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ABSTRACT
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to make the changes more vis-
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slightly changing plot size, we
do not write anything.

In Multi-Task Learning, tasks may compete and limit the performance achieved1

on each other rather than guiding the optimization trajectory to a common solu-2

tion, superior to its single-task counterparts. There is often not a single solution3

that is optimal for all tasks, leading practitioners to balance tradeoffs between4

tasks’ performance, and to resort to optimality in the Pareto sense. Current Multi-5

Task Learning methodologies either completely neglect this aspect of functional6

diversity, and produce one solution in the Pareto Front predefined by their op-7

timization schemes, or produce diverse but discrete solutions, each requiring a8

separate training run. In this paper, we conjecture that there exist Pareto Sub-9

spaces, i.e., weight subspaces where multiple optimal functional solutions lie. We10

propose Pareto Manifold Learning, an ensembling method in weight space that is11

able to discover such a parameterization and produces a continuous Pareto Front12

in a single training run, allowing practitioners to modulate the performance on13

each task during inference on the fly. We validate the proposed method on a di-14

verse set of multi-task learning benchmarks, ranging from image classification to15

tabular datasets and scene understanding, and show that Pareto Manifold Learning16

outperforms state-of-the-art algorithms.17

1 INTRODUCTION18

In Multi-Task Learning (MTL), multiple tasks are learned concurrently within a single model, striv-19

ing towards infusing inductive bias that will help outperform the single-task baselines. Apart from20

the promise of superior performance and some theoretical benefits (Ruder, 2017), such as generaliza-21

tion properties for the learned representation, modeling multiple tasks jointly has practical benefits22

as well, e.g., lower inference times and memory requirements. However, building machine learning23

models presents a multifaceted host of decisions for multiple and often competing objectives, such24

as model complexity, runtime and generalization. Conflicts arise since optimizing for one metric of-25

ten leads to the deterioration of other(s). A single solution satisfying optimally all objectives rarely26

exists and practitioners must balance the inherent trade-offs.27

In contrary to single-task learning, where one metric governs the comparison between methods (e.g.,28

top-1 accuracy in ImageNet), multiple models can be optimal in Multi-Task Learning; e.g., model29

X yields superior performance on taskA compared to model Y, but the reverse holds true for task B;30

thus, there is not a single better model among the two. This notion of tradeoffs is formally defined31

as Pareto optimality. Intuitively, improvement on an individual task performance can come only at32

the expense of another task. However, there exists no framework addressing the need for efficient33

construction of the Pareto Front, i.e., the set of all Pareto optimal solutions.34

Recent methods in Multi-Task Learning casted the problem in the lens of multi-objective optimiza-35

tion and introduced the concept of Pareto optimality, resulting in different mechanisms for comput-36

ing the descent direction for the shared parameters. Specifically, Sener & Koltun (2018) produce a37

single solution that lies on the Pareto Front. As an optimization scheme, however, it is biased to-38

wards the task with the smallest gradient magnitude, as argued in Liu et al. (2020). Lin et al. (2019)39

expand this idea and, by imposing additional constraints on the objective space to produce multiple40

solutions on the Pareto Front, each corresponding to a different user-specified tradeoff. Finally, the41

work by Ma et al. (2020) proposes an orthogonal approach that can be applied after training and42

starts with a discrete solution set and produces a continuous set (in weight space) around each so-43
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Figure 1: Illustrative example following Yu et al. (2020); Navon et al. (2022). We present the
optimization trajectories in loss space starting from different initializations (black bullets) leading to
final points (crosses). Color reflects the iteration number when the corresponding value is achieved.
To highlight that our method (PML) deals in pairs of models, we use blue and red to differentiate
them. Dashed lines show intermediate results of the discovered subspace. While baselines may not
reach the Pareto Front or display bias towards specific solutions, PML discovers the entire Pareto
Front in a single run and shows superior functional diversity.

lution, while the overall Pareto Front is continuous only in objective space as the union of the local44

(weight-space continuous) Pareto Fronts. As a consequence, the memory requirements grow linearly45

with the number of models stored. Navon et al. (2021); Lin et al. (2021) use hypernetworks to pro-46

duce a Pareto Front in a single training run, but this approach has limited scalability and introduces47

additional design choices. [All reviewers]: Added a short
clarification about related
work. More details are also
provided in ”Related work”
section.

48

In this paper, we conjecture that we can actually produce a subspace with multiple Pareto stationary49

points in the Multi-Task Learning setting with the hypothesis that local optima (produced by50

different runs or sharing training steps) can be found in close proximity and are connected by51

simple paths. This is motivated by the recent advancements in single task machine learning that52

have explored the geometry of the loss landscape and shown experimentally that local optima are53

connected by simple paths, even linear ones in some cases (Wortsman et al., 2021; Garipov et al.,54

2018; Frankle et al., 2020; Draxler et al., 2018). We assume that, when the problem has multiple55

objectives, it acquires a new dimension relating to the number of tasks. Concretely, there are56

multiple loss landscapes and a solution that satisfies users’ performance requirements must lie in57

the intersection of low loss valleys (for all tasks).58

Building upon our conjecture, we develop a novel method, Pareto Manifold Learning, which casts59

Multi-Task problems as learning an ensemble of single-task predictors by interpolating among (en-60

semble) members during training. By operating in the convex hull of the members’ weight space,61

each single-task model infuses and benefits from representational knowledge to and from the other62

members. During training, the losses are weighted in tandem with the interpolation, i.e., a mono-63

tonic relationship is imposed between the degree of a single-task predictor participation and the64

weight of the corresponding task loss. Consequently, the ensemble as a whole engenders a (weight)65

subspace that explicitly encodes tradeoffs and results in a continuous parameterization of the Pareto66

Front. We identify challenges in guiding the ensemble to such subspaces, designated Pareto sub-67

spaces, and propose solutions regarding balancing the loss contributions, and regularizing the Pareto68

properties of the subspaces and adapting the interpolation sampling distribution.69

Experimental results validate that the proposed method is able to discover Pareto Subspaces, and out-70

performs baselines on multiple benchmarks. Our training scheme offers two main advantages. First,71

enforcing low loss for all tasks on a linear subspace implicitly penalizes curvature, which has been72

linked to generalization (Chaudhari et al., 2017), benefitting all tasks’ performance. Second, the al-73

gorithm produces a subspace of Pareto Optimal solutions, rather than a single model, enabling prac-74

titioners to handpick during inference the solution that offers the tradeoff that best suits their needs.75

2 RELATED WORK76

Multi-Task Learning. Learning multiple tasks in the Deep Learning setting (Ruder, 2017; Craw-77

shaw, 2020) is usually approached by architectural methodologies (Misra et al., 2016; Ruder et al.,78

2019), where the architectural modules are combined in several layers to govern the joint repre-79

sentation learning, or optimization approaches (Cipolla et al., 2018; Chen et al., 2018), where the80

architecture is standardized to be an encoder-decoder(s), for learning the joint and task-specific rep-81
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resentations, respectively, and the focus shifts to the descent direction for the shared parameters.82

We focus on the more general track of optimization methodologies fixing the architectural struc-83

ture to Shared-Bottom (Caruana, 1997). The various approaches focus on finding a suitable descent84

direction for the shared parameters. The optimization methods can be broadly categorized into loss-85

balancing and gradient-balancing (Liu et al., 2020). For the former, the goal is to compute an86

appropriate weighting scheme for the losses, e.g., the losses can be weighted via task-dependent ho-87

moscedastic uncertainty (Cipolla et al., 2018), by enforcing task gradient magnitudes to have close88

norms (Chen et al., 2018). [All reviewers]: Removed dis-
cussion about Sener & Koltun
(2018) from this point, since
the paper is also discussed in
the introduction and the next
paragraph.

The latter class of methodologies manipulate the gradients so that they89

satisfy certain conditions; projecting the gradient of a (random) task on the normal plane of another90

so that gradient conflict is avoided (Yu et al., 2020), enforcing the common descent direction to91

have equal projections for all task gradients (Liu et al., 2020), casting the gradient combination as a92

bargaining game (Navon et al., 2022).93

Multi-Task Learning for Pareto Optimality. The authors in (Sener & Koltun, 2018) were the first94

to view the search for a common descent direction under the Pareto optimality prism and employ95

the Multiple Gradient Descent Algorithm (MGDA) (Désidéri, 2012) in the Deep Learning context.96

However. MGDA did not account for task preferences and the solutions yielded for various initial-97

izations in a synthetic example resulted in similar points in the Pareto Front (Lin et al., 2019). By98

solving a slightly different formulation of the multi-objective problem, they are able to systemati-99

cally introduce task trade-offs and produce a discrete Pareto Front. However, this approach requires100

as many training runs as the stated preference combinations and the optimization process for each101

training step of each run introduces a non-negligible overhead. The work in (Ma et al., 2020) pro-102

poses an orthogonal approach for Pareto stationary points; after a model is fitted with any Multi-Task103

Learning method and has converged to a point (seed) in parameter space, a separate phase seeks104

other Pareto stationary points in the vicinity of the seed. The convex hull of these points is guar-105

anteed to lie in the Pareto Front. But training still needs to occur for every seed point, the separate106

phase overhead grows linearly with the number of additional models, and the Pareto Front is not107

continuous across seed points in parameter space. Navon et al. (2021) and Lin et al. (2021) employ108

hypernetworks to continuously approximate the Pareto Front in a single run, which introduces ad-109

ditional design choices. Ruchte & Grabocka (2021) address the scalability issues of hypernetworks110

by augmenting the feature space with the preference vector. Raychaudhuri et al. (2022) employ a111

second hypernetwork to also modulate the architecture of the target network addressing. [All reviewers]: Added prior
work.

112

Ensemble Learning and Mode Connectivity. Apart from Multi-Task Learning, our algorithm is113

methodologically tied to prior work in the geometry of the neural network optimization landscapes.114

The authors in (Garipov et al., 2018; Draxler et al., 2018) independently and concurrently showed115

that for two local optima θ∗1 ,θ
∗
2 produced by separate training runs (but same initializations) there116

exist nonlinear paths, defined as connectors by Wortsman et al. (2021), where the loss remains low.117

The connectivity paths can be extended to include linear in the case of the training runs sharing some118

part of the optimization trajectory (Frankle et al., 2020). These findings can be leveraged to train a119

neural network subspace by enforcing linear connectivity among the subspace endpoints (Wortsman120

et al., 2021). Appendix J discusses more related work regarding ensemble learning and flat minima.121

3 PROBLEM FORMULATION122

Notation. We use bold font for vectors x, capital bold for matrices X and regular font for scalars123

x. T is the number of tasks and m is the number of ensemble members. Each task t ∈ [T ] has a loss124

Lt. The overall multi-task loss is L = [L1, . . . ,LT ]
>. w ∈ ∆T ⊂ RT is the weighting scheme for125

the tasks, i.e., the overall loss is calculated as L = w>L =
∑T
t=1 αtLt. Each member k ∈ [m] is126

associated with parameters θk ∈ RN and weighting w ∈ ∆T .127

Preliminaries. Our goal lies in solving an unconstrained vector optimization problem of minimiz-128

ing L(y, ŷ) = [L1(y1, ŷ1), . . . ,LT (yT , ŷT )]>, where Li corresponds to the objective function for129

the ith task, e.g., cross-entropy loss in case of classification. Constructing an optimal solution for all130

tasks is often unattainable due to competing objectives. Hence, an alternative notion of optimality131

is used, as described in Definition 1.132

Definition 1 (Pareto Optimality). A point x dominates a point y if Lt (x) ≤ Lt (y) for all tasks133

t ∈ [T ] and L (x) 6= L (y). Then, a point x is called Pareto optimal if there exists no point y that134

dominates it. The set of Pareto optimal points forms the Pareto front PL.135
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Figure 2: A representation of the encoding in parameter space for T = 3 tasks. Each node cor-
responds to a tuple of parameters and weighting scheme (θv,wv) ∈ RN × ∆T . The blue dashed
frame shows the model, e.g., shared-bottom architecture, implemented by the parameters θv of
each node. For each training step, we sample α ∈ ∆T and construct the weight combination
θ = α>Θ = 0.6 · θ1 + 0.2 · θ2 + 0.2 · θ3.

The vector loss function is scalarized by the vector w ∈ [0, 1]T to form the overall objective w>L.
Without loss of generality, we assume thatw lies in the T -dimensional simplex ∆T by imposing the
constraint ‖w‖ =

∑T
t=1 wt = 1. This formulation permits to think of the vector of weights as an en-

coding of task preferences, e.g., for two tasks lettingw = [0.8, 0.2] results in attaching more impor-
tance to the first task. Overall, the Multi-Task Learning problem can be formulated within the Empir-
ical Risk Minimization (ERM) framework for preference vectorw and datasetD = {(x,y)}i=1 as:

min
θ

E(x,y)∼D [L (y,f (x;θ))] (1)

Our overall goal is to discover a low-dimensional parameterization in weight space that yields a136

(continuous) Pareto Front in functional space. This desideratum leads us to the following definition:137

Definition 2 (Pareto Subspace). Let T be the number of tasks, X the input space, Y the multi-138

task output space, R ⊂ RN the parameter space, f : X × R → Y the function imple-139

mented by a neural network, and L : Y × Y → RT>0 be the vector loss. Let {θt ∈ R :140

t ∈ [T ]} be a collection of network parameters and S the corresponding convex envelope, i.e.,141

S =
{∑T

t=1 αtθt :
∑T
t=1 αt = 1 and αt ≥ 0,∀t

}
. Consider the dataset D = (DX ,DY). Then,142

the subspace S is called Pareto if its mapping to functional space via the network architecture f143

forms a Pareto Front P = L(f(DX ;S),DY) = {l : l = L(f(DX ;θ),DY), ∀θ ∈ S}.144

4 METHOD145

We seek to find a collection of m neural network models, of identical architecture, whose linear146

combination in weight space forms a continuous Pareto Front in objective space. Model i corre-147

sponds to a tuple of network parameters θi and task weighting wi and implements the function148

f(·;θi). We impose connectivity among models by modeling the subspace in the convex hull of the149

ensemble members. Section 4.1 presents the core of the algorithm, and in Section 4.2 we discuss150

various improvements that address Multi-Task Learning challenges.151

4.1 PARETO MANIFOLD LEARNING152

Let Θ = [θ1,θ2, . . . ,θm]
> be an m × N matrix storing the parameters of all models, W =

[w1, . . . ,wm]
> be a m× T matrix storing the task weighting of ensemble members. By designing

the subspace as a simplex, the objective now becomes:

E(x,y)∼D
[
Eα∼P

[
α>WL (y,f (x;αΘ))

]]
(2)

where P is the sampling distribution placed upon the simplex. In the case where the en-153

semble members are single-task predictors (w is one-hot) and the number of tasks coin-154

cides with the number of ensemble members (m = T ), the matrix of task weightings W155

is an identity matrix and Equation 2 simplifies to E(x,y)∼D
[
Eα∼P

[
α>L (y,f (x;αΘ))

]]
=156

E(x,y)∼D
[
Eα∼P

[∑T
t=1 αtLt

(
y,f

(
x;
∑T
t=1 αtθt

))]]
. By using the same weighting for both157
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Algorithm 1: ParetoManifoldLearning
Input : matrix of model parameters Θ =

[
θ1 θ2 · · · θT

]>, vector loss function L, train set D,
network f , distribution parameters p, window W ∈ N, regularization coefficient (λ > 0)

1 Initialize each θv independently
2 for batch (x,y) ⊆ D do
3 V ← ∅
4 for i ∈ {1, 2, . . . ,W} do
5 sample αi ∼ Dir(p)
6 V ← V ∪αi
7 θi ← α>

i Θ // construct network in convex hull of ensemble members

8 L(αi) =
[
L1(αi) · · · LT (αi)

]
← criterion (f(x;θi),y) // compute losses

9 end
10 construct multi-forward graphs Gt = (V, Et) for all tasks t ∈ [T ] // see Section 4.2 [Reviewer qexX]: changed

line 11 link to section
11 R ←

∑T
t=1 log

(
1

|Et|
∑

(αi,αj)∈Et
exp [Lt(αi)− Lt(αj)]+

)
// multiforward regularization

12 Ltotal ←
∑W
i=1α

>
i L(αi) + λ · R

13 Backpropagate Ltotal
14 Gradient descent on Θ
15 end

the losses and the ensemble interpolation, we explicitly associate models and task losses with a one-158

to-one correspondence, infusing preference towards one task rather than the other and guiding the159

learning trajectory to a subspace that encodes such tradeoffs.160

Algorithm 1 presents the full training procedure for this ensemble of neural networks, containing161

modifications discussed in subsequent sections. Figure 1 showcases the algorithm in a toy example [Reviewer qexX]: addressing
weakness 2 → mentioned Fig.
1 in the main text.

.162

Concretely, at each training step a random α is sampled and the corresponding convex combination163

of the networks is constructed. This procedure is shown in Figure 2. [Reviewer qexX]: addressing
weakness 2 → mentioned Fig.
2 in the main text.

The batch is forwarded164

through the constructed network and the vector loss is scalarized by α as well. The procedure is165

repeated W times at each batch (see Section 4.2 [Reviewer qexX]: Addressing
weakness 4: Changed citation
from Figure 4.2 to Section 4.2

) and a regularization term penalizing non-Pareto166

stationary points is added (line 11).167

Claim 3. Let {θ∗t ∈ R : t ∈ [T ]} be the optimal ensemble parameters retrieved at the end of168

training by Algorithm 1 and let S be the their convex hull. Then S is a Pareto Subspace.169

Note that we have chosen a convex hull parameterization of the weight space, but there are other170

options, such as Bezier curves or other nonlinear paths (Wortsman et al., 2021; Draxler et al., 2018).171

However, the universal approximation theorem implies no loss of generality for our design choice.172

In practice, Claim 3 is validated by uniformly sampling the discovered subspace and the definition173

of a Pareto Subspace is relaxed to conform to the nonconvex settings of Deep Learning, i.e., points174

are called Pareto optimal if the characterization holds in an open neighborhood rather than globally. [Reviewer qexX]: Addressing
weakness 2 about Pareto opti-
mality and (non-)convexity

175

4.2 REGULARIZATION AND BALANCING176

Loss and gradient balancing schemes. A common challenge in Multi-Task Learning is the case177

where tasks have different loss scales, e.g., consider datasets with regression and classification tasks178

such as UTKFace. Then, using the same weighting α for both the losses and the weight ensem-179

bling, as presented in Equation 2, the easiest tasks are favored and the important property of scale180

invariance is neglected. To prevent this, the loss weighting needs to be adjusted. Hence, we pro-181

pose simple balancing schemes: one loss and one gradient balancing scheme, whose effect is to182

warp the space of loss weightings. While gradient balancing schemes are applied on the shared183

parameters, loss balancing also affects the task-specific decoders, rendering the methodologies can184

be complementary. To avoid cluttering, balancing schemes are not presented in Algorithm 1.185

In terms of loss balancing, we use a lightweight scheme of adding a normalization coef-186

ficient to each loss term which depends on past values. Concretely, let W ∈ Z+ be a187

positive integer and Lm(τ0) be the loss of task m in step τ0. Then, the regularization coef-188

ficient is L(τ0;W ) = 1
W

∑W
τ=1 Lm(τ0 + 1 − τ) for τ0 ≥ W resulting in the overall loss189

Ltotal = α>τ0L̂ =
∑T
t=1 αt

Lt(τ0)

Lm(τ0;W )
. For gradient balancing. let gt be the gradient of task190
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Figure 3: Visual explanation of multiforward regularization, presented in Equation 3. The subfigures
depict the loss values for various weightingsαi = [αi,1, αi,2]. Optimal lies in the origin. We assume
that α1,1 > · · · > α5,1. Green color corresponds to Pareto optimality. (Left) all sampled weightings
are in the Pareto Front and the regularization term is zero. (Right) The red points are not optimal
and, therefore, the regularization term penalizes the violations of the monotonicity constraints for
the appropriate task loss: α2 andα4 violate the L1 and L2 orderings w.r.t. α3, since α2,1 > α3,1 ;
L1(α2) < L1(α3) and α4,2 > α3,2 ; L2(α4) < L2(α3).

t ∈ [T ] w.r.t. the shared parameters. Previously, the update rule occurred with the overall gradient191

gtotal = α>G = α> [g1 . . . gT ]. We impose a unit `2-norm for gradients and perform the192

update with g̃total = α>G̃ = α> [g̃1 . . . g̃T ] where g̃t = gt
‖gt‖2 .193

Improving stability by Multi-Forward batch regularization. Consider two different weightings194

α1 and α2 ∈ ∆T−1. Without loss of generality [α1]0 = α1 > [α2]0 = α2. Then, ideally, the195

interpolated model closer to the ensemble member for task 1 has the lowest loss on that task, i.e., we196

would want the ordering L1(α1) < L1(α2), and, equivalently for the other tasks. Furthermore, if197

α = [1− ε, ε/T−1, . . . , ε/T−1], only one member essentially reaps the benefits of the gradient update198

and moves the ensemble towards weight configurations more suitable for one task but, perhaps dele-199

terious for the remaining ones. Thus, we propose repeating the forward pass W times for different200

random weightings {αi}i∈[W ], allowing the advancement of all ensemble members concurrently in201

a coordinated way. By performing multiple forward passes for various weightings, we achieve a202

lower discrepancy sequence and reduce the variance of such pernicious updates.203

We also include a regularization term, which penalizes the wrong orderings and encourages the
subspace to have Pareto properties. Let V be the set of interpolation weighs sampled in the current
batch V = {αw = (αw,1, αw,2, . . . , αw,T ) ∈ ∆T−1}w∈[W ]. Then each task defines the directed
graph Gt = (V, Et) where Et = {(αi,αj) ∈ V × V : αi,t < αj,t}. The overall loss becomes:

Ltotal =

W∑

i=1

α>i L(αi) + λ ·
T∑

t=1

log


 1

|Et|
∑

(αi,αj)∈Et
e[Lt(αi)−Lt(αj)]+


 (3)

The current formulation of the edge set penalizes heavily the connections from vertices with low204

values. For this reason, we only keep one outgoing edge per node, defined by the task lexicographic205

order, resulting in the graph GLEX
t = (V, ELEX

t ) and |ELEX
t | = W − 1,∀t ∈ [T ]. Note that the regu-206

larization term is convex as the sum of log-sum-exp terms. If no violations occur, the regularization207

term is zero. Figure 3 offers a visual explanation of the regularization term.208

The role of sampling. Another component of Algorithm 1 is the sampling imposed on the convex209

hull parameterization. During training, the sampling distribution dictates the loss weighting used210

and, hence, modulates the degree of task learning. A natural choice is the Dirichlet distribution211

Dir(p) where p ∈ RT>0 are the concentration parameters, since its support is the T -dimensional212

simplex ∆T . For p = p1T , the distribution is symmetric; for p < 1 the sampling is more213

concentrated near the ensemble members, for p > 1 it is near the centre and for p = 1 it corresponds214

to the uniform distribution. In contrast, for p1 6= p2 the distribution is skewed. In our experiments,215

we use symmetric Dirichlet distributions with p ≥ 1 to guide the ensemble to representations best216

suited for Multi-Task Learning.217
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Figure 4: Experimental results on MultiMNIST and Census. Top right is optimal. Three random
seeds per method. Solid lines correspond to our method (PML) and thick lines to the Pareto Front.
We have used a different color for each seed of PML. Baselines are shown in shades of gray: scatter
plot for MTL baselines and dashed lines for single task. In both datasets, Pareto Manifold Learning
discovers subspaces with diverse and Pareto-optimal solutions and outperforms the baselines.

5 EXPERIMENTS218

We evaluate our method on several datasets, such as MultiMNIST, Census, MultiMNIST-3,219

UTKFace and CityScapes, and various architectures, ranging from MultiLayer Perceptrons220

(MLPs) to Convolutional Neural Networks (CNNs) and Residual Networks (ResNets). Each221

ensemble member is initialized independently. In all experiments, the learning rate for our method222

is m-fold the learning rate of the baselines to counteract the fact that the backpropagation step223

scales the gradients by m−1 in expectation. The detailed settings used for each dataset and224

additional experiments are provided in the appendix. Our overarching objective is to construct225

continuous weight subspaces which map to Pareto Fronts in the functional space. However, our226

method produces a continuum of results rather than a single point, rendering tabular presentation227

cumbersome. For this reason, (a) for tables we present the best-of-(sampled)-subspace results, (b)228

we experiment on numerous two-task datasets where plots convey the results succinctly, (c) present229

qualitative results on three-task datasets. The source code will be released after the review process.230

Baselines. We explore various algorithms from the literature: 1. Single-Task Learning (STL),231

2. Linear Scalarization (LS) which minimizes the average loss 1
T

∑T
t=1 Lt, 3. Uncertainty232

Weighting (UW, Cipolla et al. 2018), 4. Multiple-gradient descent algorithm (MGDA, Sener &233

Koltun 2018), 5. Dynamic Weight Averaging (DWA, Liu et al. 2019), 6. Projecting Conflicting234

Gradients (PCGrad, Yu et al. 2020), 7. Impartial Multi-Task Learning (IMTL, Liu et al. 2020),235

8. Conflict-Averse Gradient Descent (CAGrad, Liu et al. 2021) and 9. Bargaining Multi-Task236

Learning (Nash-MTL, Navon et al. 2022).237

5.1 EXPERIMENTS ON DATASETS WITH TWO CLASSIFICATION TASKS238

In this section, we focus on datasets with two tasks, both classification. This setting allows for rich239

visualizations that we use to draw insights on the inner workings of the algorithms.240

MultiMNIST. We investigate the effectiveness of Pareto Manifold Learning on digit classification241

using a LeNet model with a shared-bottom architecture. The ensemble consists of two members242

with single task weightings. To gauge the performance of the models lying in the linear segment243

between the nodes, we test the performance on the validation set on the ensemble members as well244

as for 9 models uniformly distributed across the edge, resulting in 11 models in total. We use this245

evaluation/plotting scheme throughout the experiments. We ablate the effect of multi-forward train-246

ing on Appendix D; we use a grid search on window W ∈ {2, 3, 4, 5} and strength λ ∈ {0, 2, 5, 10}247

along with the base case of (W,λ) = (1, 0) and present in the main text the setting that achieves the248
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Figure 5: Application of Pareto Manifold Learning on datasets with 3 tasks. Each triangle depicts
the performance on a task, using color, as a function of the interpolation weighting, i.e. each hexagon
corresponds to a different weighting α = [α1, α2, α3] ∈ ∆3. The closer the interpolated member
is to a single-task predictor, the higher the performance on the corresponding task. The 3D plot, on
the right, show the performance of the model in the multi-objective space.

highest mean (across seeds) HyperVolume score on the validation set. Figure 4 shows the results on249

MultiMNIST using multi-forward regularization with window W = 4 and strength λ = 0. We250

observe that most baselines are characterized by limited functional diversity; their predefined op-251

timization schemes lead the differently seeded/initialized training runs to final models with similar252

performance (same markers are clustered in the plots). This lack of functional diversity, as well as253

inability to consistently outperform the Linear Scalarization baseline, are also noted by Kurin et al.254

(2022); Xin et al. (2022) [Reviewer NfGo]: added refer-
ences [5,6] from the review.

. In contrast, all Pareto Manifold Learning seeds find subspaces with diverse255

functional solutions. This statement is quantitatively translated to higher HyperVolume compared256

to the baselines, shown in Table 4 of the appendix, and can be attributed to the observation that257

Equation 2 generalizes the Linear Scalarization method.258

Census. We explore the method on the tabular dataset Census (Kohavi, 1996) using a Multi-259

Layer Perceptron. We focus on the task combination of predicting age and education level, similar260

to Ma et al. (2020). We perform the same ablation study as before and present the results on Figure 4261

for the best setting (W = 3 and λ = 10). In the case of MultiMNIST, there exists symmetry262

between the tasks, both digits are drawn from the same distribution and placed in the pixel grid in263

a symmetric way, resulting in equal pace learning. However, in the case of Census, tasks differ in264

statistics and, yet, the proposed method recovers a Pareto subspace with diverse solutions.265

5.2 BEYOND PAIRS OF CLASSIFICATION TASKS: MULTIMNIST-3 AND UTKFACE266

We expand the experimental validation to triplets of tasks, consider regression and more complex ar-267

chitectures, graduating from MLPs and CNNs to ResNets (He et al., 2016). For three tasks, we create268

a 2D grid of equidistant points spanning the three single-task predictors. If n is the number of inter-269

polated points between two (out of three) members, the grid has
(
n+1
2

)
points. We use n = 11, result-270

ing in 66 points. For visual purposes, neighboring points are connected. For three tasks, it would be271

visually cluttering to present the discovered subspaces with multiple seeds and baselines. Hence, we272

opt for a more qualitative discussion in this section and present quantitative findings in the appendix.273

MultiMNIST-3. First, we construct an equivalent of MultiMNIST for 3 tasks. Digits are placed274

on top-left, top-right and bottom-centre. Figure 5a shows the results on MultiMNIST-3. As275

argued previously, MNIST variants are characterized by task symmetry and Figure 5a reflects this.276

For this reason, we do not employ any balancing scheme. The 3D plot in conjunction with the277
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Table 1: Test performance on CityScapes. 3 random seeds per method. For Pareto Manifold Learn-
ing, we report the mean (across seeds) best results from the final subspace.

Segmentation Depth

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
STL 71.79 92.60 0.0135 32.786

LS 70.94 92.29 0.0192 117.658
UW 70.97 92.24 0.0188 118.168
MGDA 69.23 91.77 0.0138 51.986
DWA 70.87 92.23 0.0190 113.565
PCGrad 71.14 92.32 0.0185 117.797
IMTL 71.54 92.47 0.0151 65.058
CAGrad 70.23 92.06 0.0173 100.162
Nash-MTL 72.07 92.61 0.0148 62.980

PML (ours) 70.28 91.94 0.0140 52.559

simplices reveal that the method has the effect of gradual transfer of learned representation from one278

member to the other, and offers a succinct visual confirmation of Claim 3.279

UTKFace. The UTKFace dataset (Zhang et al., 2017) has more than 20,000 face images and280

three tasks: predicting age (modeled as regression using Huber loss - similar to (Ma et al., 2020)),281

classifying gender and ethnicity. The introduction of a regression task implies that losses have vastly282

different scales, which dictates the use of balancing schemes, as discussed in Section 4.2. We apply283

the proposed gradient-balancing scheme and present the results in Figure 5b. For visual unity and to284

remain in the theme of “higher is better”, the negative Huber loss is plotted. Despite the increased285

complexity and the existence of a regression task, the proposed method discovers a Pareto Subspace.286

Additional experiments and qualitative results are provided in Appendix G.287

5.3 SCENE UNDERSTANDING288

We also explore the applicability of Pareto Manifold Learning for CityScapes (Cordts et al.,289

2016), a scene understanding dataset containing high-resolution images of urban street scenes. Our290

experimental configuration is drawn from Liu et al. (2019); Yu et al. (2020); Liu et al. (2021); Navon291

et al. (2022) with some modifications. Concretely, we address two tasks: semantic segmentation and292

depth regression. We use a SegNet architecture (Badrinarayanan et al., 2017) trained for 100 epochs293

with Adam optimizer (Kingma & Ba, 2015) of initial learning rate 10−4, which is halved after 75294

epochs. The images are resized to 128 × 256 pixels. In the initial training steps any sampling295

α results in a random model, due to initialization, and the algorithm has a warmup period until296

the ensemble members have acquired meaningful representations. Hence, to reduce computational297

overhead and help convergence, the concentration parameter of the Dirichlet distribution is set to298

p0 = 5. We use gradient balancing, window W = 3 and λ = 1. The results are presented in Ta-299

ble 1. In Depth Estimation and out of MTL methods, Pareto Manifold Learning is near-optimal with300

MGDA narrowly better. However, the performance compared to the other algorithms is superior. In301

Semantic Segmentation, our method outperforms MGDA, but is worse than other baselines. Overall302

no multi-task method dominates Pareto Manifold Learning. [Reviewer qexX]: Added short
comment addressing weakness
3.

It is remarkable that, despite our goal of303

discovering Pareto subspaces, the proposed method is on par in performance on Semantic Segmen-304

tation with the state-of-the-art algorithms, and better than the vast majority on Depth Estimation.305

6 CONCLUSION306

In this paper, we proposed a weight-ensembling method tailored to Multi-Task Learning; multiple307

single-task predictors are trained in conjunction to produce a subspace formed by their convex hull,308

and endowed with desirable Pareto properties. We experimentally show on a diverse suite of bench-309

marks that the the proposed method is successful in discovering Pareto subspaces and outperforms310

some state-of-the-art MTL methods. An interesting future direction is to perform a hierarchical311

weight ensembling, sharing progressively more of the lower layers, given that the features learned312

at low depth are similar across tasks. An alternative exploration venue is to connect our method to313

the challenge of task affinity (Fifty et al., 2021; Standley et al., 2020) via a geometrical lens of the314

loss landscape.315
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A APPENDIX OVERVIEW463
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B EXPERIMENTAL DETAILS476

MultiMNIST MultiMNIST is a synthetic dataset derived form the samples of MNIST. Since477

there is no publicly available version, we create our own by the following procedure. For each478

MultiMNIST image, we sample (with replacement) two MNIST images (of size 28×28) and place479

them top-left and bottom-right on a 36 × 36 grid. This grid is then resized to 28 × 28 pixels. The480

procedure is repeated 60000 times, 10000 and 10000 times for training, validation and test datasets.481

We use a LeNet shared-bottom architecture. Specifically, the encoder has two convolutional layers482

with 10 and 20 channels and kernel size of 5 followed by Maxpool and a ReLU nonlinearity each.483

The final layer of the encoder is fully connected producing an embedding with 50 features. The484

decoders are fully connected with two layers, one with 50 features and the output layer has 10. We485

use Adam optimizer Kingma & Ba (2015) with learning rate 10−3, no scheduler and the batch size486

is set to 256. Training lasts 10 epochs.487

Census The original version of the Census (Kohavi, 1996) dataset has one task: predicting488

whether a person’s income exceeds $50000. The dataset becomes suitable for Multi-Task Learning489

by turning one or several features to tasks (Lin et al., 2019). We focus on the task combination of490

predicting age and education level, similar to Ma et al. (2020). The model has a Multi-Layer Percep-491

tron shared-bottom architecture. The encoder has one layer with 256 neurons, followed by a ReLU492

nonlinearity, and two decoders with 2 output neurons each (since the tasks are binary classification).493

Training lasts 10 epochs. We use Adam optimizer learning rate of 10−3.494

MultiMNIST-3 The configuration of MultiMNIST is used. Now, the model has three decoders495

and training lasts 20 epochs.496

UTKFace The UTKFace dataset has more than 20,000 face images of dimensions 200 × 200497

pixels and 3 color channels. The dataset has three tasks: predicting age (modeled as regression using498

Huber loss - similar to (Ma et al., 2020)), classifying gender and ethnicity (modeled as classification499

tasks using Cross-Entropy loss). Images are resized to 64×64 pixels, age is normalized and a 80/20500

train/test split is used. We use a shared-bottom architecture; the encoder is a ResNet18 (He et al.,501

2016) model without the last fully connected layer. The decoders (task-specific layers) consist of one502

fully-connected layer, where the output dimensions are 1, 2 and 5 for age (modeled as regression),503

gender (binary classification) and ethnicity (classification with 5 classes). Training lasts 100 epochs,504

batch size is 256 and we use Adam optimizer with a learning rate of 10−3. No scheduler is used.505

CityScapes Our experimental configuration is very similar to prior work, namely Liu et al.506

(2019); Yu et al. (2020); Liu et al. (2021); Navon et al. (2022). All images are resized to 128× 256.507

The tasks used are coarse semantic segmentation and depth regression. The task of semantic seg-508

mentation has 7 classes, whereas the original has 19. We use a SegNet architecture (Badrinarayanan509

et al., 2017) and train the model for 100 epochs with Adam optimizer (Kingma & Ba, 2015) of an510

initial learning rate 10−4. We employ a scheduler that halves the learning rate after 75 epochs.511
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Figure 6: Optimization trajectories in objective space in the case different loss scales. Similar to
Figure 1, 5 initializations are shown for baselines and a pair of initializations for Pareto Manifold
Learning (PML), in color for clarity. Dashed lines show the evolution of the mapping in loss space
for the subspace at the current step. We also show the initial subspace (step= 0). All baselines, ex-
cept Nash-MTL, and MGDA to a lesser degree, are characterized by trajectories focused on a subset
of the Pareto Front, namely minimizing the task with high loss magnitude. The same observation
applies to naı̈vely applying the proposed algorithm PML, because using the same weighting for both
the interpolation and the losses attaches too much importance on the task with large loss magnitude.
However, simple balancing schemes palliate this issue; gradient balancing (PML-gb) discovers a
superset of the Pareto Front and loss balancing (PML-lb) discovers the exact Pareto Front.

C DETAILS OF THE ILLUSTRATIVE EXAMPLE512

The details of the illustrative example are provided in this section. We use the configuration pre-513

sented by Navon et al. (2022), which was introduced with slight modifications by Liu et al. (2021)514

and Yu et al. (2020). Specifically, let θ = (θ1, θ2) ∈ R2 be the parameter vector and L = (˜̀
1, ˜̀

2)515

be the vector objective defined as follows:516

˜̀
1(θ) = c1(θ)f1(θ) + c2(θ)g1(θ) and ˜̀

2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ)

where

f1(θ) = log (max (|0.5 (−θ1 − 7)− tanh (−θ2)| , 5e− 6)) + 6,

f2(θ) = log (max (|0.5 (−θ1 + 3)− tanh (−θ2) + 2| , 5e− 6)) + 6,

g1(θ) =
(

(−θ1 + 7)
2

+ 0.1 · (−θ2 − 8)
2
)
/10− 20,

g2(θ) =
(

(−θ1 − 7)
2

+ 0.1 · (−θ2 − 8)
2
)
/10− 20,

c1(θ) = max (tanh (0.5θ2) , 0) and c2(θ) = max (tanh (−0.5θ2) , 0)

We use the experimental setting outlined by (Navon et al., 2022) with minor modifications, i.e.,517

Adam optimizer with a learning rate of 2e − 3 and training lasts for 50K iterations. The518

overall objectives are `1 = c · ˜̀
1 and `2 = ˜̀

2 where we explore two configurations for the519

scalar c, namely c ∈ {0.1, 1}. For c = 1, the two tasks have losses at the same scale.520

For c = 0.1, the difference in loss scales makes the problem more challenging and the algo-521
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rithm used should be characterized by scale invariance in order to find diverse solutions span-522

ning the entirety of the Pareto Front. The initialization points are drawn from the following set523

{(−8.5, 7.5), (0.0, 0.0), (9.0, 9.0), (−7.5,−0.5), (9,−1.0)}. In the case of Pareto Manifold Learn-524

ing with two ensemble members there are 52 = 25 initialization pairs. In the main text we use the525

initialization pair with the worst initial objective values.526

Figure 6 presents the results for the case of different loss scales, i.e., c = 0.1. We plot various527

baselines and three versions of the proposed algorithm, Pareto Manifold Learning or PML in short.528

We focus on the effect of the balancing schemes, introduced in Section 4.2, resulting in the use of no529

balancing scheme (denoted as PML), the use of gradient balancing (denoted as PML-gb) and the use530

of loss balancing (denoted as PML-lb). We dedicate two figures for each version of the algorithm531

and we present all 25 initialization pairs for completeness. Figure 7 and Figure 8 correspond to532

no balancing scheme in the case of equal loss scales c = 1.0, i.e., they complement Figure 1 of533

the main text. The subsequent figures focus on the case of unequal loss scales where c = 0.1;534

Figure 9 Figure 10 correspond to no balancing scheme, Figure 11 and Figure 12 correspond to the535

use of gradient balancing, Figure 13 and Figure 14 correspond to the use of loss balancing. The first536

figures of each pair show the trajectories for each initialization pair, with markers for initial and final537

positions. The other figures of each pair dispense of the visual clutter and focus on the subspace538

discovered in the final step of training, which is plotted with dashed lines along with the analytical539

Pareto Front in solid light blue. Hence, they provide a succinct overview of whether the method was540

able or not to discover the (entire) Pareto Front.541

For c = 1.0, the proposed method is able to retrieve the exact Pareto Front with no balancing scheme542

for most initialization pairs, as can be seen in Figure 8. In three cases (out of 25), the method fails.543

In our experiments, we found that allowing longer training times or higher learning rates resolve544

the remaining cases.s For c = 0.1, the problem is more challenging and the vanilla version of the545

algorithm results in a subset of the analytical Pareto Front. Figure 10 shows that this subset is546

consistent across initialization pairs, excluding the ones the method fails, and focuses on the task547

with higher loss magnitude. Applying gradient balancing, shown in Figure 11 and Figure 12, allows548

the method to retrieve (a superset of) the Pareto Front for all initialization pairs. Similarly, loss549

balancing, shown in Figure 13 and Figure 14, results in the exact Pareto Front. Hence, the inclusion550

of balancing schemes endows scale invariance in the proposed algorithm. Balancing schemes are551

used for the more challenging datasets, such as CityScapes.552
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Figure 7: Illustrative example. Optimization trajectories in objective space for all initialization pairs
in the case of equal loss scales (c = 1.0) and application of the proposed method with no balancing
scheme. Blue and red markers show each ensemble member’s loss value, dots and “X”s correspond
to the initial and final step, accordingly. In all but four cases, Pareto Manifold Learning retrieves
the entirety of the Pareto Front (can be sen clearly in Figure 8). Allowing longer training times or
higher learning rates solves the remaining initialization pairs.
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Figure 8: Illustrative example. Mapping in objective space of the weight subspace discovered by the
proposed method with no balancing scheme, in the case of equal loss scales (c = 1.0). The analytic
Pareto Front is plotted in light blue. In all but four cases, the dashed line (our method) coincides
with the full analytic Pareto Front.
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Figure 9: Illustrative example. Optimization trajectories in objective space for all initialization
pairs in the case of unequal loss scales (c = 0.1) and application of the proposed method with no
balancing scheme. Blue and red markers show each ensemble member’s loss value, dots and “X”s
correspond to the initial and final step, accordingly. For the vast majority of initialization pairs, the
lack of balancing scheme guides the ensemble to a subset of the Pareto Front, influenced by the task
with higher loss magnitude (can be sen clearly in Figure 10).
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Figure 10: Illustrative example. Mapping in objective space of the weight subspace discovered by
the proposed method with no balancing scheme, in the case of unequal loss scales (c = 0.1). The
analytic Pareto Front is plotted in light blue. The lack of balancing scheme renders optimization
difficult; the method either completely fails or retrieves a narrow subset of the analytic Pareto Front.
Applying balancing schemes resolve these issues.
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Figure 11: Illustrative example. Optimization trajectories in objective space for all initialization
pairs in the case of unequal loss scales (c = 0.1) and application of the proposed method with
gradient balancing scheme. Blue and red markers show each ensemble member’s loss value, dots
and “X”s correspond to the initial and final step, accordingly. The proposed method discovers a
subspace whose mapping in objective space results in a superset of the Pareto Front. This can be
clearly seen in Figure 12.
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Figure 12: Illustrative example. Mapping in objective space of the weight subspace discovered by
the proposed method with gradient balancing scheme, in the case of unequal loss scales (c = 0.1).
The analytic Pareto Front is plotted in light blue. The proposed method consistently finds the same
subspace, which is a superset of the analytic Pareto Front.
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Figure 13: Illustrative example. Optimization trajectories in objective space for all initialization
pairs in the case of unequal loss scales (c = 0.1) and application of the proposed method with loss
balancing scheme. Blue and red markers show each ensemble member’s loss value, dots and “X”s
correspond to the initial and final step, accordingly. For all but five cases, the proposed method
discovers a subspace whose mapping in objective space results in the exact Pareto Front. This can
be clearly seen in Figure 14.
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Figure 14: Illustrative example. Mapping in objective space of the weight subspace discovered by
the proposed method with loss balancing scheme, in the case of unequal loss scales (c = 0.1). The
analytic Pareto Front is plotted in light blue. Using loss balancing endows scale invariance and the
solutions are more functionally diverse, in comparison with no balancing scheme in Figure 10. How-
ever, the same initialization pairs continue to be problematic as in the case of equal loss scales (see
Figure 8). Allowing for longer training or higher learning rates solves the remaining initialization
pairs.
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Figure 15: Multi-Forward Graph: case of two tasks. We assume a window of W = 5. The nodes
lie in the line segment α2 + α1 = 1, α1, α2 ∈ [0, 1]. (Left) Full graph and dashed edges will be
removed. (Right) Final graph.
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Figure 16: Multi-Forward Graph for three tasks. Left, middle and right present the case of the first,
second and third task, respectively. Each node is noted by its weighting, summing up to 1. Edges
are drawn if the two nodes obey the total ordering imposed by the task. Dashed edges are omitted
from the final graph.

D ABLATION ON MULTI-FORWARD REGULARIZATION553

Multi-Forward regularization, introduced in Section 4.2, penalizes the ensemble if the interpolated554

models’ losses (sampled within a batch) are not in accordance with the tradeoff imposed by the555

corresponding interpolation weights. Simply put, the closer we sample to the member corresponding556

to task 1, the lower the loss should be on task 1. The same applies to the other tasks. Equation 3557

in the main text presents the case of two tasks, where the idea of the regularization is outlined in558

loss space. For completeness, we present the underlying graph construction for the cases of two and559

three tasks in Figure 15 and Figure 16, respectively. The nodes of the graphs are associated with560

the sampled weightings and the edges for the graph Gt of task t are drawn w.r.t. the corresponding561

partial ordering. If the loss ordering is violated for a given edge, a penalty term is added.562

We ablate the effect multi-forward training and the corresponding regularization have on perfor-563

mance. We explore the MultiMNIST and Census datasets using the same experimental configu-564

rations as in the main text. We are interested in two parameters:565

• W : number of α re-samplings per batch. This parameter is also referred as window.566

• λ: the regularization strength as presented in Algorithm 1. For λ = 0, no regularization is567

applied but the subspace is still sampled W times and the total loss takes into account all568

the respective interpolated models.569

Figure 17 and Table 2 present the results for MultiMNIST. Figure 18 and Table 3 present the re-570

sults for Census. It is important to note that MultiMNIST is symmetric, while Census is not.571

As a result, the features learned for each single-task predictor are helpful to one another and the case572

of λ = 0, i.e., no regularization and only multi-forward training, is beneficial for MultiMNIST but573

not for Census. Intuitively, both digit classification tasks have the same difficulty and posterior574

distribution, which produces few violations of monotonicity constraints and renders the regulariza-575

tion less applicable. [Reviewer qexX]: expanded
commentary on λ = 0 for
MultiMNIST.

On the other hand, severe regularization such as λ = 10 can be harmful and576

hinder training. More details in table and figure captions.577
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Table 2: MultiMNIST: Ablation on multi-forward training and regularization, presented in Sec-
tion 4.2. Validation performance in terms of HyperVolume (HV) metric. Higher is better, except
for standard deviation (std). The visual complement of the table appears in Figure 17. For each
configuration, we track the Hypervolume across three random seeds and present Mean HV, max HV
and standard deviation. We annotate with bold the best per column. In the main text, we report the
best result in terms of mean HV, i.e., W = 4 and λ = 0.

Seed - 0 Seed - 1 Seed - 2 Mean HV Max HV std

W = 2 λ = 0 0.9205 0.9083 0.9100 0.9129 0.9205 0.0054
λ = 2 0.9121 0.9105 0.9037 0.9088 0.9121 0.0036
λ = 5 0.9132 0.9016 0.8979 0.9043 0.9132 0.0065
λ = 10 0.8766 0.8932 0.8470 0.8723 0.8932 0.0191

W = 3 λ = 0 0.9215 0.9141 0.9111 0.9156 0.9215 0.0044
λ = 2 0.9176 0.9150 0.9122 0.9149 0.9176 0.0022
λ = 5 0.9155 0.9138 0.9140 0.9144 0.9155 0.0008
λ = 10 0.9122 0.9050 0.8962 0.9045 0.9122 0.0066

W = 4 λ = 0 0.9220 0.9187 0.9143 0.9184 0.9220 0.0032
λ = 2 0.9213 0.9149 0.9157 0.9173 0.9213 0.0028
λ = 5 0.9158 0.9139 0.9132 0.9143 0.9158 0.0011
λ = 10 0.9177 0.9022 0.9102 0.9100 0.9177 0.0063

W = 5 λ = 0 0.9131 0.9180 0.9156 0.9156 0.9180 0.0020
λ = 2 0.9158 0.9203 0.9146 0.9169 0.9203 0.0024
λ = 5 0.9138 0.9082 0.9140 0.9120 0.9140 0.0027
λ = 10 0.9165 0.9158 0.9121 0.9148 0.9165 0.0019

Table 3: Census: Ablation on multi-forward training and regularization, presented in Section 4.2.
Validation performance in terms of HyperVolume (HV) metric. Higher is better, except for standard
deviation (std). The visual complement of the table appears in Figure 18. For each configuration,
we track the Hypervolume across three random seeds and present Mean HV, max HV and standard
deviation. We annotate with bold the best per column. In the main text, we report the best result in
terms of mean HV, i.e., W = 2 and λ = 5.

Seed - 0 Seed - 1 Seed - 2 Mean HV Max HV std

W = 2 λ = 0 0.6517 0.6530 0.6532 0.6526 0.6532 0.0006
λ = 2 0.6575 0.6564 0.6560 0.6566 0.6575 0.0006
λ = 5 0.6577 0.6574 0.6590 0.6581 0.6590 0.0007
λ = 10 0.6548 0.6557 0.6554 0.6553 0.6557 0.0004

W = 3 λ = 0 0.6517 0.6496 0.6501 0.6505 0.6517 0.0009
λ = 2 0.6540 0.6523 0.6544 0.6536 0.6544 0.0009
λ = 5 0.6552 0.6539 0.6536 0.6542 0.6552 0.0007
λ = 10 0.6574 0.6567 0.6566 0.6569 0.6574 0.0004

W = 4 λ = 0 0.6488 0.6516 0.6504 0.6503 0.6516 0.0011
λ = 2 0.6492 0.6522 0.6504 0.6506 0.6522 0.0012
λ = 5 0.6499 0.6514 0.6525 0.6513 0.6525 0.0011
λ = 10 0.6529 0.6549 0.6558 0.6545 0.6558 0.0012

W = 5 λ = 0 0.6497 0.6502 0.6484 0.6494 0.6502 0.0008
λ = 2 0.6478 0.6497 0.6495 0.6490 0.6497 0.0009
λ = 5 0.6492 0.6509 0.6489 0.6497 0.6509 0.0009
λ = 10 0.6507 0.6538 0.6508 0.6518 0.6538 0.0014
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(a) W = 1 and λ = 0
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(b) W = 2 and λ = 0
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(c) W = 2 and λ = 2
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(d) W = 2 and λ = 5
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(e) W = 2 and λ = 10

0.92 0.93 0.94 0.95 0.96 0.97

top-left accuracy

0.91

0.92

0.93

0.94

0.95

0.96

b
ot

to
m

-r
ig

ht
ac

cu
ra

cy

Single Task

PML-0

PML-1

PML-2

LS

UW

MGDA

DWA

PCGrad

IMTL

CAGrad

Nash-MTL

(f) W = 3 and λ = 0
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(g) W = 3 and λ = 2
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(h) W = 3 and λ = 5
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(i) W = 3 and λ = 10
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(j) W = 4 and λ = 0
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(k) W = 4 and λ = 2
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(l) W = 4 and λ = 5
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(m) W = 4 and λ = 10
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(n) W = 5 and λ = 0
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(o) W = 5 and λ = 2

0.92 0.93 0.94 0.95 0.96 0.97

top-left accuracy

0.91

0.92

0.93

0.94

0.95

0.96

b
ot

to
m

-r
ig

ht
ac

cu
ra

cy

Single Task

PML-0

PML-1

PML-2

LS

UW

MGDA

DWA

PCGrad

IMTL

CAGrad

Nash-MTL

(p) W = 5 and λ = 5
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(q) W = 5 and λ = 10

Figure 17: MultiMNIST: Effect of multi-forward on the window W and the regularization coeffi-
cient λ on the validation dataset. The case of no multi-forward (W = 1) is presented in the first row.
Multi-forward regularization for higher W values is beneficial. Intuitively, attaching serious weight
on the regularization λ ∈ {5, 10} while sampling few times W ∈ {2, 3} leads to suboptimal per-
formance since the update step focuses on an uninformed regularization term. The accompanying
quantitative analysis appears in Table 2.
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(k) W = 4 and λ = 5
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Figure 18: Census: Effect of multiforward on the window W and the regularization coefficient
λ. The axes are shared across plots. Compared to MultiMNIST, applying multiforward on the
asymmetric Census dataset can improve accuracies and help significantly outperform the base-
lines. However, widening the window W (e.g., last row for W = 5) can be hindering, since larger
regularization coefficients are needed. The accompanying quantitative analysis appears in Table 3.
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Figure 19: Visual Explanation of Hypervolume. The metric captures the union of axis-aligned
rectangles defined by the reference point (star) and the corresponding sample points (red circles).
This example showcases loss and the perfect oracle lies in the origin. The point (1, 1) is used for
reference. Hence, higher hypervolume implies that the objective space is better explored/covered.

E HYPERVOLUME ANALYSIS ON MULTIMNIST AND CENSUS578

HyperVolume is a metric widely used in multi-objective optimization that captures the quality of579

exploration. A visual explanation of the metric is given in Figure 19. Table 4 presents the results580

of Figure 4 of the main text in a tabular form. We present the best three results per column (higher581

is better) to succinctly and visually show that all Pareto Manifold Learning seeds outperform the582

baselines.583

Table 4: Tabular complement to Figure 4. Classification accuracy for both tasks and HyperVolume
(HV) metric (higher is better). Three random seeds per method. For baselines, we show the mean
accuracy and HV (across seeds). For PML, we show the results per seed; HV and max accuracies
for the subspace yielded by that seed. We use underlined bold, solely bold and solely underlined
font for the best, second best and third best results. We observe that the best results are concentrated
in the rows concerning the proposed method (PML). Note that the use of three decimals leads to
ties.

MultiMNIST Census

Task 1 Task 2 HV Task 1 Task 2 HV

LS 0.955 0.944 0.907 0.827 0.785 0.651
UW 0.957 0.945 0.913 0.827 0.785 0.650
MGDA 0.956 0.943 0.904 0.828 0.785 0.651
DWA 0.955 0.945 0.907 0.828 0.785 0.651
PCGrad 0.955 0.946 0.908 0.828 0.785 0.650
IMTL 0.958 0.944 0.908 0.828 0.786 0.651
Nash-MTL 0.958 0.948 0.913 0.827 0.785 0.650

PML - 0 0.968 0.951 0.92 0.830 0.789 0.655
PML - 1 0.961 0.953 0.916 0.830 0.789 0.655
PML - 2 0.964 0.953 0.919 0.829 0.788 0.653
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Figure 20: Examples of samples and corresponding labels for the MultiMNIST-3 dataset.

F MULTIMNIST-3 ADDITIONAL RESULTS584

This section serves as supplementary to Section 5.2 of the main text. MultiMNIST-3 is585

a synthetic dataset generated by MNIST samples in a manner similar to the creation of the586

MultiMNIST dataset, which is ubiquitous in the Multi-Task Learning literature. Specifically, each587

MultiMNIST-3 sample is created with the following procedure. Three randomly sampled digits588

of size 28 × 28 are placed in the top-left, top-right and bottom middle pixels of a 42 × 42 grid.589

For the pixels where the initial digits overlap, the maximum value is selected. Finally, the image is590

resized to 28 × 28 pixels. Figure 20 shows some examples of the dataset, which consists of three591

digit classification tasks.592

Section 5 compares the performance of baselines and the proposed method while Figure 21 presents593

visually the performance achieved on the discovered subspace.594

Table 5: MultiMNIST-3: Mean Accuracy and standard deviation of accuracy (over 3 random
seeds). For the proposed method (PML), we report the mean and standard deviation of the best
performance from the interpolated models in the sampled subspace. No balancing schemes and
regularization are applied. Bold is used for the best performing multi-task method. [Reviewer qexX]: Table up-

date.

Task 1 Task 2 Task 3

STL 96.97 ± 0.06 96.10 ± 0.17 96.40 ± 0.22

LS 96.26 ± 0.20 95.48 ± 0.14 95.87 ± 0.37
UW 96.48 ± 0.08 95.42 ± 0.30 95.77 ± 0.06
MGDA 96.50 ± 0.20 94.80 ± 0.22 95.71 ± 0.08
DWA 96.42 ± 0.26 95.26 ± 0.29 95.75 ± 0.08
PCGrad 96.45 ± 0.06 95.39 ± 0.15 95.88 ± 0.01
IMTL 96.58 ± 0.22 95.18 ± 0.12 96.08 ± 0.31
CAGrad 96.70 ± 0.13 95.20 ± 0.26 95.66 ± 0.06
Nash-MTL 96.85± 0.08 95.25 ± 0.23 96.18 ± 0.13

PML (ours) 96.85± 0.43 95.72± 0.22 96.27± 0.32
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Figure 21: MultiMNIST-3 results for all three seeds. Each triangle shows the 66 points in the
convex hull and color is used for the performance on the associated task. The 3d plot shows the
mapping of the subspace to the multi-objective space. No balancing scheme is used.
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G UTKFACE ADDITIONAL RESULTS595

This section serves as supplementary to Section 5.2. Section 6 compares the performance of the596

baselines and the proposed method. We experiment without balancing schemes and with gradient-597

balancing, and present the results in Figure 22 and Figure 23, respectively. Together with the quan-598

titative results, we observe that for datasets with varying task difficulties, scales, etc. the lack of599

balancing can be impeding. On the other hand, its inclusion makes the subspace functionally di-600

verse and boosts overall performance. For instance, Huber loss on the task of age prediction is601

significantly improved.602

Table 6: UTKFace: Mean Accuracy and standard deviation of accuracy (over 3 random seeds). For
the proposed method (PML), we report the mean and standard deviation of the best performance
from the interpolated models in the sampled subspace. No multi-forward training is applied. We
present Pareto Manifold Learning with no balancing scheme and with gradient balancing, denoted
as gb. Bold is used for the best performing multi-task method. [Reviewer qexX]: Table up-

date.

Age ↓ Gender ↑ Ethnicity ↑
STL 0.081 ± 0.005 90.79 ± 0.55 82.38 ± 0.40

LS 0.086 ± 0.003 91.66 ± 0.55 82.78 ± 0.60
UW 0.093 ± 0.007 91.86 ± 0.75 83.62 ± 0.02
MGDA 0.075± 0.003 91.17 ± 0.59 74.06 ± 2.66
DWA 0.093 ± 0.008 91.65 ± 0.46 82.85 ± 0.20
PCGrad 0.101 ± 0.018 91.85 ± 0.90 83.57 ± 0.43
IMTL 0.091 ± 0.004 91.24 ± 0.34 82.52 ± 1.15
CAGrad 0.083 ± 0.002 91.93± 0.53 83.71± 0.33
Nash-MTL 0.095 ± 0.001 90.40 ± 0.16 79.59 ± 0.92

PML (ours) 0.096 ± 0.002 90.97 ± 0.63 81.78 ± 0.14
PML-gb (ours) 0.086 ± 0.003 91.61 ± 0.52 81.77 ± 0.86
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Figure 22: UTKFace results with Linear Scalarization for all three seeds. Each triangle shows the
66 points in the convex hull and color is used for the performance on the associated task. The 3d
plot shows the mapping of the subspace to the multi-objective space. Applying no balancing scheme
for datasets with different loss scales, e.g., regression and classification tasks, may lead to limited
functional diversity, such as for seed 1.

33



Under review as a conference paper at ICLR 2023

Member 2

Member 3 Member 1

Negative Huber Loss – Age

Member 2

Member 3 Member 1

Accuracy – Gender

Member 2

Member 3 Member 1

Accuracy – Ethnicity
Huber loss – Age

0.100

0.125

0.150

Acc
ur

ac
y

–
G

en
de

r

0.850

0.875

0.900

A
cc

u
ra

cy
–

R
ac

e

0.70

0.75

0.80

(a) Seed 0

Member 2

Member 3 Member 1

Negative Huber Loss – Age

Member 2

Member 3 Member 1

Accuracy – Gender

Member 2

Member 3 Member 1

Accuracy – Ethnicity
Huber loss – Age

0.1

0.2

0.3

Acc
ur

ac
y

–
G

en
de

r

0.80

0.85

0.90

A
cc

u
ra

cy
–

R
ac

e

0.7

0.8

(b) Seed 1

Member 2

Member 3 Member 1

Negative Huber Loss – Age

Member 2

Member 3 Member 1

Accuracy – Gender

Member 2

Member 3 Member 1

Accuracy – Ethnicity
Huber loss – Age

0.1

0.2

Acc
ur

ac
y

–
G

en
de

r

0.875

0.900

0.925

A
cc

u
ra

cy
–

R
ac

e

0.775

0.800

0.825

(c) Seed 2

Figure 23: UTKFace results with Gradient-Balancing Scheme for all three seeds. Each triangle
shows the 66 points in the convex hull and color is used for the performance on the associated task.
The 3d plot shows the mapping of the subspace to the multi-objective space. For datasets with tasks
of varying loss scales, applying gradient balancing improves functional diversity and performance,
as shown in Section 6.
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Figure 24: Dirichlet distribution in the case of two tasks. Top row: p < 1 and the distribution is more
concentrated towards the ensemble members. Bottom row: p > 1 and the distribution focuses more
on the midpoint which corresponds to all tasks having the same weight. Right column: extreme
choices p→ 0 or p→∞. Left column: milder choices.

H DETAILS ON SAMPLING603
[Reviewer SqFR]: Added ap-
pendix regarding sampling.

604

This appendix expands on Section 4.2 and, specifically, presents in greater detail the intuition behind605

the sampling distribution’s parameters. Let p ∈ RT+ be the parameters of the Dirichlet distribution.606

Assuming no prior knowledge on the tasks, e.g., task difficulties or affinities, a symmetric distribu-607

tion is used by setting p = p1T . This design choice results in three cases:608

• p = 1: the distribution is uniform on the simplex. Intuitively this means that all tasks are609

equally important and we care about the diversity of solutions for all tradeoffs (reflected in610

the linear scalarization weights)611

• p ∈ (0, 1): the distribution is more concentrated towards the ensemble members, as in the612

top row of Figure 24. Assume an extreme case of two tasks and p0. Then the distribution613

degenerates to a Bernoulli distribution. Effectively, at each iteration one of the ensemble614

members is selected and its weights are updated, which will result in two separate and inde-615

pendent single-task predictors with no common representation infused about the other task.616

Then, linearly interpolating in weight space will result in models with random predictions617

for both tasks, since the training procedure has not focused in retrieving a Pareto Subspace.618

For milder cases (e.g. p = 0.7) , we observed that the models in the middle of the linear619

interpolation suffered in performance which can be attributed to the fact that the sampling620

focused more on single-task rather than multi-task representations and performance.621

• p > 1. Then the distribution is more concentrated towards the midpoint of the simplex, as in622

the bottom row of Figure 24. Assume an extreme case of two tasks and p→∞. Then, the623

distribution becomes deterministic and outputs equal weights for all tasks. The randomly624

and independently initialized ensemble members will collapse to each other, resulting in625

duplicate ensemble members. Similarly, for very large values (e.g. p = 100), the functional626

diversity of the ensemble will suffer since the weights produced by the distribution will be627

almost equal for all tasks, resulting in a milder version of the aforementioned phenomenon.628

In contrast, we found that small values such as p = 2 or p = 3 can help convergence since629
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random seeds per method.
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Figure 25: Experimental results on MultiMNIST and Census varying the concentration parame-
ters p = p1T of the sampling distribution. Three seeds depicted in shades of the same colors for the
various p.

they put more emphasis towards common representation (compared to p = 1), but may630

limit functional diversity.631

Figure 25 presents experimental results on MultiMNIST and Census for various concentration632

parameters p ∈ {0, 0.1, 100} of the Dirichlet distribution. Let θ1 and θ2 be the parameters of633

the ensemble members. For p = 0, the ensemble consists of two single-task predictors with no634

multitask learning representational knowledge, since their interpolation meets a low accuracy/high635

loss barrier. We omit the case of p = 0 for Census for visual clarity. This lack of common636

representation is evident in the cosine similarities as well, where for p = 0 cos(θ1,θ2) ≈ 0. On the637

other hand, for p = 0.1, common representations are infused into the ensemble and the experimental638

results show that the test performance is characterized by diversity. However, this comes at the639

expense of the interpolated models at the middle of the line segment, where the performance is640

suboptimal compared to p = 100 for MultiMNIST. This behavior is also illustrated in the cosine641

similarities, where for p = 100 the ensemble weightsα are in an ε-ball around the midpoint causing642

the independently initialized models to progressively collapse. For Census, we also observe that643

this collapsing leads to very high cosine similarity cos(θ1,θ2) > 0.9 and the ensemble is suboptimal644

compared to p = 0.1.645
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I CONNECTION BETWEEN PARETO OPTIMALITY AND MULTIPLE VALLEY646

INTERSECTIONS647
[Reviewer qexX]: Added ap-
pendix regarding weakness 1.
For clarity during the rebuttal,
this discussion has been added
as a standalone appendix. It
will be incorportared in the
appendix regarding the illustra-
tive example.

648

In this section, we investigate the connection between the intersection of multiple loss landscapes,649

pareto optimality and the effect of the proposed algorithm Pareto Manifold Learning. We use the650

illustrative example, presented in Figure 1. Let Θ be the parameter space of the model and Lt :651

Θ→ R, t ∈ {1, 2}, be the losses of the problem. For α ∈ [0, 1] and θ ∈ Θ, the overall objective is652

L(θ, α) = αL1(θ) + (1− α)L2(θ).653

Figure 26 and the accompanying Figure 27 present the overall loss objective as α varies from 0 to654

1. For the extreme values of the range, the loss landscape is inherently single-task. The subspace655

discovered by the method is depicted in blue, while a black ‘x’ is used for the corresponding inter-656

polated model, i.e., it corresponds to L(αθ1 + (1 − α)θ2, α). Figure 28 presents the overall losses657

on the subspace by fixing as a function of one of the parameters. In other words, the proposed658

method tracks the optimum in parameter space as the overall objective evolves and the various loss659

landscapes are weighted accordingly. While an acceptable multi-task solution lies in the intersection660

of low loss landscapes, Pareto Manifold Learning focuses on the aforementioned dynamic scenario661

of loss weighting.662

= 0.0 = 0.125 = 0.25

= 0.375 = 0.5 = 0.625

= 0.75 = 0.875 = 1.0

Figure 26: Illustrative example: (Overall) loss surface as a function of the model’s weights. The
overall objective is L(θ, α) = αL1(θ) + (1 − α)L2(θ) and is shown for various values of α. The
Pareto subspace discovered by the proposed method is depicted in blue. ‘X’ shows the solution of
the method for the corresponding α.
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Figure 27: Illustrative example: Alternate view of Figure 26. Refer to the text for details.
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Figure 28: Illustrative example: Overall loss for various weightings α ∈ [0, 1] as a function of one
of the parameters, denoted as x. Points corresponds to the loss achieved by the parameter vector
θ(α) = αθ1 + (1− α)θ2. The subspace discovered by the model spans the range [−7, 7].
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J ADDITIONAL RELATED WORK663
[Reviewer NfGo]: Added ap-
pendix discussing additional
related work.

664

In this appendix, we further expand on prior work. Linear mode connectivity, as in (Wortsman et al.,665

2021), encourages flatness and, therefore, is linked with methods explicitly enforcing flat minima666

(Chaudhari et al., 2017; Foret et al., 2021; Dinh et al., 2017; Jiang* et al., 2020). These approaches667

are applicable when designing a single objective, e.g. average of losses in Multi-Task Learning,668

but do not allow for the infusion of Pareto properties and the inclusion of tradeoffs. [Reviewer NfGo]: added
works on ”flat minima”

Izmailov et al.669

(2018) produce flat minima by averaging multiple weight vectors discovered during the optimization670

trajectory, so that the final model lies in the middle of the low-loss basin. Wortsman et al. (2022)671

perform weight ensembling with fine-tuned models produced via different hyperparameter config-672

urations. Apart from the recent weight ensembling works, output ensembling has been one of the673

staples of machine learning literature. Lakshminarayanan et al. (2017) utilize deep ensembles for674

uncertainty prediction but inference scales linearly with the number of ensemble members. Wen675

et al. (2020) improve on the computational complexity of output ensembles by sharing the bulk of676

the parameters among members and differentiating them via rank-1 matrices, while Havasi et al.677

(2021) employ a multi-input multi-output network by accommodating independent subnetworks for678

each ensemble and allowing a single-forward pass ensemble prediction. However, this results in679

subnetworks with incompatible architecture which does not allow for a continuous approximation680

of the Pareto Front. [Reviewer NfGo]: added prior
work on ensemble learning.

681
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Figure 29: MultiMNIST: Figure 4 with additional baselines.

K ADDITIONAL EXPERIMENTS682
[All reviewers]: Added ap-
pendix with additional base-
lines.

683

In this section, we supplement our experimental findings on MultiMNIST with additional base-684

lines, namely HPN-LN and HPN-EPO (Navon et al., 2021) and COSMOS (Ruchte & Grabocka,685

2021)1. We use hyperparameters of Ruchte & Grabocka (2021) for both methods. We provide two686

experimental settings:687

• Setting I: 10 epochs and no learning rate scheduler, i.e., the setting used for all other meth-688

ods in Figure 4,689

• Setting II:the experimental setting used by (Ruchte & Grabocka, 2021), i.e., 100 epochs for690

COSMOS and 150 epochs for HPN-LN/HPN-EPO with multi-step learning scheduler.691

Figure 29 presents the results with the additional baselines, using three seeds each. We use dashed692

lines for setting I and solid lines for setting II and group the three methods in various color shades693

(blue, green, red) for visual clarity. We observe that in the original setting of 10 epochs, all new base-694

lines are suboptimal compared to all methodologies. For setting II, the hypernetwork methodologies695

are competitive with some baselines but are suboptimal compared to the proposed method. For696

COSMOS, only one seed is competitive with the proposed method. Moreover, HPN-LN, HPN-EPO697

employ a hypernetwork of 1.6m parameters, while the target network has < 50k parameters.698

1We use the open source implementation provided by Ruchte & Grabocka (2021) making minimal changes.
Our implementation of the MultiMNIST dataset has images of size 28× 28 rather than 36× 36 resulting in
slightly different models.

41


	Introduction
	Related Work
	Problem Formulation
	Method
	Pareto Manifold Learning
	Regularization and balancing

	Experiments
	Experiments on Datasets with two classification tasks
	Beyond Pairs of Classification Tasks: MultiMNIST-3 and UTKFace
	Scene understanding

	Conclusion
	Appendix Overview
	Experimental Details
	Details of the illustrative example
	Ablation on Multi-Forward Regularization
	HyperVolume analysis on MultiMNIST and Census
	MultiMNIST-3 additional results
	UTKFace additional results
	Details on sampling
	Connection between Pareto Optimality and multiple valley intersections
	Additional Related Work
	Additional experiments

