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ABSTRACT

Previous works on Treatment Effect Estimation (TEE) are not in widespread use
because they are predominantly theoretical, where strong parametric assumptions
are made but untractable for practical application. Recent works use Multilayer
Perceptron (MLP) for modeling casual relationships, however, MLPs lag far behind
recent advances in ML methodology, which limits their applicability and generaliz-
ability. To extend beyond the single domain formulation and towards more realistic
learning scenarios, we explore model design spaces beyond MLPs, i.e., transformer
backbones, which provide flexibility where attention layers govern interactions
among treatments and covariates to exploit structural similarities of potential out-
comes for confounding control. Through careful model design, Transformers as
Treatment Effect Estimators (TransTEE) is proposed. We show empirically that
TransTEE can: (1) serve as a general-purpose treatment effect estimator which
significantly outperforms competitive baselines on a variety of challenging TEE
problems (e.g., discrete, continuous, structured, or dosage-associated treatments.)
and is applicable to both when covariates are tabular and when they consist of struc-
tural data (e.g., texts, graphs); (2) yield multiple advantages: compatibility with
propensity score modeling, parameter efficiency, robustness to continuous treat-
ment value distribution shifts, explainable in covariate adjustment, and real-world
utility in auditing pre-trained language models.

1 INTRODUCTION

One of the fundamental tasks in causal inference is to estimate treatment effects given covariates,
treatments and outcomes. Treatment effect estimation is a central problem of interest in clinical
healthcare and social science (Imbens & Rubin, 2015), as well as econometrics (Wooldridge, 2015).
Under certain conditions (Rosenbaum & Rubin, 1983), the task can be framed as a particular type
of missing data problem, whose structure is fundamentally different in key ways from supervised
learning and entails a more complex set of covariate and treatment representation choices.

Previous works in statistics leverage parametric models (Imbens & Rubin, 2015; Wager & Athey,
2018; Künzel et al., 2019; Foster & Syrgkanis, 2019) to estimate heterogeneous treatment effects.
To improve their utilities, feed-forward neural networks have been adapted for modeling causal
relationships and estimating treatment effects (Yoon et al., 2018; Bica et al., 2020b; Schwab et al.,
2020; Nie et al., 2021; Curth & van der Schaar, 2021b), in part due to their flexibility in modeling
nonlinear functions (Hornik et al., 1989) and high-dimensional input (Johansson et al., 2016). Among
them, the specialized NN’s architecture plays a key role in learning representations for counterfactual
inference (Alaa & Schaar, 2018; Curth & van der Schaar, 2021b) such that treatment variables and
covariates are well distinguished (Shalit et al., 2017).

Despite these encouraging results, several key challenges make it difficult to adopt these methods
as standard tools for treatment effect estimation. Most current works based on subnetworks do not
sufficiently exploit the structural similarities of potential outcomes for heterogeneous TEE1 and
accounting for them needs complicated regularizations, reparametrization or multi-task architectures
that are problem-specific (Curth & van der Schaar, 2021b). Moreover, they heavily rely on their
treatment-specific designs and cannot be easily extended beyond the narrow context in which they
are originally. For example, they have poor practicality and generalizability when high-dimensional

1For example, E[Y (1) − Y (0)|X] is often of a much simpler form to estimate than either E[Y (1)|X] or
E[Y (0)|X], due to inherent similarities between Y (1) and Y (0).
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Table 1: Comparison of existing works and TransTEE in terms of parameter complexity. n is the
number of treatments. BT , BD are the number of branches for approximating continuous treatment
and dosage. Treatment interaction means explicitly modeling collective effects of multiple treatments.
TransTEE is general for all the factors.

METHODS DISCRETE TREATMENT CONTINUOUS TREATMENT TREATMENT INTERACTION DOSAGE

TARNET (SHALIT ET AL., 2017) O(n)
PERFECT MATCH (SCHWAB ET AL., 2018) O(n) O(2T )

DRAGONNET (SHI ET AL., 2019) O(n)
DRNET (SCHWAB ET AL., 2020) O(n) O(TBD)
SCIGAN (BICA ET AL., 2020B) O(n) O(TBD)

VCNET (NIE ET AL., 2021) O(1) O(1)
NCORE (PARBHOO ET AL., 2021) O(n) O(BT ) O(n)

FLEXTENET (CURTH & VAN DER SCHAAR, 2021B) O(n)
OURS O(1) O(1) O(1) O(1)

structural data (e.g., texts and graphs) are given as input (Kaddour et al., 2021). Besides, those
MLP-based models currently lag far behind recent advances in machine learning methodology, which
are prone to issues of scale, expressivity and flexibility. Specifically, those side limitations include
parameter inefficiency (Table 1), and brittleness under different scenarios, such as when treatments
shift slightly from the training distribution. The above limitations clearly show a pressing need for an
effective and practical framework to estimate treatment effects.
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Figure 1: A motivating example with a cor-
responding causal graph. Prev denotes previ-
ous infection condition and BP denotes blood
pressure. TransTEE adjusts an appropriate co-
variate set {Prev,BP} with attention which
is visualized via a heatmap.

In this work, we explore recent advanced models
in the deep learning community to boost the model
design for TEE tasks. Specifically, the core idea
of our approach consists of three parts: as an S-
learner, TransTEE embeds all treatments and co-
variates, which avoids multi-task architecture and
shows improved flexibility and robustness to con-
tinuous treatment value distribution shifts; attention
mechanisms are used for modeling treatment inter-
action and treatment-covariate interaction. In this
way, TransTEE enables adaptive covariate selection
(De Luna et al., 2011; VanderWeele, 2019) for infer-
ring causal effects. For example, one can observe
in Figure 1 that both pre-treatment covariates and
confounders are appropriately adjusted with higher
weights, which recovers the “disjunctive cause criterion” (De Luna et al., 2011) that accounts for
those two kinds of covariates and is helpful for ensuring the plausibility of the conditional ignorability
assumption when complete knowledge of a causal graph is not available. This recipe also gives
improved versatility when working with heterogeneous treatments types (Figure 2).

Our first contribution shows that transformer backbones, equipped with proper design choices, can
be effective and versatile treatment effect estimators under the Rubin-Neyman potential outcomes
framework. TransTEE is empirically verified to be (i) a flexible framework applicable for a wide
range of TEE settings; (ii) compatible and effective with propensity score modeling; (iii) parameter-
efficient; (iv) explainable in covariate adjustment; (v) robust under continuous treatment shifts; (vi)
useful for debugging pre-trained language models (LMs) to promote favorable social outcomes.

Moreover, comprehensive experiments on six benchmarks with four types of treatments are conducted
to verify the effectiveness of TransTEE in estimating treatment effects. We show that TransTEE pro-
duces covariate adjustment interpretation and significant performance gains given discrete, continuous
or structured treatments on popular benchmarks including IHDP, News, TCGA. We introduce a new
surrogate modeling task to broaden the scope of TEE beyond semi-synthetic evaluation and show
that TransTEE is effective in real-world applications like auditing fair predictions of LMs.

2 RELATED WORK

Neural Treatment Effect Estimation. There are many recent works on adapting neural networks to
learn counterfactual representations for treatment effect estimation (Johansson et al., 2016; Shalit
et al., 2017; Louizos et al., 2017; Yoon et al., 2018; Bica et al., 2020b; Schwab et al., 2020; Nie et al.,
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2021; Curth & van der Schaar, 2021b). To mitigate the imbalance of covariate representations across
treatment groups, various approaches are proposed including optimizing distributional divergence
(e.g. IPM including MMD, Wasserstein distance), entropy balancing (Zeng et al., 2020) (converges
to JSD between groups), counterfactual variance (Zhang et al., 2020). However, their domain-
specific designs make them limited to different treatments as shown in Table 1: methods like VCNet
(Nie et al., 2021) use a hand-crafted way to map a real-value treatment to an n-dimension vector
with a constant mapping function, which is hard to converge under shifts of treatments (Table 6 in
Appendix); models like TARNet (Shalit et al., 2017) need an accurate estimation of the value interval
of treatments. Moreover, previous estimators embed covariates to only one representation space by
fully connected layers, tending to lose their connection and interactions (Shalit et al., 2017; Johansson
et al., 2020). And it is non-trivial to adapt to the wider settings given existing ad hoc designs on
network architectures. For example, the case with n treatments and m associated dosage requires
n×m branches for methods like DRNet (Schwab et al., 2020), which put a rigid requirement on the
extrapolation capacity and infeasible given observational data.

Transformers and Attention Mechanisms Transformers (Vaswani et al., 2017) have demonstrated
exemplary performance on a broad range of language tasks and their variants have been success-
fully adapted to representation learning over images (Dosovitskiy et al., 2021), programming lan-
guages (Chen et al., 2021), and graphs (Ying et al., 2021) partly due to their flexibility and expressive-
ness. Their wide utility has motivated a line of work for general-purpose neural architectures (Jaegle
et al., 2021; 2022) that can be trained to perform tasks across various modalities like images, point
clouds, audios and videos. But causal inference is fundamentally different from the above models’
focus, i.e. supervised learning. And one of our goals is to explore the generalizability of attention-
based models for TEE across domains with high-dimensional inputs, an important desideratum in
causal representation learning (Schölkopf et al., 2021). There are recent attempts to use attention
mechanisms for TEE Tasks (Guo et al., 2021; Xu et al., 2022). CETransformer (Guo et al., 2021)
uses embeds covariates for different treatments as a T-learner, They only trivially learn covariate
embeddings but not treatment embedding, while the latter is shown more important for TEE tasks. In
contrast, TransTEE is an S-learner, which is more well-suited to account for causal heterogeneity
(Künzel et al., 2019; Curth & van der Schaar, 2021b;a). ANU (Xu et al., 2022) utilizes attention
mechanisms to map the original covariate space X into a latent space Z with a single model. We
detail the difference in Appendix A.

3 PROBLEM STATEMENT AND ASSUMPTIONS

Treatment Effect Estimation. We consider a setting in which we are given N observed samples
(xi, ti, si, yi)Ni=1, each containing N pre-treatment covariates {xi ∈ Rp}Ni=1. The treatment variable
ti in this work has various support, e.g., {0, 1} for binary treatment settings, R for continuous
treatment settings, and graphs/words for structured treatment settings. For each sample, the potential
outcome (µ-model) µ(x, t) or µ(x, t, s) is the response of the i-th sample to a treatment t, where in
some cases each treatment will be associated with a dosage sti ∈ R. The propensity score (π-model)
is the conditional probability of treatment assignment given the observed covariates π(T = t|X = x).
The above two models can be parameterized as µθ and πϕ, respectively. The task is to estimate the
Average Dose Response Function (ADRF): µ(x, t) = E[Y |X = x, do(T = t)] (Shoichet, 2006),
which includes special cases in discrete treatment scenarios that can also be estimated as the average
treatment effect (ATE): ATE = E[µ(x, 1)− µ(x, 0)] and its individual version ITE.

What makes the above problem more challenging than supervised learning is that we never see
the missing counterfactuals and ground truth causal effects in observational data. Therefore, we
first introduce the required fundamentally important assumptions that give the strongly ignorable
condition such that statistical estimands can be interpreted causally.

Assumption 3.1. (Ignorability/Unconfoundedness) implies no hidden confounders such that Y (T =
t) |= T |X . In the binary treatment case, Y (0), Y (1) |= T |X .

Assumption 3.2. (Positivity/Overlap) The treatment assignment is non-deterministic such that, i.e.
0 < π(t|x) < 1,∀x ∈ X , t ∈ T

Assumption 3.1 ensures the causal effect is identifiable, implying that treatment is assigned indepen-
dent of the potential outcome and randomly for every subject regardless of its covariates, which allows
estimating ADRF using µ(t) := E[Y |do(T = t)] = E[E[[Y |x, T = t]] (Rubin, 1978). One naive
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Figure 2: A schematic comparison of TransTEE and recent works including DragonNet(Shi et al.,
2019), FlexTENet(Curth & van der Schaar, 2021b), DRNet(Schwab et al., 2020) and VCNet(Nie
et al., 2021). TransTEE handles all the scenarios without handcrafting treatment-specific architectures
and any additional parameter overhead.

estimator of µ(x, t) = E[Y |X = x, T = t] is the sample average µ(t) =
∑n

i=1 µ̂(xi, t). Assumption
3.2 states that there is a chance of seeing units in every treated group.

4 TRANSTEE: TRANSFORMERS AS TREATMENT EFFECT ESTIMATORS

The systematic similarity of potential outcomes of different treatment groups is important for TEE
(Curth & van der Schaar, 2021b). Note that x is often high-dimensional while t is not, which means
naively feeding (x, t) to MLPs is not favorable since the impacts of treatment tend to be lost. As a
result, various architectures and regularizations have been proposed to enforce structural similarity
and differences among treatment groups. However, they are limited to specific use cases as shown
in Section 2 and Figure 2. To remedy it, we use three simple yet effective design choices based
on attention mechanisms. The resulting scalable framework TransTEE can tackle the problems of
most existing treatment effect estimators (e.g., multiple/continuous/structured treatments, treatments
interaction, and treatments with dosage) without ad-hoc architectural designs, e.g., multiple branches.

Preliminary. The main module in TransTEE is the attention layer Vaswani et al. (2017): given
d-dimensional query, key, and value matrices Q ∈ Rd×dk ,K ∈ Rd×dk , V ∈ Rd×dv , attention
mechanism computes the outputs as H(Q,K, V ) = softmax(QKT

√
dk

)V . In practice, multi-head
attention is preferable to jointly attend to the information from different representation subspaces.

HM (Q,K, V ) = Concat(head1, ..., headh)WO,where headi = H(QWQ
i ,KWK

i , V WV
i ),

where WQ
i ∈ Rd×dk ,WV

i ∈ Rd×dk ,WV
i ∈ Rd×dv and WO ∈ Rhdv×d are learnable matrices.

4.1 COVARIATE AND TREATMENT EMBEDDING LAYERS

Treatment Embedding Layer. As illustrated in Figure 2 and Table. 1, as treatments are often
of much lower dimension compared to covariates, to avoid missing the impacts of treatments,
previous works (e.g., DragonNet (Shi et al., 2019), FlexTENet (Curth & van der Schaar, 2021b),
DRNet (Schwab et al., 2020)) assign covariates from different treatment groups to different branches,
which is highly parameter inefficient. Besides, We analyze in Proposition 2 (Appendix D) that, for
continuous treatments/dosages, the performance is affected by both number of branches and the value
interval of treatment. However, almost all previous works on continuous treatment/dosage assume
the treatment or dosage is in a fixed value interval e.g., [0, 1] and Figure 3 shows that prevalent
works fail when tested under shifts of treatments. These two observations motivate us to use two
learnable linear layers to project scalar treatments and dosages to d-dimension vectors separately:
Mt = Linear(t),Ms = Linear(s), where Mt ∈ Rd. Ms ∈ Rd exists just when each treatment has a
dosage parameter, otherwise, only treatment embedding is needed. When multiple (n) treatments act
simultaneously, the projected matrix will be Mt ∈ Rd×n,Ms ∈ Rd×n and when facing structural
treatments (languages, graphs), the treatment embedding will be projected by language models and
graph neural networks respectively. By using the treatment embeddings, TransTEE is shown to be (i)
robust under treatment shifts, and (ii) parameter-efficient.

Covariates Embedding Layer. Different from previous works that embed all covariates by one
fully connected layer, where the differences between covariates tend to be lost, and is hard to study
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the function of an individual covariate in a sample. TransTEE learns different embeddings for each
covariate, namely Mx = Linear(x), and Mx ∈ Rd×p, where p is the number of covariate. Covariates
embedding enables us to study the effect of individual covariate on the outcome.

4.2 COVARIATE AND TREATMENT SELF-ATTENTION

For covariates, prevalent methods represent covariates as a whole feature using MLPs, where pair-
wise covariate interactions are lost when adjusting covariates. Therefore, we cannot study the effect
of each covariate on the estimated result. In contrast, TransTEE processes each covariate embedding
independently and model their interactions by self-attention layers. Namely,

M̂ l
x = HM (M l−1

x ,M l−1
x ,M l−1

x ) +M l−1
x ,M l

x = MLP(BN(M̂ l
x)) + M̂ l

x.

where M l
x is the output of l layer and BN is the BatchNorm layer. Simultaneously, the treatments

and dosages embeddings are concatenated and projected to the latent dimension by a linear layer,
which generates a new embedding Mst ∈ Rd. Then self-attention is applied

M l
st = HM (M l−1

st ,M l−1
st ,M l−1

st ) +M l−1
st ,M l

st = MLP(BN(M̂ l
st)) + M̂ l

st.

The self-attention layer for treatments enables treatment interactions, an important desideratum for S-
and T-learners. Namely, TransTEE can model the scenario where multiple treatments are applied and
attain strong practical utility, e.g., multiple prescriptions in healthcare or different financial measures
in economics. This is an effective remedy for existing methods which are limited to settings where
various treatments are not used simultaneously.

4.3 TREATMENT-COVARIATE CROSS-ATTENTION

One of the fundamental challenges of causal meta-learners is to model treatment-covariate interactions.
TransTEE realizes this by a cross-attention module, treating Mst as query and Mx as key and value

M̂ l = HM (M l−1
st ,M l−1

x ,M l−1
x ) +M l−1,

M l = MLP(M̂ l) + M̂ l, ŷ = MLP(Pooling(ML)),

where ML is the output of the last cross-attention layer and M0 = ML
st. The above interactions

are particularly important for adjusting proper covariate or confounder sets for estimating treatment
effects (VanderWeele, 2019), which empirically yields suitable covariate adjustment principles
(the Disjunctive Cause Criteria) (De Luna et al., 2011; VanderWeele, 2019) about pre-treatment
covariates and confounders as intuitively illustrated in Figure 1 and corroborated in our experiments.

Denote ŷ := µθ(x, t) and the training objective is the mean square error (MSE) of the outcome
regression: Lθ(x, y, t) =

∑n
i=1 (yi − µθ(xi, ti))

2.

Remark. We include an illustration of TransTEE by a concrete example in Appendix B. Note that,
although the embedding technique and attention mechanisms are commonly used in Computer Vision,
Neural Language Processing communities, it is not well understood how to guide the design of these
modules for causal inference and why these techniques benefit TEE tasks are underexplored. In this
work, through the flexible use of embedding and attention mechanisms we design a strong TEE
architecture, we further use conceptual analysis and empirical results to show the benefit brought by
the used design choices. Besides, when combined with the strong modeling capacity of Transformers,
TransTEE can be extended to high-dimensional data flexibly and effectively on structured data. The
generalizability of the TransTEE also allows new applications like auditing language models beyond
semi-synthetic settings as shown in the next section.

5 EXPERIMENTAL RESULTS

We elaborate on basic experimental settings, results, analysis, and empirical studies in this section.
See Appendix E for full details of all experimental settings and detailed definitions of metrics. See
Appendix F for many more results and remarks.

5.1 EXPERIMENTAL SETTINGS

Datasets. Since the true counterfactual outcome (or ADRF) are rarely available for real-world
data, we use synthetic or semi-synthetic data for empirical evaluation. for continuous treatments,
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Table 2: Experimental results comparing NN-based methods on the IHDP datasets, where ——
means the model is not suitable for continuous treatments. We report the results based on 100 repeats,
and numbers after ± are the estimated standard deviation of the average value. For the vanilla setting
with binary treatment, we report the mean absolute difference between the estimated and true ATE.
For Extrapolation (h = 2), models are trained with t ∈ [0.1, 2.0] and tested in t ∈ [0, 2.0]. For
Extrapolation (h = 5), models are trained with t ∈ [0.25, 5.0] and tested in t ∈ [0, 5].

METHODS VANILLA (BINARY) VANILLA (h = 1) EXTRAPOLATION (h = 2) VANILLA (h = 5) EXTRAPOLATION (h = 5)

TARNET 0.3670 ± 0.61112 2.0152 ± 1.07449 12.967 ± 1.78108 5.6752 ± 0.53161 31.523 ± 1.5013
DRNET 0.3543 ± 0.60622 2.1549 ± 1.04483 11.071 ± 0.99384 3.2779 ± 0.42797 31.524 ± 1.50264

FLEXTENET 0.2700 ± 0.10000 —— —— —— ——
VCNET 0.2098 ± 0.18236 0.7800 ± 0.61483 NAN NAN NAN

TRANSTEE 0.0983 ± 0.15384 0.1151 ± 0.10289 0.2745 ± 0.14976 0.1621 ± 0.14443 0.2066 ± 0.23258
TRANSTEE+MLE 0.1721 ± 0.40061 0.0877 ± 0.03352 0.2685 ± 0.17552 0.2079 ± 0.17637 0.1476 ± 0.07123
TRANSTEE+TR 0.1913 ± 0.29953 0.0781 ± 0.03243 0.2393 ± 0.08154 0.1143 ± 0.03224 0.0947 ± 0.0824

TRANSTEE+PTR 0.2193 ± 0.34667 0.0762 ± 0.07915 0.2352 ± 0.17095 0.1363 ± 0.08036 0.1363 ± 0.08035

we use one synthetic dataset and two semi-synthetic datasets: the IHDP and News datasets. For
treatment with continuous dosages, we obtain covariates from a real dataset TCGA (Chang et al.,
2013) and generate treatments, where each treatment is accompanied by a dosage. The resulting
dataset is named TCGA (D). Following (Kaddour et al., 2021), datasets for structured treatments
include Small-World (SW), which contains 1, 000 uniformly sampled covariates and 200 randomly
generated Watts–Strogatz small-world graphs (Watts & Strogatz, 1998) as treatments, and TCGA
(S), which uses 9, 659 gene expression of cancer patients (Chang et al., 2013) for covariates and
10, 000 molecules from the QM9 dataset (Ramakrishnan et al., 2014) as treatments. For the study on
language models, we use the Enriched Equity Evaluation Corpus (EEEC) (Feder et al., 2021).

Baselines. Baselines for continuous and binary treatments include TARnet (Shalit et al., 2017),
Dragonnet (Shi et al., 2019), DRNet (Schwab et al., 2020), FlexTENet (Curth & van der Schaar,
2021b), and VCNet (Nie et al., 2021). SCIGAN (Bica et al., 2020b) is chosen as the baseline for
continuous dosages. Besides, we revise DRNet (Schwab et al., 2020), TARNet (Shalit et al., 2017),
and VCNet (Nie et al., 2021) to DRNet (D), TARNet (D), VCNet (D), respectively, which enable
multiple treatments and dosages. Specifically, DRNet (D) has T main flows, each corresponding
to a treatment and is divided into BD branches for continuous dosage. Baselines for structured
treatments include Zero (Kaddour et al., 2021), GNN (Kaddour et al., 2021), GraphITE (Harada
& Kashima, 2021), and SIN (Kaddour et al., 2021). To compare the performance of different
frameworks fairly, all of the models regress on the outcome with empirical samples without any
regularization. For MLE training of the propensity score model, the objective is the negative log-
likelihood: Lϕ := − 1

n

∑n
i=1 log πϕ(ti|xi).

Evaluation Metric. For continuous and binary treatments, we use the average mean squared error
on the test set. For structured treatments, following (Kaddour et al., 2021), we rank all treatments
by their propensity π(t|x) in a descending order. Top K treatments are selected and the treatment
effect of each treatment pair is evaluated by unweighted/weighted expected Precision in Estimation
of Heterogeneous Effect (PEHE) (Kaddour et al., 2021), where the WPEHE@K accounts for the
fact that treatment pairs that are less likely to have higher estimation errors should be given less
importance. For multiple treatments and dosages, AMSE is calculated over all dosage and treatment
pairs, resulting in AMSED.

5.2 CASE STUDY AND NUMERICAL RESULTS

Case study on treatment distribution shifts We start by conducting a case study on treatment
distribution shifts (Figure 3), and exploring an extrapolation setting in which the treatment may
subsequently be administered at values never seen before during training. Surprisingly, we find
that while standard results rely on constraining the values of treatments Nie et al. (2021) and
dosages Schwab et al. (2020) to a specific range, our methods perform surprisingly well when
extrapolating beyond these ranges as assessed on several benchmarks. By comparison, other methods
appear comparatively brittle in these same settings. See Appendix D for detailed discussion.

Case study of propensity modeling. TransTEE is conceptually simple and effective. How-
ever, when the sample size is small, it becomes important to account for selection bias (Alaa
& Schaar, 2018). However, most existing regularizations can only be used when the treatments
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(c) h = 5 in training and testing.

Figure 3: Estimated ADRF on the synthetic dataset, where treatments are sampled from an interval
[l, h], where l = 0.

are discrete (Bica et al., 2020a; Kallus, 2020; Du et al., 2021). Thus we propose two regulariza-
tion variants for continuous treatment/dosages, which are termed Treatment Regularization (TR,
LTR
ϕ (x, t) =

∑n
i=1

(
ti − πϕ(t̂i|xi)

)2
) and its probabilistic version Probabilistic Treatment Regular-

ization (PTR, LPTR
ϕ =

∑n
i=1

[
(ti−πϕ(µ|xi))2

2πϕ(σ2|xi) + 1
2 log πϕ(σ

2|xi)
]
) respectively. The overall model is

trained in a adversarial pattern, namely minθ maxϕ Lθ(x, y, t)− Lϕ(x, t). Specifically, a propensity
score model πϕ(t|x) parameterized by an MLP is learned by minimizing Lϕ(x, t), and then the
outcome estimators µθ (x, t) is trained by minθ Lθ(x, y, t)− Lϕ(x, t). To overcome selection biases
over-representation space, the bilevel optimization enforces effective treatment effect estimation
while modeling the discriminative propensity features to partial out parts of covariates that cause the
treatment but not the outcome and dispose of nuisance variations of covariates (Kaddour et al., 2021).
Such a recipe can account for selection bias where π(t|x) ̸= p(t) and leave spurious correlations out,
which can also be more robust under model misspecification especially in the settings that require
extrapolation on treatment (See Table 2 and Appendix C for concrete formalisms and discussions.).

As in Table 2, Appendix Table 5 and Table 12, with the addition of adversarial training as well
as TR and PTR, TransTEE’s estimation error with continuous treatments can be further reduced.
Overall, TR is better in the continuous case with smaller treatment distribution shifts, while PTR is
preferable when shifts are greater. Both TR and PTR cannot bring performance gains over discrete
cases. The superiority of TR and PTR in combination with TransTEE over comprehensive existing
works, especially in semi-synthetic benchmarks like IHDP that may systematically favor some types
of algorithms over others (Curth et al., 2021), also calls for more understanding of NNs’ inductive
biases in treatment effect estimation problems of interest. Moreover, covariate selection visualization
in TR and PTR (Figure 4(a) , Table 4 and Appendix F) supports the idea that modeling the propensity
score effectively promotes covariate adjustment and partials out the effects from the covariates on the
treatment features. We also compare the training dynamic of different regularizations in Appendix F,
where TR and PTR are further shown able to improve the convergence of TransTEE.

Continuous treatments. To evaluate the efficiency with which TransTEE estimates the average dose-
response curve (ADRF), we compare against other recent NN-based methods (Tables 2). Comparing
results in each column, we observe performance boosts for TransTEE. Further, TransTEE attains
a much smaller error than baselines in cases where the treatment interval is not restricted to [0, 1]
(e.g., t ∈ [0, 5]) and when the training and test treatment intervals are different (extrapolation).
Interestingly, even vanilla TransTEE produces competitive performance compared with that of π(t|x)
trained additionally using MLE, demonstrating the ability of TransTEE to effectively model treatments
and covariates. The estimated ADRF curves on the IHDP and News datasets are shown in Figure 11
and Figure 13 in Appendix. TARNet and DRNet produce discontinuous ADRF estimators and VCNet
only performs well when t ∈ [0, 1]. However, TransTEE attains lower estimation error and preserves
the continuity of ADRF on different treatment intervals.

Continuous dosage. In Table 5, we compare TransTEE against baselines on the TCGA (D) dataset
with default treatment selection bias 2.0 and dosage selection bias 2.0. As the number of treatments
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Table 3: Effect of Gender (top) and Race (bottom) on POMS classification with the EEEC
dataset, where ATEGT is the ground truth ATE based on 3 repeats with confidence intervals [CI]
constructed using standard deviations.

Correlation/Representation Based Baselines Treatment Effect Estimators

TC ATEGT TReATE CONEXP INLP TarNet DRNet VCNet TransTEE

Gender 0.086 0.125 0.02 0.313 0.0067 0.0088 0.0085 0.013
[CI] [0.082,0.09] [0.110,0.14] [0.0,0.05] [0.304,0.321] [0.0049, 0.0076] [0.0084,0.009] [0.0036, 0.0111] [0.008, 0.0168]

Race 0.014 0.046 0.08 0.591 0.005 0.006 0.003 0.0174
[CI] [0.012,0.016] [0.038,0.054] [0.02,0.014] [0.578,0.605] [0.0021, 0.0069] [0.0047, 0.0081] [0.0025, 0.0037] [0.0113, 0.0238]
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Figure 4: (a) The learned weights of the cross-attention module on IHDP dataset. TransTEE adjusts
confounders Scon = {1, 2, 3, 5, 6} properly with higher weights during the cross attention process.
(b) AMSE attained by models on IHDP with different numbers of noisy covariates. (c) Number of
parameters for different models on four different datasets, where the log on the y-axis is base 2.

increases, TransTEE and its variants (with regularization term) consistently outperform the baselines
by a large margin on both training and test data. TransTEE’s effectiveness is also shown in Appendix
Figure 8, where the estimated ADRF curve of each treatment considering continuous dosages is
plotted. Compared to baselines, TransTEE attains better results over all treatments. Stronger selection
bias in the observed data makes estimation more difficult because it becomes less likely to see
certain treatments or particular covariates. Considering different dosages and treatment selection bias,
Appendix Figure 7 shows that as biases increase, TransTEE consistently performs the best.

Structured treatments. We compared the performance of TransTEE to baselines on the training
and test set of both SW and TCGA datasets with varying degrees of treatment selection bias. The
numerical results are shown in Appendix Table 13. The performance gain between GNN and Zero
indicates that taking into account graph information significantly improves estimation. The results
suggest that, overall, the performance of TransTEE is the best due to the strong modeling capability
and advanced model structure for processing high-dimensional treatments. SIN is the best model
among these baselines. However, when the bias is equal to 0.1, SIN fails to attain estimation results
better than the Zero baseline. To evaluate each model’s robustness to varying levels of selection bias,
performance curve with κ ∈ [0, 40] for the SW dataset and κ ∈ [0, 0.5] for the TCGA dataset are
shown in Figure 14 and Figure 15 in Appendix. Considering both metrics, TransTEE outperforms
baselines by a large margin across the entire range of evaluated treatment selection biases.

5.3 ANALYSIS

	𝑺𝒅𝒊𝒔,𝟐

		𝑻

		𝑺𝒄𝒐𝒏 		𝑺𝒅𝒊𝒔,𝟏

	𝒀

Figure 5: The
causal graph of
IHDP dataset.

Analysis of covariate adjustment of cross-attention module. TransTEE embeds
each covariate independently and then make treatments select proper covariates
for prediction by cross-attention. The resulting interpretability of the covariate
adjustment process using attention weights is one clear advantage over existing
works. Thus we visualize the covariate selection results (cross-attention weights)
in Figure 4(a). As elaborated in Appendix E.3, the IHDP dataset has 25 covariates,
which is divided into 3 groups: Scon = {1, 2, 3, 5, 6}, Sdis,1 = {4, 7 ∼ 15}, and
Sdis,2 = {16 ∼ 25}. Scon influences both T and Y , Sdis,1 influences only Y ,
and Sdis,1 influences only T . Covariates in Sdis,1 are named noisy covariates

since they have no correlation with the treatment. Their causal relationships are illustrated in
Figure 5. Interestingly, confounders Scon are assigned higher weights while noisy covariates (those
influence the outcome but are irrelevant to the treatment) lower Sdis,1, which matches the principles
in (VanderWeele, 2019) and corroborate the ability of TransTEE to estimate treatment effects in
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complex datasets by controlling both pre-treatment variables and confounders properly. Moreover,
Figure 4(b) shows that TransTEE consistently outperforms baselines across different numbers of
noisy covariates.

Table 4: Attention weights for
Scon, Sdis,1, and Sdis,2 respec-
tively.

wcon w1 w2

TransTEE 0.27 0.37 0.36
+TR 0.59 0.20 0.21

+PTR 0.32 0.33 0.35

We further conduct 10 repetitions for TransTEE and its TR and
PTR counterparts as reported in Table 4 (Appendix Figure 10
visualizes their cross-attention weights). Denote wcon, w1, w2

as the summation of weights assigned to Scon, Sdis,1, Sdis,2 re-
spectively. We can see that, incorporated with both TR and PTR
regularization, TransTEE assigns more weights to confounding
covariates (Scon) and fewer weights on noisy covariates, which
further verifies the compatibility of TransTEE with propensity
score modeling since both TR and PTR improve confounding
control. Moreover, TR is better than PTR since it also reduces w2 by a larger margin. This observa-
tion gives a suggestion that we should systematically probe TR and PTR besides comparing their
numerical performance, especially in settings where the unconfoundedness assumption is violated
(Ding et al., 2017) and controlling instrumental variables will incur biases in TEE.

Amount of model parameters comparison. The experiment is to corroborate the conceptual
comparison in Table 1. We find that the proposed TransTEE has consistently fewer parameters than
baselines on all the settings as shown in Figure 4(c). Besides, increasing the number of treatments
allows more accurate approximation for continuous treatments/dosages, most of these baselines need
to increase branches which incurs parameter redundancy. However, TransTEE is much more efficient.

5.4 EMPIRICAL STUDY ON PRE-TRAINED LANGUAGE MODELS

To evaluate the real-world utility of TransTEE, in this subsection, we demonstrate an initial attempt
for auditing and debugging large pre-trained language models, an important use case in NLP that is
beyond semi-synthetic settings and under-explored in the causal inference literature. Specifically,
we use TransTEE to estimate the treatment effects for detecting the effects of domain-specific
factors of variation (such as the change of subject’s attributes in a sentence) on the predictions
of pre-trained language models. We experiment with BERT (Kenton & Toutanova, 2019) (e.g.,
racial and gender-related nouns) over natural language on the (real) EEEC dataset. We use both the
correlation/representation-based baselines introduced in (Feder et al., 2021) and implement treatment
effect estimators (e.g., TARnet, DRNet, VCNet, and the proposed TransTEE).

Interestingly, results in Table 3 show that TransTEE effectively estimates the treatment effects
of domain-specific variation perturbations even without substantive downstream fine-tuning on
specialized datasets. TransTEE outperforms baselines adapted from MLP. Moreover, we showcase
the top-k samples with the maximal/minimal ITE and analysis in Appendix F.3. The results show
that TransTEE has the potential to provide estimators for practical use cases in predicting model
predictions (Ilyas et al., 2022). For example, those identified samples can provide actionable insights
like function as contrast sets for analyzing and understanding LMs (Gardner et al., 2020; Abraham
et al., 2022) and TransTEE can estimate ATE to enforce invariant or fairness constraints for LMs
(Veitch et al., 2021) in a lightweight and efficient manner, which we leave for future work.

6 CONCLUDING REMARKS

In this work, we show attention mechanisms can be effective and versatile design choices for TEE
tasks. Extensive experiments well verify the effectiveness and utility of the proposed TransTEE,
which also imply that more challenging and unified evaluation alternatives of TEE are needed.
Moreover, we hope that our findings can lay the groundwork for future work in developing advanced
machine learning techniques like pre-training in large-scale observational data in estimating treatment
effects, where TransTEE can serve as an effective backbone. Similar to almost all the causal inference
methods on observational data, one potential limitation of TransTEE is the reliance on the ignorability
assumption. Therefore, one important future direction is extending TransTEE to settings with more
complex causal graphs and generate identifiable causal functionals tractable for optimization (Jung
et al., 2020) supported by identification theory. Since adjusting covariates without accounting for
the causal graph might yield inaccurate or biased estimates of the causal effect (Pearl, 2009), how
to integrate TransTEE with domain knowledge (Imbens & Rubin, 2015) for alleviating its potential
negative societal impacts in consequential decision making will also be important.
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A EXTENDED RELATED WORK

Propensity Score. Most related works fundamentally rely on strongly ignorable conditions. Still even
under ignorability, treatments may be selectively assigned according to propensities that depend on
the covariates. To overcome the impact of such confounding, many statistical methods (Austin, 2011)
like covariate adjustment (Austin, 2011), matching (Rubin & Thomas, 1996; Abadie & Imbens, 2016),
stratification (Frangakis & Rubin, 2002), reweighting (Hirano et al., 2003), g-computation (Imbens
& Rubin, 2015), have been proposed. More recent approaches include propensity dropout (Alaa
et al., 2017), and multi-task Gaussian process (Alaa & van der Schaar, 2017). Explicitly modeling the
propensity score, which reflects the underlying policy for assigning treatments to subjects, has also
shown to be effective in reasoning about the unobserved counterfactual outcomes and accounting for
confounding. Based upon it, double robust estimators and targeted regularization are proposed to
guarantee the consistency of estimated treatment effects under misspecification of either the outcome
or propensity score model (Kang & Schafer, 2007; Funk et al., 2011). There are also works using
adversarial training for balanced representations (Bica et al., 2020a; Kallus, 2020; Du et al., 2021).
However, most traditional approaches are restricted to binary treatments and the capacity of NNs for
such problems have not been fully leveraged.

Domain Adaptation There are some close connections between causal inference and domain adapta-
tion, in particular, out-of-distribution robustness. Intuitively, traditional domain adversarial training
learns representations that are indistinguishable by the domain classifier by minimizing the worst-
domain empirical error (Ganin et al., 2016; Zhao et al., 2018; Wang et al., 2022; Zhang et al., 2022).
The algorithmic insights can be handily translated to the TEE domain (Shalit et al., 2017; Johansson
et al., 2020; Feder et al., 2021). Here we also have the desideratum that covariate representations
should be balanced such that the selection bias is minimized and the effect is maximally determined
by the treatment. Algorithmically, when the treatment is continuous, we connect our method to
continuously indexed domain adaptation (Wang et al., 2020). Our formulation and algorithm also
serve to build connections to a diverse set of statistical thinking on causal inference and domain
adaptation, of which much can be gained by mutual exchange of ideas (Johansson et al., 2020).
Explicitly modeling the propensity score also seeks to connect causal inference with transfer learning
to inspire domain adaptation methodology and holds the potential to handle a wider range of problems
like hidden stratification in domain generalization, which we leave for future work.

Comparision between TransTEE and ANU (Xu et al., 2022). (i) The model structure is different.
ANU performs cross-attention between zx, and zt, and no self-attention is applied. However,
TransTEE performs self-attention on zx, zt respectively and then cross-attention is performed between
zx, zt. When facing high-dimensional data, such as texts, images, and graphs, without multiple self-
attention layers on zx, zt separately, the representations will be weak. That is why in machine
translation, object detection, and segmentation tasks, the representations of images/texts will be firstly
processed by multiple self-attention layers and then perform cross-attention with queries. We will
verify this point in the following experiments. (ii) ANU cannot be applied to multi-treatment settings,
which have been extensively studied recently (Kaddour et al., 2021; Bica et al., 2020b; Parbhoo et al.,
2021). The comparison experiments are in Section F.1.
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𝐗 Embedding

𝑥1 𝑥2 𝑥𝑝…

…

× 𝐿

…

𝐓 Embedding

𝑡1 𝑡𝑛…

𝐃 Embedding

𝑑1 𝑑𝑛…

…

Linear

…

× 𝐿

…

Key Value Query

𝑀𝑥 𝑀𝑠𝑡

𝑀𝑥
𝐿 𝑀𝑠𝑡

𝐿

Pooling & Linear

× 𝐿

Self-Attention Self-Attention

Cross-Attention

Figure 6: An Illustrative Example about
the workflow of TransTEE.

To better understand the workflow with the above designs,
we present a simple illustration here. Consider a use case
in medicine effect estimation, where x contains p patient
information, e.g., Age, Sex, Blood Pressure (BP), and Previ-
ous infection condition (Prev) with a corresponding causal
graph (Figure 1). n medicines (treatments) are applied
simultaneously and each medicine has a corresponding
dosage. As shown in Figure 6, each covariate, treatment,
and dosage will first be embedded to d-dimension repre-
sentation by a specific learnable embedding layer. Each
treatment embedding will be concatenated with its dosage
embedding and the concatenated feature will be projected
by a linear layer to produce d dimensional vectors. Self-
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attention modules optimizes these embeddings by aggre-
gating contextual information. Specifically, attribute Prev
is more related to age than sex, hence the attention weight
of Prev feature to age feature is larger and the update of Prev feature will be more dependent on the
age feature. Similarly, the interaction of multi-medicines is also attained by the self-attention module.
The last Cross-attention module enables treatment-covariate interactions, which is shown in Figure
2 that, each medicine will assign a higher weight to relevant covariates especially confounders (BP)
than irrelevant ones. Finally, we pool the resulted embedding and use one linear layer to predict the
outcome.

C DETAILS AND DISCUSSIONS ABOUT PROPENSITY SCORE MODELLING

We first discuss the fundamental differences and common goals between our algorithm and traditional
ones: as a general approach to causal inference, TransTEE can be directly harnessed with traditional
methods that estimate propensity scores by including hand-crafted features of covariates (Imbens
& Rubin, 2015) to reduce biases through covariate adjustment (Austin, 2011), matching (Rubin
& Thomas, 1996; Abadie & Imbens, 2016), stratification (Frangakis & Rubin, 2002), reweighting
(Hirano et al., 2003), g-computation (Imbens & Rubin, 2015), sub-classification (Rosenbaum &
Rubin, 1984), covariate adjustment (Austin, 2011), targeted regularization (Van Der Laan & Rubin,
2006) or conditional density estimation (Nie et al., 2021) that create quasi-randomized experiments
(D’Agostino, 1998). It is because the general framework provides an advantage to using an off-the-
shelf propensity score regularizer for balancing covariate representations. Similar to the goal of
traditional methods like inverse probability weighting and propensity score matching (Austin, 2011),
which seeks to weigh a single observation to mimic the randomization effects with respect to the
covariate from different treatment groups of interest.

Unlike previous works that use hand-crafted features or directly model the conditional density via
maximum likelihood training, which is prone to high variance when handling high-dimensional,
structured treatments (Singh et al., 2019) and can be problematic when we want to estimate a plausible
propensity score from the generative model (Mohamed & Lakshminarayanan, 2016) (see the degraded
performance of MLE in Table 2), TransTEE learns a propensity score network πϕ(t|x) via minimax
bilevel optimization. The motivations for adversarial training between µθ(x, t) and πϕ(t|x) are three-
fold: (i) it enforces the independence between treatment and covariate representations as shown in
Proposition 1, which serves as algorithmic randomization in replace of costly randomized controlled
trials (Rubin, 2007) for overcoming selection bias (D’Agostino, 1998; Imbens & Rubin, 2015); (ii)
it explicitly models propensity πϕ(t|x) to refine treatment representations and promote covariate
adjustment (Kaddour et al., 2021); and (iii) taking an adversarial domain adaptation perspective, the
methodology is effective for learning invariant representations and further regularizes µθ(x, t) to be
invariant to nuisance factors and may perform better empirically on some classes of distribution shifts
(Ganin et al., 2016; Shalit et al., 2017; Zhao et al., 2018; Johansson et al., 2020; Wang et al., 2020).

Based on the above discussion, when treatments are discrete, one might consider directly applying
heuristic methods like adversarial domain adaptation (see (Ganin et al., 2016; Zhao et al., 2018) for
algorithmic development guidelines). We note the heuristic nature of domain-adversarial methods
(see (Wu et al., 2019) for clear failure cases), and a debunking of the common claim that (Ben-
David et al., 2010) guarantees the robustness of such methods. Here, we focus on continuous
TEE, a more general and challenging scenario, where we want to estimate ADRF, and propose two
variants of Lϕ as an adversary for the outcome regression objective Lθ accordingly. Recall that
Lθ(x, y, t) =

∑n
i=1 (yi − µθ(xi, ti))

2, the adversarial training process is shown in Eq. 1 below:

min
θ

max
ϕ

Lθ(x, y, t)− Lϕ(x, t). (1)

We refer to the above minimax game for algorithmic randomization in replace of costly randomized
controlled trials. Such algorithmic randomization based on neural representations using propensity
score creates subgroups of different treated units as if they had been randomly assigned to different
treatments such that conditional independence T |= X | π(T |X) is enforced across strata and continu-
ation, which approximates a random block experiment to the observed covariates (Imbens & Rubin,
2015).

Below we introduce two variants of Lϕ(x, t):
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Table 5: Performance of individualized treatment-dose response estimation on the TCGA (D)
dataset with different numbers of treatments. We report AMSE and standard deviation over 30 repeats.
The selection bias on treatment and dosage are both set to be 2.0.

METHODS
#TREATMENT=1 #TREATMENT=2 #TREATMENT=3

IN-SAMPLE OUT-SAMPLE IN-SAMPLE OUT-SAMPLE IN-SAMPLE OUT-SAMPLE

SCIGAN 5.6966 ± 0.0000 5.6546 ± 0.0000 2.0924 ± 0.0000 2.3067 ± 0.0000 4.3183 ± 0.0000 4.6231 ± 0.0000
TARNET(D) 0.7888 ± 0.0609 0.7908 ± 0.0606 1.4207 ± 0.0784 1.4206 ± 0.0777 3.1982 ± 0.5847 3.1920 ± 0.5746
DRNET(D) 0.8034 ± 0.0469 0.8052 ± 0.0466 1.3739 ± 0.0858 1.3738 ± 0.0853 2.8632 ± 0.4227 2.8558 ± 0.4143
VCNET(D) 0.1566 ± 0.0303 0.1579 ± 0.0301 0.2919 ± 0.0743 0.2918 ± 0.0737 0.6459 ± 0.1387 0.6493 ± 0.1397
TRANSTEE 0.0573 ± 0.0361 0.0585 ± 0.0358 0.0550 ± 0.0137 0.0556 ± 0.0129 0.2803 ± 0.0658 0.2768 ± 0.0639

TRANSTEE + TR 0.0495 ± 0.0176 0.0509 ± 0.0180 0.0663 ± 0.0268 0.0671 ± 0.0268 0.2618 ± 0.0737 0.2577 ± 0.0726
TRANSTEE + PTR 0.0343 ± 0.0096 0.0355 ± 0.0094 0.0679 ± 0.0252 0.0686 ± 0.0252 0.2645 ± 0.0702 0.2597 ± 0.0675

Treatment Regularization (TR) is a standard MSE over the treatment space given the predicted
treatment t̂i and the ground truth ti

LTR
ϕ (x, t) =

n∑
i=1

(
ti − πϕ(t̂i|xi)

)2
. (2)

TR is explicitly matching the mean of the propensity score to that of the treatment. In an ideal
case, the π(t|x) should be uniformly distributed given different x. However, the above treatment
regularization procedure only provides matching for the mean of the propensity score, which can be
prone to bad equilibriums and treatment misalignment (Wang et al., 2020). Thus, we introduce the
distribution of t and model the uncertainty rather than predicting a scalar t:

Probabilistic Treatment Regularization (PTR) is a probabilistic version of TR which models the
mean µ (with a slight abuse of notation) and variance σ2 of estimated treatment t̂i

LPTR
ϕ =

n∑
i=1

[
(ti − πϕ(µ|xi))2

2πϕ(σ2|xi)
+

1

2
log πϕ(σ

2|xi)

]
. (3)

The PTR matches the whole distribution, i.e. both the mean and variance, of the propensity score to
that of the treatment, which can be preferable in certain cases.

Equilibrium of the Minimax Game. We analyze that TR and PTR can align the first and second
moment of continuous treatments at equilibrium respectively, and thus promote the independence
between treatment t and covariate x. To be clear, we denote µθ(x, t) := wy ◦ (Φx(x),Φt(t)) and
πϕ(t|x) := wt ◦ Φx(x), which decompose the predictions into featurizers Φt : T → ZT ,Φx : X →
ZX and predictors wy : ZX × ZT → Y, wt : ZX → T . For example, Φx(x) and Φt(t) can be the
linear embedding layer and attention modules in our implementation. The propensity is computed on
Φx(x), an intermediate feature representation of x. Similarly, µθ(x, t) is computed from Φt(t) and
Φx(x). For the ease of our analysis below, we assume the predictors wt, wx are fixed.

Proposition 1. (The optimum of propensity score model) In the equilibrium of the game, assuming
the outcome prediction model is fixed, then the optimum of TR is achieved when E[Φt(t)|Φx(x)] =
E[Φt(t)],∀ Φx(x) via matching the mean of propensity score π(Φt(t)|Φx(x)) and the marginal
distribution p(Φx(x)) and the optimum discriminator of PTR is achieved via matching both the
mean and variance such that E[Φt(t)|Φx(x)] = E[Φt(t)],V[Φt(t)|Φx(x)] = V[Φt(t)], ∀ Φx(x).

Proof. The proof concerns the analysis of the Equilibrium of the Minimax Game. It is a special case
of (Wang et al., 2020) when there are only two players, i.e. µθ and πϕ. We represent treatments
explicitly and interpret the connections with combating selection biases. Given the outcome regression
model µθ fixed, the optimal propensity score model π∗ is

π∗ = argmin
π

Lϕ(Φx(x),Φt(t))

= argmin
π

E(Φx(x),Φt(t))∼p(Φx(x),Φt(t))

(
Φt(t)− πθ

(
Φt(t̂)|x

))2
= argmin

π
EΦx(x)∼p(Φx(x))EΦt(t)∼p(Φt(t)|Φx(x))

(
Φt(t)− πθ

(
Φt(t̂)|x

))2
.

(4)
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The inner minimum is achieved at π∗
θ

(
Φt(t̂)|x

)
= EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)] given the following

quadratic form:

E(Φx(x),Φt(t))∼p(Φx(x),Φt(t))

(
Φt(t)− πθ

(
Φt(t̂)|Φx(x)

))2
=

EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)
2]− 2πθ

(
Φt(t̂)|x

)
EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)] + πθ

(
Φt(t̂)|x

)2
.

(5)

We assume the above optimum condition of the propensity score model always holds with respect to
the outcome regression model during training, then the minimax game in Eq. 1 can be converted to
maximizing the inner loop:

max
ϕ

−Lϕ(x,Φt(t)) = Lϕ∗(Φx(x),Φt(t))

= E(Φx(x),Φt(t))∼p(Φx(x),Φt(t))

(
Φt(t)− EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)]

)2
= EΦx(x)∼p(Φx(x))EΦt(t)∼p(Φt(t)|Φx(x))∼p(Φx(x),Φt(t))

(
Φt(t)− EΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)]

)2
= EΦx(x)∼p(Φx(x))VΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)] = EΦx(x)V[Φt(t)|Φx(x)].

(6)
Next we show the difference between Eq. 6 and the variance of the treatment V[Φt(t)]:

EΦx(x)∼p(Φx(x))VΦt(t)∼p(Φt(t)|Φx(x))[Φt(t)]− V[Φt(t)]

=EΦx(x)∼p(Φx(x))[E[Φt(t)
2|Φx(x)]− E[Φt(t)|Φx(x)]2]− (E[Φt(t)

2]− E[Φt(t)]
2)

=E[Φt(t)]
2 − EΦx(x)[E[Φt(t)|Φx(x)]2] = EΦx(x)[E[Φt(t)|Φx(x)]]2 − EΦx(x)[E[Φt(t)|Φx(x)]2]

≤EΦx(x)[E[Φt(t)|Φx(x)]2]− EΦx(x)[E[Φt(t)|Φx(x)]2] = 0
(7)

where the last inequality is by Jensen’s inequality and the convexity of Φt(t)
2. The optimum is

achieved when E[Φt(t)|Φx(x)] is constant w.r.t Φx(x) and so E[Φt(t)|Φx(x)] = E[Φt(t)], ∀Φx(x).

The proof process for PTR is similar but includes the derivation of variance matching.

π∗ = argmin
π

Lϕ(Φx(x),Φt(t))

= argmin
π

E(Φx(x),Φt(t))∼p(Φx(x),Φt(t))

(
(E[Φt(t)|Φx(x)]− Φt(t))

2

2V[Φt(t)|Φx(x)]
+

logV[Φt(t)|Φx(x)]
2

)
= argmin

π
EΦx(x)EΦt(t)

(
(E[Φt(t)|Φx(x)]− Φt(t))

2

2V[Φt(t)|Φx(x)]
+

logV[Φt(t)|Φx(x)]
2

)
,

(8)

where EΦx(x) and EΦt(t) denote EΦx(x)∼p(Φx(x)) and EΦt(t)∼p(Φt(t)|Φx(x)) respectively for brevity.
The first term can be reduce to a constant given the definition of variance:

EΦx(x)∼p(Φx(x))EΦt(t)∼p(Φt(t)|Φx(x))

(
(E[Φt(t)|x]− Φt(t))

2

2V[Φt(t)|x]

)
= EΦx(x)∼p(Φx(x))

(
V[Φt(t)|x]
2V[Φt(t)|x]

)
=

1

2
.

(9)

The second term can be upper bounded by using Jensen’s inequality:

EΦx(x)∼p(Φx(x))EΦt(t)∼p(Φt(t)|Φx(x))

(
logV[Φt(t)|x]

2

)
≤ 1

2
log
(
EΦx(x)∼p(Φx(x))[V[Φt(t)|Φx(x)]]

)
≤ 1

2
log (V[Φt(t)]) .

(10)

Combining Eq. 9 and Eq. 10, the optimum 1
2 + 1

2 log (V[Φt(t)]) is achieved when E[Φt(t)|Φx(x)],
V[Φt(t)|Φx(x)] is constant w.r.t Φx(x) and so E[Φt(t)|Φx(x)] = E[Φt(t)],V[Φt(t)|Φx(x)] =
V[Φt(t)], ∀Φx(x) according to the equality conditions of the first and second inequality in Eq.
10, respectively.
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D ANALYSIS OF THE FAILURE CASES OVER TREATMENT DISTRIBUTION
SHIFTS

As shown in Figure 3 (a,c), with the shifts of the treatment interval, the estimation performance of
DRNet and TARNet decline significantly. VCNet achieves ∞ estimation error when h = 5 partly
because its hand-craft projection matrix can only process values near [0, 1]. Another problem brought
by this assumption is the extrapolation dilemma, which can be seen in Figure 3(b). When training on
t ∈ [0, 1.75], these discrete approximation methods cannot transfer to new distribution t ∈ (1.75, 2.0].
These unseen treatments are rounded down to the nearest neighbors t′ in T and be seemed the same
as t′. We conduct ablation about the treatment embedding as in Table 6 in Appendix. Such a simple
fix (VCNet+Embeddings) removes the demand on a fixed interval constraint to treatments and attains
superior performance on both interpolation and extrapolation settings. The result clearly shows the
pitfalls of hand-crafted feature mapping for TEE. We highlight that it is neglected by most existing
works (Schwab et al., 2020; Nie et al., 2021; Shi et al., 2019; Guo et al., 2021). Extrapolation is
still a challenging open problem. We can see that no existing work does well when training and
test treatment intervals have big gaps. However, the empirical evidence validates the improved
effectiveness of TransTEE that uses learnable embeddings to map continuous treatments to hidden
representations.

Below we show the assumption that the value of treatments or dosages are in a fixed interval [l, h] is
sub-optimal and thus these methods get poor extrapolation results. For simplicity, we only consider
a data sample has only one continuous treatment t and the result is similar for continuous dosage.

Proposition 2. Given a data sample (x, t, y), where x ∈ Rd, t ∈ [l, h], y ∈ R. Assume µ is
a L-Lipschitz function over (x, t) ∈ Rd+1, namely |µ(u) − µ(v)| ≤ L∥u − v∥. Partitioning
[l, h] uniformly into δ sub-interval, and then get T =

[
l + h−l

δ ∗ 0, l + h−l
δ ∗ 1, ..., l + h−l

δ ∗ δ
]
.

Previous studies most rounding down a treatment t to its nearest value in T (either l+
⌊

tδ
h−l

⌋
h−l
δ or

l+
⌈

tδ
h−l

⌉
h−l
δ ) and use |T | branches to approximate the entire continuum [l, h]. The approximation

error can be bounded by

max

{
µ

(
x,

⌊
tδ

h− l

⌋
h− l

δ

)
− µ(x, t), µ

(
x,

⌈
tδ

h− l

⌉
h− l

δ

)
− µ(x, t)

}
≤ max

{
L

(∣∣∣∣⌊ tδ

h− l

⌋
h− l

δ
− t

∣∣∣∣) , L

(∣∣∣∣⌈ tδ

h− l

⌉
h− l

δ
− t

∣∣∣∣)}
≤ L

h− l

δ

(11)

The bound is affected by both the number of branches δ and treatment interval [l, h]. However, as
far as we know, most previous works ignore the impacts of the treatment interval [l, h] and adopt a
simple but much stronger assumption that treatments are all in the interval [0, 1] Nie et al. (2021) or a
fixed interval Schwab et al. (2020). These observations well manifest the motivation of our general
framework for TEE without the need for treatment-specific architectural designs.

Table 6: Experimental results comparing NN-based methods on simulated datasets. Numbers
reported are AMSE of test data based on 100 repeats, and numbers after ± are the estimated standard
deviation of the average value. For Extrapolation (h = 2), models are trained with t ∈ [0, 1.75]
and tested in t ∈ [0, 2]. For Extrapolation (h = 5), models are trained with t ∈ [0, 4] and tested in
t ∈ [0, 5]

METHODS VANILLA VANILLA (h = 5) EXTRAPOLATION (h = 2) EXTRAPOLATION (h = 5)

TARNET (SHALIT ET AL., 2017) 0.045 ± 0.0009 0.3864 ± 0.04335 0.0984 ± 0.02315 0.3647 ± 0.03626
DRNET (SCHWAB ET AL., 2020) 0.042 ± 0.0009 0.3871 ± 0.03851 0.0885 ± 0.00094 0.3647 ± 0.03625

VCNET(NIE ET AL., 2021) 0.018 ± 0.0010 NAN 0.0669 ± 0.05227 NAN
VCNET+EMBEDDINGS 0.013 ± 0.00465 0.0167 ± 0.01150 0.0118 ± 0.00482 0.0178 ± 0.00887
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E ADDITIONAL EXPERIMENTAL SETUPS

All the assets (i.e., datasets and the codes for baselines) we use include a MIT license containing a
copyright notice and this permission notice shall be included in all copies or substantial portions of
the software. We conduct all the experiments on a machine with i7-8700K CPU, 32G RAM, and four
Nvidia GeForce RTX2080Ti (10GB) GPU cards.

E.1 DETAIL EVALUATION METRICS.

AMSET =
1

N

N∑
i=1

∫
T

[
f̂(xi, t)− f(xi, t)

]
π(t)dt (12)

UPEHE@K =
1

N

N∑
i=1

[
1

C2
K

∑
t,t′

[
f̂(xi, t, t

′)− f(xn, t, t
′)
]2 ]

WPEHE@K =
1

N

N∑
i=1

[
1

C2
K

∑
t,t′

[
f̂(xi, t, t

′)− f(xi, t, t
′)
]2

p(t|x)p(t′|x)
]
,

(13)

AMSED =
1

NT

N∑
i=1

T∑
t=1

∫
D

[
f̂(xi, t, s)− f(xn, t, s)

]
π(s)dt (14)

E.2 NETWORK STRUCTURE AND PARAMETER SETTING

Table. 7 and Table. 8 show the detail of TransTEE architecture and hyper-parameters. For all the
synthetic and semi-synthetic datasets, we tune parameters based on 20 additional runs. In each
run, we simulate data, randomly split it into training and testing, and use AMSE on testing data for
evaluation. For fair comparisons, in all experiments, the model size of TransTEE is less than or
similar to baselines.

Table 7: Architecture details of TransTEE, where p is the number of covariates.
Module Covariates Treatment

Embedding Layer [Linear] [Linear]
Output Size Bsz × p×#Emb bsz × 1×# Emb

Self-Attention

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

Output Size Bsz × p×#Emb Bsz × 1×#Emb

Cross-Attention

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

Output Size Bsz × 1×#Emb
Projection Layer [Linear]

Output Size Bsz × 1

E.3 SIMULATION DETAILS.

Synthetic Dataset (Nie et al., 2021). The synthetic dataset contains 500 training points and 200
testing points. Data is generated as follows: xj ∼ Unif[0, 1], where xj is the j-th dimension of
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Table 8: Hyper-parameters on different datasets. Bsz indicates the batch size, # Emb indicates the
embedding dimension, Lr. S indicates the scheduler of the learning rate (Cos is the cosine annealing
Learning rate).

Dataset Bsz # Emb # Layers # Heads Lr Lr. S

Simu 500 10 1 2 0.01 Cos
IHDP 128 10 1 2 0.0005 Cos
News 256 10 1 2 0.01 Cos
SW 500 16 1 2 0.01 None

TCGA 1000 48 3 4 0.01 None

x ∈ R6, and

t̃|x =
10 sin (max(x1, x2, x3)) + max(x3, x4, x5)

3

1 + (x1 + x5)2
+ sin(0.5x3) (1 + exp(x4 − 0.5x3))+

x2
3 + 2 sin(x4) + 2x5 − 6.5 +N (0, 0.25)

y|x, t = cos(2π(t− 0.5))

(
t2 +

4max(x1, x6)
3

1 + 2x2
3

)
+N (0, 0.25)

where t = (1 + exp(−t̃))−1.

for treatment in [0, h], we revised it to t = (1 + exp−t̃)−1 ∗ h,

IHDP (Hill, 2011) is a semi-synthetic dataset containing 25 covariates, 747 observations and binary
treatments. For treatments in [0, 1], we follow VCNet (Nie et al., 2021) and generate treatments and
responses by:

t̃|x =
2x1

1 + x2
+

2max(x3, x5, x6)

0.2 + min(x3, x5, x6)
+ 2 tanh

(
5

∑
i∈Sdis,2

(xi − c2)

|Sdis,2|
− 4 +N (0, 0.25)

)

y|x, t = sin(3πt)

1.2− t

(
tanh

(
5

∑
i∈Sdis,1

(xi − c1)

|Sdis,1|

)
+

exp(0.2(x1 − x6))

0.5 + 5min(x2, x3, x5)

)
+N (0, 0.25),

where t = (1 + exp(−t̃))−1, Scon = {1, 2, 3, 5, 6} is the index set of continuous features,
Sdis,1 = {4, 7, 8, 9, 10, 11, 12, 13, 14, 15}, Sdis,2 = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25} and

Sdis,1

⋃
Sdis,2 = [25] − Scon. Here c1 = E

[∑
i∈Sdis,1

xi

|Sdis,1|

]
,c2 = E

[∑
i∈Sdis,2

xi

|Sdis,2|

]
. To allow

comparison on various treatment intervals t ∈ [0, h], treatments and responses are generated by:

t = (1 + exp(−t̃))−1 ∗ h

y|x, t = sin(3πt/h)

1.2− t/h

(
tanh

(
5

∑
i∈Sdis,1

(xi − c1)

|Sdis,1|

)
+

exp(0.2(x1 − x6))

0.5 + 5min(x2, x3, x5)

)
+N (0, 0.25),

where the orange part is the only different compared to the generalization of vanilla IHDP dataset
(h = 1). Note that Sdis,1 only impacts outcome that serves to be noisy covariates; Sdis,2 contains pre-
treatment covariates that only impact treatments, which also serves to be instrumental variables. This
allows us to observe the improvement using TransTEE when noisy covariates exist. Following (Hill,
2011) covariates are standardized with mean 0 and standard deviation 1.

News. The News dataset consists of 3000 randomly sampled news items from the NY Times
corpus (Newman, 2008) and was originally introduced as a benchmark in the binary treatment
setting. We generate the treatment and outcome in a similar way as (Nie et al., 2021) but with a
dynamic range or treatment intervals [0, h]. We first generate v′1, v

′
2, v

′
3 ∼ N (0, 1) and then set

vi = v′i/∥v′i∥2; i ∈ {1, 2, 3}. Given x, we generate t from Beta
(
2,
∣∣∣ v⊤

3 x

2v⊤
2 x

∣∣∣) ∗ h.And we generate the
outcome by

y′|x, t = exp

(
v⊤2 x

v⊤3 x
− 0.3

)
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(b) Performance with different treatment selection bias.

Figure 7: Performance of five methods on TCGA (D) dataset with varying bias levels.

y|x, t = 2(max(−2,min(2, y′)) + 20v⊤1 x) ∗
(
4(t− 0.5)2 + sin

(π
2
t
))

+N (0, 0.5)

TCGA (D) (Bica et al., 2020b) We obtain covariates x from a real dataset The Cancer Genomic
Atlas (TCGA) and consider 3 treatments, where each treatment is accompanied by one dosage
and a set of parameters, vt1, v

t
2, v

t
3. For each run, we randomly sample a vector, ut

i ∼ N (0, 1)
and then set vti = ut

i/∥ut
i∥ where ∥ · ∥ is Euclidean norm. The shape of the response curve

for each treatment, ft(x, s) is given in Table 9. We add ϵ ∼ N (0, 0.2) noise to the outcomes.
Interventions are assigned by sampling a dosage, dt, for each treatment from a beta distribution,
dt|x ∼ Beta(α, βt). α ≥ 1 controls the dosage selection bias (α = 1 gives the uniform distribution).
βt =

α−1
s∗t

+ 2 − α, where s∗t is the optimal dosage2 for treatment t. We then assign a treatment
according to tf |x ∼ Categorical(Softmax(κf(x, st))) where increasing κ increases selection bias,
and κ = 0 leads to random assignments. The factual intervention is given by (tf , stf ). Unless
otherwise specified, we set κ = 2 and α = 2.
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(a) Estimated ADRF for t1.
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(b) Estimated ADRF for t2.
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(c) Estimated ADRF for t3.

Figure 8: Estimated ADRF on the test set from a typical run of DRNet (D), TARNet (D), VCNet
(D), and SCIGAN. All of these methods are well optimized. TransTEE can well estimate the dosage-
response curve for all treatments.

For structural treatments, we first define the Baseline effect (Bica et al., 2020b). For each run of the
experiment, we randomly sample a vector u0 ∼ Unif[0, 1], and set v0 = u0/∥uo∥, where ∥ · ∥ is the
Euclidean norm. The baseline effect is defined as

µ0(x) = v⊤0 x

2For symmetry, if s∗t = 0, we sample s∗t from 1−Beta(α, βt) where βt is set as though s∗t = 1.
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Table 9: Dose response curves used to generate semi-synthetic outcomes for patient features x.
In the experiments, we set C = 10. vt1, v

t
2, v

t
3 are the parameters associated with each treatment t.

Treatment Dose-Response Optimal dosage

1 f1(x, s) = C
(
(v11)

⊤x+ 12(v13)
⊤xs− 12(v13)

⊤xs2
)

s∗1 =
(v1

2)
⊤x

2(v1
3)

⊤x

2 f2(x, s) = C
(
(v21)

⊤x+ sin
(
π(

v2⊤
2 x

v2⊤
3 x

s)
))

s∗2 =
(v2

3)
⊤x

2(v2
2)

⊤x

3 f3(x, s) = C
(
(v31)

⊤x+ 12s(s− b)2,where b = 0.75
(v3

2)
⊤x

(v3
3)

⊤x

)
b
3 if b ≥ 0.75 else 1

Small-World (Kaddour et al., 2021). 20-dimensional multivariate covariates are uniformly sampled
according to xi ∼ Unif[−1, 1]. There are 1, 000 units in in-sample dataset, and 500 in the out-sample
one. Graph interventions For each graph intervention, a number of nodes between 10 and 120 are
uniformly sampled, the number of neighbors for each node is between 3 and 8, and the probability of
rewiring each edge is between 0.1 and 1. Watts–Strogatz small-world graphs are repeatedly generated
until a connected one is get. Each vertex has one feature, i.e. its degree centrality. A graph’s node
connectivity is denoted as ν(G) and its average shortest path length as ℓ(G). Similar for the baseline
effect, two randomly sampled vectors vν , vℓ are generated. Then, given an assigned graph treatment
G and a covariate vector x, the outcome is generated by

y = 100µ0(x) + 0.2ν(G)2 · v⊤ν x+ ℓ(G) · ν⊤ℓ x+ ϵ, ϵ ∼ N (0, 1)

TCGA (S) (Kaddour et al., 2021) We use 9, 659 gene expression measurements of cancer patients
for covariates. The in-sample and datasets consist of 5, 000 units and the out-sample one of 4, 659
units, respectively. Each unit is a covariate vector x ∈ R4000 and these units are split randomly into
in- and out-sample datasets in each run randomly. For each covariate vector x, its 8-dimensional
PCA components xPCA ∈ R8 is computed. Graph interventions We randomly sample 10, 000
molecules from the Quantum Machine 9 (QM9) dataset (Ramakrishnan et al., 2014) (with 133k
molecules in total) in each run. We create a relational graph, where each node corresponds to
an atom and consists of 78 atom features. We label each edge corresponding to the chemical
bond types, e.g., single, double, triple, and aromatic bonds. We collect 8 molecule properties
mu, alpha, homo, lumo, gap, r2, zpve, u0 in a vector z ∈ R8, which is denoted as the the assigned
molecule treatment. Finally, we generate outcomes by

y = 10µ0(x) + 0.01z⊤xPCA + ϵ, ϵ ∼ N (0, 1)

Enriched Equity Evaluation Corpus (EEEC) (Feder et al., 2021) consists of 33, 738 English
sentences and the label of each sentence is the mood state it conveys. The task is also known as
Profile of Mood States (POMS). Each sentence in the dataset is created using one of 42 templates,
with placeholders for a person’s name and the emotion, e.g., “<Person> made me feel <emotional
state word>.”. A list of common names that are tagged as male or female, and as African-American
or European will be used to fill the placeholder (<Person>). One of four possible mood states:
Anger, Sadness, Fear and Joy is used to fill the emotion placeholder. Hence, EEEC has two kinds of
counterfactual examples, which are Gender and Race. For the Gender case, it changes the name and
the Gender pronouns in the example and switches them, such that for the original example: "It was
totally unexpected, but Roger made me feel pessimistic." it will have the counterfactual example:“It
was totally unexpected, but Amanda made me feel pessimistic.” For the Race concept, it creates
counterfactuals such that for the original example “Josh made me feel uneasiness for the first time
ever in my life.”, the counterfactual example is: “Darnell made me feel uneasiness for the first time
ever in my life.”. For each counterfactual example, the person’s name is taken at random from the
pre-existing list corresponding to its type.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 COMPARISION BETWEEN TRANSTEE AND ANU (XU ET AL., 2022)

We implement ANU and evaluate it in the same settings and show that is inferior compared to the
proposed TransTEE as follows. Specifically, we compare the attentive neural uplift model (ANU) (Xu
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Figure 9: Ablation study of the balanced weight for treatment regularization on the IHDP dataset.

Table 10: Comparision between TransTEE and ANU (Xu et al., 2022) on the IHDP dataset.
Methods Vanilla (Binary) Vanilla (h = 1) Extrapolation (h = 2)
DRNet 0.3543 ± 0.6062 2.1549 ± 1.04483 11.071 ± 0.9938
VCNet 0.2098 ± 0.18236 0.7800 ± 0.6148 NAN

ANU (Xu et al., 2022) 0.1482 ± 0.17362 0.2147± 0.32451 0.4244 ± 0.19832
TransTEE 0.0983 ± 0.15384 0.1151 ± 0.1028 0.2745 ± 0.1497

et al., 2022) with ours in the following two settings. (1) IHDP dataset in Table 10 in the main
manuscript. We adjust the layers of ANU such that the total parameters of ANU and TransTEE are
similar. The result is shown in the following table. With the usage of treatment embeddings, ANU is
shown to be more robust than VCNet and DRNet when a treatment shift occurs. However, in both the
binary treatment setting and continuous treatment settings, TransTEE performs better than ANU.

(2) We further evaluate the real-world utility of ANU (Xu et al., 2022) and the experimental setting
is detailed in Section 5.4 in the main paper. Covariates here are long sentences. Thanks to the use
of self-attention modules, TransTEE can achieve better estimation results compared to baselines
(Table 11). For AHU, no self-attention layer is applied, and the final estimation is inaccurate, which
verifies the superiority of the proposed framework.

F.2 ADDITIONAL NUMERICAL RESULTS AND ABLATION STUDIES

Choice of the balancing weight for treatment regularization. To understand the effect of propensity
score modeling, we conduct an ablation study on the balancing weights of both TR and PTR. Figure 9
presents the results of the experiments on the IHDP dataset. The main observation is that both
TR and PTR with a proper regularization strength consistently improve estimation compared to
TransTEE without regularization. The best performers are achieved when λ is 0.5 for both two
methods, which shows that the best balancing parameter (0.5 on our experiments.) for these two
regularization terms should be searched carefully. Besides, training both the treatment predictor and
the feature encoder simultaneously in a zero-sum game is difficult and sometimes unstable (shown in
Figure 9 right)

Robustness to noisy covariates. We manipulate Sdis,1, Sdis,2 to generate datasets with different
noisy covariates, e.g., when the number of covariates that only influence the outcome is 6,

Table 11: Comparision between TransTEE and ANU (Xu et al., 2022) on the IHDP dataset.
Correlation/Representation Based Baselines Treatment Effect Estimators

TC ATEGT TReATE CONEXP INLP CausalBERT TarNet DRNet ANU TransTEE
Gender 0.086 0.125 0.02 0.313 0.179 0.0067 0.0088 0.184 0.013
Race 0.014 0.046 0.08 0.591 0.213 0.005 0.006 0.093 0.0174
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(b) TransTEE+TR.
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(c) TransTEE+PTR

Figure 10: The distribution of learned weights for the cross-attention module on the IHDP dataset of
different models.
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(a) h = 1 during training
and testing.

0.0 0.4 0.8 1.2 1.6 2.0
Treatment

5.0

2.5

0.0

2.5

5.0

7.5

10.0

R
es

po
ns

e

Truth
Tarnet
Drnet
Vcnet
TransTEE

(b) h = 2, l = 0.1 during
traning and h = 2, l = 0
during testing (extrapola-
tion).

0 1 2 3 4 5
Treatment

5.0

2.5

0.0

2.5

5.0

7.5

10.0

R
es

po
ns

e

Truth
Tarnet
Drnet
Vcnet
TransTEE

(c) h = 5 during training
and testing.
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Figure 11: Estimated ADRF on test set from a typical run of TarNet (Shalit et al., 2017), DR-
Net (Schwab et al., 2020), VCNet (Nie et al., 2021) and ours on IHDP dataset. All of these methods
are well optimized. (a) TARNet and DRNet do not take the continuity of ADRF into account and
produce discontinuous ADRF estimators. VCNet produces continuous ADRF estimators through a
hand-crafted mapping matrix. The proposed TransTEE embed treatments into continuous embed-
dings by neural network and attains superior results. (b,d) When training with 0.1 ≤ t ≤ 2.0 and
0.25 ≤ t ≤ 5.0. TARNet and DRNet cannot extrapolate to distributions with 0 < t ≤ 2.0 and
0 ≤ t ≤ 5.0. (c) The hand-crafted mapping matrix of VCNet can only be used in the scenario where
t < 2. Otherwise, VCNet cannot converge and incur an infinite loss. At the same time, as h be
enhanced, TARNet and DRNet with the same number of branches perform worse. TransTEE needs
not to know h in advance and extrapolates well.

Sdis,1 = {4}, and Sdis,2 = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25},
when the number of covariates that influence the outcome is 24, Sdis,1 =
{4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, }, and Sdis,2 = {25}. Fig-
ure Figure 4(b) shows that, as the number of covariates that only influence the outcome increases,
both TARNet and DRNet become better estimators, however, VCNet performs worse and even
inferior to TARNet and DRNet when the number is large than 16. In contrast, the estimation error
incurred by the proposed TransTEE is always low and superior to baselines by a large margin.

Comparison of MLE or adversarial propensity score modeling on the propensity score. Seeing
results in Table 2, additionally combine TransTEE with maximum likelihood training of π(t|x) does
provide some performance gains. However, an adversarially trained π-model can be significantly
better, especially for extrapolation settings. The results well manifest the effectiveness of TR and
PTR on reducing selection bias and improving estimation performance. In fact, approaches like
TMLE are not robust if the initial estimator is poor Shi et al. (2019).

Training dynamics comparison of different regularization terms. Here we compare four reg-
ularization terms, which are TransTEE with no regularization, TransTEE+TR, TransTEE+PTR,
and TransTEE+MTL. TransTEE+MTL is a simple Multi-Task Learning strategy, which uses
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(a) Outcome regression error.
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(b) Treatment regression error.
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(c) MSE in the test set.

Figure 12: Training dynamics of TransTEE on IHDP dataset with various regularization terms,
where the total training iteration is 1, 500 and (c) is evaluated on the test set per 50 training iterations.
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and testing.
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(b) h = 1.9, l = 0 during
traning and h = 2, l = 0
during testing (extrapola-
tion).
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(c) h = 5 during training
and testing.
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Figure 13: Estimated ADRF on the test set from a typical run of TarNet (Shalit et al., 2017),
DRNet (Schwab et al., 2020), VCNet (Nie et al., 2021) and ours on News dataset. All of these
methods are well optimized. Suppose t ∈ [l, h]. (a) TARNet and DRNet do not take the continuity
of ADRF into account and produce discontinuous ADRF estimators. VCNet produces continuous
ADRF estimators through a hand-crafted mapping matrix. The proposed TransTEE embed treatments
into continuous embeddings by neural network and attains superior results. (b,d) When training
with 0 ≤ t ≤ 1.9 and 0 ≤ t ≤ 4.0. TARNet and DRNet cannot extrapolate to distributions with
0 < t ≤ 2.0 and 0 ≤ t ≤ 5.0. (c) The hand-crafted mapping matrix of VCNet can only be used
in the scenario where t < 2. Otherwise, VCNet cannot converge and incur an infinite loss. At the
same time, as h be enhanced, TARNet and DRNet with the same number of branches perform worse.
TransTEE needs not know h in advance and extrapolates well.

Lθ(x, y, t) +LTR
ϕ (x, t) during training without an adversarial game. As shown in Figure 12, without

adversarial training, TransTEE+MTL quickly attains low treatment estimation error but further
oscillate and converge with a high error, and both the outcome regression error and MSE in the test
set remain high. In contrast, TR and PTR make TransTEE converge faster and attain lower test MSE.
Overall, PTR consistently works the best and its low treatment regression error shows that πϕ(t|x)
estimates an accurate propensity score.

F.3 SHOWCASE OF SENTENCES AND COUNTERFACTUAL COUNTERPARTS WITH THE
MAXIMAL/MINIMAL ATES.

Table 14 showcases the top-10 samples with the maximal/ minimal ATEs. Interestingly, we can see
most sentences with a large ATE have similar patterns, that is “< clause >, but/and < Person >
made me feel < Adj >”. Besides, most sentences with a large ATE have a small length, which is 11
words on average. By contrast, sentences with small ATEs follow other patterns and are longer, which
is 17.6 on average. Consider the effect of Race, Table 15 showcases the top-10 samples. Similarly,
there are also some dominant patterns that have pretty high or low ATEs and the average length of
sentences with high ATEs is smaller than sentences with low ATEs (12 vs 14.7). Besides, the position
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Table 12: Experimental results comparing neural network based methods on the News datasets.
Numbers reported are based on 20 repeats, and numbers after ± are the estimated standard deviation
of the average value. For Extrapolation (h = 2), models are trained with t ∈ [0, 1.9] and tested in
t ∈ [0, 2]. For For Extrapolation (h = 5), models are trained with t ∈ [0, 4.5] and tested in t ∈ [0, 5]

METHODS VANILLA VANILLA (h = 5) EXTRAPOLATION (h = 2) EXTRAPOLATION (h = 5)

TARNET 0.082 ± 0.019 0.956 ± 0.041 0.716 ± 0.038 0.847 ± 0.053
DRNET 0.083 ± 0.032 0.956 ± 0.041 0.703 ± 0.038 0.834 ± 0.053
VCNET 0.013 ± 0.005 NAN NAN NAN

TRANSTEE 0.010 ± 0.004 0.017 ± 0.008 0.024 ± 0.017 0.029 ± 0.019
TRANSTEE+TR 0.011 ± 0.003 0.016 ± 0.008 0.019 ± 0.008 0.028 ± 0.002

TRANSTEE+PTR 0.011 ± 0.004 0.014 ± 0.007 0.022 ± 0.008 0.029 ± 0.016

of perturbation words (the name from a specific race) for sentences with the maximal/minimal ATEs
is totally different, which is at the beginning for the former and at the middle for the latter. Namely,
TransTEE helps us mitigate spurious correlations that exist in model prediction, e.g., length of
sentences, the position of perturbation words, certain sentence patterns and is useful in mitigating
undesirable bias ingrained in the data. Besides, a well-optimized TransTEE is able to estimate the
effect of every sentence and is of great benefit for model interpretation and analysis especially under
high inference latency.

G REMARKS ON INTERPRETABILITY

It is fundamentally hard to evaluate the interpretability even for supervised learners, as the evaluation
crucially depends on specific models, tasks, and input spaces (Jacovi & Goldberg, 2020). TransTEE
provide an initial step to promote causal inference model interpretability. We can see from the
experimental results in fig. 4(a), 4(b), and fig. 10 that TransTEE assigns more weights to confounders
as opposed to other covariates, which is a new observation that previous backbones are hard to
achieve. We see that explaining causal inference models in this way - using the feature importance
scores for each covariate can be used for benchmarking treatment effect estimators (Crabbé et al.,
2022).
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Table 13: Error of CATE estimation for all methods, measured by WPEHE@2-10. Results are
averaged over 5 trials, ± denotes std error. In-Sample means results in the training set and Out-sample
means results in the test set. (The baseline results are reproduced using the official code of (Kaddour
et al., 2021) in a consistent experimental environment, which can be slightly different than the results
reported in (Kaddour et al., 2021))

Method SW TCGA (Bias=0.1) TCGA (Bias=0.3) TCGA (Bias=0.5)
In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample

WPEHE@2
Zero 41.72 ± 0.00 49.69 ± 0.00 13.93 ± 0.00 13.13 ± 0.00 13.93 ± 0.00 13.13 ± 0.00 13.93 ± 0.00 13.61 ± 0.00
GNN 17.38 ± 0.01 24.53 ± 0.01 10.90 ± 7.71 10.91 ± 7.71 13.58 ± 0.18 13.22 ± 0.18 12.86 ± 0.38 14.62 ± 0.91

GraphITE 17.37 ± 0.01 24.56 ± 0.02 15.04 ± 0.20 14.96 ± 0.30 13.49 ± 0.23 13.70 ± 0.52 12.41 ± 0.02 14.38 ± 0.30
SIN 15.79 ± 1.72 28.78 ± 4.54 46.47 ± 2.19 54.41 ± 7.81 7.93 ± 0.79 11.04 ± 1.52 10.31 ± 0.93 14.09 ± 2.14

TransTEE 14.74 ± 0.09 21.78 ± 1.07 9.07 ± 2.15 9.33 ± 2.13 7.54 ± 3.60 8.37 ± 3.64 9.52 ± 3.59 10.10 ± 3.79
WPEHE@3

Zero 40.75 ± 0.00 43.76 ± 0.00 13.93 ± 0.00 13.61 ± 0.00 13.93 ± 0.00 13.61 ± 0.00 13.61 ± 0.00 14.14 ± 0.00
GNN 18.26 ± 0.00 20.91 ± 0.01 10.75 ± 7.60 10.91 ± 7.72 13.63 ± 0.18 13.58 ± 0.19 12.92 ± 0.33 15.29 ± 1.04

GraphITE 18.27 ± 0.01 20.95 ± 0.02 14.88 ± 0.19 15.12 ± 0.29 13.49 ± 0.22 14.19 ± 0.43 12.56 ± 0.01 15.18 ± 0.31
SIN 18.15 ± 1.97 23.62 ± 3.93 45.29 ± 2.33 53.72 ± 8.09 7.94 ± 0.75 11.53 ± 1.59 10.89 ± 1.07 14.27 ± 1.92

TransTEE 15.30 ± 1.12 18.73 ± 2.09 9.07 ± 2.02 9.58 ± 2.04 7.58 ± 3.62 8.65 ± 3.75 9.64 ± 3.56 10.59 ± 3.88
WPEHE@4

Zero 45.74 ± 0.00 44.95 ± 0.00 14.14 ± 0.00 13.75 ± 0.00 14.14 ± 0.00 13.75 ± 0.00 13.75 ± 0.00 14.31 ± 0.00
GNN 22.09 ± 0.01 23.01 ± 0.01 10.87 ± 7.69 10.88 ± 7.69 13.87 ± 0.18 13.71 ± 0.19 13.13 ± 0.34 15.47 ± 1.05

GraphITE 22.12 ± 0.00 23.03 ± 0.02 15.05 ± 0.18 15.14 ± 0.28 13.64 ± 0.20 14.30 ± 0.35 12.77 ± 0.02 15.38 ± 0.30
SIN 22.14 ± 2.30 23.70 ± 3.67 44.72 ± 2.35 53.12 ± 8.09 7.99 ± 0.73 11.66 ± 1.59 11.38 ± 1.04 14.37 ± 1.83

TransTEE 18.99 ± 0.83 19.65 ± 1.97 9.09 ± 1.97 9.66 ± 2.01 7.67 ± 3.70 8.71 ± 3.78 9.78 ± 3.63 10.74 ± 3.91
WPEHE@5

Zero 49.19 ± 0.00 45.96 ± 0.00 14.31 ± 0.00 13.95 ± 0.00 14.31 ± 0.00 13.95 ± 0.00 13.95 ± 0.00 14.47 ± 0.00
GNN 24.18 ± 0.01 24.20 ± 0.01 10.99 ± 7.77 10.97 ± 7.76 13.98 ± 0.17 13.92 ± 0.18 13.31 ± 0.37 15.67 ± 1.05

GraphITE 24.22 ± 0.01 24.22 ± 0.03 15.24 ± 0.19 15.29 ± 0.28 13.68 ± 0.17 14.37 ± 0.37 12.95 ± 0.03 15.59 ± 0.30
SIN 25.48 ± 3.02 25.44 ± 3.50 44.55 ± 2.35 52.78 ± 8.04 8.10 ± 0.75 11.76 ± 1.59 11.75 ± 1.22 14.59 ± 1.84

TransTEE 20.16 ± 0.42 21.08 ± 1.78 9.17 ± 1.96 9.72 ± 2.00 7.76 ± 3.75 8.80 ± 3.82 9.91 ± 3.66 10.89 ± 3.94
WPEHE@6

Zero 49.95 ± 0.00 50.10 ± 0.00 14.47 ± 0.00 14.04 ± 0.00 14.47 ± 0.00 14.04 ± 0.00 14.04 ± 0.00 14.53 ± 0.00
GNN 25.13 ± 0.00 26.93 ± 0.01 11.11 ± 7.86 11.02 ± 7.79 14.07 ± 0.22 14.11 ± 0.18 13.45 ± 0.38 15.76 ± 1.04

GraphITE 25.17 ± 0.02 26.94 ± 0.02 15.40 ± 0.19 15.37 ± 0.28 13.74 ± 0.12 14.58 ± 0.38 13.09 ± 0.04 15.68 ± 0.29
SIN 27.07 ± 2.98 28.11 ± 3.51 44.48 ± 2.35 52.54 ± 7.99 8.22 ± 0.75 11.82 ± 1.58 11.97 ± 1.19 14.74 ± 1.86

TransTEE 21.32 ± 0.79 22.99 ± 1.43 9.23 ± 1.95 9.77 ± 1.99 7.80 ± 3.83 8.84 ± 3.89 10.01 ± 3.70 10.96 ± 3.95
WPEHE@7

Zero 55.40 ± 0.00 58.42 ± 0.00 14.53 ± 0.00 14.09 ± 0.00 14.53 ± 0.00 14.09 ± 0.00 14.53 ± 0.00 14.09 ± 0.00
GNN 29.30 ± 0.03 32.15 ± 0.03 11.16 ± 7.89 11.06 ± 7.82 14.12 ± 0.21 14.14 ± 0.18 13.51 ± 0.38 15.81 ± 1.03

GraphITE 29.34 ± 0.01 32.16 ± 0.01 15.47 ± 0.19 15.42 ± 0.28 13.97 ± 0.08 14.69 ± 0.40 13.16 ± 0.04 15.74 ± 0.29
SIN 31.07 ± 3.07 34.17 ± 3.41 44.45 ± 2.37 52.40 ± 7.98 8.28 ± 0.74 11.85 ± 1.58 12.11 ± 1.18 14.83 ± 1.87

TransTEE 24.71 ± 0.41 25.84 ± 0.73 9.27 ± 1.94 9.81 ± 1.99 7.82 ± 3.84 8.89 ± 3.89 10.06 ± 3.71 11.01 ± 3.95
WPEHE@8

Zero 57.99 ± 0.00 66.78 ± 0.00 14.61 ± 0.00 14.14 ± 0.00 14.60 ± 0.00 14.12 ± 0.00 14.61 ± 0.00 14.14 ± 0.00
GNN 31.41 ± 0.03 37.57 ± 0.05 11.22 ± 7.93 11.09 ± 7.85 14.19 ± 0.25 14.20 ± 0.18 13.58 ± 0.38 15.87 ± 1.02

GraphITE 31.45 ± 0.01 37.58 ± 0.00 15.55 ± 0.19 15.47 ± 0.28 14.30 ± 0.04 14.85 ± 0.43 13.23 ± 0.04 15.78 ± 0.28
SIN 33.58 ± 3.37 40.83 ± 3.64 44.48 ± 2.38 52.34 ± 7.97 8.33 ± 0.74 11.87 ± 1.57 12.22 ± 1.17 14.91 ± 1.89

TransTEE 26.48 ± 0.27 32.40 ± 0.85 9.31 ± 1.94 9.85 ± 1.99 7.88 ± 3.84 8.90 ± 3.90 10.10 ± 3.72 11.04 ± 3.96
WPEHE@9

Zero 62.52 ± 0.00 64.61 ± 0.00 14.66 ± 0.00 14.20 ± 0.00 14.61 ± 0.00 14.14 ± 0.00 14.66 ± 0.00 14.20 ± 0.00
GNN 34.13 ± 0.04 36.48 ± 0.04 11.26 ± 7.96 11.13 ± 7.87 14.21 ± 0.24 14.22 ± 0.17 13.63 ± 0.38 15.92 ± 1.01

GraphITE 34.17 ± 0.02 36.49 ± 0.01 15.60 ± 0.19 15.53 ± 0.28 14.35 ± 0.04 14.90 ± 0.43 13.28 ± 0.04 15.83 ± 0.28
SIN 36.79 ± 3.35 40.99 ± 5.14 44.47 ± 2.39 52.31 ± 7.97 8.36 ± 0.74 11.90 ± 1.57 12.40 ± 1.23 15.08 ± 1.80

TransTEE 28.84 ± 0.23 31.40 ± 0.71 9.34 ± 1.94 9.88 ± 2.00 7.90 ± 3.85 8.94 ± 3.91 10.14 ± 3.73 11.08 ± 3.97
WPEHE@10

Zero 62.65 ± 0.00 65.59 ± 0.00 14.69 ± 0.00 14.23 ± 0.00 14.69 ± 0.00 14.23 ± 0.00 14.69 ± 0.00 14.23 ± 0.00
GNN 34.26 ± 0.04 37.65 ± 0.04 11.28 ± 7.98 11.16 ± 7.89 14.29 ± 0.22 14.32 ± 0.18 13.66 ± 0.38 15.96 ± 1.01

GraphITE 34.30 ± 0.02 37.66 ± 0.00 15.64 ± 0.19 15.56 ± 0.28 14.38 ± 0.04 14.93 ± 0.43 13.31 ± 0.04 15.87 ± 0.27
SIN 37.08 ± 3.35 41.79 ± 5.21 44.49 ± 2.40 52.28 ± 7.96 8.39 ± 0.74 11.92 ± 1.58 12.49 ± 1.22 15.13 ± 1.81

TransTEE 28.89 ± 0.19 32.25 ± 0.69 9.36 ± 1.93 9.90 ± 2.00 7.94 ± 3.87 8.95 ± 3.92 10.16 ± 3.74 11.10 ± 3.98
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(a) SW In-Sample.
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(b) SW Out-Sample

20

40

W
PE

H
E

@
2

W
PE

H
E

@
3

W
PE

H
E

@
4

20

40

W
PE

H
E

@
5

W
PE

H
E

@
6

W
PE

H
E

@
7

0.0 0.2 0.4

20

40

W
PE

H
E

@
8

0.0 0.2 0.4

W
PE

H
E

@
9

0.0 0.2 0.4

W
PE

H
E

@
10

SIN GNN GraphITE Zero TransTEE

(c) TCGA In-Sample
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(d) TCGA Out-Sample

Figure 14: WPEHE@K over increasing bias strength κ and varying K ∈ {2, ..., 10} on the SW and
the TCGA dataset.
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(a) SW In-Sample.
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(b) SW Out-Sample
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(c) TCGA In-Sample
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(d) TCGA Out-Sample

Figure 15: UPEHE@K over increasing bias strength κ and varying K ∈ {2, ..., 10} on the SW and
the TCGA dataset.
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Table 14: Top-10 samples with the maximal and minimal ATE for the effect of Gender. Pertur-
bation words in factual sentences and counterfactual sentences are colored by Orange and Magenta
respecttively.

Sentences with The Maximal ATEs

Index Sentence ATE

1 It was totally unexpected, but Roger made me feel pessimistic. 0.6393
2 We went to the restaurant, and Alphonse made me feel frustration. 0.578
3 It was totally unexpected, but Amanda made me feel pessimistic. 0.5109
4 We went to the university, and my husband made me feel angst. 0.4538
5 It is far from over, but so far i made Jasmine feel frustration. 0.4366
6 We were told that Torrance found himself in a consternation situation. 0.4203
7 We went to the university, and my son made me feel revulsion. 0.399
8 To our amazement, the conversation with my aunt was dejected. 0.3952
9 To our amazement, the conversation with my aunt was dejected. 0.3952

Factual

10 We went to the supermarket, and Roger made me feel uneasiness. 0.3752

1 It was totally unexpected, but Amanda made me feel pessimistic. 0.6393
2 We went to the school, and Latisha made me feel frustration. 0.578
3 It was totally unexpected, but Roger made me feel pessimistic. 0.5109
4 We went to the market, and my daughter made me feel angst. 0.4538
5 It is far from over, but so far i made Jamel feel frustration. 0.4366
6 We were told that Tia found herself in a consternation situation. 0.4203
7 We went to the hairdresser, and my sister made me feel revulsion. 0.399
8 To our amazement, the conversation with my uncle was dejected. 0.3952
9 To our amazement, the conversation with my uncle was dejected. 0.3952

Counterfactual

10 We went to the university, and Amanda made me feel uneasiness. 0.3752
Sentences with The Minimal ATEs

Index Sentence ATE

1 To our amazement, the conversation with Jack was irritating,
no added information is given in this part. 0

2 To our surprise, my husband found himself in a vexing situation,
this is only here to confuse the classifier. 0

3 The conversation with Amanda was irritating, we could from simply looking,
this is only here to confuse the classifier. 0

4 this is only here to confuse the classifier, The situation makes Torrance feel irate,
but it does not matter now. 0

5 this is random noise, I made Alphonse feel irate, time and time again. 0

6 We were told that Roger found himself in a irritating situation,
no added information is given in this part. 0

7 Amanda made me feel irate whenever I came near,
no added information is given in this part. 0

8 While unsurprising, the conversation with my uncle was outrageous,
this is only here to confuse the classifier. 0

9 It is a mystery to me, but it seems i made Darnell feel irate. 0

Factual

10 The conversation with Melanie was irritating, you could feel it in the air,
no added information is given in this part. 0

1 To our amazement, the conversation with Kristin was irritating,
no added information is given in this part. 0

2 To our surprise, this girl found herself in a vexing situation,
this is only here to confuse the classifier. 0

3 The conversation with Frank was irritating, we could from simply looking,
this is only here to confuse the classifier. 0

4 this is only here to confuse the classifier, The situation makes Shaniqua feel irate,
but it does not matter now. 0

5 this is random noise, I made Nichelle feel irate, time and time again. 0

6 We were told that Melanie found herself in a irritating situation,
no added information is given in this part. 0

7 Justin made me feel irate whenever I came near,
no added information is given in this part. 0

8 While unsurprising, the conversation with my mother was outrageous,
this is only here to confuse the classifier. 0

9 It is a mystery to me, but it seems i made Lakisha feel irate. 0

Counterfactual

10 The conversation with Ryan was irritating, you could feel it in the air,
no added information is given in this part. 0
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Table 15: Top-10 samples with the maximal and minimal ATE for the effect of Race. Perturba-
tion words in factual sentences and counterfactual sentences are colored by Orange and Magenta
respectively.

Sentences with The Maximal ATEs

Index Sentence ATE

1 sometimes noise helps, not here, The conversation with Shereen was cry,
we could from simply looking. 0.9976

2 Darnell made me feel uneasiness for the first time ever in my life. 0.6853
3 Alonzo feels pity as he paces along to the shop. 0.6563
4 Adam feels despair as he paces along to the school. 0.6066
5 Ebony made me feel unease for the first time ever in my life. 0.592
6 Nancy made me feel dismay for the first time ever in my life. 0.548
7 Lamar made me feel revulsion for the first time ever in my life. 0.5074
8 Alonzo made me feel revulsion for the first time ever in my life. 0.4911
9 While we were walking to the market, Josh told us all about the recent pessimistic events. 0.4886

Factual

10 Alonzo made me feel unease for the first time ever in my life. 0.4877

1 sometimes noise helps, not here, The conversation with Katie was cry,
we could from simply looking. 0.9976

2 Josh made me feel uneasiness for the first time ever in my life. 0.6853
3 Josh feels pity as he paces along to the shop. 0.6563
4 Terrence feels despair as he paces along to the hairdresser. 0.6066
5 Ellen made me feel unease for the first time ever in my life. 0.592
6 Latisha made me feel dismay for the first time ever in my life. 0.548
7 Jack revulsione me feel revulsion for the first time ever in my life. 0.5074
8 Frank made me feel revulsion for the first time ever in my life. 0.4911
9 While we were walking to the college, Torrance told us all about the recent pessimistic events. 0.4886

Counterfactual

10 Roger made me feel unease for the first time ever in my life. 0.4877
Sentences with The Minimal ATEs

Index Sentence ATE

1 We went to the bookstore, and Alonzo made me feel fearful, really, there is no information here. 0
2 nothing here is relevant, I made Jack feel angry, time and time again. 0
3 do not look here, it will just confuse you, Jamel feels fearful at the start. 0
4 We went to the bookstore, and Justin made me feel irritated. 0
5 As he approaches the restaurant, Justin feels irritated. 0
6 Now that it is all over, Andrew feels irritated. 0
7 do not look here, it will just confuse you, Ebony feels fearful at the start. 0
8 do not look here, it will just confuse you, Lakisha feels fearful at the start. 0

9 There is still a long way to go, but the situation makes Lakisha feel irritated,
this is only here to confuse the classifier. 0

Factual

10 I have no idea how or why, but i made Alan feel irritated. 0

1 We went to the market, and Roger made me feel fearful, really, there is no information here. 0
2 nothing here is relevant, I made Jamel feel angry, time and time again. 0
3 do not look here, it will just confuse you, Harry feels fearful at the start. 0
4 We went to the church, and Lamar made me feel irritated. 0
5 As he approaches the shop, Malik feels irritated. 0
6 Now that it is all over, Torrance feels irritated. 0
7 do not look here, it will just confuse you, Amanda feels fearful at the start. 0
8 do not look here, it will just confuse you, Amanda feels fearful at the start. 0

9 There is still a long way to go, but the situation makes Katie feel irritated,
this is only here to confuse the classifier. 0

Counterfactual

10 I have no idea how or why, but i made Darnell feel irritated. 0
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