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Abstract
This paper introduces two novel criteria: one for
feature selection and another for feature elimina-
tion in the context of best subset selection, which
is a benchmark problem in statistics and machine
learning. From the perspective of optimization,
we revisit the classical selection and elimination
criteria in traditional best subset selection algo-
rithms, revealing that these classical criteria cap-
ture only partial variations of the objective func-
tion after the entry or exit of features. By formu-
lating and solving optimization subproblems for
feature entry and exit exactly, new selection and
elimination criteria are proposed, proved as the
optimal decisions for the current entry-and-exit
process compared to classical criteria. Replac-
ing the classical selection and elimination criteria
with the proposed ones generates a series of en-
hanced best subset selection algorithms. These
generated algorithms not only preserve the the-
oretical properties of the original algorithms but
also achieve significant meta-gains without in-
creasing computational cost across various sce-
narios and evaluation metrics on multiple tasks
such as compressed sensing and sparse regression.

1. Introduction
Subset selection is a classic topic in statistics and machine
learning, with significant applications in feature selection
(Kohavi & John, 1997; Das & Kempe, 2011), sparse regres-
sion (Miller, 2002; Das & Kempe, 2018), compressed sens-
ing (Chen et al., 2001), maximum coverage (Feige, 1998)
etc. Even in the era of large models, subset selection can
effectively reduce training costs and enhance the instruction-
following ability of large language models (LLMs) by se-
lecting high-quality features (Wang et al., 2024).

The fundamental multivariate linear regression model with
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coefficient vector β ∈ Rp×1 is expressed as follows:

y = Xβ + ϵ, (1)

where y ∈ Rn×1 represents the response vector, X ∈ Rn×p

is the design matrix, and ϵ ∈ Rn×1 denotes the measure-
ment noise. In subset selection, simpler models with fewer
predictors are often favored. The goal is to select a subset
of features by identifying nonzero coefficients (i.e., Active
/ Support Set S) in β that achieves a balance between ac-
curacy and model simplicity. This leads to the best-subset
selection problem, which can be formulated as follows:

min
β∈Rp

Ln (β) ≜
1

2n
∥y −Xβ∥22 s. t. ∥β∥0 ≤ K, (2)

where K is maximum allowed sparsity level. Since problem
(2) is NP-hard (Davis et al., 1997), significant efforts have
been directed toward developing polynomial-time approxi-
mation algorithms (Dy & Brodley, 2000; Qian et al., 2015;
Wei et al., 2015; Qian et al., 2017; Zhu et al., 2020).

Relaxation-based methods have been proposed to approx-
imately solve (2) by replacing ℓ0 penalty with smooth ap-
proximations. Examples include Least Absolute Shrink-
age and Selection Operator (LASSO) (Tibshirani, 1996),
Adaptive LASSO (Zou, 2006), Smoothly Clipped Abso-
lute Deviation (SCAD) (Fan & Li, 2001), Minimax Con-
cave Penalty (MCP) (Zhang, 2010), etc. However, these
methods could be computational burdensome (Hazimeh &
Mazumder, 2020; Needell & Tropp, 2009) and are also
difficult to control the number of selected features.

Another widely used class of methods is greedy algorithms,
known for their high computational efficiency and simplic-
ity. These methods perform subset selection directly by
selecting and eliminating basis based on feature importance.
Notably, the criteria for feature selection and elimination in
this category are generally consistent, differing only in the
underlying combination strategies.

Correlation-based Selection. Greedy algorithms typically
select features based on their correlation with residuals,
calculated as follows:

rk = y −Xβk−1, j∗ = argmax
j∈Sc

|rkTXj |
∥Xj∥2

, (3)

where Xj is the j-th column of X, Sc is the complement of
support S, βk−1 denotes the updated coefficient on S, and
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rk represents the residual at step k. Representative methods
include Matching Pursuit (MP) (Mallat & Zhang, 1993),
Orthogonal Matching Pursuit (OMP) (Pati et al., 1993),
CoSaMP (Needell & Tropp, 2009), Least Angle Regres-
sion (LARS) (Efron et al., 2004) and Adaptive Best-Subset
Selection (ABESS) (Zhu et al., 2020), commonly used in
compressed sensing and sparse regression.

Wald-T Test Statistics-based Elimination. Feature elim-
ination often relies on the absolute value of Wald-T test
statistics, defined as (here we assume the columns of X are
centralized with zero mean for convenience):

|Tj | =
|βk−1

j |
Mβk−1

j

, where Mβk−1
j

=
∥rk∥/

√
df√

XT
j Xj

, j ∈ S, (4)

where df serves as degree of freedom. Elimination is often
based on minimizing the T-statistic or setting a threshold for
deletion. Algorithms such as Iterative Hard Thresholding
(IHT) (Blumensath & Davies, 2009), Hard Thresholding
Pursuit (HTP) (Foucart, 2011), CoSaMP (Needell & Tropp,
2009) and Adaptive Best-Subset Selection (ABESS) (Zhu
et al., 2020) employ this criterion to remove features.

In general, greedy methods can be regarded as a combi-
nation of correlation-based selection and T-statistic-based
elimination, with different strategies integrated to perform
subset selection. However, criteria (3) and (4), according to
their formulas, focus solely on the individual significance of
features, neglecting their interaction with other features. A
feature that appears important within the current active set
might become less significant when the active set changes,
and conversely, a feature deemed less critical could gain im-
portance under a different active set configuration. However,
the current criteria fail to capture these dynamic properties.

In this paper, we revisit two classical criteria from an opti-
mization perspective. By precisely modeling the selection
and elimination subproblems, we reveal that the existing
classical criteria (3) and (4) merely represent partial (one-
step) variation of objective function after the entry or exit of
features, arising from solving the subproblems by block co-
ordinate descent method. Under this perspective, two novel
importance criteria are proposed by solving the subproblems
exactly. The new criteria consider both the significance of
the features and their interactions with other features in the
current active set simultaneously, with which the feature
entry-exit strategies are proved as optimal decisions in the
current subset selection process. Substituting the traditional
criteria (3) and (4) with the proposed ones generates a series
of enhanced best subset selection algorithms, which pre-
serves their desirable theoretical properties (or even better)
while achieving significant meta-gains across a variety of
tasks, scenarios and evaluation metrics.

2. Revisit Two Classical Criteria
In this chapter, we revisit two classical criteria (3) (4) from
an optimization perspective and develop a unified optimiza-
tion model to uncover their fundamental characteristics.

The following viewpoints originate from ABESS (Zhu et al.,
2020; 2022), which defined two types of sacrifices to mea-
sure the variation of objective Ln (β) ≜ 1

2n∥y −Xβ∥22:

1) Forward Sacrifice: For any j ∈ Sc, the magnitude of
adding variable j is defined as:

ηj = Ln(β̂)− Ln(β̂ +Dj t̂)

=
1

2n

(
∥y −Xβ̂∥22 − ∥y −Xβ̂ −Xj t̂j∥22

)
=

XT
j Xj

2n

(
d̂j

XT
j Xj/n

)2

, (5)

where Dj is defined as a diagonal matrix with 1 at
the (j, j)-th entry, while all other entries are 0, d̂ =
XT (y−Xβ̂)

n , and t̂ = argmint Ln(β̂ + Djt). It evaluates
which features outside active set are significant.

2) Backward Sacrifice: For any j ∈ S, the magnitude of
removing variable j is defined as:

ξj = Ln(β̂ −Djβ̂)− Ln(β̂)

=
1

2n

(
∥y −Xβ̂ +Xjβ̂j∥22 − ∥y −Xβ̂∥22

)
=

XT
j Xj

2n
(β̂j)

2, (6)

which quantifies the irrelevant features in the support set.

Intuitively, for j ∈ S (or j ∈ Sc), a large value of ξj (or
ηj) suggests that the j-th variable is potentially important.
Formally, we demonstrate the connection between (5) (6)
and (3) (4) in the following remark. This equivalence can
be immediately verified by substituting rk in d̂.
Remark 2.1. The criteria in (5) and (6) are strictly equiva-
lent (up to a constant factor) to those in (3) and (4).

From an optimization standpoint, the existing criteria can be
interpreted as the variation of objective function achieved
by updating the support set with fixed coefficients in the
first step of block coordinate descent. Specifically:

Step 1 (Support update with fixed coefficient): Maximize
the correlation in (3) (or minimize the T-statistics in (4)) for
support set updating is equivalent to solving (P0) (or (Q0)).
The classical criteria (3) and (4) corresponds to the variation
of objective function value in this part.

Step 2 (Coefficient update with fixed support): It is fol-
lowed by refining the coefficients on the updated support
set. This step also leads to a change in the function value,
which, however, is not captured by the classical criteria.
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Figure 1. A (B) illustrates subset selection (elimination), with A1 (B1) comparing objectives and optimization problems of the old and
new criteria, and A2 (B2) comparing function decreases (increases).

argmin
β

∥y −Xβ∥22 (P0)

s. t. ∥β − βk−1∥0 ≤ 1, supp(βk−1) ⊂ supp (β) .

argmin
β

∥y −Xβ∥22 (Q0)

s. t. ∥β − βk−1∥0 ≤ 1, supp(β) ⊂ supp(βk−1).

As the model evolves to (P0) and (Q0), the limitations of
classic criteria become more apparent. Specifically, it is ob-
served that the constraints in (P0) and (Q0) (or equivalently,
criteria (3) and (4)) only allows one change in the support
set of β while the coefficients on the remaining support set
are fixed. In the next step when coefficients are updated on
newly selected support set, the influence of newly chosen
feature on the remaining coefficients is not considered. The
variation of function value in the first part measures the
individual significance of the features, while the change in
the second part assesses the interaction between features,
where classical criteria fail to capture.

Therefore, the update strategy in (P0) and (Q0) (or criteria
(3) and (4)) can be understood as the objective of performing

one step of block coordinate descent, rather than an objective
that takes into account the overall descent.

This issue will be addressed in the new model we develop
in Section 3, which ensures an optimal solution at each step.

3. Optimal Selection and Elimination Statistics
3.1. Optimal Selection and Elimination Problem

As analyzed in Section 2, to obtain the optimal solution at
each step, we consider the following optimization problems:

argmin
β

∥y −Xβ∥22 (P1)

s. t. ∥β∥0 = ∥βk−1∥0 + 1, supp(βk−1) ⊂ supp (β) ,

argmin
β

∥y −Xβ∥22 (Q1)

s. t. ∥β∥0 = ∥βk−1∥0 − 1, supp(β) ⊂ supp(βk−1),

where (P1) and (Q1) correspond to selection and elimination
subproblems for each step exactly. Unlike the constraint in
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(P0), the constraint in (P1) does not require the coefficients
fixed on the remaining support set. Thus, compared to the
incomplete descent obtained by one step of block coordinate
descent with the classic criterion, the new optimization prob-
lem consider a complete descent (including both step 1&2),
providing the optimal feature selection criterion. Same ar-
gument holds for the subset elimination problem in (Q1).

Figure 1 provides an intuitive comparison between the later-
derived new criteria (from (P1) (Q1)) and the classic criteria
(3) (4) (from (P0) (Q0)), highlighting their differences in
terms of objectives. In the selection subproblem, the goal is
to select a feature that maximizes the overall decrease in the
objective function, as illustrated in A1. However, the clas-
sic criterion focuses solely on maximizing the immediate
decrease after updating the support set, without account-
ing for the impact of subsequent coefficient updates. This
limitation is evident in A2, where the feature i, selected by
classic criterion, achieves the largest initial decrease f i

2, but
its subsequent updates result in less favorable outcomes.

Similarly, in the elimination subproblem, the objective is
to eliminate a feature that minimizes the overall increase in
the objective function. As shown in B2, the classic criterion
selects basis i because it results in the smallest immediate
increase in the first step. However, after coefficient updates,
the overall increase is much larger than that achieved by
basis j, selected by new criterion.

3.2. Optimal Selection and Elimination Criteria

In this section, we solve (P1) and (Q1) to derive the optimal
criteria for subset selection and elimination.

3.2.1. OPTIMAL SELECTION CRITERION

We begin with deriving the optimal selection criterion.
Lemma 3.1. Problem (P1) is equivalent to

argmax
β

yTXS

(
XT

SXS

)−1
XT

Sy (P2)

s. t. supp(βk−1) ⊂ S = supp (β) , ∥β∥0 = ∥βk−1∥0 + 1,

where S is the support set of β, and XS represents the
columns of X corresponding to the subset S.

The proof of Lemma 3.1 is detailed in Appendix A. Thus,
problem (P1) is reformulated as (P2). A major challenge in
solving (P2) is computing the inversion term

(
XT

SXS

)−1
.

To address this, we first introduce the following lemma.
Lemma 3.2 (Forward Inverse). Let t = α− vTA−1u ̸= 0,

B =

(
A(n−1)×(n−1) u

vT α

)
n×n

, where A−1 is known in

advance. Then the inverse of B is given by:

B−1 =

(
A−1 +A−1ut−1vTA−1 −A−1ut−1

−t−1vTA−1 t−1

)
.

(7)

Lemma 3.2 can be obtained through simple matrix block
operations. We can derive the following optimal feature
selection criterion by applying Lemma 3.2.
Theorem 3.3. Problem (P2) is equivalent (in the sense of
identifying the true subset) to:

argmax
j∈Sc

k−1

(
rk

T
Xj

)2
XT

j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
Xj

,

(8)
where Sk−1 = supp(βk−1) .

The proof of Theorem 3.3 is provided in Appendix B.
Definition 3.4 (Objective-based Selection). By Theorem
3.3, the new criterion for feature importance outside the
support set could be formulated as criterion (8).
Remark 3.5. When Xj is orthogonal to XSk−1

, the
objective-based selection criterion (8) degenerates into the
correlation-based criterion (3).
Remark 3.6 (Comprehensive Combination Effect). It is ob-
served that the numerator of the objective-based selection
criterion (8) is identical to that of the classic criterion (3).
However, the denominator in (8) incorporates a projection
matrix, which accounts for the interaction between the cur-
rently selected feature j and the remaining features in Sk−1.
Specifically, new criterion (8) can be interpreted as the cor-
relation between Xj and rk in the noise subspace of XSk−1

.
As a result, the new criterion captures a comprehensive
‘combination effect’ in reducing the objective function.
Remark 3.7 (Computational Efficiency). Theorem 3.3 trans-
forms the large matrix

(
XT

SXS

)−1
in (P2) into a smaller

matrix
(
XT

Sk−1
XSk−1

)−1

in (8). In fact, when we update
the coefficients on the support set Sk−1 at step k − 1 using

least squares
(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

y, this procedure

involves either matrix inversion of XT
Sk−1

XSk−1
or solving

the corresponding linear system via Cholesky decomposi-
tion. Notably, the inversion or Cholesky decomposition is
required only once. Thus, despite the presence of an inver-
sion term in the denominator of the new criterion (8), it does
not incur additional magnitude of computational cost. We
also perform runtime comparison between the algorithms
using the classical criteria and the new criteria in Section 5,
with only a slight difference, see Appendix O.
Remark 3.8. While writing this paper, we coincidentally
came across the algorithm (SMP) with very similar criterion
to (8) in (Tohidi et al., 2025). We independently derived
the criterion with the completely different approaches taken.
In that paper, a submodular perspective is used to derive
a replacement algorithm for OMP, whereas our derivation
is grounded in an unified optimization framework, with a
specific focus on both optimal feature selection and elimina-
tion criteria. Moreover, in Section 3.3, we demonstrate that
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our criteria can be applied as a meta-heuristic method to all
heuristic best subset selection algorithms.

3.2.2. OPTIMAL ELIMINATION CRITERION

Similar to the selection problem, we make the following
equivalent transformation to the original problem (Q1) in
Lemma 3.9 and introduce Lemma 3.10 to assist in deriving
the optimal elimination criterion.

Lemma 3.9. Problem (Q1) is equivalent to

argmax
β

yTXS

(
XT

SXS

)−1
XT

Sy (Q2)

s. t. S = supp (β) ⊂ supp(βk−1), ∥β∥0 = ∥βk−1∥0 − 1.

Lemma 3.10 (Backward Inverse). Suppose B−1 is known,

where B−1 =

(
G(n−1)×(n−1) w

zT γ

)
n×n

, B =(
A(n−1)×(n−1) u

vT α

)
n×n

. Then the inverse of A could

be updated as:

A−1 = G−wzT /γ. (9)

Lemma 3.10 is a straightforward corollary of Lemma 3.2.
We can derive the following optimal feature elimination
criterion by applying Lemma 3.10.

Theorem 3.11. Let Ck−1 =
(
XT

Sk−1
XSk−1

)−1

, ej =

(δ1i, δ2i, · · · , δii, · · · , δ|Sk−1|i)
T ∈ R|Sk−1|, where j repre-

sents the i-th element of Sk−1 for i = 1, 2, . . . , |Sk−1|. The
Kronecker delta function δab is defined as δab = 1 if a = b,
and δab = 0 otherwise. Then, problem (Q2) is equivalent
(in the sense of identifying the true subset) to

argmax
j∈Sk−1

yTXSk−1

(
I− eje

T
j

)(
Ck−1−

Ck−1eje
T
j Ck−1

eTj Ck−1ej

)(
I− eje

T
j

)
XT

Sk−1
y. (10)

The proof of Theorem 3.11 is provided in Appendix C.

Definition 3.12 (Objective-based Elimination). By The-
orem 3.11, the new criterion for feature importance inside
the support set could be formulated as criterion (10).

Remark 3.13. When Xj and XSk−1\{j} are orthogonal, the
objective-based elimination criterion (10) degenerates into
the Wald-T based criterion (4). A detailed proof is provided
in Appendix D.
Remark 3.14 (Comprehensive Combination Effect). The
new criterion (10) takes into account the impact on the other
features in Sk−1 resulting from the elimination of feature j.
Remark 3.15 (Computational Efficiency). The matrix Ck−1

or Cholesky decomposition of XT
Sk−1

XSk−1
has been al-

ready computed in the previous step when updating the

coefficients on the support set Sk−1, so the inversion term
in criterion (10) does not incur additional magnitude of com-
putational cost. See Appendix O for comparison in runtime.

3.3. Enhanced Algorithms for Best Subset Selection
As mentioned in the Introduction, heuristic subset selection
algorithms generally determine selection and elimination
based on (3) and (4), with different algorithms arising from
various combination strategies of these criteria. By lever-
aging the optimal criteria in Section 3.2, we can perform
Meta-Substitution of the objective-based criteria (8) and
(10) into classical algorithms like MP, OMP, CoSaMP, IHT,
and (A)BESS, resulting in an enhanced algorithm family, as
shown in Figure 2.

Figure 2. Left: The original algorithmic workflow based on heuris-
tic subset selection criteria. Right: By replacing the classic criteria
with optimal objective-based criteria, the original heuristic algo-
rithms can be updated to yield new algorithms accordingly.

We classify subset selection algorithms into three categories
based on their combination strategies for feature selection
and elimination, providing one representative for each to
show how Meta-Substitution generates new algorithms:

Select-Only : This type of algorithm greedily selects feature
at each step. Examples include MP, OMP, etc. For instance,
OMP can be upgraded to Optimal Pursuit (OP) algorithm,
as described in Algorithm 1 in Appendix E.

Select-First, Eliminate-Next: This type of algorithms first
selects the features and then removes the irrelevant ones.
Examples include CoSaMP, IHT, HTP, etc. For instance,
CoSaMP can be enhanced to CoSaOP, as detailed in Algo-
rithm 2 in Appendix E.

Exchange-Based: This class of algorithms performs sub-
set selection by swapping irrelevant features in the active
set with significant features outside the active set. Notably,
(A)BESS (Zhu et al., 2020), currently serving as a bench-
mark method in the subset selection field, belongs to this
category. It can be upgraded to the OP-(A)BESS algorithm,
as outlined in Algorithm 3 and 4 in Appendix E.
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Beyond these examples, other greedy subset selection al-
gorithms can also be enhanced through meta substitution
scheme. We will demonstrate that these enhanced algo-
rithms not only retain the original theoretical properties
but also achieve significant meta-gains across various tasks,
scenarios and evaluation metrics.

4. Theory of Optimal Subset Selection Criteria
In this section, we establish theory of optimal subset selec-
tion criteria (8) and (10). Define the function f(S) as:

f(S) ≜min
β

∥y −Xβ∥22

s. t. supp(β) = S.

With this definition, we present the following theorems.

Theorem 4.1. For index j∗ selected by criterion (8),

f (S ∪ {j∗}) ≤ f (S ∪ {j}) , ∀j ∈ Sc.

Theorem 4.2. For index j∗ selected by criterion (10),

f (S\{j∗}) ≤ f (S\{j}) , ∀j ∈ S.

Theorems 4.1 and 4.2 summarize the previous discussion,
demonstrating that criteria (8) and (10) serve as the optimal
decisions in the current subset selection process.

Theorem 4.3. The computational complexities of OMP and
OP, CoSaMP and CoSaOP, as well as (A)BESS and OP-
(A)BESS, are of the same order of magnitude.

Theorem 4.3 follows from Remark 3.7 and Remark 3.15,
and it indicates that the enhanced algorithms have the same
computational complexity as the original algorithms. Now,
we take the CoSaOP algorithm (Select-First, Eliminate-
Next) as an example to illustrate how the enhanced algo-
rithms retain the theoretical properties of the original algo-
rithm. The subsequent Lemmas 4.4–4.8 and Theorem 4.9
correspond directly to theoretical results of CoSaMP in
(Needell & Tropp, 2009).

The basic assumption and proofs of Lemmas 4.4–4.8 are pro-
vided in Appendices F-J. And the proof of convergence prop-
erty of CoSaOP (Theorem 4.9) is presented in Appendix K.

Lemma 4.4 (Identification). The set Ω selected by CoSaOP
during identification stage (Step 6 in Algorithm 2) at itera-
tion k satisfies∥∥∥(βk−1 − β∗

)
|Ωc

∥∥∥
2
≤ 0.2353

∥∥∥βk−1 − β∗
∥∥∥
2
+2.4 ∥ϵ∥2 .

Lemma 4.5 (Support merger). Let Ω be a set containing
at most 2K indices. Then, the set U = Ω ∪ supp(βk−1)
contains at most 3K indices, and it holds that∥∥β∗∣∣

Uc

∥∥
2
≤
∥∥∥(β∗ − βk−1

) ∣∣
Ωc

∥∥∥
2
.

Lemma 4.6 (Estimation). Let U be a set containing at most
3K indices. The least-squares estimate a is formulated as

a|U =
(
XT

UXU

)−1
XT

Uy, a|Uc = 0.

Then, the following bound holds:

∥β∗ − a∥2 ≤ 1.112 ∥β∗|Uc∥2 + 1.06∥ϵ∥2.

Lemma 4.7 (Elimination). Let Sk be the index set selected
by CoSaOP from U according to criterion (10). Then,

∥β∗ − ãSk
∥2 ≤ (2 + δ) ∥β∗ − a∥2 ,

where ãSk,j = aj for j ∈ Sk, ãSk,j = 0 for j ∈ Sc
k, and

0 ≤ δ ≤ 1 is a constant related to the orthogonality of XU .

Lemma 4.8 (Least square estimation). Let βk denote the
least-square estimation on Sk obtained by CoSaOP. We have

∥βk − β∗∥2 ≤ 1.106 ∥β∗ − ãSk
∥2 + 2.109∥ϵ∥2.

Therefore, based on Lemmas 4.4-4.8, we arrive at the fol-
lowing theorem.

Theorem 4.9 (CoSaOP). When the approximation error is
large in comparison with the noise, the CoSaOP algorithm
achieves a linear convergence rate, expressed as

∥βk − β∗∥2 ≤ 0.869∥βk−1 − β∗∥2 + 14.482∥ϵ∥2.

In real-world scenarios, features are often highly correlated,
making the RIP assumption, commonly used in classical
best subset selection algorithms, invalid. Theorems 4.10
and 4.11 further demonstrate the significant advantages of
criteria (8) and (10) over classical criteria (3) and (4) in the
presence of high feature correlation. For the proofs and
further explanations, please refer to the Appendices L-N.

Theorem 4.10. Suppose the true subset S∗ contains indices
(i, j), where the correlation between feature Xi and Xj

is ρ =
|XT

i Xj |
||Xi||2||Xj ||2 . Assuming the current support set S

already includes feature i, then the classical correlation-
based criterion (3) for feature j satisfies:

|rkTXj |
||Xj ||2

≤
√

1− ρ2||rk||2, (11)

while the objective-based criterion (8) satisfies(
rk

T
Xj

)2
XT

j

(
I−XS

(
XT

SXS

)−1
XT

S

)
Xj

≥ 1

1− ρ2

(
rk

T
Xj

||Xj ||2

)2

.

(12)

Theorem 4.11. (1) The upper bound of the objective-based
criterion (10) is ||y||22. If the true subset S∗ is contained
within the current subset S, then for all jm ∈ S \ S∗,

||y||22 − ||ϵ||22 ≤ (criterion (10) for jm) ≤ ||y||22.
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And in noiseless scenario,

jm ∈ argmaxj∈S objective-based criterion (10).

(2) Suppose a feature Xp in the current subset is pesudo-
correlated with an important feature Xi in the true sub-
set (with correlation 1 − µ). When µ is sufficiently small,
classical T-statistics based criteria (4) could erroneously
discard true features even in simple cases like S = S∗∪{p},
whereas proposed criterion (10) could correctly identify and
remove the spurious feature Xp.
We also evaluate the algorithm’s performance under high
feature correlations to validate the theories through their
marked improvements. See Appendix P for details.

5. Experiments
We conducted experiments on two typical subset selection
problems: compressed sensing and sparse regression, to
demonstrate the meta-gains achieved by the new algorithms
developed through meta-substitution. The comparison in-
volves representative algorithms1 from the three categories
introduced in Section 3.3: OP, CoSaOP, and OP-(A)BESS,
evaluated against classical subset selection methods: OMP,
CoSaMP, and (A)BESS. Their performance is evaluated
across multiple metrics, including the number of successful
recoveries, NMSE, R2 , and runtime, highlighting the superi-
ority of the enhanced algorithms from various perspectives.

5.1. Compressed Sensing

In this task, there is a ground truth signal for β. The goal
is to recover the high-dimensional sparse vector β ∈ Rp×1,
given the noisy low-dimensional observation y ∈ Rn×1 and
design matrix X ∈ Rn×p (n ≪ p).

5.1.1. SYNTHETIC SPARSE DATA

In this experiment, we randomly generate β with a dimen-
sionality of p = 200 and a sparsity level of K = 10. The
design matrix X is a n × p random Gaussian matrix. Let
S∗ represent the true support set of the signal and Ŝ the esti-
mated support set, recovery is deemed successful if Ŝ = S∗.
For each algorithm, we conduct 500 independent runs and
record the number of successful recoveries as shown in Fig-
ure 3. The first row illustrates the variation in the number of
successful recoveries for three groups of algorithms as the
sampling rate increases from 25% to 50% under a fixed SNR
of 15. The second row, in contrast, fixes the sampling rate
at 25% and shows how the number of successful recoveries
changes as the SNR increases from 15 to 25.

As a result, in the most extreme compressed scenario with
a measurement rate of 0.25, OP achieves nearly 3× im-
provement over OMP. CoSaOP consistently outperforms

1Matlab codes are available at https://github.com/
ZhihanZhu-math/Optimal_Pursuit_public.

CoSaMP by at least 4× in all scenarios, with a maximum
improvement of nearly 7× under SNR = 21, as shown in
subplot (e). While (A)BESS, as the state-of-the-art algo-
rithm for this task, demonstrates great performance across
various settings, OP-(A)BESS still manages to achieve ob-
servable meta-gains beyond it. Even in near-saturation sce-
narios where (A)BESS achieves almost complete recovery,
the meta-gain remains evident. Thus, the proposed algo-
rithms (blue bars) consistently outperform their classical
counterparts (green bars) across all experimental conditions,
delivering significant improvements in recovery rates.

We also compare the computational time in Appendix O. In
Appendix P, we conduct further experiment under high fea-
ture correlations with small sample sizes, high-dimensional
features, and high noise levels. The experimental results
further highlight the signiaficant advantages of the Optimal
Pursuit-enhanced algorithms in extreme scenarios.

5.1.2. SIGNALS FROM AudioSet

After transforming audio signals into the DCT domain,
they exhibit transform sparsity (Donoho, 2006). There-
fore, we test our method using real-world audio data. The
data presented here is randomly sampled from the AudioSet
dataset (Gemmeke et al., 2017), consisting of 4 audio sig-
nals with full dimensionality p = 480. These signals have
approximately 20–40 non-zero entries (K) in the DCT do-
main, with the number of observations fixed at n = 150.
The normalized mean squared error (NMSE), defined as
NMSE = ∥β̂−β∗∥22/∥β

∗∥22 , is used to quantify the recov-
ery performance. We conducted 100 random experiments,
and the results are summarized in Table 1.

The proposed algorithms consistently exhibit significant per-
formance improvements. In particular, OP shows observable
meta-gain compared to OMP. Although CoSaMP algorithm
already performs well on this task (with small NMSE and
std), CoSaOP still achieves near-order-of-magnitude im-
provement. Similarly, OP-(A)BESS achieves near-order-of-
magnitude improvements in both mean and std of NMSE
in multiple trials, indicating that the algorithm’s accuracy
and stability have been significantly enhanced.

5.2. Sparse Regression

In sparse regression tasks, β does not have a ground truth.
The goal is to select sparse features that provide a better
explanation of target variable y. Therefore, similar to the
metric used in sparse regression evaluations in (Qian et al.,
2017; Das & Kempe, 2018), we quantify the explanatory
ability of the features using Coefficient of Determination:
R2 = 1−

∑n
i=1(yi − ŷi)

2/
∑n

i=1(yi − ȳ)2.

We utilize six real-world datasets in our experiments: (1)
Boston Housing Data (Pedregosa et al., 2011), (2) California
Housing Data (Pedregosa et al., 2011), (3) Superconduc-
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Figure 3. Meta-gain comparison of three kinds of subset selection algorithms. Row one: different sampling rates (SNR = 15). Row two:
Varying SNRs (measurement rate = 0.25).

Table 1. Reconstruction NMSE (mean ± std) for Signals from AudioSet. Meta-gains are highlighted in red, with the best in bold and the
second-best underlined. (Audio 1-4: -0SdAVK79lg.wav, qxgIqI0uA.wav, 0bN5mYLXb0.wav, 0Jd6JJeyJ4.wav)

NMSE (OMP & OP) NMSE (CoSaMP & CoSaOP) NMSE ((A)BESS & OP-(A)BESS)

Audio Set OMP OP Gains CoSaMP CoSaOP Gains (A)BESS OP-(A)BESS Gains

Audio 1 9.45E-04 (1.35E-03) 7.69E-04 (5.78E-04) 19% 2.36E-03 (1.22E-03) 1.64E-03 (1.36E-03) 31% 1.41E-03 (7.89E-03) 6.22E-04 (2.64E-04) 56%
Audio 2 5.79E-03 (7.89E-03) 5.49E-03 (8.87E-03) 5% 1.87E-03 (6.05E-04) 6.36E-04 (2.01E-04) 66% 6.71E-03 (6.07E-02) 6.36E-04 (2.01E-04) 91%
Audio 3 1.46E-03 (3.13E-03) 1.18E-03 (2.14E-03) 19% 1.54E-03 (5.86E-04) 5.52E-04 (2.03E-04) 64% 2.84E-03 (2.29E-02) 5.52E-04 (2.03E-04) 81%
Audio 4 4.05E-02 (1.03E-01) 3.55E-02 (9.70E-02) 12% 2.85E-03 (9.84E-04) 8.22E-04 (2.22E-04) 71% 2.65E-02 (1.07E-01) 1.86E-02 (1.12E-01) 30%

tivity Data (Hamidieh, 2018), (4) House 16H (Vanschoren,
2014), (5) Prostate.v8.egen (Lin & Pan, 2024; Hastie et al.,
2017), and (6) Spectra (The MathWorks, Inc., 2025). For
the first five datasets, which have a relatively small number
of features, we augment the feature space by constructing
polynomial features. The dimensions of the six datasets are
as follows: n1 = 506, p1 = 104; n2 = 500 (randomly sam-
pled), p2 = 164; n3 = 500 (randomly sampled), p3 = 80;
n4 = 500 (randomly sampled), p4 = 153; n5 = 500 (ran-
domly sampled), p5 = 253; and n6 = 60, p6 = 401.

The experimental results in Figure 4 demonstrate the en-
hanced algorithms driven by new criteria consistently yield
significant meta-gains across different datasets and varying
numbers of selected features K. The enhanced algorithms
outperform the original algorithms, achieving gains equiv-
alent to selecting 10 more features. Notably, OP and OP-
(A)BESS demonstrate approximately a 0.1 improvement
in R2. And even though CoSaMP fails in this regression
task (see Appendix Q for detailed reasons), the enhanced
CoSaOP remains effective and delivers strong performance.

6. Discussion
In this section, we discuss the potential applications of the
optimal pursuit idea in a broader range of machine learning
tasks and scenarios.

6.1. Best Subset Selection with Ultra-high Dimensions:
Optimal Gradient Pursuit

As noted in Remark 3.7 and Remark 3.15, the algorith-
mic complexity of the original methods and our optimal
pursuit-enhanced algorithm remains at the same order of
magnitude, since both rely on solving the least squares
problem over a given subset S, which involves a linear
system solved via Cholesky decomposition. However, in
ultra-high-dimensional settings, solving the least squares
problem over a given subset, i.e., solving a linear system,
can be computationally prohibitive, affecting both the origi-
nal and enhanced algorithms. In fact, updating coefficients
via least squares within a given subset is equivalent to using
the Newton method for updates. (Blumensath & Davies,
2008) proposed Gradient Pursuit, which follows the same
correlation-based selection strategy in the basis selection
step. However, in the coefficient update step, instead of
Newton’s method, it employs gradient-based updates within
a given support set, significantly reducing computational
overhead in ultra-high-dimensional scenarios.

Here, we want to emphasize that our proposed optimal pur-
suit idea can also be applied to Gradient Pursuit, which we
refer to as Optimal Gradient Pursuit. Optimal Gradient Pur-
suit simultaneously considers both support set updates (fea-

8



Best Subset Selection: Optimal Pursuit for Feature Selection and Elimination

Figure 4. Rows 1–3 present the meta-gains in feature representation capability (R2, closer to 1 is better) for the Boston Housing, California
Housing, Superconductivity datasets, House 16H, Prostate.v8.egenes, and Spectra datasets, respectively, across three algorithms as the
number of selected features K varies. See Appendix R for cross validation performance in prediction.

ture individual significance) and coefficient updates (feature
interaction), while maintaining the same order of computa-
tional complexity as Gradient Pursuit.

For the derivation of the Optimal Gradient Pursuit crite-
ria, the proof of its theoretical properties and the numerical
experiments, please refer to the Appendices S-U. Optimal
Gradient Pursuit serves as an acceleration scheme for Opti-
mal Pursuit, which is applicable to ultra-high dimensional
settings, and the gradient-based updates is practical for best
subset selection problems with general objective functions.

6.2. Unsupervised Learning: Column Subset Selection

Column Subset Selection (CSS) and PCA are both important
dimensionality reduction methods with widespread applica-
tions in unsupervised learning (Belhadji et al., 2020). The
goal of CSS is to select a subset of important columns (fea-
tures) from a dataset that can better represent the entire
dataset, formulated as:

min
S,B

∥X−XSB∥2F

s. t. |S| ≤ K.

In fact, this problem can also be viewed as a special case
of best subset selection problem. We have extended the
optimal pursuit criterion to the CSS task, demonstrating the
advantages of our proposed criteria over classical criteria in
this setting. For the derivation of the criteria and numerical
experiments, please refer to the Appendix V.

6.3. Complex Signal Processing

Although our paper primarily discusses these theories
and methods in the real domain, they can be directly ex-
tended to the complex domain. A classic example in
complex signal processing is line spectrum estimation.
This problem can be viewed as a special case of feature

selection, where the features are continuous in the fre-
quency domain and exhibit a specific structure: v(f) =(
1, e−j2πf , e−j2π2f , . . . , e−j2π(n−1)f

)T
. The goal is to de-

compose a given complex signal into its frequency compo-
nents, a problem widely applied in modern wireless com-
munications (Mamandipoor et al., 2016). For the numerical
experiments of Optimal Pursuit in complex signal process-
ing, please refer to the Appendix W.

7. Conclusion
This paper proposed two novel objective-based criteria for
feature selection and elimination in best subset selection. By
revisiting classical criteria in traditional algorithms through
the lens of block coordinate descent, we revealed that they
only reflect a one-step variation of the objective function.
Building on this, we formulated exact optimization subprob-
lems for feature selection and elimination, deriving explicit
solutions using forward and backward matrix inversion. The
proposed criteria account for both individual feature signif-
icance and interactions, proving optimal for subset selec-
tion. Replacing classical criteria with the proposed ones,
we developed enhanced algorithms that retain the original
theoretical guarantees while achieving notable performance
gains across various tasks, such as compressed sensing and
sparse regression, all without added computational cost.

The results affirm the advantages of the new criteria both
theoretically and practically, opening new avenues for im-
proving best subset selection algorithms. Future work
may consider: (1) integrating the proposed criteria into
arbitrary greedy subset selection algorithms to develop en-
hanced methods and application on structured sparse learn-
ing (Huang et al., 2009), (2) developing optimal selection
and elimination criteria for general objective functions, (3)
investigating statistical inference theories of the new criteria.
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A. Proof of Lemma 3.1
Proof. Let S = supp(β). Since the solution β̂ of (P1) is obtained via least squares on S, i.e.,

βS =
(
XT

SXS

)−1
XT

Sy, βSc = 0. (13)

Then, substituting (13) into (P1) directly yields (P2).

B. Proof of Theorem 3.3
Proof. Denoting Sk−1 = supp(βk−1) and S = supp(β), we can rewrite (P2) as follows:

argmax
β

yTXS

(
XT

SXS

)−1
XT

Sy (14)

s. t. Sk−1 ⊂ S, |S| = |Sk−1|+ 1,

where the inverse term
(
XT

SXS

)−1
can be expressed as

(
XT

SXS

)−1
=

(
XT

Sk−1

XT
j

)(
XSk−1

Xj

)
=

(
XT

Sk−1
XSk−1

XT
Sk−1

Xj

XT
j XSk−1

XT
j Xj

)
.

According to Lemma 3.2,

(
XT

SXS

)−1
=

(
A−1 +A−1ut−1vTA−1 −A−1ut−1

−t−1vTA−1 t−1

)
,

where u = XT
Sk−1

Xj , vT = XT
j XSk−1

, and A−1 =
(
XT

Sk−1
XSk−1

)−1

, which was computed in step k − 1 and is already
known. Additionally, t is given by

t = XT
j Xj − vTA−1u = XT

j Xj −XT
j XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

Xj .

Then, XS

(
XT

SXS

)−1
XT

S can be reformulated as

XS

(
XT

SXS

)−1
XT

S =
(
XSk−1

Xj

)(A−1 +A−1ut−1vTA−1 −A−1ut−1

−t−1vTA−1 t−1

)(
XT

Sk−1

XT
j

)
=XSk−1

(
A−1 +A−1ut−1vTA−1

)
XT

Sk−1
−XSk−1

A−1ut−1XT
j −Xjt

−1vTA−1XT
Sk−1

+ t−1XjX
T
j

=XSk−1

(
XT

Sk−1
XSk−1

)−1

XSk−1
+

XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

XjX
T
j XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

XT
j Xj −XT

j XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

Xj

−
XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

XjX
T
j +XjX

T
j XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

−XjX
T
j

XT
j Xj −XT

j XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

Xj

=XSk−1

(
XT

Sk−1
XSk−1

)−1

XSk−1

+

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
XjX

T
j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
XT

j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
Xj

.
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Therefore, problem (P2) is equivalent to

argmax
j∈Sc

k−1

yT

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
XjX

T
j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
y

XT
j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
Xj

=argmax
j∈Sc

k−1

(
rk

T
Xj

)2
XT

j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
Xj

, (15)

where rk = y − XSk−1
βk−1 represents the residual obtained from the (k − 1)-th update, and βk−1 =(

XT
Sk−1

XSk−1

)−1

XT
Sk−1

y is the coefficient estimate from step k − 1.

C. Proof of Theorem 3.11
Proof. Denoting Sk−1 = supp(βk−1) and S = supp(β), we can rewrite (Q2) as follows:

argmax
β

yTXS

(
XT

SXS

)−1
XT

Sy (16)

s. t. S ⊂ Sk−1, |S| = |Sk−1| − 1,

where the inverse term
(
XT

SXS

)−1
is already known, as it was computed in step k − 1.

Let ei = (δ1i, δ2i, · · · , δii, · · · , δ|Sk−1|i)
T ∈ R|Sk−1|, for all i = 1, 2, · · · , |Sk−1|, where the Kronecker delta function δij

is defined as

δij =

{
1, if i = j,

0, otherwise.

Let Pi =
(
e1, · · · , ei−1, ei+1, · · · , e|Sk−1|

)
∈ R|Sk−1|×|S|. Then, by Lemma 3.10, when S = Sk−1\{j}, we have

(
XT

SXS

)−1
= PT

j

(
XT

Sk−1
XSk−1

)−1

Pj −
PT

j

(
XT

Sk−1
XSk−1

)−1

eje
T
j

(
XT

Sk−1
XSk−1

)−1

Pj

eTj

(
XT

Sk−1
XSk−1

)−1

ej

,

and XS = XSk−1
Pj .

Therefore, problem (Q2) is equivalent to

argmax
j∈Sk−1

yTXSk−1
PjP

T
j

(
XT

Sk−1
XSk−1

)−1

PjP
T
j X

T
Sk−1

y

−
yTXSk−1

PjP
T
j

(
XT

Sk−1
XSk−1

)−1

eje
T
j

(
XT

Sk−1
XSk−1

)−1

PjP
T
j X

T
Sk−1

y

eTj

(
XT

Sk−1
XSk−1

)−1

ej

= argmax
j∈Sk−1

yTXSk−1
PjP

T
j

(XT
Sk−1

XSk−1

)−1

−

(
XT

Sk−1
XSk−1

)−1

eje
T
j

(
XT

Sk−1
XSk−1

)−1

eTj

(
XT

Sk−1
XSk−1

)−1

ej

PjP
T
j X

T
Sk−1

y

= argmax
j∈Sk−1

yTXSk−1

(
I− eje

T
j

)(
Ck−1 −

Ck−1eje
T
j Ck−1

eTj Ck−1ej

)(
I− eje

T
j

)
XT

Sk−1
y. (since PjP

T
j = I− eje

T
j .)

(17)
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D. Proof of Remark 3.13

Proof. When Xj and XSk−1\{j} are orthogonal, we have Pj

(
XT

Sk−1
XSk−1

)−1

ej = 0. Therefore, the objective-based
elimination criterion (10) can be reformulated as

(10) = yTXSk−1
PjP

T
j

(
XT

Sk−1
XSk−1

)−1

PjP
T
j X

T
Sk−1

y. (18)

Noticing that PjP
T
j = I− eje

T
j , we can rewrite (18) as

(18) = yTXSk−1

(
I− eje

T
j

) (
XT

Sk−1
XSk−1

)−1 (
I− eje

T
j

)
XT

Sk−1
y

=

(
yTXSk−1

(
I− eje

T
j

) (
XT

Sk−1
XSk−1

)−1
)(

XT
Sk−1

XSk−1

)((
XT

Sk−1
XSk−1

)−1 (
I− eje

T
j

)
XT

Sk−1
y

)
. (19)

It’s also observed that
(
XT

Sk−1
XSk−1

)−1 (
I− eje

T
j

)
XT

Sk−1
y

(∗)
=

(
I− eje

T
j

) (
XT

Sk−1
XSk−1

)−1

XT
Sk−1

y =(
I− eje

T
j

)
βk−1, where (∗) holds because Xj is orthogonal to XSk−1\{j}. Therefore, (19) can be further expressed

as follows:

(19) =
(
βk−1

)T (
I− eje

T
j

) (
XT

Sk−1
XSk−1

) (
I− eje

T
j

)
βk−1 = C −

(
XT

j Xj

) (
βk−1
j

)2
. (20)

Therefore, we have (10) ⇐⇒ argmax
j∈Sk−1

C −
(
XT

j Xj

) (
βk−1
j

)2
⇐⇒ argmin

j∈Sk−1

(
XT

j Xj

) (
βk−1
j

)2
when Xj ⊥

XSk−1\{j},∀j = 1, · · · , |Sk−1|. Thus, when XSk−1
is a column-orthogonal matrix, the new criterion (10) reduces to

minimizing the Wald-T statistics (4).

E. Enhanced Algorithms
E.1. Optimal Pursuit

This subsection presents the algorithmic workflow of Optimal Pursuit (OP).

Algorithm 1 OP: Optimal Pursuit
1: Input: Design matrix X, response vector y, sparsity level K, and residual tolerance ϵ.
2: Output: Support set Ŝ and sparse solution β̂.
3: Initialize residual r1 = y, support set S0 = ∅, β0 = 0, H0 = 0n×n, and iteration counter k = 1.
4: repeat
5: Compute the objective-based criterion (8) using rk,Hk−1 and identify the optimal index j. // Find the basis maximizing the

objective reduction.
6: Update support set: Sk = Sk−1 ∪ {j}.
7: Update Ck =

(
XT

Sk
XSk

)−1
, and Hk = XSkCkX

T
Sk

. // To be used in step k + 1 as explained in Remark 3.7.
8: Solve least-squares problem using βk

Sk
= CkX

T
Sk

y. // Estimate coefficients on active set.
9: Update βk = βk

Sk∪Sc
k

, where βk
Sc
k
= 0.

10: Update residual: rk+1 = y −Xβk.
11: Update counter: k = k + 1.
12: until ∥rk∥2 ≤ ϵ or k = K + 1

13: Ŝ = Sk−1, and β̂ = βk−1 .

E.2. Compressive Sampling Optimal Pursuit

This subsection presents the algorithmic workflow of Compressive Sampling Optimal Pursuit (CoSaOP).

14
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Algorithm 2 CoSaOP: Compressive Sampling Optimal Pursuit
1: Input: Design matrix X, response vector y, sparsity level K, residual tolerance ϵ1, variation tolerance ϵ2, and maximum iteration

count Maxiter.
2: Output: Support set Ŝ and sparse solution β̂.
3: Initialize residual r1 = y, support set S0 = ∅, β0 = 0, H0 = 0n×n, and iteration counter k = 0.
4: repeat
5: Update counter: k = k + 1.
6: Compute the objective-based criterion (8) using rk,Hk−1 and identify the optimal 2K indexes Ω.
7: Update support set: Uk = Sk−1 ∪ Ω.
8: Update C1

k =
(
XT

Uk
XUk

)−1
.

9: Compute the objective-based criterion (10) using C1
k and identify the minimum K indexes Sk.

10: Update Ck =
(
XT

Sk
XSk

)−1
, and Hk = XSkCkX

T
Sk

. // To be used in step k + 1 as explained in Remark 3.7.
11: Solve least-squares problem using βk

Sk
= CkX

T
Sk

y.
12: Update βk = βk

Sk∪Sc
k

, where βk
Sc
k
= 0.

13: Update residual: rk+1 = y −Xβk.
14: until ∥rk+1∥2 ≤ ϵ1 or ||βk − βk−1|| ≤ ϵ2 or k = Maxiter
15: Ŝ = Sk, and β̂ = βk .

E.3. Optimal Pursuit-Best-Subset Selection

This subsection presents the algorithmic workflow of Optimal Pursuit-Best-Subset Selection (OP-BESS) along with its
sub-function, OP-Splicing.

Algorithm 3 OP-BESS (Main Function): Optimal Pursuit-Best-Subset Selection
1: Input: Design matrix X, response vector y, a positive integer kmax, and a threshold τ .
2: Output: Support set Ŝ, sparse solution β̂, and dual vector d̂.

3: Initialize S0 = {j :
∑p

i=1 I(|
xT
j y√
xT
j xj

| ≤ | xT
i y√
xT
i xi

| ≤ K}, I0 = (S0)c, β0
I0 = 0, and d0

S0 = 0.

4: Let C0 = (XT
S0XS0)−1. // To be used in the next step as explained in Remark 3.7.

5: Compute initial β0
S0 = C0X

⊤
S0y, and d0

I0 = X⊤
I0(y −Xβ0)/n.

6: repeat
7: Update (βm+1,dm+1, Sm+1, Im+1,Cm+1) = Splicing(βm,dm, Sm, Im,Cm, kmax, τ).
8: until (Sm+1, Im+1) = (Sm, Im)

9: Return: (Ŝ, β̂, d̂) = (Sm+1,βm+1,dm+1).

Algorithm 4 OP-Splicing (Sub-Function of OP-BESS): Update Model Parameters and Support Sets
1: Input: Current parameters obtained in step m: β, d, support sets S, I, Cm, maximum iterations kmax, and threshold τ .
2: Output: Updated parameters in iteration m+ 1: β̂, d̂, Ŝ, Î and Cm+1.
3: Initialize loss L0 = L = ∥y −Xβ∥22/(2n).
4: Compute the objective-based criteria ξj = (10) and ζj = (8) using Cm for j = 1, . . . , p.
5: for k = 1, 2, . . . , kmax do
6: Update support sets:

Sk = {j ∈ S :
∑
i∈S

I(ξj ≤ ξi) ≤ k},

Ik = {j ∈ I :
∑
i∈I

I(ζj ≤ ζi) ≤ k}.

7: Let S̃k = (S \ Sk) ∪ Ik, Ĩk = (I \ Ik) ∪ Sk, and C̃ =
(
XT

S̃k
XS̃k

)−1

. // To be used in the next step as explained in
Remark 3.7.

8: Solve least-squares problem for β̃S̃k
and compute d̃:

β̃S̃k
= C̃XT

S̃k
y, β̃Ĩk

= 0.

d̃ = XT
(
y −Xβ̃/n

)
.

9: Update loss: Ln(β̃) = ∥y −Xβ̃∥22/(2n).
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10: if L > Ln(β̃) then
11: Update L = Ln(β̃), Ŝ = S̃k, Î = Ĩk, β̂ = β̃, and Cm+1 = C̃.
12: end if
13: end for
14: if L0 − L < τ then
15: Return current parameters without updates.
16: end if

F. Proof of Lemma 4.4
Assumption. (Align with or is similar to those in (Tropp & Gilbert, 2007; Needell & Tropp, 2009; Zhu et al., 2020).)
1. β∗ is K-sparse.
2. X satisfies Restricted Isometry Property (RIP) as in (Needell & Tropp, 2009). For definition of restricted isometry
constant δr, please refer to (Needell & Tropp, 2009).
3. X is column-normalized, i.e., XT

j Xj = 1.

Proof. The elements selected in Ω can be viewed as the 2K largest entries (in magnitude) of the vector q = DXT rk, where
D is a diagonal matrix satisfying:

Djj =


1√

XT
j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1
XT

Sk−1

)
Xj

, j ∈ Sc
k−1,

1, j ∈ Sk−1.

Notation: XT
j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
Xj = XT

j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)2

Xj . When

j ∈ Sc
k−1, XT

j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)2

Xj > 0. Therefore, D is well-defined.

Let R = supp
(
βk−1 − β∗

)
. According to CoSaOP algorithm, the set R contains at most 2K nonzero elements. By the

definition of Ω, it holds that ∥q|R∥2 ≤ ∥q|Ω∥2. Then, we have∥∥q|R\Ω
∥∥
2
≤
∥∥q|Ω\R

∥∥
2
.

By (Needell & Tropp, 2009) (Proposition 3.1 and 3.2), for j ∈ Sc
k−1, it holds that

XT
j XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

Xj ≤
∥∥∥XT

Sk−1
Xj

∥∥∥
2

∥∥∥∥(XT
Sk−1

XSk−1

)−1

XT
Sk−1

Xj

∥∥∥∥
2

≤ δK+1 ·
1√

1− δK
.

Therefore,

1− δK+1√
1− δK

≤ XT
j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
Xj ≤ 1,

i.e.,

1 ≤ Djj ≤
1√

1− δK+1√
1−δK

,

which implies

∥D∥2 ≤ 1√
1− δK+1√

1−δK

. (21)
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Let D|Ω\R denote the submatrix of D restricted to the index set Ω\R, with dimensions |Ω\R| × |Ω\R|. Therefore, by
(Needell & Tropp, 2009) (Proposition 3.1 and Corollary 3.3) and (21), it holds that∥∥q|Ω\R

∥∥
2
=
∥∥∥D|Ω\R ·XT

Ω\Rr
k
∥∥∥
2

≤
∥∥D|Ω\R

∥∥
2

∥∥∥XT
Ω\Rr

k
∥∥∥
2

≤ 1√
1− δK+1√

1−δK

∥∥∥XT
Ω\R

(
X
(
β∗ − βk−1

)
+ ϵ
)∥∥∥

2

≤ 1√
1− δK+1√

1−δK

(∥∥∥XT
Ω\RX

(
β∗ − βk−1

)∥∥∥
2
+
∥∥∥XT

Ω\Rϵ
∥∥∥
2

)
≤ 1√

1− δK+1√
1−δK

(
δ4K

∥∥∥β∗ − βk−1
∥∥∥
2
+
√
1 + δ2K∥ϵ∥2

)
.

By the definition of the matrix D and Djj ≥ 1, for j ∈ Sc
k−1, it follows that for any u ∈ Rn,

∥Du∥22 =

n∑
j=1

D2
jju

2
j ≥

n∑
j=1

u2
j = ∥u∥22. (22)

Similarly, according to (Needell & Tropp, 2009) (Proposition 3.1 and Corollary 3.3) and (22),∥∥q|R\Ω
∥∥
2
=
∥∥∥D|R\Ω ·XT

R\Ωr
k
∥∥∥
2

≥
∥∥∥XT

R\Ωr
k
∥∥∥
2

=
∥∥∥XT

R\Ω

(
X
(
β∗ − βk−1

)
+ ϵ
)∥∥∥

2

≥
∥∥∥XT

R\ΩX
(
β∗ − βk−1

) ∣∣
R\Ω

∥∥∥
2
−
∥∥∥XT

R\ΩX
(
β∗ − βk−1

)
|Ω
∥∥∥
2
− ∥XT

R\Ωϵ∥

≥ (1− δ2K)
∥∥∥(β∗ − βk−1

) ∣∣
R\Ω

∥∥∥
2
− δ2K

∥∥∥β∗ − βk−1
∥∥∥
2
−
√

1 + δ2K∥ϵ∥2.

Based on the definition of R, it holds that
(
β∗ − βk−1

) ∣∣
R\Ω =

(
β∗ − βk−1

)
|Ωc . Therefore, we have

(1− δ2K)
∥∥∥(β∗ − βk−1

)
|Ωc

∥∥∥
2
− δ2K

∥∥∥β∗ − βk−1
∥∥∥
2
−
√

1 + δ2K∥ϵ∥2

≤ 1√
1− δK+1√

1−δK

(
δ4K

∥∥∥β∗ − βk−1
∥∥∥
2
+
√
1 + δ2K∥ϵ∥2

)
.

Then, it follows:

∥∥∥(β∗ − βk−1
)
|Ωc

∥∥∥
2
≤

 δ4K√
1−

δK+1√
1−δK

+ δ2K

∥∥∥β∗ − βk−1
∥∥∥
2
+

 √
1+δ2K√

1−
δK+1√
1−δK

+
√
1 + δ2K

 ∥ϵ∥2

1− δ2K
.

By assumption δK ≤ δK+1 ≤ δ2K ≤ δ4K ≤ 0.1, Lemma 4.4 is proved.

G. Proof of Lemma 4.5
Proof. The proof follows from Lemma 4.3 in (Needell & Tropp, 2009). Since supp(βk−1) ⊂ U , we find that∥∥β∗∣∣

Uc

∥∥
2
=
∥∥∥(β∗ − βk−1

) ∣∣
Uc

∥∥∥
2
≤
∥∥∥(β∗ − βk−1

) ∣∣
Ωc

∥∥∥
2
.
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H. Proof of Lemma 4.6
Proof. The proof follows from Lemma 4.4 in (Needell & Tropp, 2009).

I. Proof of Lemma 4.7
Assumption. (Following the three assumptions in Appendix F.)
Let ãSk

be defined as follows:

ãSk,j =

{
aj , if j ∈ Sk,

0, if j ∈ Sc
k,

and let ãK denote the best K-sparse approximation of a.

4. supp(β∗) ⊆ (Sk △ supp(ãK))
c, where A △ B = (A\B) ∪ (B\A).

Proof.

∥β∗ − ãSk
∥2 ≤ ∥β∗ − ãK∥2 + ∥ãK − ãSk

∥2 ,
∥β∗ − ãK∥2 ≤ ∥β∗ − a∥2 + ∥a− ãK∥2 ≤ 2 ∥β∗ − a∥2 ,
∥ãK − ãSk

∥2 =
∥∥ãsupp(ãK)△Sk

∥∥
2
≤ δ ∥β∗ − a∥2 (by Assumption 4).

Since ∥β∗ − a∥2 =
∥∥ãsupp(ãK)△Sk

∥∥
2
+
∥∥∥(β∗ − a)

∣∣
(supp(ãK)△Sk)

c

∥∥∥
2

≥
∥∥ãsupp(ãK)△Sk

∥∥
2
, when XU is orthogonal,

supp(ãK)△Sk = ∅, δ = 0. When the orthogonality of XU is weak, supp(ãK) ∩ Sk = ∅, δ = 1. Therefore,
∥β∗ − ãSk

∥2 ≤ (2 + δ) ∥β∗ − a∥2.

J. Proof of Lemma 4.8
Proof. The properties of least squares imply that ∥y −Xβk∥2 ≤ ∥y −XãSk

∥2. Therefore, it holds that∥∥∥X(β∗ − βk
)
+ ϵ
∥∥∥
2
≤ ∥X (β∗ − ãSk

) + ϵ∥2 ,

which leads to ∥∥∥X(β∗ − βk
)∥∥∥

2
− ∥ϵ∥2 ≤ ∥X (β∗ − ãSk

)∥2 + ∥ϵ∥2,

i.e., ∥∥∥X(β∗ − βk
)∥∥∥

2
≤ ∥X (β∗ − ãSk

)∥2 + 2∥ϵ∥2.

Suppose E = supp (β∗) ∪ Sk, |E| ≤ 2K, then∥∥∥X(β∗ − βk
)∥∥∥2

2
=
∥∥∥XE

(
β∗ − βk

)
|E
∥∥∥2
2

=
(
β∗ − βk

)T
|E XT

EXE

(
β∗ − βk

)
|E

≥ λmin

(
XT

EXE

) ∥∥∥β∗ − βk
∥∥∥2
2
.

Similarly, we have

∥X (β∗ − ãSk
)∥22 ≤ λmax

(
XT

EXE

)
∥β∗ − ãSk

∥22 .

18



Best Subset Selection: Optimal Pursuit for Feature Selection and Elimination

Therefore,

∥∥∥β∗ − βk
∥∥∥
2
≤

√
λmax

(
XT

EXE

)
λmin

(
XT

EXE

) ∥β∗ − ãSk
∥2 +

2√
λmin

(
XT

EXE

)∥ϵ∥2
≤
√

1 + δ2K
1− δ2K

∥β∗ − ãSk
∥2 +

2√
1− δ2K

∥ϵ∥2 (by Proposition 3.1 in (Needell & Tropp, 2009))

≤ 1.106 ∥β∗ − ãSk
∥2 + 2.109∥ϵ∥2.

K. Proof of Theorem 4.9
Proof. Based on Lemma 4.4-4.8, we can derive the linear convergence rate of CoSaOP as follows:∥∥∥β∗ − βk

∥∥∥
2
≤ 1.106 ∥β∗ − ãSk

∥2 + 2.109∥ϵ∥2 (Lemma 4.8)

≤ 1.106(2 + δ) ∥β∗ − a∥2 + 2.109∥ϵ∥2 (Lemma 4.7)
≤ 1.106(2 + δ) (1.112 ∥β∗|Uc∥2 + 1.06∥ϵ∥2) + 2.109∥ϵ∥2 (Lemma 4.6)

≤ 1.106(2 + δ)
(
1.112

∥∥∥(β∗ − βk−1
) ∣∣

Ωc

∥∥∥
2
+ 1.06∥ϵ∥2

)
+ 2.109∥ϵ∥2 (Lemma 4.5)

= 1.23(2 + δ)
∥∥∥(β∗ − βk−1

) ∣∣
Ωc

∥∥∥
2
+ (2.109 + 1.173(2 + δ)∥ϵ∥2)

≤ 1.23(2 + δ)
(
0.2353

∥∥∥β∗ − βk−1
∥∥∥
2
+ 2.4∥ϵ∥2

)
+ (2.109 + 1.173(2 + δ)∥ϵ∥2) (Lemma 4.4)

≤ 0.869
∥∥∥β∗ − βk−1

∥∥∥
2
+ 14.482∥ϵ∥2.

L. Proof of Theorem 4.10
Proof. When i ∈ S, ρ =

|XT
i Xj |

||Xi||2||Xj ||2 , we have∥∥∥(I−XS

(
XT

SXS

)−1
XT

S

)
Xj

∥∥∥
2
≤
√

1− ρ||Xj ||2. (23)

Hence, for classical correlation-based selection criterion (3),

|rkTXj |
||Xj ||2

=
rk

T
(
I−XS

(
XT

SXS

)−1
XT

S

)
Xj

||Xj ||2

≤ ||rk||2||Xj ||2
√

1− ρ2

||Xj ||2
=
√
1− ρ2||rk||2.

While for proposed criterion,(
rk

T
Xj

)2
XT

j

(
I−XS

(
XT

SXS

)−1
XT

S

)
Xj

=

(
rk

T
Xj

)2
XT

j

(
I−XS

(
XT

SXS

)−1
XT

S

)2
Xj

≥ 1

1− ρ2

(
rk

T
Xj

||Xj ||2

)2

. (24)
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M. Proof of Theorem 4.11
Proof. The proof of Theorem 4.11 (1) and (2) will be given below.

(1) Since

objective-based criterion (10) = yTXS

(
XT

SXS

)−1
XT

Sy

= −||y −XSβ
∣∣
S
||22 + ||y||22 (25)

≤ ||y||22,

the upper bound of the objective-based criterion (10) is ||y||22.

Now consider that
y = Xβ∗ + ϵ = XS∗β∗∣∣

S∗ + ϵ. (26)

If S∗ ⊂ S, then for all jm ∈ S\S∗, S∗ ⊂ S\{jm}. By (25),

objective-based criterion (10) for jm = yTXS\{jm}

(
XT

S\{jm}XS\{jm}

)−1

XT
S\{jm}y

= −||y −XS\{jm}β
∣∣
S\{jm}||

2
2 + ||y||22

≥ −||y −XS∗β∗∣∣
S∗ ||22 + ||y||22

= ||y||22 − ||ϵ||22.

Hence, for all jm ∈ S\S∗, the lower bound of the objective-based criterion (10) for jm is ||y||22 − ||ϵ||22.

In noiseless scenario, for all jm ∈ S\S∗, the objective-based criterion (10) for jm achieves the upper bound. Hence,

jm ∈ argmaxj∈S objective-based criterion (10).

(2) Consider a simple counterexample where the T-statistic fails in the presence of highly correlated features.

Let

X =

0.2 0 0
0 0.8 0.9
0 0.1 0.1

 .

and y = (0.2, 0.85, 0.1)
T . Consider the best subset selection with K = 2. The ground truth is as follows:

Table 2. A simple counterexample.

Subset Feature 1 & 2 Feature 2 & 3 Feature 1 & 3

Residual Norm 0.0062 0.2 0.0055
Best Subset No No Yes

Hence, when K = 2, feature X1 and X3 are the true features, and feature X2 is the spurious feature.

However, given S = {1, 2, 3}, the classic criterion (4) (
√

XT
i Xi |βi|) for the features are: T1 = 0.2, T2 = 0.403, T3 =

0.453. By minimizing classic criterion (4), feature X1 is eliminated.

The core issue lies in the fact that the spurious feature X2 is highly correlated with the important feature X3 in the true
subset. Since classic criterion (4) considers only the individual significance of features while ignoring their interactions, the
true feature X1 is erroneously discarded by the classic criterion (4).

However, for objective-based criterion (10), it will always identify Xp by Theorem 4.2 in the paper. The proof is
complete.
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N. Explanations on Theorem 4.10 and Theorem 4.11
Explanations on Theorem 4.10:

Theorem 4.10 demonstrates that if features i and j in the true subset are correlated (violating the RIP condition), inequality
(11) implies that as their correlation ρ approaches 1, feature j becomes increasingly unidentifiable under traditional
correlation-based criterion (3) once feature i has been selected. In contrast, (12) shows that when ρ is large, since the
first term’s coefficient in RHS 1/(1− ρ2) is large, the proposed criterion (8) exists a stable lower bound. The larger the
correlation ρ, the stronger discrepancy between traditional correlation-based criterion (3) and proposed criterion (8).
This significantly mitigates the impact of feature correlations on identifying j, making true features more reliably detectable.

Explanations on Theorem 4.11:

(1) The upper bound of the objective-based criterion (10) is ||y||22. Theorem 4.11 (1) shows that when the current subset S
contains the true subset S∗, all features outside the true subset have a stable lower bound for their criterion (10), which is
related to noise level. When the noise is relatively weak compared to the signal, this lower bound becomes larger, indicating
that features outside the true subset are more easily identified by maximizing criterion (10) (ideally, larger values of criterion
(10) for irrelevant features are preferred). In the noiseless case, all features outside the true subset can be identified by
maximizing criterion (10). This result does not rely on any assumptions about feature correlations, and therefore remains
valid even in scenarios with highly correlated features.

In Figure 3, all enhanced algorithms that incorporate the feature elimination criterion (10) show a clear improvement in
performance as the SNR increases. This is also consistent with the theoretical results.

(2) In the best subset selection problem, a pseudo-correlation phenomenon may arise. Pseudo-correlated features refer to
those features Xp that are highly correlated with critical features Xi in the true subset S∗, yet Xp itself does not belong to
S∗. Once such features are selected, they are difficult to detect and remove by classical T-statistics based feature elimination
criterion (4) but may be reliably identified by the proposed criterion (10). See Appendix M for example.

Theorem 4.10 and 4.11 demonstrate that our proposed criterion (8) effectively identifies truly important features even when
they are strongly correlated, and criterion (10) reliably removes pseudo-correlated features that mimic true features. These
theoretical insights are further validated by the experimental results in Appendix P, which confirm the superior performance
of our criteria in high-correlation scenarios.

O. Experiment on Computational Time
In this section, we report the computational time of each algorithm over 500 independent runs. While the new criteria
introduce additional multiplication operations, resulting in slightly higher computational time compare to the original criteria
2, it remains within the same order of magnitude, as shown in Figure 5.

Figure 5. Running time for each algorithm over 500 independent runs.

2In Figure 5, CoSaMP requires more time than CoSaOP, since in this sparse recovery scenario, although CoSaOP performs additional
matrix multiplications in a single iteration, it generally converges to the stopping criterion within just a few iterations. In contrast, CoSaMP
requires significantly more iterations to converge, often reaching the maximum number of iterations before stopping, which results in a
longer runtime.
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P. Experiment with High-dimensional Correlated Features and Small Noisy Samples
In this experiment, we conduct additional comparisons of the algorithm under extreme scenarios:

(a) Small-sample rate and high-dimensional vectors: p = 2000, with n/p varying from 0.05 to 0.1.

(b) High noise: SNR3 varies from 5 to 15.

(c) Highly correlated features (RIP violated): The covariance matrix of the row vectors of X follows a Toeplitz structure,
where the correlation between position i, j is corrij = ρ|i−j|, with ρ = 0.7.

We generated sparse vectors with a sparsity level K = 10 for testing. Specifically, the sparse signal is block-sparse,
comprising two blocks of five adjacent non-zero entries each. Combined with the Toeplitz covariance structure (where
features closer in position exhibit higher correlations), this configuration ensures:

(1) High correlation features within the true subset (as stated in Theorem 4.10).

(2) Many pseudo-features outside the true subset highly correlated with those in the true subset (as in Theorem 4.11).

Phase transition diagrams illustrate the combined impact of varying sampling rates and SNR on algorithm performance (using
NMSE as evaluation metric), where larger blue areas indicate stronger algorithm performance. The experimental results
show that all algorithms enhanced with the new criteria exhibit significant improvements in phase transition capabilities
compared to their original versions. This not only demonstrates the robust advantages of the new criteria in high-dimensional,
low-SNR extreme scenarios but also validates the theories established in Theorem 4.10 and 4.11 through their marked
improvements under high feature correlations.

Figure 6. Phase transition with correlated features.

Q. Reasons Why CoSaMP Fails in Sparse Regression
The main algorithmic flow of CoSaMP is as follows: it iteratively (1) selects 2K features, (2) solves a least squares problem
on a large subset, and (3) prunes to K coefficients. However, high feature correlation can cause significant errors in the final
estimate from steps (2) and (3). We visualize the impact of feature correlation on CoSaMP’s iterative process here.

3SNR = 20 log10 ||Xβ||/||ϵ||.
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(a) CoSaMP fails when features are highly correlated (b) CoSaMP succeeds when features are weakly correlated

Figure 7. Reasons why CoSaMP fails in sparse regression.

As shown in Figure 7a, on a regression dataset (Boston Housing) with highly correlated features, the pruned support set’s
direct coefficients (column 2) differ significantly from those after least squares estimation (column 3), with substantial
residuals. CoSaMP, lacking least squares refinement, fails as the residuals grow with each iteration due to high feature
correlation. This is evident in the residual curve evolution in Figure 8a.

(a) Residual evolution of CoSaMP for highly-correlated features (b) Residual evolution of CoSaMP for weakly-correlated features

Figure 8. Residual evolution of CoSaMP with different feature correlation cases.

In contrast, when features are weakly correlated (as shown in Figure 7b), the coefficients and residuals after pruning the
large support set (column 2) and performing least squares (column 3) are nearly identical, leading to algorithm convergence,
as shown in Figure 8b.

Therefore, CoSaMP is less suitable for scenarios where features are highly correlated or when p is close to 3K. The
theoretical properties of this algorithm, as established in (Needell & Tropp, 2009), are also based on the assumption of weak
feature correlation.

However, CoSaMP performs well in compressed sensing scenarios, particularly when using NMSE as the evaluation metric
for audio data, where it can almost achieve the best results among classical algorithms.

R. Cross-Validation Performance in Prediction
We evaluated the best subset selection (BSS) algorithm’s predictive performance on the six datasets using 5-fold cross-
validation, where 4 folds were for training and 1 for validation. The prediction error is defined as:

errorpred =
1

n

n∑
i=1

(yi − ŷi)
2. (27)

The cross-validation score, averaged across the 5 folds, is shown in Figure 9. The enhanced algorithms demonstrate superior
generalization and highlighting the advantage of the new criteria in selecting key features for predictive tasks.
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Figure 9. Rows 1–3 present the meta-gains in cross-validation performance in prediction (errorpred, smaller is better) for the Boston
Housing, California Housing, Superconductivity datasets, House 16H, Prostate.v8.egenes, and Spectra datasets, respectively, across three
algorithms as the number of selected features K varies.

S. The Optimal Gradient Pursuit Criteria
The Optimal Gradient Pursuit Criteria:

j∗ = argmaxj∈Sc

||XT
Sk−1

rk||22
::::::::::

+
(
rk

T
Xj

)2
||XSk−1

XT
Sk−1

rk
::::::::::::

+XjXT
j r

k||2
, (28)

where the underlined part only needs to be computed once and its overall computational complexity is at the same
magnitude as the correlation-based selection criterion in Gradient Pursuit. The idea of optimal gradient pursuit can be
illustrated in Figure 10.

Figure 10. The idea of Optimal Gradient Pursuit.

Remark S.1. The criterion (28) is the OGP version of the OP feature selection criterion (8). Similarly, by applying
techniques analogous to those in the Appendix T, we can derive the OGP version of the feature elimination criterion (10),
which we omit here for brevity.

24



Best Subset Selection: Optimal Pursuit for Feature Selection and Elimination

Remark S.2. The criterion (28) does not repeatedly select features that have already been chosen. In practice, if adding a
new feature at every iteration is not desired, one may consider using

j∗ = argmaxj



||XT
Sk−1

rk||22
:::::::::

+
(
rk

T
Xj

)2

||XSk−1
XT

Sk−1
rk

:::::::::::
+XjXT

j rk||2
, j ∈ Sc

||XT
Sk−1

rk||22
:::::::::

||XSk−1
XT

Sk−1
rk

:::::::::::
||2

+ τ. j ∈ S.

(29)

Here, τ is a chosen threshold. In other words, when the effect of selecting a new feature is not sufficiently significant, the
algorithm can instead continue performing gradient updates on the current support set S.
Remark S.3. Naturally, the algorithms discussed in the paper have corresponding OGP-accelerated versions.
Remark S.4. The conjugate gradient pursuit and other direction pursuit methods mentioned in (Blumensath & Davies, 2008)
can also be updated using the idea of Optimal Pursuit.

T. Derivation of Optimal Gradient Pursuit Criteria
Proof. Considering the algorithmic procedure of gradient pursuit in (Blumensath & Davies, 2008), it is necessary to take
the effect of gradient updates into account, which leads to the derivation of the Optimal Gradient Pursuit criterion. The
gradient on the subset S = Sk−1 ∪ {j} is:

gS = −XT
Sr

k. (30)

The exact line search step size along the gradient direction on the support set S is given by:

αk =
gT
SgS

gT
SX

T
SXSgS

. (31)

Hence, considering the gradient update into account, we have:

rk+1 = y −XS

(
βk−1

∣∣
S
− αkgS

)
= rk + αkXSgS .

And rk+1 ⊥ XSgS since

rk+1TXSgS = rk
T
XSgS + αkgT

SX
T
SXSgS

= −gT
SgS + αkgT

SX
T
SXSgS

= 0.

Hence, ||rk||22 − ||rk+1||22 = ||αkXSgS ||22. The goal is to maximize the gradient update gains:

||αkXSgS ||2 =
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k||2
.

The underlined part only needs to be computed once. The proof is complete.

25



Best Subset Selection: Optimal Pursuit for Feature Selection and Elimination

U. Theoretical Results and Experiments of Optimal Gradient Pursuit
The algorithmic procedure of feature selection algorithm guided by criterion (28): Optimal Gradient Pursuit, follows the
similar structure as gradient pursuit in (Blumensath & Davies, 2008), with the selection criterion in gradient pursuit being
meta-substituted by criterion (28). We first show that Optimal Gradient Pursuit possesses similarly strong theoretical
properties as Gradient Pursuit. The following theorem corresponds to Theorem 3 in (Blumensath & Davies, 2008).

Theorem U.1. There exists a constant c < 1, which only depends on X, such that the residual calculated with Optimal
Gradient Pursuit decays as ∥∥rk∥∥2

2
≤ c

∥∥rk−1
∥∥2
2
. (32)

Proof. For the same rk−1, the residual at step k of OGP and GP satisfies:∥∥rkOGP

∥∥2
2
≤
∥∥rkGP

∥∥2
2

by the derivation of OGP criterion (28) in Appendix T. By Theorem 3 in (Blumensath & Davies, 2008),∥∥rkGP

∥∥2
2
≤ c

∥∥rk−1
∥∥2
2
.

The derivation of this theorem is independent of the historical iteration steps. Hence for Optimal Gradient Pursuit,∥∥rk∥∥2
2
≤ c

∥∥rk−1
∥∥2
2
.

The proof is complete.

Experiment on Residual Convergence:

Experimental result on residual convergence of Optimal Gradient Pursuit and Gradient Pursuit is shown in Figure 11.
Optimal Gradient Pursuit exhibits better residual convergence compared to Gradient Pursuit on different test cases. This is
also consistent with the results presented in the Appendix T and Theorem U.1.

Figure 11. Residual convergence of Optimal Gradient Pursuit and Gradient Pursuit.

Experiment on Computation Time:

We further compared the runtime of GP and OGP, as shown in Figure 12.

Both methods achieve an order-of-magnitude speedup compared to the least squares-based subset selection approach. For
ultra-high-dimensional features, OGP provides an efficient acceleration scheme for the optimal pursuit strategy. Specifically,
since gradients can be easily computed for general functions, the OGP method can be extended to general objective functions,
offering a promising direction for further expanding the applicability of optimal pursuit in future research.
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Figure 12. Running time for each algorithm over 500 independent runs.

V. Optimal Pursuit for Column Subset Selection
Optimal Pursuit Criteria for Column Subset Selection:

We can follow the procedure in Section 3 to construct the feature selection and elimination subproblems for column subset
selection. By solving them using approaches as those in Appendices A–C, we obtain the Optimal Pursuit feature selection
and elimination criteria for the column subset selection problem as follows:

Selection: argmax
j∈Sc

k−1

||RkTXj ||2

XT
j

(
I−XSk−1

(
XT

Sk−1
XSk−1

)−1

XT
Sk−1

)
Xj

.

Elimination: argmax
j∈Sk−1

trace

(
XTXSk−1

(
I− eje

T
j

)(
Ck−1 −

Ck−1eje
T
j Ck−1

eTj Ck−1ej

)(
I− eje

T
j

)
XT

Sk−1
X

)
.

where Rk = X − XSk−1
Bk−1 serves as the current residual. The definitions of ej and Ck−1 are the same as those in

Theorem 3.11.

Classic Criteria for Column Subset Selection:

The classic criteria can also be similarly generalized to column subset selection problem by constructing subproblems as
(P0) and (Q0) in Section 2. Specifically:

Selection: argmax
j∈Sc

k−1

||RkTXj ||2

XT
j Xj

.

Elimination: argmin
j∈Sk−1

||Xj ||22 · ||Bk−1[i, :]||22.

where Bk−1[i, :] is the i-th row of Bk−1, and j (in elimination) represents the i-th element of Sk−1 for i = 1, 2, . . . , |Sk−1|.
Remark V.1. It is important to note that the results discussed in the main text remain valid for the criteria on column subset
selection problem. The computational complexity of the Optimal Pursuit feature selection and elimination criteria is
of the same order as that of the classical criteria.

Experiment on Column Subset Selection:

The experiment setting is:
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• Datasets: We conduct experiments on eight standard grayscale 256×256 image datasets compiled from two sources 4.

• Baselines: We select baseline algorithm for CSS - the leverage score method. This approach relies on the right singular
vectors from SVD decomposition; the more singular vectors used, the better the selection performance, but at the cost
of more redundant SVD computations.

• Evaluation Metrics: We use ∥X−XSB∥F /∥X∥F as the evaluation metrics.

The experimental results is shown in Table 3. In the table, SVD-128/256 refers to CSS based on leverage scores computed
using 128/256 singular vectors. In the last column of the table, we provide the bound given by the optimal rank-K
approximation from SVD.

Table 3. Column Subset Selection. ||X − XSB||F /||X||F are shown below, with the best in bold and the second-best underlined.
SVD-128/256 refers to CSS based on leverage scores computed using 128/256 singular vectors (the more singular vectors used, the better
the selection performance, but at the cost of more redundant SVD computations.). In the last column of the table, we provide the bound
given by the optimal rank-K approximation from SVD.

Dataset K OMP OP CoSaMP CoSaOP (A)BESS OP-
(A)BESS

Leverage Score
(SVD-128)

Leverage Score
(SVD-256)

Bound by
SVD

Mornach

3 0.3881 0.3794 0.3945 0.3979 0.3884 0.3743 0.4262 0.4400 0.3330
5 0.3521 0.3422 0.4193 0.3820 0.3662 0.3399 0.3966 0.3814 0.2971
10 0.2953 0.2758 0.4246 0.3275 0.3436 0.2771 0.3459 0.3079 0.2268
15 0.2466 0.2330 0.3951 0.2468 0.3285 0.2318 0.2845 0.2770 0.1804
20 0.2074 0.1999 0.3781 0.2150 0.2769 0.1981 0.2648 0.2419 0.1495

Barbara

3 0.2823 0.2520 0.3256 0.2571 0.2831 0.2505 0.3284 0.2981 0.2296
5 0.2403 0.2173 0.3331 0.2303 0.2560 0.2179 0.3146 0.2610 0.1882
10 0.1831 0.1743 0.3152 0.1896 0.2437 0.1730 0.2622 0.2197 0.1431
15 0.1577 0.1458 0.3023 0.1576 0.2306 0.1468 0.2321 0.1847 0.1147
20 0.1337 0.1273 0.2871 0.1405 0.2242 0.1263 0.2156 0.1585 0.0983

Boats

3 0.2589 0.2453 0.3333 0.2589 0.2741 0.2435 0.3139 0.2995 0.2077
5 0.2219 0.2062 0.3149 0.2176 0.2676 0.2045 0.2725 0.2640 0.1688
10 0.1602 0.1575 0.2961 0.1747 0.2327 0.1578 0.2159 0.2004 0.1293
15 0.1336 0.1330 0.2779 0.1527 0.2187 0.1311 0.2015 0.1625 0.1050
20 0.1148 0.1148 0.2460 0.1262 0.1549 0.1131 0.1810 0.1436 0.0878

House

3 0.1983 0.1940 0.2658 0.2072 0.2097 0.1940 0.2418 0.2014 0.1677
5 0.1671 0.1618 0.2581 0.1988 0.2020 0.1617 0.2311 0.1835 0.1378
10 0.1286 0.1219 0.2564 0.1386 0.1878 0.1195 0.1927 0.1552 0.0977
15 0.1019 0.0969 0.2067 0.1086 0.1793 0.0963 0.1502 0.1331 0.0762
20 0.0785 0.0785 0.2331 0.0968 0.1740 0.0774 0.1332 0.1158 0.0606

Lena

3 0.2629 0.2572 0.2936 0.2951 0.2675 0.2575 0.3748 0.3722 0.2368
5 0.2328 0.2234 0.2835 0.2430 0.2616 0.2255 0.3511 0.2977 0.1987
10 0.1830 0.1731 0.2592 0.1925 0.2313 0.1695 0.3362 0.2330 0.1414
15 0.1457 0.1445 0.2430 0.1496 0.1821 0.1592 0.3147 0.1795 0.1170
20 0.1301 0.1257 0.2306 0.1321 0.1867 0.1256 0.3072 0.1710 0.0986

Parrot

3 0.2460 0.2383 0.2953 0.2634 0.2524 0.2411 0.4502 0.3177 0.2000
5 0.2109 0.2049 0.2914 0.1978 0.2498 0.1965 0.3146 0.2546 0.1660
10 0.1598 0.1547 0.2645 0.1609 0.2452 0.1502 0.2682 0.2163 0.1237
15 0.1377 0.1239 0.2551 0.1362 0.2334 0.1239 0.2606 0.1657 0.0980
20 0.1163 0.1054 0.2485 0.1239 0.2213 0.1062 0.2186 0.1507 0.0812

Cameraman

3 0.2749 0.2767 0.3727 0.2825 0.3041 0.2747 0.4385 0.5908 0.2433
5 0.2456 0.2443 0.3684 0.2567 0.3019 0.2449 0.3730 0.3494 0.2091
10 0.2017 0.1953 0.3596 0.2282 0.2958 0.1945 0.3298 0.2348 0.1639
15 0.1729 0.1691 0.3527 0.1799 0.1835 0.1680 0.3035 0.2231 0.1347
20 0.1548 0.1488 0.3449 0.1732 0.1805 0.1480 0.2922 0.1966 0.1143

Foreman

3 0.1923 0.1911 0.2751 0.2154 0.2203 0.1892 0.2870 0.2363 0.1465
5 0.1473 0.1457 0.2675 0.2183 0.2190 0.1438 0.2578 0.1683 0.1154
10 0.1060 0.1000 0.2564 0.1140 0.2059 0.1017 0.2273 0.1419 0.0771
15 0.0792 0.0805 0.2484 0.1009 0.1966 0.0792 0.2221 0.1293 0.0593
20 0.0669 0.0667 0.2463 0.1025 0.1874 0.0658 0.2175 0.0866 0.0501

4Available at http://dsp.rice.edu/software/DAMP-toolbox and http://see.xidian.edu.cn/faculty/
wsdong/NLR_Exps.htm
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The experimental results show that the enhanced algorithm achieves a significantly better performance than the original
algorithm in the CSS task. The original algorithm generally outperforms the leverage score methods (SVD-128), while
the enhanced algorithm consistently surpasses the leverage score method (SVD-256).

Notably, OP-(A)BESS achieves SOTA performance on this task, with approximation errors approaching the optimal
bound given by SVD. This further highlights the substantial advantage of the new criteria on the CSS task.

W. Complex Signal Processing
In this task, we tested a 128-dimensional complex signal with 20 frequency components, applying the BSS algorithm
to estimate the frequency components on an 2× oversampled Fourier domain. We used two evaluation metrics: cosine
similarity (Corr) to assess the accuracy of amplitude recovery (higher is better) and Complementary Cumulative Distribution
Function (CCDF) to measure frequency estimation error probability (lower is better).

By the high correlation between nearby frequency components, this also constitutes a test scenario with highly correlated
features. To evaluate algorithm performance, the target signal is constructed with closely spaced frequency components,
resulting in high correlation among features in the true subset. The frequency domain visualization, radar plot, and the
performance of these two metrics are shown in Figure 13.

Figure 13. Comparison of Optimal Pursuit enhanced algorithms and classic algorithms on complex signal processing.

From the experimental results, it is evident that the enhanced algorithm achieves significantly lower frequency estimation
error probability and higher correlation in the line spectrum estimation task. Notably, OP-(A)BESS and CoSaOP achieve
perfect estimation in this task.

Since features in the line spectrum estimation problem are also highly correlated, these results further validate the substantial
advantage of our proposed criteria in scenarios with high feature correlation.
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