.8712 0.9382 | 3.614 -
Claude-Sonnet-4 (Anthropic, 2024) - 0.8975 0.9009 | 0.8955 0.935 4.026 -
Gemini-2.5-Flash (Comanici et al., 2025) - 0.9010 0.9197 | 0.8978 0.9375 | 13.118 -
Llama-3.1-8B-Instruct (Dubey et al., 2024) 0.5 0.8823 0.8795 | 0.8618 0.8685 | 0.427 28681.48
DeepSeek-R 1-Distill-Llama-8B (Guo et al., 2025) 0.5 0.8873 0.8771 | 0.8706 0.8651 | 0.429 28681.48
Cosine DeepSeek-llamaS.l-Bllos@m-SB (UNIVA-Bllossom, 2025) 0.5 0.8895 0.8736 | 0.8659 0.8613 | 0.389 28658.35
Pearson Qwen245-7B-InsltrLfct (Hui et al., 2024) 0.5 0.8901 0.8769 | 0.8628 0.8634 | 0.406 27178.01
Semscore DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025) 0.65 0.8893  0.7798 | 0.8657 0.7788 0.373 27178.21
DeepSeek-R 1-Distill-Qwen-7B-Multilingual (LightBlue, 2025) 0.5 0.8901 0.7899 | 0.8628 0.7838 | 0.398 27162.12
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) 0.5 0.8816 0.8884 | 0.8670 0.8631 | 0.501 27221.69
Phi-4-mini-instruct (Abouelenin et al., 2025) 0.5 0.8901 0.8896 | 0.8628 0.8629 | 0.183 14728.41
bart-large (Lewis et al., 2019) 0.5 0.8903 0.8898 | 0.8698 0.8630 | 0.070 703.91
BertScore bert-large-uncased (Devlin et al., 2019) 0.5 0.8942  0.8929 | 0.8752 0.8665 | 0.113 1010.21
deberta-v2-xlarge-mnli (He et al., 2020) 0.65 0.8881 0.8912 | 0.8668 0.8747 | 0.213 2683.69
roberta-large (Liu et al., 2019) 0.5 0.8901 0.8901 | 0.8628 0.8628 | 0.109 1040.56

Table 1: Correlation between model-generated similarity scores and human-evaluated similarity scores (Pearson,
Spearman) in English (EN) and Korean (KO), along with latency and memory usage for each model. The highest

value in each category is highlighted in black bold.

results are included in Appendix H.

Among commercial LLM APIs, Gemini-2.5-
Flash achieved the highest Pearson correlation on
the English subset (0.9010), while GPT-40-mini led
on the Korean subset (0.9249). Regarding Spear-
man correlation, Gemini-2.5-Flash again ranked
highest on English (0.8978), and GPT-40 achieved
the top score on Korean (0.9394). Within the GTA
module variants, BERTScore-based models exhib-
ited superior performance and efficiency. Specifi-
cally, bert-large-uncased attained Pearson cor-
relations of 0.8942 (EN) and 0.8929 (KO), along
with a Spearman correlation of 0.8752 (EN). Mean-
while, deberta-v2-xlarge-mnli recorded the
highest Spearman correlation on Korean (0.8747).
These open-source configurations achieved perfor-
mance within approximately 0.03 points of com-
mercial models on average, indicating comparable
alignment quality in practice. This underscores the
capacity of context-aware embeddings to capture
semantic similarity at a human-like level, enabling
precise step-level alignment between student and
teacher solutions. Furthermore, these results high-
light the importance of semantic fidelity in align-
ment tasks and demonstrate the practical potential
of open-source models.

In terms of computational efficiency, large-scale
LLMs exhibited average inference latencies of
around 0.4 seconds per problem, whereas BERT-
based models offered substantially faster runtimes,
e.g., bart-large and bert-large-uncased re-
quired only 0.07 and 0.11 seconds, respectively.
Notably, the commercial small-scale model GPT-
40-mini incurred a latency of 3.614 seconds, sig-
nificantly slower than the open-source counter-

parts. Similar trends were observed for memory
consumption: large LLMs demanded over 27,000
MB, while BERT-based models generally operated
under 3,000 MB, with bart-large requiring ap-
proximately 700 MB, demonstrating feasibility in
resource-constrained environments.

5.3 Solution Error Detection

In this section, we evaluates the accuracy of various
LLMs in detecting students’ initial errors during the
process of solving mathematical problems. Table 2
summarizes the performance of multiple LLMs on
the SED task, reporting accuracy on both English
(EN) and Korean (KO) datasets, along with com-
putational efficiency metrics such as throughput
(requests per second), latency (seconds), and mem-
ory usage (MB). The evaluation was conducted on
500 randomly selected items from the Bi-GSM8K
dataset. Ground truth for the initial error points was
provided by mathematics and data construction ex-
perts, allowing accuracy to be computed without
additional human annotation. Detailed examples of
initial error detection are presented in Appendix I.

Among commercial LLMs APIs, GPT-4o0
achieved the highest accuracy in our experiments,
recording 94.4% on English and 95.8% on Korean.
In terms of computational efficiency, Gemini-2.5-
Flash demonstrated the best performance, process-
ing 0.2037 requests per second with an average
latency of 8.39 seconds.

Among open-source multilingual LL.Ms, mod-
els based on the Qwen architecture generally
outperformed single-language or simpler mod-
els. For instance, DeepSeek-R1-Distill-Qwen-7B-
Multilingual achieved accuracies of 86.4% in En-



Model Accuracy  Throughput Latency Peak Memory
EN KO (requests/sec) (sec) (MB)

GPT-40 944 958 0.1309 8.39 -
Claude-Sonnet-4 87.8 90.2 0.1885 5.31 -
Gemini-2.5-Flash 904 914 0.203 491 -
Llama-3.1-8B-Instruct 80.4 75.2 0.0014 711.60 10896.85
DeepSeek-R1-Distill-Llama-8B 554 578 0.0014 720.06 10898.43
DeepSeek-llama3.1-Bllossom-8B 63.2 62.0 0.0014 716.86 10851.40
Qwen2.5-7B-Instruct 79.4  86.0 0.0013 783.91 11279.73
DeepSeek-R1-Distill-Qwen-7B 82.8 80.4 0.0013 801.63 11328.93
DeepSeek-R1-Distill-Qwen-7B-Multilingual | 86.4 83.4 0.0012 847.68 11281.79
Mistral-7B-Instruct-v0.3 67.0 67.0 0.0009 1168.91 15120.72
Phi-4-mini-instruct 76.6 78.6 0.0029 355.01 8075.12

Table 2: Comparative evaluation of Solution Error Detection scores, thresholds, and memory usage for each model

glish and 83.4% in Korean. In contrast, the single-
language model Qwen2.5-7B-Instruct improved
English accuracy to 79.4% but saw a decline in
Korean accuracy from 86.0% to 83.4%. These re-
sults suggest that multilingual training contributed
to improvements in English performance but po-
tentially hindered Korean performance. This may
be due to the dominance of English-centric rep-
resentational structures and semantic frameworks
learned during multilingual training, which could
impair representation and reasoning capabilities for
structurally distinct languages such as Korean. In
other words, multilingual training does not guaran-
tee uniform performance gains across languages;
dominant languages can bias the model, adversely
affecting others.

Conversely, lightweight models based on the
Llama series showed relatively lower accuracy.
Llama-3.1-8B-Instruct achieved 80.4% accuracy
on English and 75.2% on Korean, while DeepSeek-
R1-Distill-Llama-8B scored 55.4% and 57.8%, re-
spectively. Notably, DeepSeek-llama3.1-Blossom-
8B, trained to think in English and output in the
input language, exhibited decreased performance
when Korean data was included. This indicates that
the English-centric reasoning strategy was insuffi-
ciently adapted to Korean contexts or that the se-
mantic quality of the training data was inadequate
for mathematical reasoning and error detection.

Regarding computational efficiency, the Phi-4-
mini-instruct model showed high resource effi-
ciency with throughput of 0.0029 requests per sec-
ond, latency of 355.01 seconds, and memory us-
age of 8075.12 MB. However, its low accuracy
renders it unsuitable for tutoring scenarios requir-
ing real-time feedback. Most open-source models
demonstrated higher throughput and lower latency
compared to GPT-4o, providing better real-time re-

sponsiveness, but they still exhibited limitations in
solving complex problems and in-depth language
understanding.

For a more intuitive understanding of the GTA
and SED experimental results presented in this
paper, various visualizations are included in Ap-
pendix J.

6 Conclusion

This study introduces Bi-GSMS8K, a bilingual
English-Korean benchmark dataset for mathemat-
ical problem solving. Constructed from detailed
solution processes of both students and teachers,
Bi-GSMB&K serves as a foundational resource for
math education and enables comprehensive eval-
uation of similarity between student and teacher
solutions. GTA evaluation demonstrates that sev-
eral competitive open-source models achieve high
agreement with human raters while offering greater
computational efficiency compared to commercial
models. Notably, the combination of BERTScore
with bert-large-uncased and the NW algorithm
attains performance comparable to commercial sys-
tems. In the SED task, open-source models per-
form slightly below commercial counterparts, with
an accuracy gap of approximately 10 percentage
points, indicating practical applicability. Language-
specific analyses further reveal performance differ-
ences between English and Korean, underscoring
the influence of linguistic properties and training
data composition. In addition, experiments con-
ducted separately on the English and Korean sub-
sets reveal distinct performance disparities by lan-
guage, suggesting that alignment and error detec-
tion capabilities vary according to linguistic char-
acteristics and training data distribution.



Limitations

Limitations of the Dataset: Elementary-Level
Scope, Simulated Student Solutions, and
Language Selection Considerations

The dataset employed in this study consists pri-
marily of elementary-level mathematics problems
and corresponding tutoring dialogues, thereby con-
straining its applicability to specific grade levels
and problem difficulties. The decision to focus on
elementary mathematics was motivated by its suit-
ability as a starting point for evaluating the capa-
bility of LLMs to accurately track students’ cogni-
tive processes and detect errors in a stepwise man-
ner. Elementary math problems typically involve
clearer, more structured solution paths, facilitating
systematic analysis and experimental control dur-
ing early-stage investigations. In contrast, middle-
and high-school level problems require more com-
plex reasoning, making them less suitable for ini-
tial studies. Future work will extend this line of
research to encompass more sophisticated cogni-
tive structures found in higher-level problems.
Moreover, the student-generated solutions in this
dataset were simulated by domain experts under
the assumption of typical student behavior, which
may limit their ability to fully capture the diver-
sity of cognitive processes and errors exhibited
by real students. Nevertheless, the simulated data
were carefully constructed and validated by experts
in mathematics education to reflect common error
types frequently observed among students. While
collecting real student-generated data poses chal-
lenges due to ethical considerations and privacy
concerns, future research should aim to develop
datasets that include a broader range of problem
types, languages, and authentic student solutions.
In addition, the choice of languages in this study
was guided by both practical and research-driven
considerations. Korean, the native language of the
research team, facilitated efficient data construc-
tion and validation. More importantly, Korean is
a relatively low-resource language in the context
of LLM training, making it a valuable target for
examining the generalization capabilities of multi-
lingual models and for analyzing language-specific
error patterns. English, as the global lingua franca
and the predominant training language for most
LLMs, serves as a critical benchmark for assess-
ing model performance. The inclusion of bilingual
English-Korean data thus enables a range of anal-
yses, including semantic alignment, variation in

expression, and cross-linguistic bias. Furthermore,
given that English and Korean are typologically
diverse languages, this pairing offers a meaning-
ful testbed for evaluating the models’ capacity for
cross-linguistic understanding beyond simple trans-
lation—especially in the context of educational in-
terventions and error detection.

Necessity for Improved Performance in
Complex Mathematical Reasoning

The open-source LLMs employed in this study
demonstrate performance degradation on tasks re-
quiring complex mathematical reasoning. This lim-
itation is likely due to insufficient training on high-
dimensional reasoning tasks or inherent difficulties
in processing mathematical expressions in certain
languages. To overcome these limitations, future
research should emphasize domain-specific train-
ing and integrate Retrieval-Augmented Generation
techniques to enhance reasoning capabilities.

Evaluation in Real Educational Environments

While this research evaluates system performance
through quantitative data-driven analyses, direct
verification of its applicability in actual classroom
or tutoring environments has not been performed.
In real educational settings, factors such as student
responses, class dynamics, and teacher interven-
tions significantly influence system effectiveness.
Therefore, comprehensive evaluations of system
practicality and educational efficacy require imple-
mentation in authentic educational contexts. Fu-
ture studies should conduct experiments involving
teachers and students to measure educational ef-
fectiveness and derive feedback mechanisms and
interface improvements that meet real-world de-
mands.

Limitations and Improvement Directions for
Solution Alignment Representation

In this study, we performed sentence-level align-
ment between student-generated and correct
(teacher-generated) solutions. However, this ap-
proach exhibits limitations in alignment accuracy,
as a single sentence may often encompass mul-
tiple solution steps. To precisely model students’
reasoning processes and effectively capture the in-
tricate relationships between student and teacher
solutions, a hierarchical and multi-layered repre-
sentational approach is required. Consequently, de-
veloping novel alignment methods capable of re-
flecting such complex structures is proposed as an



important direction for future research.

Need for Improvement in Model Efficiency and
Practicality

Most models evaluated in this study exhibited a
trade-off between accuracy and efficiency. Larger
models provided high accuracy at substantial com-
putational costs, whereas smaller models offered
higher efficiency but lower performance. Future re-
search should prioritize enhancing small-model per-
formance and optimizing computational efficiency
using hardware acceleration technologies, facilitat-
ing the development of real-time feedback systems
and improving model practicality.
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A Analysis of Problem Lengths

In this appendix, we present a quantitative statisti-
cal analysis of problem lengths in the Bi-GSM8K
dataset utilized in our experiments. The dataset
comprises mathematical problems presented in
both Korean and English, each containing 500
items. A statistical summary of the problem lengths
is provided in Table 3.

The average length of English items was approxi-
mately 237 characters, significantly longer than the
average length of Korean items (122.88 characters).
This discrepancy likely arises from the automatic
translation of Korean data into English, resulting in
generally more detailed explanations or structurally
longer sentences in the English items. Addition-
ally, the standard deviation of English problems
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Metric , English = Korean
Count | 500.000 | 500.000
Mean | 237.004 | 122.876
Std 90.912 | 44.501
Min 62.000 | 36.000
25% 173.000 | 90.000
50% 220.000 | 117.000
75% 281.000 | 145.250
Max 592.000 | 304.000

Table 3: Statistical Summary of Problem Lengths

(90.91) is more than double that of Korean prob-
lems (44.50), indicating a broader and more varied
length distribution in the English dataset.

Regarding minimum lengths, English problems
contain at least 62 characters, while Korean prob-
lems have a minimum of 36 characters, suggesting
that English texts generally include more informa-
tion. The maximum length further highlights this
difference, with English problems reaching up to
592 characters compared to the 304 characters of
Korean problems.

Quartile-based metrics exhibit similar trends,
consistently showing higher values for English
problems compared to their Korean counterparts,
thereby reinforcing the structural length disparity
across the entire dataset range. Notably, the me-
dian length of English problems is 220 characters,
approximately 1.88 times greater than the Korean
median of 117 characters.

These results might reflect the explicit and de-
tailed sentence structures often required by the En-
glish language during translation, as well as poten-
tial adjustments made by generative models to ac-
commodate stylistic differences between languages.
Such findings underscore the necessity of consider-
ing language-specific perceptions of difficulty and
interpretative approaches in subsequent analyses.

B Analysis of Solution Lengths

In this appendix, we present a quantitative statisti-
cal analysis of the lengths and steps of student-
generated and correct solutions from the Bi-
GSMS8K dataset used in our experiments. The
dataset comprises problems provided in two lan-
guages, Korean and English, each consisting of 500
items.

B.1 Analysis of Solution Length by Steps

This section analyzes the lengths of complete solu-
tions written in Korean and English for both correct
and student-generated solutions within the dataset.
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The first analysis considers each solution as an inte-
grated unit without dividing it into individual steps.

Metric , Correct Solution Student Solution
Count 500.000 500.000
Mean 278.596 181.296

Std 136.449 117.530

Min 36.000 8.000

25% 174.750 99.750

50% 249.500 169.000
75% 353.000 244.000
Max 1006.000 689.000

Table 4: Statistical Summary of Solution Lengths (En-
glish)

The statistical analysis results for English so-
lutions are summarized in Table 4. The average
length of correct (teacher-generated) solutions is ap-
proximately 278.60 characters, roughly 1.54 times
longer than student-generated solutions, which av-
erage 181.30 characters. Notably, the standard de-
viation for correct solutions (136.45) is consider-
ably higher compared to that for student solutions
(117.53), indicating that correct solutions not only
tend to be lengthier but also exhibit greater variabil-
ity in structural complexity and explanatory depth.

Metric , Correct Solution Student Solution
Count 500.000 500.000
Mean 185.456 122.008

Std 82.344 75.418

Min 46.000 5.000

25% 123.000 70.000
50% 168.000 112.500
75% 237.000 166.000
Max 631.000 389.000

Table 5: Statistical Summary of Solution Lengths (Ko-
rean)

The statistical results for Korean solutions are
summarized in Table 5, displaying trends similar
to those observed in the English solutions. The
average length of correct (teacher-generated) so-
lutions in Korean is approximately 185.46 charac-
ters, approximately 1.5 times longer than student-
generated solutions, which average 122.01 charac-
ters. The standard deviation of correct solutions
(82.34) is slightly greater than that of student so-
lutions (75.42), suggesting more variability due to
detailed explanatory content. Furthermore, the max-
imum length of correct solutions (631 characters)
substantially surpasses that of student solutions
(389 characters).

Overall, correct solutions consistently exhibit



greater length compared to student solutions, re-
flecting their more detailed and stepwise explana-
tory nature. This pattern is consistent across both
languages, reinforcing the observation that teacher-
generated solutions generally present higher com-
plexity and explanatory completeness.

The subsequent analysis separately examines so-
lution lengths at the individual step level.

Metric , Correct Solution Student Solution
Count 1724 1340

Mean 80.80 67.65

Std 34.27 32.12

Min 6 6

25% 57 48

50% 74 63

75% 99 83

Max 265 282

Table 6: Statistical Summary of Step Lengths (English)

Metric , Correct Solution Student Solution
Count 1724 1340

Mean 53.79 45.53

Std 17.22 17.57

Min 7 5

25% 43 36

50% 51 44

75% 64 55

Max 135 157

Table 7: Statistical Summary of Step Lengths (Korean)

Tables 6 and 7 provide statistical summaries of
step-by-step solution lengths in English and Ko-
rean, respectively.

In English, the average step length of correct
solutions (80.80 characters) exceeds that of stu-
dent solutions (67.65 characters). Additionally, the
standard deviation and maximum-minimum values
show a broader distribution for correct solutions,
indicating that these solutions may contain more
detailed and complex explanations.

Similar trends appear in Korean solutions. Cor-
rect solutions have an average step length of 53.79
characters, longer than the 45.53 characters for stu-
dent solutions. Standard deviations for both groups
were comparable, while maximum lengths were
higher in student solutions, indicating the existence
of some student solutions with extensive explana-
tions.

Generally, correct solutions have longer and
more detailed step explanations than student
solutions, although exceptions exist regarding
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maximum-minimum lengths and range distribu-
tions.

Step , Correct Solution Student Solution

1 82.47 64.92
2 79.81 66.95
3 79.90 71.71
4 81.15 70.64
5 83.47 70.63
6 74.74 74.47
7 73.58 71.00
8 69.75 -

Table 8: Average Step Length per Step Number (En-
glish)

Step , Correct Solution Student Solution

1 54.20 43.04
2 53.32 45.39
3 53.84 48.37
4 54.81 48.73
5 53.26 47.54
6 50.98 49.94
7 51.50 54.00
8 53.75 -

Table 9: Average Step Length per Step Number (Korean)

Tables 8 and 9 display the average solution
length by individual steps for English and Korean,
respectively.

For English solutions, the average length of cor-
rect solutions consistently surpasses that of stu-
dent solutions across the initial five steps, with the
largest discrepancy observed in step 1 (82.47 vs.
64.92 characters). Differences decrease in subse-
quent steps, with steps 67 showing minimal di-
vergence, and step 8 lacking student solution data,
suggesting that correct solutions tend to provide
longer, more detailed explanations early in the so-
lution process.

Korean solutions reveal a similar pattern, with
correct solutions typically longer than student so-
lutions across most steps, though student solutions
exceed correct solutions at step 7. Similar to En-
glish data, step 8 lacks student-generated solution
data. Compared to English, differences in length
per step are generally smaller in Korean solutions.

Overall, in both languages, the difference in
length per step decreases as solutions progress,
with correct solutions consistently providing more
comprehensive explanations.



Metric Input Unit

Embedding Method

Similarity Computation

Mean-pooled Embedding Similarity Sentence-level vector

Mean pooling over all tokens

Cosine similarity between vectors

Mean-pooled Embedding Correlation Sentence-level vector

Mean pooling over all tokens

Pearson correlation per dimension

SemScore [CLS] token embedding

Single [CLS] token embedding

Cosine similarity between [CLS] embeddings

BERTScore Token-level

All token embeddings

Alignment optimization-based F1 score

Table 10: Summary of semantic similarity metrics used for comparing student and teacher solutions.

B.2 Analysis of Solution Steps

This section analyzes the number of steps in the
Correct Solutions and Student Solutions within the
dataset. The number of solution steps is a crucial
metric indicating how granularly the solution pro-
cess is articulated, serving as an essential factor for
evaluating the detail and complexity of the solu-
tions.

Metric , Correct Solution , Student Solution
Count 500 500

Mean 3.448 2.680

Std 1.349 1.309

Min 2 1

25% 2 2

50% 3 3

75% 4 3

Max 8 7

Table 11: Statistical Summary of Step Counts by Solu-
tion Type

Table 11 summarizes statistical measures for the
step counts of both groups. The analysis was con-
ducted on 500 solution samples from each group.

The Correct Solutions exhibited an average of
3.448 steps, noticeably higher than the Student So-
lutions, which averaged 2.680 steps. This indicates
a tendency for Correct Solutions to provide more
detailed and finely segmented explanations. The
standard deviation of step counts was similarly
around 1.3 for both groups, suggesting comparable
variability in the number of solution steps.

Regarding the minimum number of steps, Stu-
dent Solutions included instances starting from a
single step, whereas Correct Solutions always be-
gan from at least two steps. Additionally, the 75th
percentile step count was 4 for Correct Solutions
and 3 for Student Solutions, reinforcing the ob-
servation that Correct Solutions generally involve
more steps.

For maximum step counts, Correct Solutions
extended up to 8 steps, whereas Student Solutions
reached a maximum of 7 steps, indicating slightly
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less granularity in student-generated explanations.

These results suggest that Student Solutions tend
to provide briefer explanations or omit certain steps
compared to Correct Solutions. Thus, step count
analysis serves as a valuable measure for assessing
the completeness and structural detail of student-
generated solutions.

C Semantic Similarity Metrics Used in
GTA

This appendix provides a detailed description of the
four representative semantic similarity metrics em-
ployed in our GTA evaluation. These metrics were
selected to capture not only surface-level textual
overlap but also deeper semantic correspondences
at both sentence and token levels. Table 10 summa-
rizes the input granularity, embedding strategy, and
similarity computation method for each metric.

Mean-pooled Embedding Cosine Similarity
For this metric, we extract token embeddings from
a Transformer-based language model and compute
a sentence-level embedding by performing mean
pooling across all token embeddings. Cosine simi-
larity is then computed between the sentence em-
beddings of the student and teacher solutions. This
is a standard approach that aggregates semantic in-
formation across the sentence and allows for holis-
tic comparison of overall meaning.

Mean-pooled Embedding Pearson Correlation
This method calculates the Pearson correlation co-
efficient across each dimension of the mean-pooled
sentence embeddings. While cosine similarity is
the dominant choice for embedding-based compar-
isons in NLP, we incorporate Pearson correlation
as an experimental measure to assess the degree
of linear alignment between the dimensions of the
embeddings. This metric captures both directional
alignment and consistency of magnitude changes
across dimensions.

SemScore Instead of averaging token embed-
dings, this method uses the embedding of the spe-
cial [CLS] token from the encoder output of a



Transformer model as the sentence representation.
The cosine similarity between the [CLS] embed-
dings of the student and teacher solutions is com-
puted. This approach provides a focused and con-
densed semantic similarity assessment and is partic-
ularly effective when using encoder-based models
such as BERT.

BERTScore This metric computes pairwise co-
sine similarity between all token embeddings of
the student and teacher solutions and applies a
token-matching algorithm to derive Precision, Re-
call, and F1 scores. We use the F1 score as the
final semantic similarity measure, reflecting fine-
grained alignment at the token level. This method
leverages the bidirectional attention mechanism of
encoder-based models to deliver high alignment
accuracy.

Applicability of Metrics by Model Architecture
We carefully matched each semantic similarity met-
ric to the appropriate LLM architecture, taking into
account both the intended design of the metrics and
the structural characteristics of the models.

* Mean-pooled Embedding Cosine Similarity,
Mean-pooled Embedding Pearson Correlation,
and SemScore involve converting the full sen-
tence into a fixed-length embedding vector
and computing similarity between vectors.
Decoder-based language models (e.g., GPT
variants) operate in an auto-regressive fashion
and can produce sentence-level embeddings
by pooling over the final hidden states or us-
ing the last token representation. These met-
rics are thus compatible with decoder-based
models for evaluating sentence-level semantic
similarity.

BERTScore, on the other hand, does not
compress the sentence into a single embed-
ding. Instead, it computes semantic alignment
based on token-level similarity and optimal
matching. This method is most effective with
encoder-based models (e.g., BERT), which
utilize bidirectional attention to model rich
contextual dependencies across tokens. In con-
trast, auto-regressive decoding in GPT-like
models limits such context integration, mak-
ing them less suitable for BERTScore-based
evaluation.

Accordingly, we selected and applied similarity
metrics in alignment with the architectural char-
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acteristics of the LLMs to ensure that each metric
could function as intended. The similarity computa-
tion procedures were consistently applied across all
experiments, contributing to a broad and compre-
hensive exploration of semantic alignment meth-
ods.

D Solution Error Detection without
Answer Solutions

In this appendix, we presents additional experi-
mental results aimed at evaluating the impact of
providing reference (teacher) solutions on the per-
formance of LLMs in error detection tasks.

One of the primary objectives of this study is
to quantitatively assess whether LLMs can more
accurately identify errors in student-generated solu-
tions when accompanied by corresponding teacher
solutions. The rationale for including teacher so-
lutions in the proposed prompting strategy is to
furnish the model with essential contextual ground-
ing, thereby facilitating more precise localization
and interpretation of student errors.

To empirically validate this hypothesis, we con-
ducted an ablation study using the same test set
but removed teacher solutions from the input. This
configuration serves as a baseline to evaluate the
model’s ability to detect errors based solely on the
student solution, without external reference.

As shown in Table 12, the inclusion of teacher
solutions led to substantial improvements in error
detection accuracy across most models. The per-
formance gains were particularly pronounced for
smaller-scale models (e.g., 7B, 8B), suggesting that
teacher solutions offer valuable structural guidance
to models with limited reasoning capacity.

Moreover, in domains such as mathemat-
ics—where complex, multi-step logical reasoning
is essential—accurately identifying errors based
solely on student output is often infeasible. When
reference solutions are provided, LLMs can go be-
yond shallow textual similarity and instead evalu-
ate logical consistency and correctness with greater
precision. These quantitative results offer empiri-
cal support for the effectiveness of our proposed
alignment-based error detection framework.

E Human Evaluator Guidelines for
Solution Alignment

This appendix details the annotation guidelines and
considerations that human raters followed when
aligning student solutions with teacher solutions in



Baseline Ours
Model EN KO | EN KO
GPT-40 752 72.6 | 944 95.8
Claude-sonnet-4 72.6 75.0 | 87.8 90.2
Gemini-2.5-Flash 77.6 80.0 | 904 914
Llama-3.1-8B-Instruct 422 484 | 804 752
DeepSeek-R1-Distill-Llama-8B 306 194 | 554 57.8
DeepSeek-llama3.1-Bllossom-8B 334 282|632 620
Qwen2.5-7B-Instruct 49.0 41.6 | 794 86.0
DeepSeek-R1-Distill-Qwen-7B 59.2 432 | 828 804
DeepSeek-R1-Distill-Qwen-7B-Multilingual | 57.4 43.8 | 86.4 83.4
Mistral-7B-Instruct-v0.3 102 4.8 | 67.0 67.0
Phi-4-mini-instruct 604 438 | 766 78.6

Table 12: Accuracy comparison between Baseline and Ours for English (EN) and Korean (KO)

the Bi-GSMS8K dataset.

¢ Ignore Arithmetic Mistakes: Minor compu-
tational errors are disregarded. If the reason-
ing process or solution approach is logically
aligned, the corresponding steps are matched.

Match Based on Logical Structure: Steps
are aligned based on logical structure, even if
numerical values or surface expressions differ.

Marking Unmatched Steps: When no ap-
propriate matching step exists between the
student and teacher solutions, annotators de-
note the step with an underscore (_) to indi-
cate the absence of alignment. Examples are
illustrated in Table 13 and Table 14.

One-to-One Matching Principle: All align-
ments must follow a one-to-one correspon-
dence between steps in the student and teacher
solutions.

Handling Multi-Step Sentences: When a sin-
gle sentence in either solution contains mul-
tiple logical steps, annotators align it to the
most salient or earliest relevant step based on
semantic content.

— For instance, if the teacher solution con-
sists of two steps, "First, compute the
total,” followed by "Then, divide the re-
sult," but the student expresses both in a
single sentence, such as "We can divide
the total number," annotators determine
which teacher step is more directly ad-
dressed and align accordingly.

— Similarly, when a student step encapsu-
lates multiple teacher steps, it is matched
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to the step that most semantically corre-
sponds to its core meaning.

These guidelines are designed to support consis-
tent and objective annotations while allowing an-
notators the flexibility to apply informed judgment,
focusing on the logical and semantic alignment
between steps.

Based on these alignment decisions, we assign
a score of 1 to each aligned step and a score of
0 to unmatched or irrelevant steps, following the
same evaluation scheme as the GTA module. The
final similarity score is computed by summing all
alignment scores and dividing by the total number
of steps, yielding a normalized score between 0
and 1.

F Analysis of Human Evaluator
Consistency

In this appendix, we quantitatively analyze the con-
sistency of solution alignment results produced by
five human evaluators involved in this study.

Each evaluator directly performed the alignment
between student and teacher solutions by consider-
ing both the semantic similarity and logical flow at
each step. Under subjective judgment, evaluators
selected the most natural alignments, leaving un-
matched steps blank when alignment was difficult.

The consistency of these multi-evaluator align-
ment results was measured using Fleiss’ Kappa
(McHugh, 2012), a statistical metric for assessing
agreement among multiple raters on categorical
data. Fleiss’ Kappa is well-suited for our analysis
as it objectively computes inter-rater agreement
while correcting for chance agreement. The Kappa
value ranges from —1 to 1, with values closer to
1 indicating higher agreement. The Fleiss’ Kappa



calculated in this study was 0.6149, demonstrat-
ing substantial agreement among the evaluators.
Conventionally, Kappa values above 0.6 indicate
reasonably strong consistency, supporting the relia-
bility of the obtained evaluation results.

These findings provide objective evidence for the
reliability and consistency of the similarity scores
derived from human alignment and substantiate
the validity of the quantitative evaluation method
proposed in this work.
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G Detailed Prompt Template for Solution Error Detection

In this appendix, we presents the detailed prompt template used in the SED module. As described in the
main text, the SED module adopts a 3-shot prompting approach, as illustrated in Figure 4.

The three few-shot examples were carefully selected from the training data to evenly represent errors
occurring at different reasoning stages (i.e., stages 1, 2, and 3). Each example consists of a problem
statement and solution, step-by-step teacher solution, a student solution containing an error, and a query
instructing the model to identify the first step at which the error occurs.

This prompt structure is designed to guide the LLM in comprehending the student’s reasoning trajectory
and solution logic in a stepwise manner, thereby enabling accurate identification of the initial point of
erTor.

You are given a math problem, a correct answer solution, and a student solution. Your task is to compare the correct
solution to the student solution and output the step number where the student’s error begins. If the student’s solution is
completely correct, output 0.

Problem: Sohee feels bored with her current game and decides to play a new one. In the new game, 80% of the 100
hours of gameplay consists of repetitive and boring stages. However, through an expansion pack, she can add 30 hours
of enjoyable stages. Including the expansion pack, how many hours of enjoyable stages can Sohee play?

Answer Solution:
{

"step_1":"There are 100x0.8=«100x0.8=80»80 hours of boring stages in the game.",

"step_2":"The enjoyable gameplay time is 100-80=«100-80=20»20 hours.",

"step_3":"With the expansion pack, the enjoyable gameplay time increases to 20+30=«20+30=50»50 hours."
}

Student Solution:

{
"step_1": "There are 100x0.8=«100x0.8=80»80 hours of boring stages in the game.",
"step_2":"The enjoyable gameplay time is 100-80=«100-80=20»20 hours.",
"step_3":"The expansion pack has 30x0.8=«30x0.8=24»24 hours of boring stages.",
"step_4":"The enjoyable gameplay time in the expansion pack is 30-24=«30-24=6»6 hours.",
"step_5":"The total enjoyable gameplay time is 50+6=«50+6=56»56 hours."

}

Q: Is the Student Solution incorrect? Write only the step number with the first error or O if no error is found.
A:3

Problem: Seongjin is stranded on a deserted island. He needs salt to season fish. He collected 2 liters of seawater in
an old bucket. If the water contains 20% salt, how many milliliters of salt will Seongjin get when all the water evaporates?

Answer Solution:
{

"step_1":"First, find out how many liters of the seawater is salt: 2L * 20% = «2*(0.2=0.4»0.4L",

"step_2":"Then, multiply this amount by 1000 ml/L to find how much salt Seongjin gets: 0.4L * 1000ml/L =
«0.4*1000=400»400m1"

}

Student Solution:
{
"step_1":"220 = «220=40»40ml of salt is obtained."

}

Q: Is the Student Solution incorrect? Write only the step number with the first error or 0 if no error is found.
A:l

Problem: A set of hairpins costs 3,000 won each, and a comb costs 1,000 won each. Jinri buys one set of hairpins and
one comb. Sujeong buys three sets of hairpins and one comb. How much do the two girls spend in total?

Answer Solution:

{
"step_1":"Jinri spends 3,000 + 1,000 = «3000+1000=4000»4,000 won.",
"step_2":"The cost of three sets of hairpins is 3,000 x 3 = «3000*3=9000»9,000 won.",
"step_3":"Sujeong spends 9,000 + 1,000 = «9000+1000=10000»10,000 won.",
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"step_4":"So the two girls spend 4,000 + 10,000 = «4000+10000=14000»14,000 won in total."
}

Student Solution:
{
"step_1":"Jinri spends 3,000 + 1,000 = «3000+1000=4000»4,000 won.",
"step_2":"The cost of two sets of hairpins is 3,000 x 2 = «3000*2=6000»6,000 won.",
"step_3":"Sujeong spends 6,000 + 1,000 = «6000+1000=7000»7,000 won.",
"step_4":"So the two girls spend 4,000 + 7,000 = «4000+7000=11000»11,000 won in total."
}

Q: Is the Student Solution incorrect? Write only the step number with the first error or 0 if no error is found.
A:2

Problem: {problem}
Answer Solution: {answer_solution}
Student Solution: {student_solution}

Q: Is the Student Solution incorrect? Write only the step number with the first error or O if no error is found.
A:

Figure 4: Detailed Prompt Template for Solution Error Detection.
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H Detailed Examples of Ground Truth Alignment

In this appendix, we present illustrative examples of GTA results for both English (Table 13) and Korean
(Table 14). Each table includes the math problem (“Problem”), the step-by-step teacher solution (“Answer
Solution”), and the student’s step-by-step reasoning (“Student Solution”). The “Reference Alignment”
shows gold-standard step-level alignments manually annotated by a human rater. Predicted alignments
from the best-performing open-source model (BERTScore with bert-large-uncased and NW algorithm)
and the top commercial LLM API (GPT-40) are also provided, with misalignments highlighted in red.

Problem

Yeona has a 2L water bottle next to her desk. She takes a sip every 5 minutes, and each sip is 40ml. How many minutes

does it take to finish one bottle of water?

Answer Solution

Step 1: First, find the total ml of the bottle: 2L * 1000ml/L = «2x1000=2000»2000ml
Step 2: Then divide the total ml by the amount consumed per sip: 2000ml / 40ml = «2000/40=50»50 sips.
Step 3: Then, multiply the number of sips by the time per sip to find the time it takes to drink the bottle: 50 sips * 5

minutes/sip = «50%5=250»250 minutes.

Student Solution

Step 1: Yeona’s water bottle is 200ml.

Step 2: Divide 200ml by the amount consumed per SiF: 200ml / 40ml = «200/40=5»5 sips.
t

Step 3: To find the time it takes to drink the bottle, mu
= 25 minutes.

ply the number of sips by the time per sip: 5 sips * 5 minutes/sip

Reference Alignment

Student Solution

Answer Solution

First, find the total ml of the bottle: 2L * 1000ml/L = ‘
«2*1000=2000»2000ml

Yeona’s water bottle is 200ml.

Divide 200ml by the amount consumed per sip. 200ml /
40ml = «200/40=5»5 sips.

Then divide the total ml by the amount consumed per
sip: 2000ml / 40ml = «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the
number of sips by the time per sip: 5 sips * 5 minutes/sip
=25 minutes.

Then, multiply the number of sips by the time per sip
to find the time it takes to drink the bottle: 50 sips * 5
minutes/sip = «50x5=250»250 minutes.

Predicted Alignment by BERTScore + bert-large-uncased + NW algorithm

Student Solution

Answer Solution

Yeona’s water bottle is 200ml.

First, find the total ml of the bottle: 2L * 1000ml/L = \
«2*x1000=2000»2000ml

Divide 200ml by the amount consumed per sip. 200ml /
40ml = «200/40=5»5 sips.

Then divide the total ml by the amount consumed per
sip: 2000ml / 40ml = «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the
number of sips by the time per sip: 5 sips * 5 minutes/sip
= 25 minutes.

Then, multiply the number of sips by the time per sip
to find the time it takes to drink the bottle: 50 sips * 5
minutes/sip = «50x5=250»250 minutes.

Predicted Alignment by GPT-40

Student Solution

Answer Solution

First, find the total ml of the bottle: 2L * 1000ml/L = ‘
«2%1000=2000»2000ml

Yeona’s water bottle is 200ml.

Divide 200ml by the amount consumed per sip. 200ml /
40ml = «200/40=5»5 sips.

Then divide the total ml by the amount consumed per
sip: 2000ml / 40ml = «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the
number of sips by the time per sip: 5 sips * 5 minutes/sip
=25 minutes.

Then, multiply the number of sips by the time per sip
to find the time it takes to drink the bottle: 50 sips * 5
minutes/sip = «50x5=250»250 minutes.

Table 13: Example Results of GTA using GPT-40 and BERTScore with bert-large-uncased and NW Algorithm
(English).
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Problem

gobc WA Gof 2LAe] S S LT SEAkT o B whA ), & B3 20 ke 0mIgiUh B
?

3 32 thubA L o 8 ol

d2ua?

Answer Solution

Step 1: HA Bl Z ml
Step 2: 19 T} & ml 2 oA =
Step 3: 19 Thx Ba S50 B33 Al7HE 5ot B2

«50%5=250»2505

Student Solution

Step 2: 200mlE 3+ 2 BRAIE 9FO 2 13
Step 3 22 3156 B A2 ool HE
1=}

pLs

o

t}: 200ml / 40ml = «200/40=5»5 R
P o e 7S Bk 5 5% * SB/RE = «5x525025

Reference Alignment

Student Solution

Answer Solution

WA W 5 ml 58

2 zZk5Uth 2L * 1000ml/L = ‘
«2%1000=2000»2000ml

lofo] £ 200migj L.

200mlE oF 22 opA|= Fo 2 gy} 200ml /
40ml = «200/40=5»5 L

I 2 S ml 5 RaT A= o8 sy
E]'I 2000ml / 40ml = «2000/40=50»50 X

23 So] =Y A0S Foto] 9E mHAls
o 2ee ARbe Zgyth 5 Bg ¢ SE/EE =
«5%5=25»255

O9 v B 314 Bgwd AR Fote] S o)
A= d el A7he ZEUTh 50 BF * 5E/RF
= «50%5=250»2505

Predicted Alignment by BERTScore + bert-large-uncased + NW algorithm

Student Solution

Answer Solution

Aot 21 200ml YU o,

714 92| 5 ml 58

«2%1000=2000»2000ml

Zr5 Ytk 2L * 1000ml/L =

200mlE 3t RET} opA] oF o 2 st 200ml /
40ml = «200/40=5»5 _rr‘_’—éL

I8 2 Fml 5 P BEY oA E o 2 e
t}: 2000ml / 40ml = «2000/40=50»50 =

23 S50] DY A%E Eold 38 oHE
o del= AZRE ZgUth 5 Bg * SE/ET =
«5%5=25»25H

09 e B F 850 BT A0S Fetol 9
AlE H 22l ARte Z5Uth 50 Be * SE/RE
= «50%5=250»250-5

Predicted Alignment by GPT-40

Student Solution

Answer Solution

WA Wol £ ml £2 LUtk 2L * 1000ml/L =
«2%1000=2000»2000ml

Qote] 2 200mIgI .

200mlS St Rt ufA]= oF o 2 st} 200ml /
40ml = «200/40=5»5 2=

29 T F ml 2 @ B oAl O R s
t}: 2000ml / 40ml = «2000/40=50»50 =

3 Zlgof mEd AI7HS Hote] B2 oAl 9 2
gl A|7HS ZSUch 5 R sE/m T =058

2 TS B 9150 B AR Foko] g o)
A€ d dEE AzRe By th 50 B3 SRR
= «50%5=250»2502

Table 14: Example Results of GTA using GPT-40 and BERTScore with bert-large-uncased and NW Algorithm

(Korean)
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I Detailed Examples of Solution Error Detection

This appendix provides illustrative examples of SED results on student solutions proposed in this paper.
In Tables 15 and 16, “Problem” denotes the question prompt, “Answer Solution” refers to the teacher’s
solution, and “Student Answer” represents the student’s solution. The “Answer” indicates the ground-truth
location of the first error in the student’s solution, while “Prediction” corresponds to the initial error point
predicted by each model. Incorrect segments are highlighted in red, and correct segments are marked in

blue.
Section Content
Problem Three cats were sitting on a fence meowing at the moon. The first cat

meowed 3 times per minute. The second cat meowed twice as often as the
first cat. The third cat meowed at 1/3 the frequency of the second cat. What
is the total number of times the three cats meowed in 5 minutes?

Answer Solution

Step 1: The second cat meowed twice as often as the first cat, which meowed
3 times per minute, resulting in a total of 2 x 3 = @ meows per minute.
Step 2: The third cat meowed at % the frequency of the second cat, resulting
in a total of 6 + 3 = | 2 | meows per minute.

Step 3: Therefore, the three cats meow 3 + 6 + 2 = times per minute.
Step 4: In 5 minutes, three cats meow 5 x 11 = times.

Student Solution Step 1: The second cat meows 2 x 3 = @ times.
Step 2: The third cat meows 3 X % =1 |time.
Step 3: The three cats meow 3 + 6 + 1 = times per minute.
Step 4: For 5 minutes, the three cats meow 10 x 5 = times.
Answer Step 2
Prediction GPT-4o: Step 2

LLaMA-3.1-8B-Instruct: Step 2
DeepSeek-R1-Distill-LLaMA-8B: Step 3
DeepSeek-LLaMA3.1-Blossom-8B: Step 3
Qwen2.5-7B-Instruct: Step 3
DeepSeek-R1-Distill-Qwen-7B: Step 1
DeepSeek-R1-Distill-Qwen-7B-Multilingual: Step 1
Mistral-7B-Instruct-v0.3: Step 3
Phi-4-mini-instruct: Step 2

Table 15: Example of SED Using GPT-40 and Open LLMs.(English) Blue indicates correct detection; red indicates

incorrect detection.
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Section Content

Problem o] Al uhal7k gekelo] gt &gl obg A2 T AASH T A
A oFol i Rk 31 ofg A ALY T T WA moFol i 3 WA o
ot} % Wl ¥ % o7 ALY T A WA ekol £ WA wefol

W
o] 13 ¥l 2 ok A gl th. ool A nhel7} 5B Sk opg A el &
%1 Antelu 7}

Answer Solution Step 1: = W 7] 11¢Fo]= A Wz 11Fo]|7} B 3H] of25l= Z1H T &=
3

o o 2} okg-ste] B £ 2 x 3 =6 ]H oFg 5 h
Step 2: A| HA| 11¢fo|= & ¥4 119fo] 9] 1/3 Hl k= ofg5lo] &
6+3=[2] oF&HYTh

i +
Step 4: 55 5F A 119Fo] =5 x 11 =55 | oF&-gt T},

Student Solution Step 1: 5= 4] 19Fo]=2 x 3 = @]ﬂ ottt
Step 2: A| HA 1= Q 5] '
Step 3: A| 19Fol= Bk 3+ 6 + 1 = 10]H oFg3HYth.
Step 4: 55 5-9F A 119Fo] =10 x 5 =[50 [ oF&-gH T},

Answer Step 2

Prediction GPT-40: Step 2
LLaMA-3.1-8B-Instruct: Step 2
DeepSeek-R1-Distill-LLaMA-8B: Step 3
DeepSeek-llama3.1-Blossom-8B: Step 3
Qwen2.5-7B-Instruct: Step 2
DeepSeek-R1-Distill-Qwen-7B: Step 2
DeepSeek-R1-Distill-Qwen-7B-Multilingual: Step 2
Mistral-7B-Instruct-v0.3: No errors
Phi-4-mini-instruct: Step 2

==

=
(%]
ol
]

Table 16: Example of SED Using GPT-40 and Open LLMs.(Korean) Blue indicates correct detection; red indicates
incorrect detection.
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J Visualization of GTA and SED Experimental Results

This appendix presents visualizations of model performance and inference latency for the two core tasks
discussed in the main text: GTA and SED.

J.1 Visualization of Model Performance

For the GTA task, model performance is depicted using radar charts illustrating Pearson correlation in
Figures 5 and Spearman correlation in Figures 6. For the SED task, model performance is shown through
a radar chart of accuracy in Figure 7.

GPT-40

roberta-large GPT-40-mini Language
English
deberta-v2-xlarge-mnli Claude-Sonnet-4 Korean

bert-large-uncased Gemini-2.5-Flash
bart-large Llama-3.1-8B-Instruct
07 075 08 085 f09 095 1
Phi-4-mini-instruct DeepSeek-R1-Distill-Llama-8B

Mistral-7B-Instruct-v0.3 DeepSeek-llama3.1-Bllossom-8B

DeepSeek-R1-Distill-Qwen-7B-Multilingual Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-78

Figure 5: Ground Truth Alignment Performance (Pearson Correlation). Radar plot illustrating model-wise Pear-
son correlation scores. Blue lines represent performance on English tasks, while orange lines indicate performance
on Korean tasks. This visualization reveals language-specific variation in alignment capabilities across models.
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Figure 6: Ground Truth Alignment Performance (Spearman Correlation). Radar plot illustrating model-wise
Spearman correlation scores. Blue lines represent performance on English tasks, while orange lines indicate
performance on Korean tasks. This visualization reveals language-specific variation in alignment capabilities across
models.
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Figure 7: Solution Error Detection Performance (Accuracy). Radar plot showing accuracy scores for each model
on the SED task. Blue lines represent English task performance, and orange lines represent Korean task performance.
The figure highlights differences in multilingual generalization and model robustness in error identification.
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J.2 Visualization of Model Latency

To provide a more detailed understanding of model efficiency, Figures 8 and 9 present the inference
latency (in seconds) of each model for the respective tasks. All latency values represent averages across
English and Korean experiments per model and were measured under consistent runtime environments.
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Figure 8: Latency on Ground Truth Alignment Task. Latency (in seconds) per model, averaged over both English
and Korean examples. Lower latency reflects faster inference. This comparison enables assessment of the trade-off

between alignment quality and computational cost.
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Figure 9: Latency on Solution Error Detection Task. Latency (in seconds) per model, averaged over English and
Korean data. Lower latency implies more efficient error detection. The figure provides insight into the computational

scalability of each model for educational feedback applications.
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