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Abstract

Recent advancements in LLMs have sig-001
nificantly improved mathematical problem-002
solving, with models like GPT-4 achieving003
human-level performance. However, profi-004
ciently solving mathematical problems differs005
fundamentally from effectively teaching math-006
ematics. To bridge this gap, we introduce the007
Bi-GSM8K benchmark, a bilingual English-008
Korean dataset enriched with teacher solutions,009
student solutions, and annotations marking stu-010
dents’ initial errors. This dataset is designed011
to evaluate two core capabilities of LLMs:012
(1) measuring similarity between student and013
teacher solutions, and (2) identifying the initial014
error point in student solutions. Our method015
achieves high agreement with human judg-016
ments, with Pearson 0.89 and Spearman 0.88017
on English, and Pearson 0.89 and Spearman018
0.87 on Korean. It also offers significantly019
lower latency and resource usage than commer-020
cial APIs, demonstrating strong computational021
efficiency. In the error detection task, open-022
source models achieved approximately 86% ac-023
curacy, with performance within 10% points of024
commercial LLMs API, suggesting strong prac-025
tical potential. Our key contributions include026
the open-source release of Bi-GSM8K, novel027
evaluation metrics, and comparative analyses028
of LLM performance across languages.029

1 Introduction030

Recent advancements in LLMs have led to signif-031

icant progress in mathematical problem-solving032

tasks. Notably, GPT-4 has achieved accuracy rates033

of 97% and 86% on GSM8K and MMLU bench-034

marks, respectively, demonstrating performance035

comparable to expert human levels. Additionally,036

OpenAI’s o1 model has attained an accuracy of037

74.4% (pass@1) on the AIME problems, fur-038

ther evidencing its advanced reasoning capabili-039

ties (Zhong et al., 2024; Achiam et al., 2023; Ope-040

nAI, 2024b). These results indicate that LLMs have041

evolved from mere language-understanding tools 042

into sophisticated instruments capable of logical 043

reasoning and computational problem-solving. 044

However, effectively solving mathematical prob- 045

lems and proficiently teaching mathematics to stu- 046

dents constitute fundamentally distinct tasks. Prior 047

research has established that the competencies in- 048

volved in effectively solving mathematical prob- 049

lems, termed Common Content Knowledge (CCK), 050

differ significantly from the Mathematical Knowl- 051

edge for Teaching (MKT) required for effective 052

pedagogical practice (Understand, 1986; Ball et al., 053

2008). Within educational contexts, this implies 054

that merely providing correct answers is insuf- 055

ficient; it is crucial to understand the student’s 056

thought processes and diagnose their errors accu- 057

rately (Copur-Gencturk and Tolar, 2022; Daheim 058

et al., 2024; Sonkar et al., 2024). 059

This perspective is increasingly prevalent in con- 060

temporary research on mathematics education us- 061

ing LLMs. In particular, there is a growing consen- 062

sus that aligning LLMs to think like experienced 063

educators rather than merely serving as answer- 064

generating machines maximizes educational effec- 065

tiveness. Recent studies have emphasized that, sim- 066

ilar to human teachers, LLMs must engage in di- 067

agnosing errors and providing feedback based on 068

students’ solution processes when imparting Ped- 069

agogical Content Knowledge (PCK) (Jiang et al., 070

2024; Hu et al., 2025). 071

In this context, from a learning efficiency per- 072

spective, we emphasize the necessity for evalua- 073

tion metrics that assess LLMs beyond simply pro- 074

viding direct answers. Specifically, such metrics 075

should measure (1) whether LLMs can evaluate 076

the similarity between student and teacher solu- 077

tions with human-level precision, and (2) the accu- 078

racy with which LLMs can identify the initial error 079

point in student solutions. To facilitate such eval- 080

uation, it is essential to first establish evaluation 081

datasets that include authentic solution processes 082
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generated by teachers. However, existing datasets,083

such as GSM8K, contain only mathematical prob-084

lems accompanied by solved answers, lacking gen-085

uine teacher-generated solution processes (Cobbe086

et al., 2021). To address this gap, we augment087

the GSM8K dataset by incorporating real teacher-088

generated solutions, thus creating the Bi-GSM8K089

benchmark. Furthermore, we extend this bench-090

mark to include student solution processes anno-091

tated explicitly with labels marking students’ initial092

errors. Finally, we translate the augmented dataset093

into a bilingual Korean-English corpus, enabling094

the analysis of linguistic differences in mathemati-095

cal problem-solving.096

Using this benchmark, we evaluated how well097

various LLMs measure similarity between student098

and teacher solutions compared to human annota-099

tors. Our method achieved Pearson correlations of100

0.89 and Spearman correlations of 0.88 on the En-101

glish subset, and Pearson 0.89 and Spearman 0.87102

on the Korean subset. The approach also demon-103

strated shorter computational latency than com-104

mercial APIs while maintaining comparable ac-105

curacy, indicating its practicality for real-time edu-106

cational feedback. Additionally, leveraging annota-107

tions of students’ initial error points, we assessed108

LLMs’ ability to diagnose errors, with GPT-4o109

achieving approximately 95% accuracy and the110

best-performing open-source model attained 86%111

accuracy. The key contributions of this study are as112

follows:113

• Construction and release of Bi-GSM8K, a114

bilingual Korean–English math education115

benchmark including teacher solutions, stu-116

dent solutions, and annotations of students’117

initial error locations.118

• Proposal of a novel step-alignment metric for119

evaluating the logical similarity between stu-120

dent and teacher solutions in the mathematical121

problem-solving process.122

• Evaluation of the accuracy in diagnosing ini-123

tial error points in student solutions to verify124

the error analysis capabilities of LLMs.125

2 Related Work126

In this section, we review existing research related127

to mathematical education and LLMs by analyzing128

the characteristics influenced by problem-solving129

approaches, instructional methods, and linguistic130

differences.131

2.1 Utilization and Limitations of LLMs in 132

Mathematics Education 133

LLMs have shown promise in mathematics edu- 134

cation, especially in problem-solving and tutor- 135

ing. They achieve around 85.5% accuracy in al- 136

gebraic problem-solving but lower performance 137

in educational dialogue generation (Gupta et al., 138

2025). Stepwise error detection models improve 139

the accuracy and pedagogical quality of LLM feed- 140

back (Daheim et al., 2024). Fine-tuning on datasets 141

like MATHDIAL enhances feedback accuracy but 142

challenges remain in error prevention, correction, 143

and fully replacing human instruction (Macina 144

et al., 2023). Limitations include difficulty han- 145

dling novel errors, diagnosing student cognition, 146

and filtering irrelevant content (Gupta et al., 2025; 147

Daheim et al., 2024; Macina et al., 2023). 148

2.2 Challenges in Non-English Educational 149

Environments 150

LLM performance on non-English math problems 151

is still limited. GPT-4 achieved over 60% accu- 152

racy on the Chinese CMATH dataset (Wei et al., 153

2023), while other models performed worse. Chat- 154

GPT showed 66.7% accuracy on Korean secondary 155

math problems (Nguyen et al., 2025), indicating 156

some utility despite lower performance than En- 157

glish tasks. Multimodal assessments with datasets 158

like KoNET reveal significant performance degra- 159

dation in Korean high school settings (Park and 160

Kim, 2025), underscoring persistent limitations in 161

non-English contexts. 162

2.3 Research Trends of LLMs for Educational 163

Purposes 164

Research on employing LLMs for educational 165

purposes broadly divides into two streams. The 166

first stream emphasizes enhancing mathematical 167

problem-solving skills, utilizing LLMs to gener- 168

ate customized mathematical problems or solution 169

methods to fine-tune student models and boost 170

learning effectiveness (Liang et al., 2023). The sec- 171

ond stream employs LLMs as tutors to simulta- 172

neously enhance students’ learning outcomes and 173

feedback generation capabilities (Scarlatos et al., 174

2025). Approaches include training LLMs using 175

students’ learning outcomes as reward signals, as 176

well as employing schema-based strategies and 177

role-based prompts to generate structured and ped- 178

agogically beneficial feedback (Dixit and Oates, 179

2024; Hu et al., 2025; Scarlatos et al., 2025). 180
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These studies indicate the potential utility of181

LLMs in diverse pedagogical practices within math-182

ematics education, such as problem generation,183

problem-solving, feedback provision, and instruc-184

tional design. Nevertheless, concerns remain re-185

garding the accuracy of generated outputs, the sup-186

port for autonomous learning, and overall research187

reliability, underscoring ongoing areas for improve-188

ment.189

3 The Bi-GSM8K Dataset190

What considerations are essential for LLMs to ef-191

fectively teach mathematical problem-solving in a192

manner comparable to human instructors? A core193

prerequisite lies in the development of rigorous194

evaluation methodologies capable of assessing the195

degree to which LLM-generated responses emu-196

late genuine teacher reasoning. In particular, these197

methodologies must facilitate the alignment of198

student-generated solutions with teacher-authored199

exemplars and enable the precise identification of200

the initial point of error.201

To support learning and evaluation in intelli-202

gent tutoring systems, we introduce Bi-GSM8K, a203

bilingual dataset comprising elementary-level math204

problems, teacher solutions, and simulated student205

solutions. This dataset was initially constructed206

entirely in Korean by mathematics education ex-207

perts and subsequently translated into English us-208

ing GPT-4o, resulting in a high-quality bilingual209

resource.210

Bi-GSM8K is built upon the existing English-211

based GSM8K dataset, which was systematically212

reconstructed to align with the Korean curriculum213

after automatic translation. The reconstruction pro-214

cess involved refining proper nouns, units, and vo-215

cabulary, as well as correcting unnatural expres-216

sions arising from translation. Mathematical ex-217

pressions were standardized using the « » notation218

format consistent with GSM8K. The final dataset219

consists of 7,985 JSON-formatted entries, each220

containing curriculum-linked metadata, problem221

statements, teacher-authored correct solutions (cor-222

rect_solution), intentionally flawed student solu-223

tions (error_solution), and annotations of students’224

initial error points.225

The correct_solution entries were authored by226

mathematics education and dataset construction ex-227

perts and underwent rigorous review to ensure both228

computational accuracy and pedagogical validity.229

The error_solution entries were created by anno-230

{
"area": "problem",
"problem": "Byeongjin went fishing with his family

yesterday. Byeongjin caught 4 fish, his wife caught 1,
the eldest son caught 3, the younger son caught 2, and
the youngest daughter caught 5. Unfortunately, 3 of the
fish were too small and were released back. If each
fish yields 2 fillets, how many fillets can Byeongjin’s
family make?",
"solution": "Four hats with 3 stripes each have a

total of 4×3=«43=12»12 stripes.\n Three hats with 4
stripes each have a total of 3×4=«34=12»12 stripes.\n
Six hats with no stripes have 6×0=«60=0»0 stripes.\n
And two hats with 5 stripes each have 2×5=«25=10»10
stripes.\n The total number of stripes on Byungjin’s
hats is 12+12+0+10=«12+12+0+10=34»34 stripes.\n ####
34",
"correct_solution": {
"step_1": "Byung-jin’s family caught 4 + 1 + 3 + 2

+ 5 = «4+1+3+2+5=15»15 fish.",
"step_2": "15 - 3 = «15-3=12» I stored 12 fish.",
"step_3": "Since you can obtain 2 fillets from each

fish, for 12 fish, you have 12 fish * 2 fillets per fish
= 24 fillets."
},
"error_solution": {
"step_1": "4+1+3+2+5 = 15",
"step_2": "15 * 2 = 30",
"step_3": "Answer: 30 fillets"

}
}

Figure 1: In the proposed Bi-GSM8K dataset, exam-
ples are expanded beyond the original GSM8K format,
which included only “Problem” and “Solution” fields.
Bi-GSM8K additionally provides the teacher solution
(correct_solution) and an erroneous student solu-
tion (error_solution). Furthermore, the Bi-GSM8K
dataset is offered as a bilingual Korean-English corpus.

tators with expertise in education rather than real 231

student data, designed to incorporate realistic math- 232

ematical misconceptions reflecting typical student 233

errors. (In this paper, “student solutions” denote 234

expert-crafted simulations of student errors, not 235

real student answers.) 236

For initial error point annotation, annotators ex- 237

plicitly marked the first step at which a numeri- 238

cal or logical inconsistency occurred, regardless 239

of consistency in subsequent steps. Minor expres- 240

sion variations, omissions, or stylistic changes were 241

not considered errors. In cases with multiple errors, 242

only the earliest logical error was annotated to align 243

with the goal of initial error detection. 244

All annotations were cross-validated by mathe- 245

matics education experts to ensure inter-annotator 246

consistency and reliability. Representative exam- 247

ples are presented in Figure 1. 248

The Bi-GSM8K dataset offers the following key 249

features: 250

• Curriculum-Aligned Translation: GSM8K 251

was automatically translated into Korean and 252

refined to match the national curriculum, with 253
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Figure 2: Upon submission of a student’s solution to the system, an initial comparison and alignment with the
answer solution is performed. This alignment employs Language Models (LMs), similarity functions, and the NW
algorithm to systematically analyze omitted steps or extraneous information in the student’s solution. Subsequently,
an independent LLM-based error detection model operates separately from the alignment process to precisely
identify the initial point of error within the student’s solution.

corrections to proper nouns, units, and transla-254

tion errors. Correct solutions were thoroughly255

reviewed for accuracy.256

• Simulated Student Solution: Incorporating257

consultation and review from mathematics ed-258

ucation experts, we constructed student solu-259

tion data that includes diverse error simula-260

tions designed to realistically emulate actual261

student responses.262

• Initial Error Annotation: Each item iden-263

tifies the first error in the student’s solution,264

supporting fine-grained error diagnosis and265

targeted remediation by models.266

4 Evaluation Metric267

The Bi-GSM8K benchmark proposed in this study268

provides data enabling the evaluation of solu-269

tion processes generated by LLMs by directly270

comparing them with those produced by experi-271

enced human teachers. To achieve this compara-272

tive evaluation, appropriate assessment methodolo-273

gies are necessary. Specifically, this study intro-274

duces two similarity-based evaluation methods: (1)275

Ground Truth Alignment (GTA), which assesses276

how closely generated solutions align with correct277

teacher-generated solutions, and (2) Solution Error278

Detection (SED), which identifies the initial error279

point within student-generated solutions, thereby280

systematically evaluating the capabilities of lan-281

guage models.282

4.1 Ground Truth Alignment283

Evaluating narrative-style solutions of mathemat-284

ical problems quantitatively is inherently chal-285

lenging. Therefore, we propose GTA, which as- 286

sesses solution quality based on the similarity be- 287

tween student solutions and ground-truth solutions. 288

The similarity measurement involves three key 289

steps: (1) Semantic similarity between solutions 290

is measured using metrics such as cosine similar- 291

ity of mean-pooled embeddings, Pearson correla- 292

tion of mean-pooled embeddings, SemScore, and 293

BERTScore (Salton et al., 1975; Pearson, 1895; 294

Aynetdinov and Akbik, 2024; Zhang et al., 2019). 295

(2) Based on the computed semantic similarity, the 296

Needleman-Wunsch (NW) algorithm (Needleman 297

and Wunsch, 1970) is applied to align the step se- 298

quences of teacher and student solutions. (3) Struc- 299

tural similarity is then evaluated based on the align- 300

ment results. The selection of similarity metrics 301

utilized in this module, the approach to employing 302

LLMs, and the specific manner in which LLMs 303

are applied to compute each metric are comprehen- 304

sively detailed in Appendix C. 305
In this study, we modified the conventional NW 306

algorithm specifically for aligning mathematical 307

solution processes. The NW algorithm numerically 308

quantifies the similarity between two strings and 309

identifies the most similar alignment, making it 310

suitable for static similarity comparisons of lengthy 311

texts. Typically, when comparing two texts, the NW 312

algorithm assigns fixed penalty scores for charac- 313

ter insertions or deletions. However, mathematical 314

solution processes inherently involve both sequen- 315

tial order and detailed semantic content. Therefore, 316

we adjusted gap penalties according to semantic 317

similarity metrics, assigning smaller penalties to 318

semantically similar sentences and larger penalties 319

to dissimilar ones. Additionally, matching scores 320

are computed based on substring similarities, en- 321

4



Algorithm 1 NW Algorithm with Semantic Similarity for Ground Truth Align-
ment

1: Input: s1, s2, sim_m, sim_th
2: Output: x_aln, y_aln
3: m← len(s1), n← len(s2)
4: Initialize bt_table of size (m + 1, n + 1)
5: for i = 0 to m do
6: bt_table[i][0]← 1 ▷ From up
7: end for
8: for j = 0 to n do
9: bt_table[0][j]← 2 ▷ From left
10: end for
11: for i = 1 to m do
12: for j = 1 to n do
13: m_sc← score[i− 1][j − 1] + sim_m[i− 1][j − 1]
14: gap_p← gap_u× (1− sim_m[i− 1][j − 1])
15: u_sc← score[i− 1][j]− gap_p
16: l_sc← score[i][j − 1]− gap_p
17: bt_table[i][j]← argmax(m_sc, u_sc, l_sc)
18: end for
19: end for
20: i← m, j ← n
21: Initialize x_aln, y_aln
22: while i > 0 or j > 0 do
23: if bt_table[i][j] = 0 then
24: if sim_m[i− 1][j − 1] ≥ sim_th then
25: Append aligned values to x_aln, y_aln
26: end if
27: end if
28: Update indices i and j
29: end while
30: Reverse x_aln, y_aln
31: Return x_aln, y_aln

abling natural and precise alignment between solu-322

tion steps. This allows clear identification of differ-323

ences between two solutions and facilitates align-324

ment consistent with the problem-solving flow.325

Algorithm 1 describes the proposed procedure326

for computing alignment scores between two solu-327

tions (examples in Figure 2). Here, s1 represents328

the teacher-generated solution with m steps, and s2329

denotes the student-generated solution with n steps.330

The inputs are two sequences (s1, s2), a similarity331

matrix (sim_m) indicating semantic similarities332

between solution steps, and a similarity threshold333

(sim_th). A backtracking table bt_table for dy-334

namic programming is initialized (line 4) with di-335

mensions (m + 1) × (n + 1), storing directional336

moves for reconstructing optimal alignments. The337

first row and column of bt_table are initialized to338

represent leftward and upward movements, respec-339

tively.340

Next, a backtracking table bt_table for dynamic341

programming is initialized (line 4). The table has342

dimensions (m+1)×(n+1), with each cell record-343

ing the optimal move direction for backtracking.344

The first row and first column of bt_table are ini-345

tialized with left (represented by 2) and upward346

(represented by 1) movements, respectively.347

Subsequently, the remainder of bt_table is348

filled using two nested loops. At each cell (i, j),349

values for three possible movements are calcu-350

lated, and the maximum value is selected and351

recorded in bt_table[i][j]. Diagonal movements 352

(matches) add the value from the diagonal cell 353

and sim_m[i−1][j−1]; upward movements (dele- 354

tions) add penalties to values from the cell above; 355

leftward movements (insertions) add penalties to 356

values from the cell to the left. Once the table is 357

fully populated, an optimal alignment between the 358

sequences is determined by backtracking through 359

bt_table. 360

During the backtracking phase, alignments are 361

determined according to each cell’s recorded move- 362

ment direction. For diagonal movements (repre- 363

sented by 0), if the similarity is below the thresh- 364

old sim_th, the element s1[i−1] is aligned as 365

an "omission". If the similarity meets or exceeds 366

sim_th, the algorithm checks for duplicate align- 367

ments. Specifically, if s2[j−1] is already aligned 368

with another element in y_aln, the algorithm com- 369

pares similarity scores between the existing and 370

current alignments. If the existing alignment has a 371

higher similarity score, the current element s1[i−1] 372

is aligned as an "omission"; otherwise, the existing 373

alignment is replaced with the current one. If no 374

duplication occurs, the two elements are directly 375

aligned. For upward movements (represented by 376

1), the element s1[i−1] is aligned as an "omis- 377

sion". For leftward movements (represented by 378

2), an "unnecessary" is aligned with the element 379

s2[j−1]. After backtracking completes, the aligned 380

sequences x_aln.reverse() and y_aln.reverse(), 381

along with the similarity matrix sim_m, are re- 382

turned in the correct order. 383

Based on the alignment results, a score of 1 is 384

assigned to each matched step between the teacher 385

and student solutions, while unmatched or extra- 386

neous steps are assigned a score of 0. The final 387

similarity score is computed by summing the indi- 388

vidual step scores and dividing by the total number 389

of steps, yielding a value between 0 and 1. 390

The proposed method, GTA, evaluates logical 391

consistency by precisely aligning reasoning steps, 392

thereby enabling fine-grained diagnosis of student 393

errors and facilitating personalized feedback. The 394

resulting similarity scores can be used to track 395

learner understanding, analyze problem difficulty, 396

improve automated grading, and enhance adaptive 397

learning, supporting personalized education. 398

4.2 Solution Error Detection 399

Identifying the initial error step is particularly cru- 400

cial in personalized tutoring scenarios. Precisely 401

pinpointing the moment when a student deviates 402
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from the correct problem-solving strategy enables403

the system to gain deeper insights into the student’s404

conceptual understanding. This module aims to405

accurately identify the initial erroneous step in a406

student’s mathematical problem-solving process.407

The initial error detection module proposed in408

this study employs a 3-shot learning approach uti-409

lizing open-source LLMs, enabling accurate error410

identification with only a small number of exam-411

ples. Figure 3 illustrates a partial structure of the412

prompt, which presents three exemplars. Each ex-413

emplar consists of a mathematical problem, a cor-414

rect solution (Answer Solution), a student solution415

(Student Solution), and a question (Q) asking for416

the step at which the student’s first error occurs.417

The model compares the teacher’s solution with418

the student’s solution to predict the step number of419

the initial error, returning 0 if no error is detected.420

You are given a math problem, a correct answer solution, and a
student solution. Your task is to compare the correct solution to the
student solution and output the step number where the student’s error
begins. If the student’s solution is completely correct, output 0.
Problem: Seongjin is stranded on a deserted island. He needs salt to
season fish. He collected 2 liters of seawater in an old bucket. If the
water contains 20% salt, how many milliliters of salt will Seongjin
get when all the water evaporates?
Answer Solution:
{

"step_1":"First, find out how many liters of the seawater is salt: 2L
* 20% = «2*0.2=0.4»0.4L",

"step_2":"Then, multiply this amount by 1000 ml/L to find how
much salt Seongjin gets: 0.4L * 1000ml/L = «0.4*1000=400»400ml"
}
Student Solution:
{

"step_1":"220 = «220=40»40ml of salt is obtained."
}
Q: Is the Student Solution incorrect? Write only the step number
with the first error or 0 if no error is found.
A: 1
...
Problem: {problem}
Answer Solution: {answer_solution}
Student Solution: {student_solution}
Q: Is the Student Solution incorrect? Write only the step number with
the first error or 0 if no error is found.
A:

Figure 3: Prompt used for initial error detection in Bi-
GSM8K.

Due to space constraints, the complete prompt421

and the rationale behind exemplar selection are pro-422

vided in Appendix G. Furthermore, to analyze the423

impact of including the teacher’s solution on model424

performance, experiments were also conducted us-425

ing prompt versions excluding the teacher’s solu-426

tion; detailed results are presented in Appendix D.427

5 Experiment428

5.1 Experiment Settings and Models429

In this study, we evaluated various open-source430

LLMs using the mathematical Bi-GSM8K dataset.431

The models selected for experimentation were as- 432

sessed comprehensively based on multilingual pro- 433

cessing capabilities, mathematical reasoning abili- 434

ties, response consistency, and computational effi- 435

ciency. Models ranging from 7B to 8B parameters 436

were specifically chosen due to their balance be- 437

tween performance and practicality, making them 438

suitable for real-world educational contexts. In ad- 439

dition, the GTA module employs various semantic 440

similarity functions to perform step-level alignment 441

between student solutions and reference answers. 442

These functions are used to identify semantically 443

similar step pairs, facilitating the alignment pro- 444

cess based on their degree of semantic closeness. 445

Among them, the BERTScore experiments lever- 446

age multiple pretrained transformer models to en- 447

able fine-grained semantic analysis. The primary 448

hyperparameters for the open-source models were 449

set to a temperature of 1, a top_p of 0.75, a top_k 450

of 40, and num_beams of 4. For GPT-4o, the tem- 451

perature was adjusted to 0.75 to enhance response 452

consistency and stability. 453

5.2 Ground Truth Alignment 454

This section presents an analysis of similarity eval- 455

uation performance between student and teacher 456

solutions using the Bi-GSM8K dataset. Table 1 457

summarizes the performance of the GTA module 458

across various similarity metrics, model config- 459

urations, and threshold settings on both English 460

and Korean datasets, alongside computational effi- 461

ciency metrics such as latency and peak memory us- 462

age. Performance was evaluated by comparing the 463

similarity scores predicted by the models against 464

those provided by five human annotators using 465

Pearson (Pearson, 1895) and Spearman (Spearman, 466

1961) correlation coefficients. Detailed evaluation 467

guidelines and inter-annotator agreement analyses 468

are provided in Appendix E and Appendix F, re- 469

spectively. All threshold and efficiency metrics are 470

reported based on the average values over both 471

language datasets. 472

The evaluation was conducted on 500 randomly 473

selected problems from Bi-GSM8K. Considering 474

the sensitivity of similarity-based evaluation to 475

threshold settings, experiments were performed 476

over five predefined thresholds within the range 477

[0.5, 0.6, 0.7, 0.8, 0.9]. Table 1 reports only the 478

results corresponding to the optimal threshold for 479

each model. All evaluations were carried out using 480

the same test set and consistent hyperparameter set- 481

tings to prevent overfitting. Examples of alignment 482
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Similarity Model Threshold Pearson Spearman Latency Peak Memory
EN KO EN KO (sec) (MB)

-

GPT-4o (Hurst et al., 2024) – 0.8645 0.9168 0.8605 0.9394 3.372 –
GPT-4o-mini (OpenAI, 2024a) – 0.8887 0.9249 0.8712 0.9382 3.614 –
Claude-Sonnet-4 (Anthropic, 2024) – 0.8975 0.9009 0.8955 0.935 4.026 –
Gemini-2.5-Flash (Comanici et al., 2025) – 0.9010 0.9197 0.8978 0.9375 13.118 –

Cosine
Pearson

Semscore

Llama-3.1-8B-Instruct (Dubey et al., 2024) 0.5 0.8823 0.8795 0.8618 0.8685 0.427 28681.48
DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025) 0.5 0.8873 0.8771 0.8706 0.8651 0.429 28681.48
DeepSeek-llama3.1-Bllossom-8B (UNIVA-Bllossom, 2025) 0.5 0.8895 0.8736 0.8659 0.8613 0.389 28658.35
Qwen2.5-7B-Instruct (Hui et al., 2024) 0.5 0.8901 0.8769 0.8628 0.8634 0.406 27178.01
DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025) 0.65 0.8893 0.7798 0.8657 0.7788 0.373 27178.21
DeepSeek-R1-Distill-Qwen-7B-Multilingual (LightBlue, 2025) 0.5 0.8901 0.7899 0.8628 0.7838 0.398 27162.12
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) 0.5 0.8816 0.8884 0.8670 0.8631 0.501 27221.69
Phi-4-mini-instruct (Abouelenin et al., 2025) 0.5 0.8901 0.8896 0.8628 0.8629 0.183 14728.41

BertScore

bart-large (Lewis et al., 2019) 0.5 0.8903 0.8898 0.8698 0.8630 0.070 703.91
bert-large-uncased (Devlin et al., 2019) 0.5 0.8942 0.8929 0.8752 0.8665 0.113 1010.21
deberta-v2-xlarge-mnli (He et al., 2020) 0.65 0.8881 0.8912 0.8668 0.8747 0.213 2683.69
roberta-large (Liu et al., 2019) 0.5 0.8901 0.8901 0.8628 0.8628 0.109 1040.56

Table 1: Correlation between model-generated similarity scores and human-evaluated similarity scores (Pearson,
Spearman) in English (EN) and Korean (KO), along with latency and memory usage for each model. The highest
value in each category is highlighted in black bold.

results are included in Appendix H.483

Among commercial LLM APIs, Gemini-2.5-484

Flash achieved the highest Pearson correlation on485

the English subset (0.9010), while GPT-4o-mini led486

on the Korean subset (0.9249). Regarding Spear-487

man correlation, Gemini-2.5-Flash again ranked488

highest on English (0.8978), and GPT-4o achieved489

the top score on Korean (0.9394). Within the GTA490

module variants, BERTScore-based models exhib-491

ited superior performance and efficiency. Specifi-492

cally, bert-large-uncased attained Pearson cor-493

relations of 0.8942 (EN) and 0.8929 (KO), along494

with a Spearman correlation of 0.8752 (EN). Mean-495

while, deberta-v2-xlarge-mnli recorded the496

highest Spearman correlation on Korean (0.8747).497

These open-source configurations achieved perfor-498

mance within approximately 0.03 points of com-499

mercial models on average, indicating comparable500

alignment quality in practice. This underscores the501

capacity of context-aware embeddings to capture502

semantic similarity at a human-like level, enabling503

precise step-level alignment between student and504

teacher solutions. Furthermore, these results high-505

light the importance of semantic fidelity in align-506

ment tasks and demonstrate the practical potential507

of open-source models.508

In terms of computational efficiency, large-scale509

LLMs exhibited average inference latencies of510

around 0.4 seconds per problem, whereas BERT-511

based models offered substantially faster runtimes,512

e.g., bart-large and bert-large-uncased re-513

quired only 0.07 and 0.11 seconds, respectively.514

Notably, the commercial small-scale model GPT-515

4o-mini incurred a latency of 3.614 seconds, sig-516

nificantly slower than the open-source counter-517

parts. Similar trends were observed for memory 518

consumption: large LLMs demanded over 27,000 519

MB, while BERT-based models generally operated 520

under 3,000 MB, with bart-large requiring ap- 521

proximately 700 MB, demonstrating feasibility in 522

resource-constrained environments. 523

5.3 Solution Error Detection 524

In this section, we evaluates the accuracy of various 525

LLMs in detecting students’ initial errors during the 526

process of solving mathematical problems. Table 2 527

summarizes the performance of multiple LLMs on 528

the SED task, reporting accuracy on both English 529

(EN) and Korean (KO) datasets, along with com- 530

putational efficiency metrics such as throughput 531

(requests per second), latency (seconds), and mem- 532

ory usage (MB). The evaluation was conducted on 533

500 randomly selected items from the Bi-GSM8K 534

dataset. Ground truth for the initial error points was 535

provided by mathematics and data construction ex- 536

perts, allowing accuracy to be computed without 537

additional human annotation. Detailed examples of 538

initial error detection are presented in Appendix I. 539

Among commercial LLMs APIs, GPT-4o 540

achieved the highest accuracy in our experiments, 541

recording 94.4% on English and 95.8% on Korean. 542

In terms of computational efficiency, Gemini-2.5- 543

Flash demonstrated the best performance, process- 544

ing 0.2037 requests per second with an average 545

latency of 8.39 seconds. 546

Among open-source multilingual LLMs, mod- 547

els based on the Qwen architecture generally 548

outperformed single-language or simpler mod- 549

els. For instance, DeepSeek-R1-Distill-Qwen-7B- 550

Multilingual achieved accuracies of 86.4% in En- 551
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Model Accuracy Throughput Latency Peak Memory
EN KO (requests/sec) (sec) (MB)

GPT-4o 94.4 95.8 0.1309 8.39 -
Claude-Sonnet-4 87.8 90.2 0.1885 5.31 -
Gemini-2.5-Flash 90.4 91.4 0.203 4.91 -

Llama-3.1-8B-Instruct 80.4 75.2 0.0014 711.60 10896.85
DeepSeek-R1-Distill-Llama-8B 55.4 57.8 0.0014 720.06 10898.43
DeepSeek-llama3.1-Bllossom-8B 63.2 62.0 0.0014 716.86 10851.40
Qwen2.5-7B-Instruct 79.4 86.0 0.0013 783.91 11279.73
DeepSeek-R1-Distill-Qwen-7B 82.8 80.4 0.0013 801.63 11328.93
DeepSeek-R1-Distill-Qwen-7B-Multilingual 86.4 83.4 0.0012 847.68 11281.79
Mistral-7B-Instruct-v0.3 67.0 67.0 0.0009 1168.91 15120.72
Phi-4-mini-instruct 76.6 78.6 0.0029 355.01 8075.12

Table 2: Comparative evaluation of Solution Error Detection scores, thresholds, and memory usage for each model

glish and 83.4% in Korean. In contrast, the single-552

language model Qwen2.5-7B-Instruct improved553

English accuracy to 79.4% but saw a decline in554

Korean accuracy from 86.0% to 83.4%. These re-555

sults suggest that multilingual training contributed556

to improvements in English performance but po-557

tentially hindered Korean performance. This may558

be due to the dominance of English-centric rep-559

resentational structures and semantic frameworks560

learned during multilingual training, which could561

impair representation and reasoning capabilities for562

structurally distinct languages such as Korean. In563

other words, multilingual training does not guaran-564

tee uniform performance gains across languages;565

dominant languages can bias the model, adversely566

affecting others.567

Conversely, lightweight models based on the568

Llama series showed relatively lower accuracy.569

Llama-3.1-8B-Instruct achieved 80.4% accuracy570

on English and 75.2% on Korean, while DeepSeek-571

R1-Distill-Llama-8B scored 55.4% and 57.8%, re-572

spectively. Notably, DeepSeek-llama3.1-Blossom-573

8B, trained to think in English and output in the574

input language, exhibited decreased performance575

when Korean data was included. This indicates that576

the English-centric reasoning strategy was insuffi-577

ciently adapted to Korean contexts or that the se-578

mantic quality of the training data was inadequate579

for mathematical reasoning and error detection.580

Regarding computational efficiency, the Phi-4-581

mini-instruct model showed high resource effi-582

ciency with throughput of 0.0029 requests per sec-583

ond, latency of 355.01 seconds, and memory us-584

age of 8075.12 MB. However, its low accuracy585

renders it unsuitable for tutoring scenarios requir-586

ing real-time feedback. Most open-source models587

demonstrated higher throughput and lower latency588

compared to GPT-4o, providing better real-time re-589

sponsiveness, but they still exhibited limitations in 590

solving complex problems and in-depth language 591

understanding. 592

For a more intuitive understanding of the GTA 593

and SED experimental results presented in this 594

paper, various visualizations are included in Ap- 595

pendix J. 596

6 Conclusion 597

This study introduces Bi-GSM8K, a bilingual 598

English-Korean benchmark dataset for mathemat- 599

ical problem solving. Constructed from detailed 600

solution processes of both students and teachers, 601

Bi-GSM8K serves as a foundational resource for 602

math education and enables comprehensive eval- 603

uation of similarity between student and teacher 604

solutions. GTA evaluation demonstrates that sev- 605

eral competitive open-source models achieve high 606

agreement with human raters while offering greater 607

computational efficiency compared to commercial 608

models. Notably, the combination of BERTScore 609

with bert-large-uncased and the NW algorithm 610

attains performance comparable to commercial sys- 611

tems. In the SED task, open-source models per- 612

form slightly below commercial counterparts, with 613

an accuracy gap of approximately 10 percentage 614

points, indicating practical applicability. Language- 615

specific analyses further reveal performance differ- 616

ences between English and Korean, underscoring 617

the influence of linguistic properties and training 618

data composition. In addition, experiments con- 619

ducted separately on the English and Korean sub- 620

sets reveal distinct performance disparities by lan- 621

guage, suggesting that alignment and error detec- 622

tion capabilities vary according to linguistic char- 623

acteristics and training data distribution. 624
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Limitations625

Limitations of the Dataset: Elementary-Level626

Scope, Simulated Student Solutions, and627

Language Selection Considerations628

The dataset employed in this study consists pri-629

marily of elementary-level mathematics problems630

and corresponding tutoring dialogues, thereby con-631

straining its applicability to specific grade levels632

and problem difficulties. The decision to focus on633

elementary mathematics was motivated by its suit-634

ability as a starting point for evaluating the capa-635

bility of LLMs to accurately track students’ cogni-636

tive processes and detect errors in a stepwise man-637

ner. Elementary math problems typically involve638

clearer, more structured solution paths, facilitating639

systematic analysis and experimental control dur-640

ing early-stage investigations. In contrast, middle-641

and high-school level problems require more com-642

plex reasoning, making them less suitable for ini-643

tial studies. Future work will extend this line of644

research to encompass more sophisticated cogni-645

tive structures found in higher-level problems.646

Moreover, the student-generated solutions in this647

dataset were simulated by domain experts under648

the assumption of typical student behavior, which649

may limit their ability to fully capture the diver-650

sity of cognitive processes and errors exhibited651

by real students. Nevertheless, the simulated data652

were carefully constructed and validated by experts653

in mathematics education to reflect common error654

types frequently observed among students. While655

collecting real student-generated data poses chal-656

lenges due to ethical considerations and privacy657

concerns, future research should aim to develop658

datasets that include a broader range of problem659

types, languages, and authentic student solutions.660

In addition, the choice of languages in this study661

was guided by both practical and research-driven662

considerations. Korean, the native language of the663

research team, facilitated efficient data construc-664

tion and validation. More importantly, Korean is665

a relatively low-resource language in the context666

of LLM training, making it a valuable target for667

examining the generalization capabilities of multi-668

lingual models and for analyzing language-specific669

error patterns. English, as the global lingua franca670

and the predominant training language for most671

LLMs, serves as a critical benchmark for assess-672

ing model performance. The inclusion of bilingual673

English-Korean data thus enables a range of anal-674

yses, including semantic alignment, variation in675

expression, and cross-linguistic bias. Furthermore, 676

given that English and Korean are typologically 677

diverse languages, this pairing offers a meaning- 678

ful testbed for evaluating the models’ capacity for 679

cross-linguistic understanding beyond simple trans- 680

lation—especially in the context of educational in- 681

terventions and error detection. 682

Necessity for Improved Performance in 683

Complex Mathematical Reasoning 684

The open-source LLMs employed in this study 685

demonstrate performance degradation on tasks re- 686

quiring complex mathematical reasoning. This lim- 687

itation is likely due to insufficient training on high- 688

dimensional reasoning tasks or inherent difficulties 689

in processing mathematical expressions in certain 690

languages. To overcome these limitations, future 691

research should emphasize domain-specific train- 692

ing and integrate Retrieval-Augmented Generation 693

techniques to enhance reasoning capabilities. 694

Evaluation in Real Educational Environments 695

While this research evaluates system performance 696

through quantitative data-driven analyses, direct 697

verification of its applicability in actual classroom 698

or tutoring environments has not been performed. 699

In real educational settings, factors such as student 700

responses, class dynamics, and teacher interven- 701

tions significantly influence system effectiveness. 702

Therefore, comprehensive evaluations of system 703

practicality and educational efficacy require imple- 704

mentation in authentic educational contexts. Fu- 705

ture studies should conduct experiments involving 706

teachers and students to measure educational ef- 707

fectiveness and derive feedback mechanisms and 708

interface improvements that meet real-world de- 709

mands. 710

Limitations and Improvement Directions for 711

Solution Alignment Representation 712

In this study, we performed sentence-level align- 713

ment between student-generated and correct 714

(teacher-generated) solutions. However, this ap- 715

proach exhibits limitations in alignment accuracy, 716

as a single sentence may often encompass mul- 717

tiple solution steps. To precisely model students’ 718

reasoning processes and effectively capture the in- 719

tricate relationships between student and teacher 720

solutions, a hierarchical and multi-layered repre- 721

sentational approach is required. Consequently, de- 722

veloping novel alignment methods capable of re- 723

flecting such complex structures is proposed as an 724

9



important direction for future research.725

Need for Improvement in Model Efficiency and726

Practicality727

Most models evaluated in this study exhibited a728

trade-off between accuracy and efficiency. Larger729

models provided high accuracy at substantial com-730

putational costs, whereas smaller models offered731

higher efficiency but lower performance. Future re-732

search should prioritize enhancing small-model per-733

formance and optimizing computational efficiency734

using hardware acceleration technologies, facilitat-735

ing the development of real-time feedback systems736

and improving model practicality.737
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cal analysis of problem lengths in the Bi-GSM8K 921

dataset utilized in our experiments. The dataset 922

comprises mathematical problems presented in 923

both Korean and English, each containing 500 924

items. A statistical summary of the problem lengths 925

is provided in Table 3. 926

The average length of English items was approxi- 927

mately 237 characters, significantly longer than the 928

average length of Korean items (122.88 characters). 929

This discrepancy likely arises from the automatic 930

translation of Korean data into English, resulting in 931

generally more detailed explanations or structurally 932

longer sentences in the English items. Addition- 933

ally, the standard deviation of English problems 934
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Metric English Korean

Count 500.000 500.000
Mean 237.004 122.876
Std 90.912 44.501
Min 62.000 36.000
25% 173.000 90.000
50% 220.000 117.000
75% 281.000 145.250
Max 592.000 304.000

Table 3: Statistical Summary of Problem Lengths

(90.91) is more than double that of Korean prob-935

lems (44.50), indicating a broader and more varied936

length distribution in the English dataset.937

Regarding minimum lengths, English problems938

contain at least 62 characters, while Korean prob-939

lems have a minimum of 36 characters, suggesting940

that English texts generally include more informa-941

tion. The maximum length further highlights this942

difference, with English problems reaching up to943

592 characters compared to the 304 characters of944

Korean problems.945

Quartile-based metrics exhibit similar trends,946

consistently showing higher values for English947

problems compared to their Korean counterparts,948

thereby reinforcing the structural length disparity949

across the entire dataset range. Notably, the me-950

dian length of English problems is 220 characters,951

approximately 1.88 times greater than the Korean952

median of 117 characters.953

These results might reflect the explicit and de-954

tailed sentence structures often required by the En-955

glish language during translation, as well as poten-956

tial adjustments made by generative models to ac-957

commodate stylistic differences between languages.958

Such findings underscore the necessity of consider-959

ing language-specific perceptions of difficulty and960

interpretative approaches in subsequent analyses.961

B Analysis of Solution Lengths962

In this appendix, we present a quantitative statisti-963

cal analysis of the lengths and steps of student-964

generated and correct solutions from the Bi-965

GSM8K dataset used in our experiments. The966

dataset comprises problems provided in two lan-967

guages, Korean and English, each consisting of 500968

items.969

B.1 Analysis of Solution Length by Steps970

This section analyzes the lengths of complete solu-971

tions written in Korean and English for both correct972

and student-generated solutions within the dataset.973

The first analysis considers each solution as an inte- 974

grated unit without dividing it into individual steps. 975

Metric Correct Solution Student Solution

Count 500.000 500.000
Mean 278.596 181.296
Std 136.449 117.530
Min 36.000 8.000
25% 174.750 99.750
50% 249.500 169.000
75% 353.000 244.000
Max 1006.000 689.000

Table 4: Statistical Summary of Solution Lengths (En-
glish)

The statistical analysis results for English so- 976

lutions are summarized in Table 4. The average 977

length of correct (teacher-generated) solutions is ap- 978

proximately 278.60 characters, roughly 1.54 times 979

longer than student-generated solutions, which av- 980

erage 181.30 characters. Notably, the standard de- 981

viation for correct solutions (136.45) is consider- 982

ably higher compared to that for student solutions 983

(117.53), indicating that correct solutions not only 984

tend to be lengthier but also exhibit greater variabil- 985

ity in structural complexity and explanatory depth. 986

Metric Correct Solution Student Solution

Count 500.000 500.000
Mean 185.456 122.008
Std 82.344 75.418
Min 46.000 5.000
25% 123.000 70.000
50% 168.000 112.500
75% 237.000 166.000
Max 631.000 389.000

Table 5: Statistical Summary of Solution Lengths (Ko-
rean)

The statistical results for Korean solutions are 987

summarized in Table 5, displaying trends similar 988

to those observed in the English solutions. The 989

average length of correct (teacher-generated) so- 990

lutions in Korean is approximately 185.46 charac- 991

ters, approximately 1.5 times longer than student- 992

generated solutions, which average 122.01 charac- 993

ters. The standard deviation of correct solutions 994

(82.34) is slightly greater than that of student so- 995

lutions (75.42), suggesting more variability due to 996

detailed explanatory content. Furthermore, the max- 997

imum length of correct solutions (631 characters) 998

substantially surpasses that of student solutions 999

(389 characters). 1000

Overall, correct solutions consistently exhibit 1001
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greater length compared to student solutions, re-1002

flecting their more detailed and stepwise explana-1003

tory nature. This pattern is consistent across both1004

languages, reinforcing the observation that teacher-1005

generated solutions generally present higher com-1006

plexity and explanatory completeness.1007

The subsequent analysis separately examines so-1008

lution lengths at the individual step level.1009

Metric Correct Solution Student Solution

Count 1724 1340
Mean 80.80 67.65
Std 34.27 32.12
Min 6 6
25% 57 48
50% 74 63
75% 99 83
Max 265 282

Table 6: Statistical Summary of Step Lengths (English)

Metric Correct Solution Student Solution

Count 1724 1340
Mean 53.79 45.53
Std 17.22 17.57
Min 7 5
25% 43 36
50% 51 44
75% 64 55
Max 135 157

Table 7: Statistical Summary of Step Lengths (Korean)

Tables 6 and 7 provide statistical summaries of1010

step-by-step solution lengths in English and Ko-1011

rean, respectively.1012

In English, the average step length of correct1013

solutions (80.80 characters) exceeds that of stu-1014

dent solutions (67.65 characters). Additionally, the1015

standard deviation and maximum-minimum values1016

show a broader distribution for correct solutions,1017

indicating that these solutions may contain more1018

detailed and complex explanations.1019

Similar trends appear in Korean solutions. Cor-1020

rect solutions have an average step length of 53.791021

characters, longer than the 45.53 characters for stu-1022

dent solutions. Standard deviations for both groups1023

were comparable, while maximum lengths were1024

higher in student solutions, indicating the existence1025

of some student solutions with extensive explana-1026

tions.1027

Generally, correct solutions have longer and1028

more detailed step explanations than student1029

solutions, although exceptions exist regarding1030

maximum-minimum lengths and range distribu- 1031

tions. 1032

Step Correct Solution Student Solution

1 82.47 64.92
2 79.81 66.95
3 79.90 71.71
4 81.15 70.64
5 83.47 70.63
6 74.74 74.47
7 73.58 71.00
8 69.75 -

Table 8: Average Step Length per Step Number (En-
glish)

Step Correct Solution Student Solution

1 54.20 43.04
2 53.32 45.39
3 53.84 48.37
4 54.81 48.73
5 53.26 47.54
6 50.98 49.94
7 51.50 54.00
8 53.75 -

Table 9: Average Step Length per Step Number (Korean)

Tables 8 and 9 display the average solution 1033

length by individual steps for English and Korean, 1034

respectively. 1035

For English solutions, the average length of cor- 1036

rect solutions consistently surpasses that of stu- 1037

dent solutions across the initial five steps, with the 1038

largest discrepancy observed in step 1 (82.47 vs. 1039

64.92 characters). Differences decrease in subse- 1040

quent steps, with steps 6–7 showing minimal di- 1041

vergence, and step 8 lacking student solution data, 1042

suggesting that correct solutions tend to provide 1043

longer, more detailed explanations early in the so- 1044

lution process. 1045

Korean solutions reveal a similar pattern, with 1046

correct solutions typically longer than student so- 1047

lutions across most steps, though student solutions 1048

exceed correct solutions at step 7. Similar to En- 1049

glish data, step 8 lacks student-generated solution 1050

data. Compared to English, differences in length 1051

per step are generally smaller in Korean solutions. 1052

Overall, in both languages, the difference in 1053

length per step decreases as solutions progress, 1054

with correct solutions consistently providing more 1055

comprehensive explanations. 1056
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Metric Input Unit Embedding Method Similarity Computation

Mean-pooled Embedding Similarity Sentence-level vector Mean pooling over all tokens Cosine similarity between vectors

Mean-pooled Embedding Correlation Sentence-level vector Mean pooling over all tokens Pearson correlation per dimension

SemScore [CLS] token embedding Single [CLS] token embedding Cosine similarity between [CLS] embeddings

BERTScore Token-level All token embeddings Alignment optimization-based F1 score

Table 10: Summary of semantic similarity metrics used for comparing student and teacher solutions.

B.2 Analysis of Solution Steps1057

This section analyzes the number of steps in the1058

Correct Solutions and Student Solutions within the1059

dataset. The number of solution steps is a crucial1060

metric indicating how granularly the solution pro-1061

cess is articulated, serving as an essential factor for1062

evaluating the detail and complexity of the solu-1063

tions.1064

Metric Correct Solution Student Solution

Count 500 500
Mean 3.448 2.680
Std 1.349 1.309
Min 2 1
25% 2 2
50% 3 3
75% 4 3
Max 8 7

Table 11: Statistical Summary of Step Counts by Solu-
tion Type

Table 11 summarizes statistical measures for the1065

step counts of both groups. The analysis was con-1066

ducted on 500 solution samples from each group.1067

The Correct Solutions exhibited an average of1068

3.448 steps, noticeably higher than the Student So-1069

lutions, which averaged 2.680 steps. This indicates1070

a tendency for Correct Solutions to provide more1071

detailed and finely segmented explanations. The1072

standard deviation of step counts was similarly1073

around 1.3 for both groups, suggesting comparable1074

variability in the number of solution steps.1075

Regarding the minimum number of steps, Stu-1076

dent Solutions included instances starting from a1077

single step, whereas Correct Solutions always be-1078

gan from at least two steps. Additionally, the 75th1079

percentile step count was 4 for Correct Solutions1080

and 3 for Student Solutions, reinforcing the ob-1081

servation that Correct Solutions generally involve1082

more steps.1083

For maximum step counts, Correct Solutions1084

extended up to 8 steps, whereas Student Solutions1085

reached a maximum of 7 steps, indicating slightly1086

less granularity in student-generated explanations. 1087

These results suggest that Student Solutions tend 1088

to provide briefer explanations or omit certain steps 1089

compared to Correct Solutions. Thus, step count 1090

analysis serves as a valuable measure for assessing 1091

the completeness and structural detail of student- 1092

generated solutions. 1093

C Semantic Similarity Metrics Used in 1094

GTA 1095

This appendix provides a detailed description of the 1096

four representative semantic similarity metrics em- 1097

ployed in our GTA evaluation. These metrics were 1098

selected to capture not only surface-level textual 1099

overlap but also deeper semantic correspondences 1100

at both sentence and token levels. Table 10 summa- 1101

rizes the input granularity, embedding strategy, and 1102

similarity computation method for each metric. 1103

Mean-pooled Embedding Cosine Similarity 1104

For this metric, we extract token embeddings from 1105

a Transformer-based language model and compute 1106

a sentence-level embedding by performing mean 1107

pooling across all token embeddings. Cosine simi- 1108

larity is then computed between the sentence em- 1109

beddings of the student and teacher solutions. This 1110

is a standard approach that aggregates semantic in- 1111

formation across the sentence and allows for holis- 1112

tic comparison of overall meaning. 1113

Mean-pooled Embedding Pearson Correlation 1114

This method calculates the Pearson correlation co- 1115

efficient across each dimension of the mean-pooled 1116

sentence embeddings. While cosine similarity is 1117

the dominant choice for embedding-based compar- 1118

isons in NLP, we incorporate Pearson correlation 1119

as an experimental measure to assess the degree 1120

of linear alignment between the dimensions of the 1121

embeddings. This metric captures both directional 1122

alignment and consistency of magnitude changes 1123

across dimensions. 1124

SemScore Instead of averaging token embed- 1125

dings, this method uses the embedding of the spe- 1126

cial [CLS] token from the encoder output of a 1127
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Transformer model as the sentence representation.1128

The cosine similarity between the [CLS] embed-1129

dings of the student and teacher solutions is com-1130

puted. This approach provides a focused and con-1131

densed semantic similarity assessment and is partic-1132

ularly effective when using encoder-based models1133

such as BERT.1134

BERTScore This metric computes pairwise co-1135

sine similarity between all token embeddings of1136

the student and teacher solutions and applies a1137

token-matching algorithm to derive Precision, Re-1138

call, and F1 scores. We use the F1 score as the1139

final semantic similarity measure, reflecting fine-1140

grained alignment at the token level. This method1141

leverages the bidirectional attention mechanism of1142

encoder-based models to deliver high alignment1143

accuracy.1144

Applicability of Metrics by Model Architecture1145

We carefully matched each semantic similarity met-1146

ric to the appropriate LLM architecture, taking into1147

account both the intended design of the metrics and1148

the structural characteristics of the models.1149

• Mean-pooled Embedding Cosine Similarity,1150

Mean-pooled Embedding Pearson Correlation,1151

and SemScore involve converting the full sen-1152

tence into a fixed-length embedding vector1153

and computing similarity between vectors.1154

Decoder-based language models (e.g., GPT1155

variants) operate in an auto-regressive fashion1156

and can produce sentence-level embeddings1157

by pooling over the final hidden states or us-1158

ing the last token representation. These met-1159

rics are thus compatible with decoder-based1160

models for evaluating sentence-level semantic1161

similarity.1162

• BERTScore, on the other hand, does not1163

compress the sentence into a single embed-1164

ding. Instead, it computes semantic alignment1165

based on token-level similarity and optimal1166

matching. This method is most effective with1167

encoder-based models (e.g., BERT), which1168

utilize bidirectional attention to model rich1169

contextual dependencies across tokens. In con-1170

trast, auto-regressive decoding in GPT-like1171

models limits such context integration, mak-1172

ing them less suitable for BERTScore-based1173

evaluation.1174

Accordingly, we selected and applied similarity1175

metrics in alignment with the architectural char-1176

acteristics of the LLMs to ensure that each metric 1177

could function as intended. The similarity computa- 1178

tion procedures were consistently applied across all 1179

experiments, contributing to a broad and compre- 1180

hensive exploration of semantic alignment meth- 1181

ods. 1182

D Solution Error Detection without 1183

Answer Solutions 1184

In this appendix, we presents additional experi- 1185

mental results aimed at evaluating the impact of 1186

providing reference (teacher) solutions on the per- 1187

formance of LLMs in error detection tasks. 1188

One of the primary objectives of this study is 1189

to quantitatively assess whether LLMs can more 1190

accurately identify errors in student-generated solu- 1191

tions when accompanied by corresponding teacher 1192

solutions. The rationale for including teacher so- 1193

lutions in the proposed prompting strategy is to 1194

furnish the model with essential contextual ground- 1195

ing, thereby facilitating more precise localization 1196

and interpretation of student errors. 1197

To empirically validate this hypothesis, we con- 1198

ducted an ablation study using the same test set 1199

but removed teacher solutions from the input. This 1200

configuration serves as a baseline to evaluate the 1201

model’s ability to detect errors based solely on the 1202

student solution, without external reference. 1203

As shown in Table 12, the inclusion of teacher 1204

solutions led to substantial improvements in error 1205

detection accuracy across most models. The per- 1206

formance gains were particularly pronounced for 1207

smaller-scale models (e.g., 7B, 8B), suggesting that 1208

teacher solutions offer valuable structural guidance 1209

to models with limited reasoning capacity. 1210

Moreover, in domains such as mathemat- 1211

ics—where complex, multi-step logical reasoning 1212

is essential—accurately identifying errors based 1213

solely on student output is often infeasible. When 1214

reference solutions are provided, LLMs can go be- 1215

yond shallow textual similarity and instead evalu- 1216

ate logical consistency and correctness with greater 1217

precision. These quantitative results offer empiri- 1218

cal support for the effectiveness of our proposed 1219

alignment-based error detection framework. 1220

E Human Evaluator Guidelines for 1221

Solution Alignment 1222

This appendix details the annotation guidelines and 1223

considerations that human raters followed when 1224

aligning student solutions with teacher solutions in 1225
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Model Baseline Ours
EN KO EN KO

GPT-4o 75.2 72.6 94.4 95.8
Claude-sonnet-4 72.6 75.0 87.8 90.2
Gemini-2.5-Flash 77.6 80.0 90.4 91.4

Llama-3.1-8B-Instruct 42.2 48.4 80.4 75.2
DeepSeek-R1-Distill-Llama-8B 30.6 19.4 55.4 57.8
DeepSeek-llama3.1-Bllossom-8B 33.4 28.2 63.2 62.0
Qwen2.5-7B-Instruct 49.0 41.6 79.4 86.0
DeepSeek-R1-Distill-Qwen-7B 59.2 43.2 82.8 80.4
DeepSeek-R1-Distill-Qwen-7B-Multilingual 57.4 43.8 86.4 83.4
Mistral-7B-Instruct-v0.3 10.2 4.8 67.0 67.0
Phi-4-mini-instruct 60.4 43.8 76.6 78.6

Table 12: Accuracy comparison between Baseline and Ours for English (EN) and Korean (KO)

the Bi-GSM8K dataset.1226

• Ignore Arithmetic Mistakes: Minor compu-1227

tational errors are disregarded. If the reason-1228

ing process or solution approach is logically1229

aligned, the corresponding steps are matched.1230

• Match Based on Logical Structure: Steps1231

are aligned based on logical structure, even if1232

numerical values or surface expressions differ.1233

• Marking Unmatched Steps: When no ap-1234

propriate matching step exists between the1235

student and teacher solutions, annotators de-1236

note the step with an underscore (_) to indi-1237

cate the absence of alignment. Examples are1238

illustrated in Table 13 and Table 14.1239

• One-to-One Matching Principle: All align-1240

ments must follow a one-to-one correspon-1241

dence between steps in the student and teacher1242

solutions.1243

• Handling Multi-Step Sentences: When a sin-1244

gle sentence in either solution contains mul-1245

tiple logical steps, annotators align it to the1246

most salient or earliest relevant step based on1247

semantic content.1248

– For instance, if the teacher solution con-1249

sists of two steps, "First, compute the1250

total," followed by "Then, divide the re-1251

sult," but the student expresses both in a1252

single sentence, such as "We can divide1253

the total number," annotators determine1254

which teacher step is more directly ad-1255

dressed and align accordingly.1256

– Similarly, when a student step encapsu-1257

lates multiple teacher steps, it is matched1258

to the step that most semantically corre- 1259

sponds to its core meaning. 1260

These guidelines are designed to support consis- 1261

tent and objective annotations while allowing an- 1262

notators the flexibility to apply informed judgment, 1263

focusing on the logical and semantic alignment 1264

between steps. 1265

Based on these alignment decisions, we assign 1266

a score of 1 to each aligned step and a score of 1267

0 to unmatched or irrelevant steps, following the 1268

same evaluation scheme as the GTA module. The 1269

final similarity score is computed by summing all 1270

alignment scores and dividing by the total number 1271

of steps, yielding a normalized score between 0 1272

and 1. 1273

F Analysis of Human Evaluator 1274

Consistency 1275

In this appendix, we quantitatively analyze the con- 1276

sistency of solution alignment results produced by 1277

five human evaluators involved in this study. 1278

Each evaluator directly performed the alignment 1279

between student and teacher solutions by consider- 1280

ing both the semantic similarity and logical flow at 1281

each step. Under subjective judgment, evaluators 1282

selected the most natural alignments, leaving un- 1283

matched steps blank when alignment was difficult. 1284

The consistency of these multi-evaluator align- 1285

ment results was measured using Fleiss’ Kappa 1286

(McHugh, 2012), a statistical metric for assessing 1287

agreement among multiple raters on categorical 1288

data. Fleiss’ Kappa is well-suited for our analysis 1289

as it objectively computes inter-rater agreement 1290

while correcting for chance agreement. The Kappa 1291

value ranges from –1 to 1, with values closer to 1292

1 indicating higher agreement. The Fleiss’ Kappa 1293
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calculated in this study was 0.6149, demonstrat-1294

ing substantial agreement among the evaluators.1295

Conventionally, Kappa values above 0.6 indicate1296

reasonably strong consistency, supporting the relia-1297

bility of the obtained evaluation results.1298

These findings provide objective evidence for the1299

reliability and consistency of the similarity scores1300

derived from human alignment and substantiate1301

the validity of the quantitative evaluation method1302

proposed in this work.1303
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G Detailed Prompt Template for Solution Error Detection1304

In this appendix, we presents the detailed prompt template used in the SED module. As described in the1305

main text, the SED module adopts a 3-shot prompting approach, as illustrated in Figure 4.1306

The three few-shot examples were carefully selected from the training data to evenly represent errors1307

occurring at different reasoning stages (i.e., stages 1, 2, and 3). Each example consists of a problem1308

statement and solution, step-by-step teacher solution, a student solution containing an error, and a query1309

instructing the model to identify the first step at which the error occurs.1310

This prompt structure is designed to guide the LLM in comprehending the student’s reasoning trajectory1311

and solution logic in a stepwise manner, thereby enabling accurate identification of the initial point of1312

error.1313

You are given a math problem, a correct answer solution, and a student solution. Your task is to compare the correct
solution to the student solution and output the step number where the student’s error begins. If the student’s solution is
completely correct, output 0.

Problem: Sohee feels bored with her current game and decides to play a new one. In the new game, 80% of the 100
hours of gameplay consists of repetitive and boring stages. However, through an expansion pack, she can add 30 hours
of enjoyable stages. Including the expansion pack, how many hours of enjoyable stages can Sohee play?

Answer Solution:
{

"step_1":"There are 100×0.8=«100×0.8=80»80 hours of boring stages in the game.",
"step_2":"The enjoyable gameplay time is 100-80=«100-80=20»20 hours.",
"step_3":"With the expansion pack, the enjoyable gameplay time increases to 20+30=«20+30=50»50 hours."

}

Student Solution:
{

"step_1": "There are 100×0.8=«100×0.8=80»80 hours of boring stages in the game.",
"step_2":"The enjoyable gameplay time is 100-80=«100-80=20»20 hours.",
"step_3":"The expansion pack has 30×0.8=«30×0.8=24»24 hours of boring stages.",
"step_4":"The enjoyable gameplay time in the expansion pack is 30-24=«30-24=6»6 hours.",
"step_5":"The total enjoyable gameplay time is 50+6=«50+6=56»56 hours."

}

Q: Is the Student Solution incorrect? Write only the step number with the first error or 0 if no error is found.
A: 3

Problem: Seongjin is stranded on a deserted island. He needs salt to season fish. He collected 2 liters of seawater in
an old bucket. If the water contains 20% salt, how many milliliters of salt will Seongjin get when all the water evaporates?

Answer Solution:
{

"step_1":"First, find out how many liters of the seawater is salt: 2L * 20% = «2*0.2=0.4»0.4L",
"step_2":"Then, multiply this amount by 1000 ml/L to find how much salt Seongjin gets: 0.4L * 1000ml/L =

«0.4*1000=400»400ml"
}

Student Solution:
{

"step_1":"220 = «220=40»40ml of salt is obtained."
}

Q: Is the Student Solution incorrect? Write only the step number with the first error or 0 if no error is found.
A: 1

Problem: A set of hairpins costs 3,000 won each, and a comb costs 1,000 won each. Jinri buys one set of hairpins and
one comb. Sujeong buys three sets of hairpins and one comb. How much do the two girls spend in total?

Answer Solution:
{

"step_1":"Jinri spends 3,000 + 1,000 = «3000+1000=4000»4,000 won.",
"step_2":"The cost of three sets of hairpins is 3,000 x 3 = «3000*3=9000»9,000 won.",
"step_3":"Sujeong spends 9,000 + 1,000 = «9000+1000=10000»10,000 won.",

1314
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"step_4":"So the two girls spend 4,000 + 10,000 = «4000+10000=14000»14,000 won in total."
}

Student Solution:
{

"step_1":"Jinri spends 3,000 + 1,000 = «3000+1000=4000»4,000 won.",
"step_2":"The cost of two sets of hairpins is 3,000 x 2 = «3000*2=6000»6,000 won.",
"step_3":"Sujeong spends 6,000 + 1,000 = «6000+1000=7000»7,000 won.",
"step_4":"So the two girls spend 4,000 + 7,000 = «4000+7000=11000»11,000 won in total."

}

Q: Is the Student Solution incorrect? Write only the step number with the first error or 0 if no error is found.
A: 2

Problem: {problem}
Answer Solution: {answer_solution}
Student Solution: {student_solution}
Q: Is the Student Solution incorrect? Write only the step number with the first error or 0 if no error is found.
A:

1315

Figure 4: Detailed Prompt Template for Solution Error Detection.
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H Detailed Examples of Ground Truth Alignment1316

In this appendix, we present illustrative examples of GTA results for both English (Table 13) and Korean1317

(Table 14). Each table includes the math problem (“Problem”), the step-by-step teacher solution (“Answer1318

Solution”), and the student’s step-by-step reasoning (“Student Solution”). The “Reference Alignment”1319

shows gold-standard step-level alignments manually annotated by a human rater. Predicted alignments1320

from the best-performing open-source model (BERTScore with bert-large-uncased and NW algorithm)1321

and the top commercial LLM API (GPT-4o) are also provided, with misalignments highlighted in red.1322

Problem
Yeona has a 2L water bottle next to her desk. She takes a sip every 5 minutes, and each sip is 40ml. How many minutes
does it take to finish one bottle of water?

Answer Solution
Step 1: First, find the total ml of the bottle: 2L * 1000ml/L = «2*1000=2000»2000ml
Step 2: Then divide the total ml by the amount consumed per sip: 2000ml / 40ml = «2000/40=50»50 sips.
Step 3: Then, multiply the number of sips by the time per sip to find the time it takes to drink the bottle: 50 sips * 5
minutes/sip = «50*5=250»250 minutes.

Student Solution
Step 1: Yeona’s water bottle is 200ml.
Step 2: Divide 200ml by the amount consumed per sip. 200ml / 40ml = «200/40=5»5 sips.
Step 3: To find the time it takes to drink the bottle, multiply the number of sips by the time per sip: 5 sips * 5 minutes/sip
= 25 minutes.

Reference Alignment
Student Solution Answer Solution

_ First, find the total ml of the bottle: 2L * 1000ml/L =
«2*1000=2000»2000ml

Yeona’s water bottle is 200ml. _
Divide 200ml by the amount consumed per sip. 200ml /
40ml = «200/40=5»5 sips.

Then divide the total ml by the amount consumed per
sip: 2000ml / 40ml = «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the
number of sips by the time per sip: 5 sips * 5 minutes/sip
= 25 minutes.

Then, multiply the number of sips by the time per sip
to find the time it takes to drink the bottle: 50 sips * 5
minutes/sip = «50*5=250»250 minutes.

Predicted Alignment by BERTScore + bert-large-uncased + NW algorithm
Student Solution Answer Solution

Yeona’s water bottle is 200ml. First, find the total ml of the bottle: 2L * 1000ml/L =
«2*1000=2000»2000ml

Divide 200ml by the amount consumed per sip. 200ml /
40ml = «200/40=5»5 sips.

Then divide the total ml by the amount consumed per
sip: 2000ml / 40ml = «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the
number of sips by the time per sip: 5 sips * 5 minutes/sip
= 25 minutes.

Then, multiply the number of sips by the time per sip
to find the time it takes to drink the bottle: 50 sips * 5
minutes/sip = «50*5=250»250 minutes.

Predicted Alignment by GPT-4o
Student Solution Answer Solution

_ First, find the total ml of the bottle: 2L * 1000ml/L =
«2*1000=2000»2000ml

Yeona’s water bottle is 200ml. _
Divide 200ml by the amount consumed per sip. 200ml /
40ml = «200/40=5»5 sips.

Then divide the total ml by the amount consumed per
sip: 2000ml / 40ml = «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the
number of sips by the time per sip: 5 sips * 5 minutes/sip
= 25 minutes.

Then, multiply the number of sips by the time per sip
to find the time it takes to drink the bottle: 50 sips * 5
minutes/sip = «50*5=250»250 minutes.

Table 13: Example Results of GTA using GPT-4o and BERTScore with bert-large-uncased and NW Algorithm
(English).
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Problem
연아는책상옆에 2L짜리물병을두고있습니다. 5분마다한모금씩마시는데,한모금당물의양은 40ml입니다.물
한병을다마시는데몇분이걸리나요?

Answer Solution
Step 1:먼저병의총 ml수를찾습니다: 2L * 1000ml/L = «2*1000=2000»2000ml
Step 2:그런다음총 ml수를한모금당마시는양으로나눕니다: 2000ml / 40ml = «2000/40=50»50모금
Step 3:그런다음모금횟수에모금당시간을곱하여병을마시는데걸리는시간을찾습니다: 50모금 * 5분/모금 =
«50*5=250»250분

Student Solution
Step 1:연아의물병은 200ml입니다.
Step 2: 200ml를한모금당마시는양으로나눕니다: 200ml / 40ml = «200/40=5»5모금
Step 3:모금횟수에모금당시간을곱하여병을마시는데걸리는시간을찾습니다: 5모금 * 5분/모금 = «5*5=25»25
분

Reference Alignment
Student Solution Answer Solution

_ 먼저 병의 총 ml 수를 찾습니다: 2L * 1000ml/L =
«2*1000=2000»2000ml

연아의물병은 200ml입니다. _

200ml를 한 모금당 마시는 양으로 나눕니다: 200ml /
40ml = «200/40=5»5모금

그런다음총 ml수를한모금당마시는양으로나눕니
다: 2000ml / 40ml = «2000/40=50»50모금

모금 횟수에 모금당 시간을 곱하여 병을 마시는
데 걸리는 시간을 찾습니다: 5 모금 * 5분/모금 =
«5*5=25»25분

그런다음모금횟수에모금당시간을곱하여병을마
시는 데 걸리는 시간을 찾습니다: 50 모금 * 5분/모금
= «50*5=250»250분

Predicted Alignment by BERTScore + bert-large-uncased + NW algorithm
Student Solution Answer Solution

연아의물병은 200ml입니다. 먼저 병의 총 ml 수를 찾습니다: 2L * 1000ml/L =
«2*1000=2000»2000ml

200ml를 한 모금당 마시는 양으로 나눕니다: 200ml /
40ml = «200/40=5»5모금

그런다음총 ml수를한모금당마시는양으로나눕니
다: 2000ml / 40ml = «2000/40=50»50모금

모금 횟수에 모금당 시간을 곱하여 병을 마시는
데 걸리는 시간을 찾습니다: 5 모금 * 5분/모금 =
«5*5=25»25분

그런다음모금횟수에모금당시간을곱하여병을마
시는 데 걸리는 시간을 찾습니다: 50 모금 * 5분/모금
= «50*5=250»250분

Predicted Alignment by GPT-4o
Student Solution Answer Solution

_ 먼저 병의 총 ml 수를 찾습니다: 2L * 1000ml/L =
«2*1000=2000»2000ml

연아의물병은 200ml입니다. _

200ml를 한 모금당 마시는 양으로 나눕니다: 200ml /
40ml = «200/40=5»5모금

그런다음총 ml수를한모금당마시는양으로나눕니
다: 2000ml / 40ml = «2000/40=50»50모금

모금횟수에모금당시간을곱하여병을마시는데걸
리는시간을찾습니다: 5모금 * 5분/모금 = 25분

그런다음모금횟수에모금당시간을곱하여병을마
시는 데 걸리는 시간을 찾습니다: 50 모금 * 5분/모금
= «50*5=250»250분

Table 14: Example Results of GTA using GPT-4o and BERTScore with bert-large-uncased and NW Algorithm
(Korean)
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I Detailed Examples of Solution Error Detection1323

This appendix provides illustrative examples of SED results on student solutions proposed in this paper.1324

In Tables 15 and 16, “Problem” denotes the question prompt, “Answer Solution” refers to the teacher’s1325

solution, and “Student Answer” represents the student’s solution. The “Answer” indicates the ground-truth1326

location of the first error in the student’s solution, while “Prediction” corresponds to the initial error point1327

predicted by each model. Incorrect segments are highlighted in red, and correct segments are marked in1328

blue.1329

Section Content

Problem Three cats were sitting on a fence meowing at the moon. The first cat
meowed 3 times per minute. The second cat meowed twice as often as the
first cat. The third cat meowed at 1/3 the frequency of the second cat. What
is the total number of times the three cats meowed in 5 minutes?

Answer Solution Step 1: The second cat meowed twice as often as the first cat, which meowed
3 times per minute, resulting in a total of 2× 3 = 6 meows per minute.
Step 2: The third cat meowed at 1

3 the frequency of the second cat, resulting
in a total of 6÷ 3 = 2 meows per minute.
Step 3: Therefore, the three cats meow 3 + 6 + 2 = 11 times per minute.
Step 4: In 5 minutes, three cats meow 5× 11 = 55 times.

Student Solution Step 1: The second cat meows 2× 3 = 6 times.
Step 2: The third cat meows 3× 1

3 = 1 time.
Step 3: The three cats meow 3 + 6 + 1 = 10 times per minute.
Step 4: For 5 minutes, the three cats meow 10× 5 = 50 times.

Answer Step 2

Prediction GPT-4o: Step 2
LLaMA-3.1-8B-Instruct: Step 2
DeepSeek-R1-Distill-LLaMA-8B: Step 3
DeepSeek-LLaMA3.1-Blossom-8B: Step 3
Qwen2.5-7B-Instruct: Step 3
DeepSeek-R1-Distill-Qwen-7B: Step 1
DeepSeek-R1-Distill-Qwen-7B-Multilingual: Step 1
Mistral-7B-Instruct-v0.3: Step 3
Phi-4-mini-instruct: Step 2

Table 15: Example of SED Using GPT-4o and Open LLMs.(English) Blue indicates correct detection; red indicates
incorrect detection.
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Section Content

Problem 고양이 세 마리가 울타리에 앉아 달을 향해 야옹거리고 있었습니다. 첫
번째고양이는분당 3번야옹거렸습니다.두번째고양이는첫번째고양
이보다두배더자주야옹거렸습니다.세번째고양이는두번째고양이
의 1/3빈도로야옹거렸습니다.고양이세마리가 5분동안야옹거리는총
횟수는얼마입니까?

Answer Solution Step 1:두번째고양이는첫번째고양이가분당 3번야옹하는것보다두
배더자주야옹하여분당총 2× 3 = 6 번야옹했습니다.
Step 2:세번째고양이는두번째고양이의 1/3빈도로야옹하여분당총
6÷ 3 = 2 번야옹했습니다.
Step 3:따라서세마리고양이는분당 3 + 6 + 2 = 11 번야옹합니다.
Step 4: 5분동안세고양이는 5× 11 = 55 번야옹합니다.

Student Solution Step 1:두번째고양이는 2× 3 = 6 번야옹합니다.
Step 2:세번째고양이는 3× 1

3 = 1 번야옹합니다.
Step 3:세고양이는분당 3 + 6 + 1 = 10 번야옹합니다.
Step 4: 5분동안세고양이는 10× 5 = 50 번야옹합니다.

Answer Step 2

Prediction GPT-4o: Step 2
LLaMA-3.1-8B-Instruct: Step 2
DeepSeek-R1-Distill-LLaMA-8B: Step 3
DeepSeek-llama3.1-Blossom-8B: Step 3
Qwen2.5-7B-Instruct: Step 2
DeepSeek-R1-Distill-Qwen-7B: Step 2
DeepSeek-R1-Distill-Qwen-7B-Multilingual: Step 2
Mistral-7B-Instruct-v0.3: No errors
Phi-4-mini-instruct: Step 2

Table 16: Example of SED Using GPT-4o and Open LLMs.(Korean) Blue indicates correct detection; red indicates
incorrect detection.
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J Visualization of GTA and SED Experimental Results1330

This appendix presents visualizations of model performance and inference latency for the two core tasks1331

discussed in the main text: GTA and SED.1332

J.1 Visualization of Model Performance1333

For the GTA task, model performance is depicted using radar charts illustrating Pearson correlation in1334

Figures 5 and Spearman correlation in Figures 6. For the SED task, model performance is shown through1335

a radar chart of accuracy in Figure 7.1336

GPT-4o

GPT-4o-mini

Claude-Sonnet-4

Gemini-2.5-Flash

Llama-3.1-8B-Instruct

DeepSeek-R1-Distill-Llama-8B

DeepSeek-llama3.1-Bllossom-8B

Qwen2.5-7B-Instruct
DeepSeek-R1-Distill-Qwen-7B

DeepSeek-R1-Distill-Qwen-7B-Multilingual

Mistral-7B-Instruct-v0.3

Phi-4-mini-instruct

bart-large

bert-large-uncased

deberta-v2-xlarge-mnli

roberta-large

0.7 0.75 0.8 0.85 0.9 0.95 1

Language
English

Korean

Figure 5: Ground Truth Alignment Performance (Pearson Correlation). Radar plot illustrating model-wise Pear-
son correlation scores. Blue lines represent performance on English tasks, while orange lines indicate performance
on Korean tasks. This visualization reveals language-specific variation in alignment capabilities across models.
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Figure 6: Ground Truth Alignment Performance (Spearman Correlation). Radar plot illustrating model-wise
Spearman correlation scores. Blue lines represent performance on English tasks, while orange lines indicate
performance on Korean tasks. This visualization reveals language-specific variation in alignment capabilities across
models.
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Figure 7: Solution Error Detection Performance (Accuracy). Radar plot showing accuracy scores for each model
on the SED task. Blue lines represent English task performance, and orange lines represent Korean task performance.
The figure highlights differences in multilingual generalization and model robustness in error identification.
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J.2 Visualization of Model Latency1337

To provide a more detailed understanding of model efficiency, Figures 8 and 9 present the inference1338

latency (in seconds) of each model for the respective tasks. All latency values represent averages across1339

English and Korean experiments per model and were measured under consistent runtime environments.1340
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Figure 8: Latency on Ground Truth Alignment Task. Latency (in seconds) per model, averaged over both English
and Korean examples. Lower latency reflects faster inference. This comparison enables assessment of the trade-off
between alignment quality and computational cost.
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Figure 9: Latency on Solution Error Detection Task. Latency (in seconds) per model, averaged over English and
Korean data. Lower latency implies more efficient error detection. The figure provides insight into the computational
scalability of each model for educational feedback applications.
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