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Abstract

We develop a versatile new methodology for multidimensional mechanism design
that incorporates side information about agent types to generate high social welfare
and high revenue simultaneously. Prominent sources of side information in practice
include predictions from a machine-learning model trained on historical agent
data, advice from domain experts, and even the mechanism designer’s own gut
instinct. In this paper we adopt a prior-free perspective that makes no assumptions
on the correctness, accuracy, or source of the side information. First, we design
a meta-mechanism that integrates input side information with an improvement of
the classical VCG mechanism. The welfare, revenue, and incentive properties of
our meta-mechanism are characterized by novel constructions we introduce based
on the notion of a weakest competitor, which is an agent that has the smallest
impact on welfare. We show that our meta-mechanism, when carefully instantiated,
simultaneously achieves strong welfare and revenue guarantees parameterized by
errors in the side information. When the side information is highly informative
and accurate, our mechanism achieves welfare and revenue competitive with the
total social surplus, and its performance decays continuously and gradually as the
quality of the side information decreases. Finally, we apply our meta-mechanism
to a setting where each agent’s type is determined by a constant number of pa-
rameters. Specifically, agent types lie on constant-dimensional subspaces (of the
potentially high-dimensional ambient type space) that are known to the mecha-
nism designer. We use our meta-mechanism to obtain the first known welfare and
revenue guarantees in this setting.

1 Introduction

Mechanism design is a high-impact branch of economics and computer science that studies the
implementation of socially desirable outcomes among strategic self-interested agents. Major real-
world use cases include combinatorial auctions (e.g., strategic sourcing, radio spectrum auctions),
matching markets (e.g., housing allocation, ridesharing), project fundraisers, and many more. The
two most commonly studied objectives in mechanism design are welfare maximization and revenue
maximization. In many settings, welfare maximization, or efficiency, is achieved by the classic
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Vickrey-Clarke-Groves (VCG) mechanism [19, 28, 50]. Revenue maximization is a much more
elusive problem that is only understood in very special cases. The seminal work of Myerson [42]
characterized the revenue-optimal mechanism for the sale of a single item in the Bayesian setting,
but it is not even known how to optimally sell two items. It is known that welfare and revenue are
generally at odds and optimizing one can come at the great expense of the other [1, 4, 7, 23, 33].

In this paper we study how side information (or predictions) about the agents can help with bicriteria
optimization of both welfare and revenue. Side information can come from a variety of sources that
are abundantly available in practice such as predictions from a machine-learning model trained on
historical agent data, advice from domain experts, or even the mechanism designer’s own gut instinct.
Machine learning approaches that exploit the proliferation of agent data have in particular witnessed
a great deal of success both in theory [8, 10, 38, 41] and in practice [24, 25, 46, 52]. In contrast to
the typical Bayesian approach to mechanism design that views side information through the lens of a
prior distribution over agents, we adopt a prior-free perspective that makes no assumptions on the
correctness, accuracy, or source of the side information. A nascent line of work (part of a larger agenda
on learning-augmented algorithms [40]) has begun to examine the challenge of exploiting predictions
when agents are self-interested, but only for fairly specific problem settings [3, 13–15, 26, 53]. We
contribute to this area with a general side-information-dependent meta-mechanism for a wide swath
of multidimensional mechanism design problems that aim for high social welfare and high revenue.

1.1 Our contributions

Our main contribution is a versatile meta-mechanism that integrates side information about agent
types with the bicriteria goal of simultaneously optimizing welfare and revenue.

In Section 2 we formally define the components of multidimensional mechanism design with side
information. The abstraction of multidimensional mechanism design is a rich language that allows
our theory to apply to many real-world settings including combinatorial auctions, matching markets,
project fundraisers, and more—we expand on this list of examples further in Section 2. We also
present the weakest-competitor VCG mechanism introduced by Krishna and Perry [34] and prove
that it is revenue-optimal among all efficient mechanisms in the prior-free setting (extending their
work which was in the Bayesian setting for a fixed known prior).

In Section 3 we present our meta-mechanism for mechanism design with side information. It
generalizes the mechanism of Krishna and Perry [34]. We introduce the notion of a weakest-
competitor set and a weakest-competitor hull, which are constructions that are crucial to understanding
the payments and incentive properties of our meta-mechanism.

In Section 4 we prove that our meta-mechanism—when carefully instantiated—achieves strong
welfare and revenue guarantees that are parameterized by errors in the side information. Our
mechanism works by independently expanding the input predictions, where the expansion radius for
each prediction is drawn randomly from a logarithmic discretization of the diameter of the ambient
type space. Our mechanism achieves the efficient welfare OPT and revenue at least Ω(OPT/ logH)
when the side information is highly informative and accurate, where H is an upper bound on any
agent’s value for any outcome. Its revenue approaches OPT if its initialization parameters are chosen
wisely. Its performance decays gradually as the quality of the side information decreases (whereas
naïve approaches suffer from huge discontinuous drops in performance). Prior-free efficient welfare
OPT, or total social surplus, is the strongest possible benchmark for both welfare and revenue.
Finally, we extend our methods to a more general, more expressive side information language.

In Section 5 we use our meta-mechanism to derive new results in a setting where each agent’s type is
determined by a constant number of parameters. Specifically, agent types lie on constant-dimensional
subspaces (of the potentially high-dimensional ambient type space) that are known to the mechanism
designer. For example, a real-estate agent might infer a buyers’ relative property values based on
value per square foot. When each agent’s true type is known to lie in a particular k-dimensional
subspace of the ambient type space, we show how to use our meta-mechanism to guarantee revenue
at least Ω(OPT/k(logH)k) while simultaneously guaranteeing welfare at least OPT/ logH .

Traditionally it is known that welfare and revenue are at odds and maximizing one objective comes at
the expense of the other. Our results show that side information can help mitigate this difficulty.
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1.2 Related work

Side information in mechanism design. Various mechanism design settings have been studied under
the assumption that some form of public side information is available. Medina and Vassilvitskii [38]
study single-item (unlimited supply) single-bidder posted-price auctions with bid predictions. Devanur
et al. [22] study the sample complexity of (single-parameter) auctions when the mechanism designer
receives a distinguishing signal for each bidder. More generally, the active field of algorithms with
predictions aims to improve the quality of classical algorithms when machine-learning predictions
about the solution are available [40]. There have been recent explicit connections of this paradigm
to settings with strategic agents [3, 13–15, 26]. Most related to our work, Xu and Lu [53] study
auctions for the sale of a (single copy of a) single item when the mechanism designer receives point
predictions on the bidders’ values. Unlike our approach, they focus on deterministic modifications of
a second-price auction. An important drawback of determinism is that revenue guarantees do not
decay continuously as prediction quality degrades. For agents with value capped at H there is an error
threshold after which, in the worst case, only a 1/H-fraction of revenue can be guaranteed (this is
not even competitive with a vanilla second-price auction). Xu and Lu [53] prove that such a revenue
drop is unavoidable by deterministic mechanisms. Finally, our setting is distinct from, but similar to
in spirit, work that uses public attributes for market segmentation to improve revenue [8, 11].

Welfare-revenue tradeoffs in auctions. Welfare and revenue relationships in Bayesian auctions have
been widely studied since the seminal work of Bulow and Klemperer [17]. Welfare-revenue tradeoffs
for second-price auctions with reserve prices in the single item setting have been quantified [21, 31],
with some approximate understanding of the Pareto frontier [23]. Anshelevich et al. [4] study
welfare-revenue tradeoffs in large markets, Aggarwal et al. [2] study the efficiency of revenue-optimal
mechanisms, and Abhishek and Hajek [1] study the efficiency loss of revenue-optimal mechanisms.

Constant-parameter mechanism design. Revenue-optimal mechanism design for settings where
each agent’s type space is of a constant dimension has been studied previously in certain specific
settings. Single-parameter mechanism design is a well-studied topic dating back to the seminal work
of Myerson [42], who (1) characterized the set of all truthful allocation rules and (2) derived the
Bayesian optimal auction based on virtual values (a quantity that is highly dependent on knowledge of
the agents’ value distributions). Archer and Tardos [5] also characterize the set of allocation rules that
can be implemented truthfully in the single-parameter setting, and use this to derive polynomial-time
mechanisms with strong revenue approximation guarantees in various settings. Kleinberg and Yuan
[33] prove revenue guarantees for a variety of single-parameter settings that depend on distributional
parameters. Constrained buyers with two-parameter values have also been studied [36, 43].

Combinatorial auctions for limited supply. Our mechanism when agent types lie on known linear
subspaces can be seen as a generalization of the well-known logarithmic revenue approximation that
is achieved by a second-price auction with a random reserve price in the single-item setting [27].
Similar revenue approximations have been derived in multi-item settings for various classes of bidder
valuation functions such as unit-demand [30], additive [35, 48], and subadditive [9, 18]. To the
best of our knowledge, no previous techniques handle agent types on low-dimensional subspaces.
Furthermore, our results are not restricted to combinatorial auctions unlike most previous research.

2 Problem formulation, example applications, and weakest-competitor VCG

We consider a general multidimensional mechanism design setting with a finite allocation space Γ
and n agents. Θi is the type space of agent i. Agent i’s true private type θi ∈ Θi determines her
value v(θi, α) for allocation α ∈ Γ. We will interpret Θi as a subset of RΓ, so θi[α] = v(θi, α).
We use θ ∈×n

i=1
Θi to denote a profile of types and θ−i ∈ Θ−i :=×j ̸=i

Θi to denote a profile
of types excluding agent i. We now introduce our model of side information. For each agent, the
mechanism designer receives a subset of the type space predicting that the subset contains the agent’s
true yet-to-be-revealed type. Formally, the mechanism designer receives additional information about
each agent in the form of a refinement of each agent’s type space, given by Θ̃1 ⊆ Θ1, . . . , Θ̃n ⊆ Θn.
These refinements postulate that the true type of bidder i is actually contained in Θ̃i (though the
mechanism designer does not necessarily know whether or not these predictions are valid). We
refer to the Θ̃i as side-information sets or predictions. To simplify exposition, we assume that prior
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to receiving side information the mechanism designer has no differentiating information about the
agents’ types, that is, Θ1 = · · · = Θn. Let Θ denote this common ambient type space.

A mechanism with side information is specified by an allocation rule α(θ; Θ̃1, . . . , Θ̃n) ∈ Γ and
a payment rule pi(θ; Θ̃1, . . . , Θ̃n) ∈ R for each agent i. We assume agents have quasilinear utili-
ties. A mechanism is incentive compatible (IC) if θi ∈ argmaxθ′

i∈Θi
θi[α(θ

′
i,θ−i; Θ̃1, . . . , Θ̃n)]−

pi(θ
′
i,θ−i; Θ̃1, . . . , Θ̃n) holds for all i, θi ∈ Θi,θ−i ∈ Θ−i, Θ̃1 ⊆ Θi, . . . , Θ̃n ⊆ Θn, that is, agents

are incentivized to report their true type regardless of what other agents report and regardless of
the side information used by the mechanism (this definition is equivalent to the usual notion of
dominant-strategy IC and simply stipulates that side information ought to be used in an IC manner). A
mechanism is individually rational (IR) if θi[α(θi,θ−i; Θ̃1, . . . , Θ̃n)]−pi(θi,θ−i; Θ̃1, . . . , Θ̃n) ≥ 0

holds for all i, θi,θ−i, Θ̃1, . . . , Θ̃n. We will analyze a variety of randomized mechanisms that ran-
domize over IC and IR mechanisms. Such randomized mechanisms are thus IC and IR in the strongest
possible sense (as supposed to weaker in-expectation IC/IR). An important note: no assumptions are
made on the veracity of Θ̃i, and agent i’s misreporting space is the ambient type space Θi.

Example applications

Our model of side information within the rich language of multidimensional mechanism design
allows us to capture a variety of different problem scenarios where both welfare and revenue are
desired objectives. We list a few examples of different multidimensional mechanism settings along
with examples of different varieties of side information sets.

• Combinatorial auctions: There are m indivisible items to be allocated among n agents (or to no
one). The allocation space Γ is the set of (n+ 1)m allocations of the items and θi[α] is agent i’s
value for the bundle of items she is allocated by α. Let X and Y denote two of the items for sale.
The set Θ̃i = {θi : θi[{X, Y}] ≥ 9, θi[{X}] + θi[{Y}] ≥ 10} represents the prediction that agent
i’s values for X and Y individually sum up to at least $10, and her value for the bundle is at least
$9. Here, Θ̃i is the intersection of linear constraints.

• Matching markets: There are m items (e.g., houses) to be matched to n buyers. The allocation
space Γ is the set of matchings on the bipartite graph Km,n and θi[α] is buyer i’s value for the
item α assigns her. Let α1, α2, α3 denote three matchings that match house 1, house 2, and house
3 to agent i, respectively. The set Θ̃i = {θi : θi[α1] = 2 · θi[α2] = 0.75 · θi[α3]} represents the
information that agent i values house 1 twice as much as house 2, and 3/4 as much as house 3.
Here, Θ̃i is the linear space given by span(⟨1, 1/2, 4/3⟩).

• Fundraising for a common amenity: A multi-story office building that houses several companies
is opening a new cafeteria on a to-be-determined floor and is raising construction funds. The
allocation space Γ is the set of floors of the building and θi[α] is the (inverse of the) cost incurred
by building-occupant i for traveling to floor α. The set Θ̃i = {θi : ∥θi − θ∗i ∥p ≤ k} postulates
that i’s true type is no more than k away from θ∗i in ℓp-distance, which might be derived from an
estimate of the range of floors agent i works on based on the company agent i represents. Here, Θ̃i

is given by a (potentially nonlinear) distance constraint.

• Bidding for a shared outcome: A delivery service that offers multiple delivery rates (priced
proportionally) needs to decide on a delivery route to serve n customers. The allocation space Γ is
the set of feasible routes and θi[α] is agent i’s value for receiving her packages after the driving
delay specified by α. Let αt denote an allocation that imposes a driving delay of t on agent i. The
set Θ̃i = {θi : θi[α0] ≥ 50, θi[αt+1] ≥ ft(θi[αt]) ∀t} is the prediction that agent i is willing to
pay $50 to receive her package as soon as possible, and is at worst a time discounter determined by
(potentially nonlinear) discount functions ft. Here, the complexity of Θ̃i is determined by the ft.

In our results we will assume that Θ = [0, H]Γ imposing a cap H on any agent’s value for any
allocation. This is the only problem-specific parameter in our results. In the above four bulleted
examples H represents the maximum value any agent has for the grand bundle of items, any available
house, the cafeteria opening on her floor, and receiving her packages with no delay, respectively.
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The weakest-competitor VCG mechanism

The VCG mechanism can generally be highly suboptimal when it comes to revenue [7, 39, 49] (and
conversely mechanisms that shoot for high revenue can be highly welfare suboptimal). However, if
efficiency is enforced as a constraint of the mechanism design, then the weakest-competitor VCG
(WCVCG) mechanism introduced by Krishna and Perry [34] is in fact revenue optimal (they call it
the generalized VCG mechanism). While VCG payments are based on participation externalities,
WCVCG payments are based on agents being replaced by weakest competitors who have the smallest
impact on welfare. This approach yields a strict revenue improvement over vanilla VCG. Krishna
and Perry [34] proved that the Bayesian version of WCVCG is revenue optimal among all efficient,
IC, and IR mechanisms. The (prior-free) WCVCG mechanism works as follows. Given reported
types θ, it uses the efficient allocation α∗ = argmaxα∈Γ

∑n
i=1 θi[α]. The payments are given by

pi(θ) = minθ̃i∈Θi
(maxα∈Γ

∑
j ̸=i θj [α]+ θ̃i[α])−

∑
j ̸=i θj [α

∗]. Here, Θi is the ambient type space
of agent i. If 0 ∈ Θi, pi is the vanilla VCG payment. Krishna and Perry [34] prove the following
result in the Bayesian setting, which we reproduce in a stronger prior-free form for completeness.
Theorem 2.1. Weakest-competitor VCG is revenue-optimal subject to efficiency, IC, and IR.

Proofs of all results in this paper are in Appendix A. Our meta-mechanism (Section 3) is a general-
ization of WCVCG that uses side information sets rather than the ambient type space to determine
payments. (Misreporting is not limited to side information sets.) Our meta-mechanism relaxes
efficiency in order to use the side information to boost revenue.

3 Weakest-competitor sets and our meta-mechanism

In this section we present our meta-mechanism for mechanism design with side information. Our meta-
mechanism generalizes the WCVCG mechanism. We begin by introducing some new constructions
based on the concept of a weakest competitor. These constructions are the key ingredients in
understanding the role of side information in our meta-mechanism. Let θ ⪯ θ′ if θ[α] ≤ θ′[α] for
all α ∈ Γ. Let θ ≼ θ′ if θ[α] ≤ θ′[α] for all α ∈ Γ and there exists α′ ∈ Γ with θ[α′] < θ′[α′]. Let
θ ≺ θ′ if θ[α] < θ′[α] for all α ∈ Γ. We assume Θi = Θ = [0, H]Γ for all i, that is, all agents share
a common ambient type space with no up-front differentiating information.

Definition 3.1. The extended weakest-competitor set of a closed set Θ̃i, denoted by WC(Θ̃i), is the
subset of all weakest competitors in Θ̃i over all possible type profiles of the other agents. Formally,
WC(Θ̃i) := {argminθ̃i∈Θ̃i

(maxα∈Γ

∑
j ̸=i θj [α] + θ̃i[α]) : θ−i ∈ Θ−i}. The weakest-competitor

set of Θ̃i, denoted by WC(Θ̃i), is the subset of WC(Θ̃i) where ties in the argmin are broken by
discarding any θ′ in the argmin if there exists θ also in the argmin with θ ≼ θ′. We call members of
both WC(Θ̃i) and WC(Θ̃i) weakest competitors and say θ̂i is a weakest competitor relative to θ−i if
θ̂i ∈ argminθ̃i∈Θ̃i

maxα∈Γ

∑
j ̸=i θj [α] + θ̃i[α].

The weakest-competitor set is a natural notion of a lower bound corresponding to a given predicted
type set. From the perspective of WCVCG, the payment of an agent with true type in Θ̃i only depends
on WC(Θ̃i) and not on Θ̃i. Motivated by this observation, we define the weakest-competitor hull,
which can be viewed as a “weakest-competitor relaxation”.

Definition 3.2. The weakest-competitor hull of Θ̃i, denoted by WCH(Θ̃i), is the maximal set S such
that WC(S) = WC(Θ̃i) (no T ⊃ S satisfies WC(T ) = WC(Θ̃i)).

Weakest-competitor sets and hulls can be simply characterized without explicit reference to the
mechanics of WCVCG. Figure 1 displays examples in a two-dimensional type space.

Theorem 3.3. Let Θ = [0, H]Γ and let Θ̃ ⊆ Θ be closed. Then WC(Θ̃) = {θ ∈ Θ̃ : {θ′ ∈ Θ̃ : θ′ ≺
θ} = ∅}, WC(Θ̃) = {θ ∈ Θ̃ : {θ′ ∈ Θ̃ : θ′ ≼ θ} = ∅}, and WCH(Θ̃) = {θ ∈ Θ : ∃θ′ ∈ Θ̃ s.t. θ ⪰
θ′} is the upwards closure of Θ̃.

We now present our meta-mechanism, which we denote by M. It uses the efficient allocation, but
that allocation is enjoyed only by the subset of agents able to compete with the weakest competitors
in the side information set. M then implements the weakest-competitor payments on those agents.
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Figure 1: Left: Example WC and WCH when |Γ| = 2. WC(Θ̃) is depicted in solid and dashed blue, WC(Θ̃) is
depicted in solid blue, and WCH(Θ̃) is the region enclosed by WC(Θ̃). Right: The prediction Θ̃1 (depicted in
gray) is valid (γV = 0), but is highly inaccurate. The prediction Θ̃2 (depicted in light blue) is invalid (γV > 0),
but is more accurate than Θ̃1. A small expansion of Θ̃2 would yield a valid and highly accurate prediction.

The input subsets Θ̃1, . . . , Θ̃n represent the side information/predictions given to the mechanism
designer that postulate that θi ∈ Θ̃i.

Meta-mechanism M
Input: subsets Θ̃1, . . . , Θ̃n ⊆ Θ given to mechanism designer.
• Based on Θ̃1, . . . , Θ̃n, come up with Θ̂1, . . . , Θ̂n.
Agents asked to reveal types θ1, . . . , θn.
• Let α∗ = argmaxα∈Γ

∑n
i=1 θi[α] and for each i let

pi = minθ̃i∈WC(Θ̂i)

(
maxα∈Γ

∑
j ̸=i θj [α] + θ̃i[α]

)
−
∑

j ̸=i θj [α
∗].

• Let I = {i : θi[α∗]− pi ≥ 0} . If agent i /∈ I , i is excluded and receives zero utility (zero
value and zero payment).a If agent i ∈ I , i enjoys allocation α∗ and pays pi.

aOne practical consideration is that this step might require a more nuanced implementation of
an “outside option” for agents to be indifferent between participating and being excluded versus not
participating at all. (We do not pursue this highly application-specific issue in this work.) In auction
and matching settings this step is standard and innocuous; the agent simply receives no items.

Meta-mechanism M generates welfare equal to
∑

i∈I θi[α
∗] and revenue equal to

∑
i∈I pi. M does

not specify how to set Θ̂1, . . . , Θ̂n based on Θ̃1, . . . , Θ̃n (hence the “meta” label). This challenge is
the subject of the later sections where we will describe, based on the setting, how to set the Θ̂i in
order to generate high welfare and high revenue. We now establish the incentive properties of M.
Theorem 3.4. M is IC and IR.

Next we show that WCH precisely captures the set of agent types that never violate IR. This
consideration does not arise in WCVCG since in that setting misreporting is limited to the set used
in the weakest-competitor minimization, and hence IR is never violated. In our setting, we make
no assumptions on the veracity of the sets Θ̂i and must therefore reckon with the possibility that an
agent is unable to compete with the weakest competitors in WC(Θ̂i).

Theorem 3.5. Let θi denote the true type of agent i and let Θ̂1, . . . , Θ̂n denote the side information
sets used by M. Then i ∈ I for all θ−i ⇐⇒ θi ∈ WCH(Θ̂i).

Theorem 3.5 shows that i is guaranteed to participate in M regardless of other agents’ types if and
only if θi ∈ WCH(Θ̂i). We capitalize on this observation when we derive revenue guarantees for M,
since the welfare of M is at least

∑
i:θi∈WCH(Θ̂i)

θi[α
∗] and its revenue is at least

∑
i:θi∈WCH(Θ̂i)

pi.

Before we proceed to our main analyses of the key properties and guarantees of M, we briefly
discuss its computational complexity. We consider the special case where the side-information sets
are polytopes. Let size(Θ̂i) denote the encoding size of the constraints defining Θ̂i.

Theorem 3.6. Let Θ̂i be a polytope. Payment pi in M can be computed in poly(|Γ|, size(Θ̂i), n)

time. Furthermore, determining membership in WCH(Θ̂i) can be done in poly(|Γ|, size(Θ̂i)) time.
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4 Main guarantees of the mechanism in terms of prediction quality

In this section we prove our main guarantees on our meta-mechanism M in terms of the quality
of the side information Θ̃1, . . . , Θ̃n. We will largely refer to the side information as predictions
in this section to emphasize that Θ̃i could be wildly incorrect/inaccurate. To state our results we
need the following notation which will be used throughout the remainder of the paper. Given
agent types θ1, . . . , θn, let αopt denote the efficient allocation among the n agents and let OPT =
maxα∈Γ

∑n
i=1 θi[α] =

∑n
i=1 θi[αopt] denote the welfare of the efficient allocation (also called the

total social surplus). Let VCG denote VCG revenue on the n agents.

The following lemma shows that payment pi in M can be related to agent i’s value for αopt if i has a
valid side information set (θi ∈ WCH(Θ̂i)). We incur a loss term equal to the ℓ∞-Hausdorff distance
from the true type θi to WC(Θ̂i), defined as dH(θi,WC(Θ̂i)) := maxθ̂i∈WC(Θ̂i)

∥θi − θ̂i∥∞.

Lemma 4.1. Run M with Θ̂i. If i is such that θi ∈ WCH(Θ̂i), then pi ≥ θi[αopt]−dH(θi,WC(Θ̂i)).

Measuring the error of a prediction. Before instantiating M with specific rules to determine the Θ̂i

from the Θ̃i, we define our notions of prediction error, which are motivated by Lemma 4.1.

Definition 4.2. The invalidity of a prediction Θ̃i, denoted by γV
i , is the distance from the true type θi

of agent i to WCH(Θ̃i): γV
i := d(θi,WCH(Θ̃i)) = minθ̃i∈WCH(Θ̃i)

∥θi − θ̃i∥∞.

Definition 4.3. The inaccuracy of a prediction Θ̃i is the quantity γA
i := dH(θi,WC(Θ̃i)).

We say that a prediction Θ̃i is valid if γV
i = 0, that is, θi ∈ WCH(Θ̃i). We say that a prediction is

perfect if γA
i = 0 or, equivalently, WC(Θ̃i) = {θi}. If a prediction is perfect, then it is also valid.

Our main results will depend on these error measures. See Figure 1 for an illustration.

Consistency and robustness. We say a mechanism is (a, b)-consistent and (c, d)-robust if when
predictions are perfect it satisfies E[welfare] ≥ a · OPT, E[revenue] ≥ b · OPT, and satisfies
E[welfare] ≥ c · OPT,E[revenue] ≥ d · VCG independent of the prediction quality. Consistency
demands near-optimal performance when the side information is perfect, and therefore we compete
with the total social surplus OPT on both the welfare and revenue fronts. Robustness deals with the
case of arbitrarily bad side information, in which case we would like our mechanism’s performance
to be competitive with vanilla VCG, which already obtains welfare equal to OPT. High consistency
and robustness ratios are in fact trivial to achieve, and we will thus largely not be too concerned with
these measures—our main goal is to design high-performance mechanisms that degrade gracefully as
the prediction errors increase. In Appendix B we show that the trivial mechanism that discards all
side information with probability β and trusts the side information completely with probability 1− β
is (1, 1− β)-consistent and (β, β)-robust, but suffers from huge discontinuous drops in performance
even when predictions are nearly perfect.

Random expansion mechanism. Our guarantees will depend on H; an upper bound on any agent’s
values. This is the only problem-domain-specific parameter in our results (examples are in Section 2).
H = maxθ1,θ2∈Θ∥θ1−θ2∥∞ is the ℓ∞-diameter of Θ. For a point θ, let B(θ, r) = {θ′ : ∥θ−θ′∥∞ ≤
r} be the closed ℓ∞-ball centered at θ with radius r. For a set Θ̃, let B(Θ̃, r) = ∪θ̃∈Θ̃B(θ̃, r) denote
the ℓ∞-expansion of Θ̃ by r. For ζi ≥ 0, λi > 0, and Ki := ⌈log2((H − ζi)/λi)⌉, let Mζ,λ denote
the mechanism that for each i independently sets

Θ̂i = B(Θ̃i, ζi + 2ki · λi), where ki ∼unif. {0, 1, . . . ,Ki}.

We now state and discuss our main welfare and revenue guarantees on Mζ,λ. Define log+ : R → R≥0

by log+(x) = 0 if x ≤ 0 and log+(x) = max{0, log(x)} if x > 0.

Theorem 4.4. E[welfare] ≥ max{(1−maxi
⌈log+

2 ((γV
i −ζi)/λi)⌉

1+⌈log2((H−ζi)/λi)⌉ ),
1

1+⌈maxi log2((H−ζi)/λi)⌉}OPT.

Theorem 4.5 (Revenue bound 1). Let ρi = 2(γV
i − ζi)1(ζi +λi < γV

i )+λi1(ζi +λi ≥ γV
i ). Then

E[revenue] ≥ 1
1+⌈maxi log2((H−ζi)/λi)⌉ (OPT−

∑n
i=1(γ

A
i + ζi + ρi)).

Theorem 4.6 (Revenue bound 2). E[revenue] ≥ (1−maxi
⌈log+

2 ((γV
i −ζi)/λi)⌉

1+⌈log2((H−ζi)/λi)⌉ )(OPT−
∑n

i=1(γ
A
i +

ζi))−
∑n

i=1
4H

1+⌈log2((H−ζi)/λi)⌉ .
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Proof sketch. Mζ,λ in essence performs a doubling search with initial hop ζi and λi controlling how
fine-grained the search proceeds. The bounds are proven (Appendix A.3) by controlling participation
probabilities Pr(θi ∈ Θ̂i) and accounting for conditional payments via Lemma 4.1.

First, consider constant ζ, λ. Our welfare guarantee degrades from OPT to Ω(OPT/ logH) as the
invalidity of the predictions increase. Revenue bound 1 degrades from Ω(OPT/ logH) as both the
invalidity and inaccuracy of the predictions increase. Revenue bound 2 illustrates that we can obtain
significantly better performance if the parameters ζ, λ are chosen appropriately. In particular, for
any ε, ζi = γV

i and λi ≤ O((H − ζi)/2
H/ε) yields E[revenue] ≥ OPT−

∑n
i=1(γ

A
i + γV

i + ε), a
bound that is only additively worse than the total social surplus (and recovers the total social surplus
as λi ↓ 0 if the predictions are perfect). This bound degrades gradually as ζi, λi deviate.

To summarize, if the side information is of very high quality, the best parameters ζ, λ nearly recover
the total social surplus OPT as welfare and revenue, and revenue degrades gradually as the chosen
parameters ζ, λ worsen. If the side information is of questionable quality, the best parameters ζ, λ still
obtain OPT as welfare, with revenue suffering additively by the prediction errors. As the parameter
selection worsens, welfare and revenue degrade to Ω(OPT/ logH) with revenue suffering the same
additive loss. Effective parameters can be, for example, learned from data [32]. We briefly discuss the
consistency and robustness of Mζ,λ in Appendix B.3, where we show the worst case performance of
Mζ,λ independent of prediction quality is not much worse than vanilla VCG.

4.1 More expressive forms of side information

In this subsection we establish two avenues for richer and more expressive side information languages.
The first deals with uncertainty and the second with joint multi-agent predictions.

Uncertainty. We now show that the techniques we have developed so far readily extend to an even
larger more expressive form of side information that allows one to express varying degrees of uncer-
tainty. A side information structure corresponding to agent i is given by a partition (Ai

1, . . . , A
i
m) of

the ambient type space Θi into disjoint sets, probabilities µi
1, . . . , µ

i
m ≥ 0;

∑
j µ

i
j = 1 corresponding

to each partition element, and for each partition element an optional probability density function
f i
j ;
∫
Ai

j
f i
j = 1. The side information structure represents (1) a belief over what partition element Ai

j

the true type θi lies in and (2) if a density is specified, the precise nature of uncertainty over the true
type within Ai

j . Our model of side information sets Θ̃i considered earlier in the paper corresponds
to the partition (Θ̃i,Θi \ Θ̃i) with µ(Θ̃i) = 1 and no specified densities. The richer model allows
side information to convey finer-grained beliefs; for example one can express quantiles of certainty,
precise distributional beliefs, and arbitrary mixtures of these.

Our notions of prediction error (invalidity and inaccuracy) can be naturally generalized. We define
γV
i =

∑
j µ

i
jγ

V
i (Ai

j ; f
i
j) and γA

i =
∑

j µ
i
jγ

A
i (A

i
j ; f

i
j), where γV

i (Ai
j ; f

i
j) = d(θi,WCH(Ai

j)) if

f i
j = None and γV

i (Ai
j ; f

i
j) = Eθ̃i∼fi

j
[d(θi,WCH({θ̃i})] if f i

j is a well-defined density. Similarly

γA
i (A

i
j ; f

i
j) = dH(θi,WC(Ai

j)) if f i
j = None and γA

i (A
i
j ; f

i
j) = Eθ̃i∼fi

j
[d(θi, θ̃i)] otherwise.

Our generalized version of Mζ,λ first samples a partition element Ai
j according to (µi

1, . . . , µ
i
m),

and draws ki ∼unif. {0, . . . ,Ki} where Ki is defined as before. If f i
j = None, it sets Θ̂i =

B(Ai
j , ζi + 2kiλi). Otherwise, it samples θ̃i ∼ f i

j and sets Θ̂i = B({θ̃i}, ζi + 2kiλi). Versions of
Theorems 4.4, 4.5, and 4.6 carry forward with γV

i and γA
i as the error measures. In Appendix C we

provide the derivations, and also take the expressive power one step further by specifying a probability
space over Θi; its σ-algebra captures the granularity of knowledge being conveyed and its probability
measure captures the uncertainty.

Joint side information. So far, side information has been independent across agents. Specifically,
the mechanism designer receives sets Θ̃i ⊆ Θi for each agent i postulating that θ = (θ1, . . . , θn) ∈
Θ̃1×· · ·×Θ̃n. We show that our techniques extend to a more expressive form of side information that
allows one to express predictions involving multiple agents. Let Θ = Θ1×· · ·×Θn. The mechanism
designer receives as side information a set Θ̃ ⊆ Θ postulating that θ = (θ1, . . . , θn) ∈ Θ̃. Given
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an agent i, a side information set Θ̃ ⊆ Θ, and Θ−i ⊆×j ̸=i
Θj , let proji(Θ̃;Θ−i) = {θ̃i ∈ Θi :

∃θ−i ∈ Θ−i s.t. (θ̃i,θ−i) ∈ Θ̃} be the ith projection of Θ̃ with respect to Θ−i. The projection
is the set of types for agent i consistent with Θ̃ given that the realizations of the other agents’ true
types are contained in Θ−i. First, if Θ̃ is known to be a valid prediction, that is, the true type profile
θ is guaranteed apriori to lie in Θ̃ (equivalently, the joint misreporting space is limited to Θ̃), we
generalize the weakest-competitor VCG mechanism as follows. First, agents are asked to reveal their
true types θ = (θ1, . . . , θn). The allocation used is α∗ = argmaxα∈Γ

∑n
i=1 θi[α] and agent i pays

pi = minθ̃i∈proji(Θ̃;θ−i)

(
maxα∈Γ

∑
j ̸=i θj [α] + θ̃i[α]

)
−
∑

j ̸=i θj [α
∗].

This generalized weakest-competitor VCG mechanism is IC, IR, and revenue optimal subject to
efficiency in the joint information setting for the same reason that weakest-competitor VCG is in the
independent information setting.

More generally, given side information set Θ̃, our random expansion mechanism can be generalized
as follows. Agents first reveal their true types θ1, . . . , θn. For each agent i, independently set Θ̂i =

B(proji(Θ̃,θ−i), ζi + 2kiλi). The same guarantees we derived previously hold, with appropriately
modified quality measures: invalidity is γV

i = d(θi,WCH(proji(Θ̃,θ−i))) and inaccuracy is γA
i =

dH(θi,WC(proji(Θ̃,θ−i))). An important idea highlighted by these mechanisms for joint side
information is that the true types of all agents other than i can be heavily utilized in determining
pi. This model of side information affords significantly more expressive power than the agent-
independent model with product structure considered previously. For example, the mechanism
designer might know that sum of the valuations of two customers for a cup of coffee exceeds a
particular threshold, but does not know who has the higher value. Joint side information enables such
a belief to be precisely expressed. It allows the mechanism designer to refine his beliefs on one agent
based on the realized true type of the other agent (which was not possible in our previous framework).

We conclude this section with the observation that these mechanisms can loosely be interpreted
as prior-free quantitative analogues of the seminal total-surplus-extraction Bayesian mechanism
of Crémer and McLean [20] for correlated agents (generalized to infinite type spaces by McAfee and
Reny [37]). This is an interesting connection to explore further in future research.

5 Constant-parameter agents: types on low-dimensional subspaces

In this section we show how the theory we have developed so far can be used to derive new revenue
approximation results when the mechanism designer knows that each agent’s type belongs to some
low-dimensional subspace of RΓ (these subspaces can be different for each agent).

This is a slightly different setup from the previous sections. So far, we have assumed that Θi = Θ for
all i, that is, there is an ambient type space that is common to all the agents. Side information sets
Θ̃i are given as input to the mechanism designer, with no assumptions on quality/correctness (and
our guarantees in Section 4 were parameterized by quality). Here, we assume the side information
that each agent’s type lies in a particular subspace is guaranteed to be valid. Two equivalent ways
of stating this setup are (1) that Θi is the corresponding subspace for agent i and the mechanism
designer receives no additional prediction set Θ̃i or (2) Θi = Θ for all i, Θ̃i = Θ ∩ Ui where Ui is a
subspace of RΓ, and the mechanism designer has the additional guarantee that θi ∈ Ui (so Θ̃i is a
valid side-information set). We shall use the language of the second interpretation.

In this setting, while the side information is valid, the inaccuracy errors γA
i of the sets Θ̃i = Θ ∩ Ui

can be too large to meaningfully use our previous guarantees. In this section we show how to
fruitfully use the information provided by the subspaces U1, . . . , Un within the framework of our
meta-mechanism. We assume Θ = [1, H]Γ, thereby imposing a lower bound of 1 on agent values
(this choice of lower bound is not important, but the knowledge of some lower bound is needed).

Formally, for each i, the mechanism designer knows that θi lies in a k-dimensional subspace
Ui = span(ui,1, . . . , ui,k) of RΓ where each ui,j ∈ RΓ

≥0 lies in the non-negative orthant and
{ui,1, . . . , ui,k} is an orthonormal basis for Ui. For simplicity, assume H = 2a for some positive
integer a. Let Li,j = {λui,j : λ ≥ 0} ∩ [0, H]Γ be the line segment that is the portion of the

9



ray generated by ui,j that lies in [0, H]Γ. Let yi,j be the endpoint of Li,j with ∥yi,j∥∞ = H
(the other endpoint of Li,j is the origin). Let z1i,j = yi,j/2 be the midpoint of Li,j , and for

ℓ = 2, . . . , log2 H let zℓi,j = zℓ−1
i,j /2 be the midpoint of 0zℓ−1

i,j . So ∥zlog2 H
i,j ∥∞ = 1. We ter-

minate the halving of Li,j after log2 H steps due to the assumption that θi ∈ [1, H]Γ. For ev-
ery k-tuple (ℓ1, . . . , ℓk) ∈ {1, . . . , log2 H}k, let θ̃i(ℓ1, . . . , ℓk) =

∑k
j=1 z

ℓj
i,j . Furthermore, let

Wℓ = {(ℓ1, . . . , ℓk) ∈ {1, . . . , log2 H}k : minj ℓj = ℓ}. The sets W1, . . . ,Wlog2 H partition
{1, . . . , log2 H}k into levels, where Wℓ is the set of points with ℓ∞-distance H/2ℓ from the origin.
For each agent i, our mechanism Mk independently sets

Θ̂i =
{
θ̃i(ℓi,1, . . . , ℓi,k)

}
where ℓi ∼unif. {1, . . . , log2 H} and (ℓi,1, . . . , ℓi,k) ∼unif. Wℓi .

Theorem 5.1. Mk satisfies E[welfare] ≥ OPT/ log2 H and E[revenue] ≥ OPT/(2k(log2 H)k).

As mentioned in Section 1, Mk can be viewed as a generalization of the logH revenue approximation
in the single-item limited-supply setting that is achieved by a second-price auction with a uniformly
random reserve price from {H/2, H/4, . . . , 1} [27]. Our results apply not only to auctions but to
general multidimensional mechanism design problems such as the examples presented in Section 2.

6 Conclusions and future research

We developed a versatile new methodology for multidimensional mechanism design that incorporates
side information about agent types with the bicriteria goal of generating high social welfare and
high revenue simultaneously. We designed a side-information-dependent meta-mechanism. This
mechanism generalizes the weakest-competitor VCG mechanism of Krishna and Perry [34]. Careful
instantiations of our meta-mechanism simultaneously achieved strong welfare and revenue guarantees
that were parameterized by errors in the side information, and additionally proved to be fruitful
in a setting where each agent’s type lies on a constant-dimensional subspace (of the potentially
high-dimensional ambient type space) that is known to the mechanism designer.

There are many new research directions that stem from our work. First, how far off are our mechanisms
from the welfare-versus-revenue Pareto frontier? The weakest-competitor VCG mechanism is one
extreme point, but what does the rest of the frontier look like? One possible approach here would
be to extend our theory beyond VCG to the larger class of affine maximizers (which are known to
contain high-revenue mechanisms)—we provide some initial ideas in Appendix D.

Computational complexity: An important facet that we have largely ignored is computational com-
plexity. The computations in our mechanism involving weakest competitors scale with the description
complexity of Θ̃i (e.g., the number of constraints, the complexity of constraints, and so on). An
important question here is to understand the computational complexity of our mechanisms as a
function of the differing (potentially problem-specific) language structures used to describe the
side-information sets Θ̃i. In particular, the classes of side-information sets that are accurate, nat-
ural/interpretable, and easy to describe might depend on the specific mechanism design domain.
Expressive bidding languages for combinatorial auctions have been extensively studied with massive
impact in practice [46, 47]. Can a similar methodology be developed for side information?

Improved analysis when there is a known prior: Another direction is to improve the Bayesian revenue
analysis of Krishna and Perry when there is a known prior over agents’ types. Here, the benchmark
would be efficient welfare in expectation over the prior. The (Bayesian) WCVCG mechanism of
Krishna and Perry uses weakest competitors with respect to the prior’s support to guarantee efficient
welfare in expectation, but its revenue could potentially be boosted significantly by compromising on
welfare as in our random expansion mechanism. Another direction here is to study the setting when the
given prior might be inaccurate. Can our random expansion mechanism be used to derive guarantees
that depend on the closeness of the given prior to the true prior? Such questions are thematically
related to robust mechanism design [16]. Another direction along this vein is to generalize our
mechanisms to depend on a known prior over prediction errors.

Finally, the WCVCG mechanism of Krishna and Perry is a strict improvement over the vanilla VCG
mechanism, yet it appears to not have been further studied nor applied since its discovery. The
weakest-competitor paradigm could have applications in economics and computation more broadly.
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A Proofs of results

We provide complete proofs of all results from the main body of the paper.

A.1 Omitted proofs from Section 2

Proof of Theorem 2.1. Weakest-competitor VCG is incentive compatible for the same reason that
VCG is incentive compatible: the minimization in the payment formula (the pivot term) is independent
of bidder i’s reported type. Concretely, if α′ is the welfare-maximizing allocation when bidder i
reports θ′i, bidder i’s utility from reporting θ′i is

∑n
j=1 θj [α

′]−minθ̃i∈Θi
(maxα

∑
j ̸=i θj [α]+ θ̃i[α]),

which is maximized at α′ = α∗ (which proves incentive compatibility). Furthermore, for each i,∑n
j=1 θj [α

∗] − minθ̃i∈Θi
(maxα

∑
j ̸=i θj [α] + θ̃i[α]) ≥

∑n
j=1 θj [α

∗] − maxα
∑n

j=1 θj [α] = 0,
which proves individual rationality. The proof that weakest-competitor VCG is revenue optimal
follows from the revenue equivalence theorem; the necessary ingredients may be found in the
monograph by Vohra [51]. Let pi(θ) be the weakest-competitor VCG payment rule, and let p′i(θ) be
any other payment rule that also implements the efficient allocation rule. By revenue equivalence,
for each i, there exists hi(θ−i) such that p′i(θi,θ−i) = pi(θi,θ−i) + hi(θ−i). Suppose θ is
a profile of types such that p′i generates strictly greater revenue than pi, that is,

∑n
i=1 p

′
i(θ) >∑n

i=1 pi(θ). Equivalently
∑n

i=1 pi(θ,θ−i) + hi(θ−i) >
∑n

i=1 pi(θi,θ−i). Thus, there exists i∗

such that hi∗(θ−i∗) > 0. Now, let

θ̃i∗ = argmin
θ′
i∗∈Θi∗

max
α∈Γ

∑
j ̸=i

θj [α] + θ′i∗ [α]

be the weakest competitor with respect to θ−i∗ . If weakest-competitor VCG is run on the type
profile (θ̃i∗ ,θ−i∗), the agent with type θ̃i∗ pays their value for the efficient allocation. In other words,
the individual rationality constraint is binding for θ̃i∗ . Since hi∗(θ−i∗) > 0, p′i violates individual
rationality, which completes the proof.

A.2 Omitted proofs from Section 3

Proof of Theorem 3.3. Let i denote the index of the agent under consideration with type space Θ̃.
Let θ ∈ Θ̃ be a point such that there exists θ′ ∈ Θ̃ with θ′ ≺ θ. Then,

max
α∈Γ

∑
j ̸=i

θj [α] + θ′[α] < max
α∈Γ

∑
j ̸=i

θj [α] + θ[α]

for all θ−i ∈ Θ−i. So θ /∈ WC(Θ̃), which shows that WC(Θ̃) ⊆ {θ ∈ Θ̃ : {θ′ ∈ Θ̃ : θ′ ≺ θ} = ∅}.
To show the reverse containment, let θ ∈ Θ̃ be such that {θ′ ∈ Θ̃ : θ′ ≺ θ} = ∅. Consider any
θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) such that∑

j ̸=i

θj [α1] + θ[α1] =
∑
j ̸=i

θj [α2] + θ[α2] = · · · =
∑
j ̸=i

θj [α|Γ|] + θ[α|Γ|].

The existence of such a θ−i can be shown explicitly as follows. Let j ̸= i be arbitrary. For all
k /∈ {i, j} set θk = (0, . . . , 0). Without loss of generality relabel the allocations in Γ such that
θ[α1] ≥ θ[α2] ≥ · · · ≥ θ[α|Γ|]. Then, set

θj =
(
0, θ[α1]− θ[α2], . . . , θ[α1]− θ[α|Γ|]

)
∈ [0, H]Γ.

Then, θ minimizes

max

∑
j ̸=i

θj [α1] + θ[α1],
∑
j ̸=i

θj [α2] + θ[α2], . . . ,
∑
j ̸=i

θj [α|Γ|] + θ[α|Γ|]


since any θ′ that attains a strictly smaller value must satisfy θ′ ≺ θ (and no such θ′ exists, by
assumption). So θ ∈ WC(Θ̃), which proves the reverse containment. The characterizations of WC
and WCH follow immediately.
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Proof of Theorem 3.4. M is incentive compatible for the exact same reason weakest-competitor
VCG is incentive compatible (Theorem 2.1). Individual rationality is an immediate consequence of
how M is defined: all agents with potential individual-rationality violations (those not in I) do not
participate and receive zero utility.

Proof of Theorem 3.5. Let θi denote the true type of agent i and let θ−i =

(θ1, . . . , θi−1, θi+1, . . . , θn) denote the reported types of the other agents. Suppose θi /∈ WCH(Θ̂i).
Then, there exists θ̃i ∈ WC(Θ̂i) such that θ̃i ≻ θi, and there exists θ−i such that
θ̃i ∈ argminθ̂i∈Θ̂i

maxα∈Γ

∑
j ̸=i θj [α] + θ̂i[α] is a weakest competitor relative to θ−i (the

existence of θ−i follows from the same reasoning as in the proof of Theorem 3.3). As θ̃i ≻ θi, agent
i’s overall utility will be negative. The utility is unchanged and remains negative if θ̃i is replaced by
θ∗i ∈ WC(Θ̂i) that is also a weakest competitor relative to θ−i. So we have shown there exists θ−i

such that i /∈ I .

Conversely suppose θi ∈ WCH(Θ̂i). Then, there exists θ′i ∈ WC(Θ̂i) such that θi ⪰ θ′i. Let
θ−i be arbitrary. Agent i’s utility is

∑n
j=1 θj [α

∗] − minθ̃i∈WC(Θ̂i)
(maxα

∑
j ̸=i θj [α] + θ̃i[α]) ≥∑n

j=1 θj [α
∗]− (maxα

∑
j ̸=i θj [α] + θ′i[α]) ≥

∑n
j=1 θj [α

∗]− (maxα
∑

j ̸=i θj [α] + θi[α]) = 0, so
i ∈ I , as desired.

Proof of Theorem 3.6. The weakest competitor in Θ̂i relative to θ−i is the solution θ̃i ∈ RΓ to the
linear program

min

{
γ :

θ̃i[α] +
∑

j ̸=i θj [α] ≤ γ ∀α ∈ Γ,

θ̃i ∈ Θ̂i, γ ≥ 0

}
with |Γ|+ 1 variables and |Γ|+ size(Θ̂i) constraints. Generating the first set of constraints requires
computing

∑
j ̸=i θj [α] for each α ∈ Γ, which takes time ≤ n|Γ|.

Checking membership of θi in WCH(Θ̂i) is equivalent to checking feasibility of a polytope

θi ∈ WCH(Θ̂i) ⇐⇒
{
θ̃i : θ̃i ∈ Θ̂i, θi[α] ≥ θ̃i[α] ∀α ∈ Γ

}
̸= ∅

defined by size(Θ̂i) + |Γ| constraints.

More generally, the complexity of the above two mathematical programs is determined by the
complexity of constraints needed to define Θ̃i: for example, if Θ̃i is a convex set then they are convex
programs. Naturally, a major caveat of this brief discussion on computational complexity is that |Γ|
can be very large (for example, |Γ| is exponential in combinatorial auctions).

A.3 Omitted proofs from Section 4

Proof of Lemma 4.1. Let pi denote the payment collected from agent i, where i is an agent such that
θi ∈ Θ̂i. Let θ∗i be the weakest competitor in Θ̂i with respect to θ−i. The utility for agent i under
M is

θi[αopt]− pi =

n∑
j=1

θj [αopt]− min
θ̂i∈Θ̂i

(
max
α∈Γ

∑
j ̸=i

θj [α] + θ̂i[α]

)

=

n∑
j=1

θj [αopt]−

(
max
α∈Γ

∑
j ̸=i

θj [α] + θ∗i [α]

)

≤
n∑

j=1

θj [αopt]−

(∑
j ̸=i

θj [αopt] + θ∗i [αopt]

)
= θi[αopt]− θ∗i [αopt]

≤ max
θ̂i∈WC(Θ̂i)

∥∥θi − θ̂i
∥∥
∞ = dH(θi,WC(Θ̂i)),
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as desired.

Proof of Theorem 4.4. For each agent i, let k∗i be the smallest k ∈ {0, . . . ,Ki} such that θi ∈
WCH(B(Θ̃i, ζi + 2k · λi)). Equivalently, k∗i is the minimal k such that γV

i ≤ ζi + 2kλi. So
k∗i = ⌈log+2 ((γV

i − ζi)/λi)⌉. We have, using the fact that θi ∈ Θ̂i =⇒ i ∈ I (Theorem 3.5),

E[welfare] = E
[ n∑

i=1

θi[αopt]·1(i ∈ I)
]
≥ E

[ n∑
i=1

θi[αopt]·1(θi ∈ Θ̂i)

]
=

n∑
i=1

θi[αopt]·Pr(θi ∈ Θ̂i)

and

Pr(θi ∈ Θ̂i) = Pr(ki ≥ k∗i ) = 1− Pr(ki < k∗i ) = 1− k∗i
1 +Ki

= 1− ⌈log+2 ((γV
i − ζi)/λi)⌉

1 + ⌈log2((H − ζi)/λi)⌉
.

Therefore

E[welfare] ≥
(
1−max

i

⌈log+2 ((γV
i − ζi)/λi)⌉

1 + ⌈log2((H − ζi)/λi)⌉

)
· OPT.

If all predictions are valid, we get E[welfare] = OPT. The other term of the bound follows from
Pr(θi ∈ Θ̂i) ≥ Pr(ki = k∗i ) =

1
1+Ki

.

Proof of Theorem 4.5. Let k∗i be defined as in the proof of Theorem 4.4. We compute expected
revenue by computing E[pi] for each agent i. Let S = {i : θi ∈ Θ̂i} be the (random) set of agents
with valid predictions post expansion. We have

E[pi] ≥ E[pi | ki = k∗i ] · Pr(ki = k∗i ) =
1

1 +Ki
· E[pi | ki = k∗i ].

Now ki = k∗i =⇒ i ∈ S, so we may apply the payment bound of Lemma 4.1:

E[pi | ki = k∗i ] ≥ E
[
θi[αopt]− dH(θi,WC(B(Θ̃i, ζi + 2k

∗
i λi))) | ki = k∗i

]
= θi[αopt]− dH(θi,WC(B(Θ̃i, ζi + 2k

∗
i λi))).

Next, we bound dH(θi,WC(B(Θ̃i, ζi + 2k
∗
i λi))). Let θ̃i ∈ WC(B(Θ̃i, ζi + 2k

∗
i λi)) be arbitrary. By

Lemma A.1 (the statement and proof are at the end of Appendix A.3), θ̃i ∈ WC(B(WC(Θ̃i), ζi +

2k
∗
i λi)), so there exists θ′i ∈ WC(Θ̃i) such that ∥θ̃i−θ′i∥∞ ≤ ζi+2k

∗
i λ. Moreover, ∥θi−θ′i∥∞ ≤ γA

i

by definition of γA
i . The triangle inequality therefore yields∥∥θi − θ̃i

∥∥
∞ ≤

∥∥θ̃i − θ′i
∥∥
∞ +

∥∥θi − θ′i
∥∥
∞ ≤ γA

i + ζi + 2k
∗
i λi,

so, as θ̃i ∈ WC(B(Θ̃i, ζi+2k
∗
i λi)) was arbitrary, dH(θi,WC(B(Θ̃i, r

∗
i ))) ≤ γA

i + ζi+2k
∗
i λi. Now,

we claim 2k
∗
i λi ≤ ρi. To show this, consider two cases. If ζi + λi ≥ γV

i , that is, k∗i = 0, then
2k

∗
i λi = λi = ρi. If ζi + λi < γV

i , then k∗i > 0 and we have ζi + 2k
∗
i −1λi < γV

i ≤ ζ + 2k
∗
i λi, so

2k
∗
i λ < 2(γV

i − ζi) = ρi. So

dH(θi,WC(B(Θ̃i, ζi + 2k
∗
i λi))) ≤ γA

i + ζi + ρi.

Finally, we have

E[pi] ≥
1

1 +Ki

(
θi[αopt]− (γA

i + ζi + ρi)
)
,

so

E[revenue] = E
[ n∑

i=1

pi

]
=

n∑
i=1

E[pi] ≥
n∑

i=1

1

1 +Ki

(
θi[αopt]− (γA

i + ζi + ρi)
)

≥ 1

1 + ⌈maxi log2(
H−ζi
λi

)⌉

(
OPT−

n∑
i=1

(γA
i + ζi + ρi)

)
,

as desired.
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Proof of Theorem 4.6. Let k∗i be defined as in Theorems 4.4 and 4.5. We bound E[pi] similarly to
the approach in the proof of Theorem 4.5, but account for all possible values of ki (rather than only
conditioning on ki = k∗i ). If ki < k∗i , then agent i does not participate and pays nothing. We have

E[pi] =
Ki∑

k=k∗
i

E[pi|ki = k] · Pr(ki = k) ≥ 1

1 +Ki

Ki∑
k=k∗

i

(
θi[αopt]− dH(θi,WC(B(Θ̃i, ζi + 2k · λi)))

)

≥ 1

1 +Ki

Ki∑
k=k∗

i

(
θi[αopt]− (γA

i + ζi + 2k · λi)
)

=

(
1− k∗i

1 +Ki

)(
θi[αopt]− γA

i − ζi
)
− λi

1 +Ki

Ki∑
k=k∗

i

2k

≥
(
1− k∗i

1 +Ki

)(
θi[αopt]− γA

i − ζi
)
− λ2Ki+1

1 +Ki

where in the second inequality we have used the the bound dH(θi,WC(B(Θ̃i, ζi + 2kλi))) ≤ γA
i +

ζi+2kλi, which was derived in the proof of Theorem 4.5. We have 2Ki+1 ≤ λi(4(H−ζi)/λi) ≤ 4H .
Substituting and summing over agents yields the desired revenue bound.

Lemma A.1. WC(B(Θ̃, r)) = WC(B(WC(Θ̃), r)).

Proof. We first prove the forwards containment. For the sake of contradiction suppose there exists
θ̃ ∈ WC(B(Θ̃, r)) such that θ̃ /∈ WC(B(WC(Θ̃), r)). Then, there exists θ′ ∈ B(WC(Θ̃), r) such
that θ′ ≼ θ̃. But

WC(Θ̃) ⊆ Θ̃ =⇒ B(WC(Θ̃), r) ⊆ B(Θ̃, r),

so θ′ ∈ B(Θ̃, r) and θ′ ≼ θ̃ which contradicts the assumption that θ̃ ∈ WC(B(Θ̃, r)).

We now prove the reverse containment. For the sake of contradiction suppose there exists θ̃ ∈
WC(B(WC(Θ̃), r)) such that θ̃ /∈ WC(B(Θ̃, r)). Then, there exists θ′ ∈ B(Θ̃, r) such that θ′ ≼ θ̃.
Furthermore, if θ′ /∈ WC(B(Θ̃, r)), there exists θ′′ ∈ WC(B(Θ̃, r)) such that θ′′ ≼ θ′ ≼ θ′ (if
θ′ ∈ WC(B(Θ̃, r)), set θ′′ = θ′). From the forward inclusion, we have

WC(B(Θ̃, r)) ⊆ WC(B(WC(Θ̃), r)) ⊆ B(WC(Θ̃), r),

so θ′′ ∈ B(WC(Θ̃), r) and θ′′ ≼ θ̃ which contradicts the assumption that θ̃ ∈ WC(B(WC(Θ̃), r)).

A.4 Omitted proofs from Section 5

To prove Theorem 5.1 we need the following more direct bound on pi in terms of the weakest
competitor’s value.

Lemma A.2. Run M with Θ̂i. If i is such that θi ∈ WCH(Θ̂i), then pi ≥ θ̃i[αopt] where θ̃i is the
weakest competitor in Θ̂i relative to θ−i.

Proof of Lemma A.2. Truncating the proof of Lemma 4.1 yields the desired statement.

Proof of Theorem 5.1. We have E[welfare] ≥
∑n

i=1 θi[αopt]·Pr(θi ∈ Θ̂i) ≥
∑n

i=1 θi[αopt]·Pr(ℓi =
log2 H) = 1

log2 H · OPT (since θi ⪰ θ̃i(log2 H, . . . , log2 H)). The proof of the revenue guarantee
relies on the following key claim: for each agent i, there exists ℓ∗i,1, . . . , ℓ

∗
i,k ∈ {1, . . . , log2 H} such

that θ̃(ℓ∗i,1, . . . , ℓ
∗
i,k) ⪰ 1

2θi. To show this, let θji denote the projection of θi onto uj , so θi =
∑k

j=1 θ
j
i

since {ui,1, . . . , ui,k} is an orthonormal basis. Let ℓ∗i,j = min{ℓ : θji ⪰ zℓi,j}. Then, z
ℓ∗i,j
i,j ⪰ 1

2θ
j
i , so

θ̃(ℓ∗i,1, . . . , ℓ
∗
i,k) =

k∑
j=1

z
ℓ∗i,j
i,j ⪰

k∑
j=1

1

2
θji =

1

2
θi.
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We now bound the expected payment of agent i as in the previous results. Let ℓ∗i = minj ℓ
∗
i,j . We

have

E[pi] ≥ E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]
· Pr

(
(ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
)

=
1

|Wℓ∗i
| log2 H

· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]

≥ 1

log2 H((log2 H)k − (log2 H − 1)k)
· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]

≥ 1

k(log2 H)k
· E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]

since the probability of obtaining the correct weakest competitor θ̃(ℓ∗i,1, . . . , ℓ
∗
i,k) can be written as

the probability of drawing the correct “level” ℓ∗i ∈ {1, . . . , log2 H} times the probability of drawing
the correct weakest competitor within the correct level Wℓ∗i

. We bound the conditional expectation
with Lemma A.2,

E
[
pi | (ℓi,1, . . . , ℓi,k) = (ℓ∗i,1, . . . , ℓ

∗
i,k)
]
≥ θ̃i(ℓ

∗
i,1, . . . , ℓ

∗
i,k)[αopt] ≥

1

2
· θi[αopt].

Finally,

E[revenue] =
n∑

i=1

E[pi] ≥
1

2k(log2 H)k
·

n∑
i=1

θi[αopt] =
1

2k(log2 H)k
· OPT,

as desired.

B Consistency and robustness

In this section we show that it is trivial to obtain high consistency and robustness ratios with an
otherwise undesirable mechanism that yields poor revenue even if predictions are nearly perfect. We
also discuss the consistency and robustness of our main mechanism Mζ,λ.

For S ⊆ {1, . . . , n}, let OPTS =
∑

i∈S θi[αopt] be the welfare generated by the efficient allocation
restricted to agents in S. Let VCG(S) denote the revenue of the vanilla VCG mechanism when run
among the agents in S. Let VCG(β) = E[VCG(S)] where S ⊆ {1, . . . , n} is sampled by including
each agent in S independently with probability β. In general, S ⊆ T ≠⇒ VCG(S) ≤ VCG(T ) [44],
so VCG(β) need not be increasing in β, but there are various sufficient conditions when revenue
monotonicity does hold [6, 29, 54].

B.1 First approach: trust predictions completely

The first basic instantiation of our meta mechanism M is the following: the mechanism designer
simply sets Θ̂i = WCH(Θ̃i) for all i. Let V = {i : θi ∈ WCH(Θ̃i)} = {i : γV

i = 0} denote the set
of agents with valid predictions. The welfare of this mechanism is simply OPTV and its revenue is
bounded by Lemma 4.1. If all predictions are valid and perfect, that is, WC(Θ̃i) = {θi} for all i, both
welfare and revenue are equal to OPT. However, if all predictions are such that θi /∈ WCH(Θ̃i), both
welfare and revenue potentially drop to 0. So this mechanism is (1, 1)-consistent and (0, 0)-robust.

B.2 Second approach: discard predictions randomly

The issue with the above mechanism is that if all predictions are invalid, it generates no welfare
and no revenue. We show how randomization can quell that issue. One trivial solution is to
discard all predictions with probability β, and trust all predictions completely with probability
(1 − β). That is, with probability β set (Θ̂1, . . . , Θ̂n) = (Θ, . . . ,Θ) and with probability 1 − β

set (Θ̂1, . . . , Θ̂n) = (WCH(Θ̃1), . . . ,WCH(Θ̃n)), and then run M. This mechanism achieves
strong consistency and robustness ratios. Let V = {i : θi ∈ WCH(Θ̃i)} be the set of valid
predictions. From Lemma 4.1, we have E[welfare] = β ·OPT+ (1− β) ·OPTV and E[revenue] ≥
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β · VCG(1) + (1 − β) ·
(
OPTV −

∑
i∈V γA

i

)
, and thus obtain (1, 1 − β)-consistency and (β, β)-

robustness.

This approach suffers from a major issue: its revenue drops drastically the moment predictions are
invalid (γV

i > 0). In particular, if predictions are highly accurate but very slightly invalid (such as the
blue prediction in Figure 1), this approach completely misses out on any payments from such agents
and drops to the revenue of VCG (which can be drastically smaller than OPT). But, a tiny expansion
of these predictions would have sufficed to increase revenue significantly and perform competitively
with OPT. One simple approach is to set Θ̂i to be an expansion of Θ̃i by a parameter ηi with some
probability, and discard the prediction with complementary probability. If γV

i ≤ ηi for all i, then
such a mechanism would perform well. The main issue with such an approach is that the moment
γV
i > ηi, our expansion by ηi fails to capture the true type θi and the performance drastically drops.

Our main mechanism Mζ,λ essentially selects the ηi randomly from a suitable discretization of the
ambient type space to be able to capture θi with reasonable probability.

B.3 Consistency and robustness of Mζ,λ

In this discussion we assume constant ζ, λ > 0. Assuming revenue monotonicity, since θi ∈
Θ̂i with probability at least Ω(1/ logH), the revenue of our mechanism is never worse than
VCG(Ω(1/ logH)). Thus, in the language of algorithms-with-predictions, Mζ,λ is (1,Ω(1/ logH))-
consistent and, assuming revenue monotonicity, (Ω(1/ logH),VCG(Ω(1/ logH)))/VCG(1))-robust.
If VCG revenue is submodular, the robustness ratio is ≥ Ω(1/ logH) (but in general revenue can
shrink by more than this ratio [12]). In contrast to the trivial approach that either trusted the side
information completely or discarded predictions completely, our random expansion approach does
not suffer from large discontinuous drops in welfare nor revenue.

Furthermore, the previous approaches had no way of gracefully dealing with invalid prediction sets.
In particular, if Θ̃i is an invalid prediction, even if a tiny expansion of Θ̃i would have captured θi
(such as the blue set in Figure 1), we gave up on getting any meaningful revenue from agent i. When
all predictions were invalid (that is, γV

i > 0 for all i), our guarantee dropped to β · VCG(1). The
random expansion of predictions remedies these issues. Its revenue is nearly logH-competitive with
OPT as long as

∑
i γ

A
i + 2γV

i is not too large. In particular, if we have high-accuracy but invalid
predictions that are just a small expansion away from capturing θi, the mechanism in this section is
nearly logH-competitive with OPT whereas the mechanism from the previous section is compared
to vanilla VCG due to invalid predictions.

C An expressive language for side information

A side information structure is a probability space (Θ,F , µ) where the ambient type space Θ is the
sample space, F is a σ-algebra on Θ, and µ is a probability measure. (We suppress the agent index
for brevity.)

F induces a partition of Θ into equivalence classes where θ ≡ θ′ if 1(θ ∈ A) = 1(θ′ ∈ A)
for all A ∈ F (so the side-information structure does not distinguish between θ and θ′). Let
Aθ = {θ′ : θ ≡ θ′} ∈ F be the equivalence class of θ. In this way the σ-algebra determines
the granularity of knowledge being conveyed by the side information structure, and the probability
measure µ : F → [0, 1] establishes uncertainty over this knowledge.

We define invalidity and inaccuracy of a side information structure in the natural way. Define random
variables XV

i , XA
i : Θ → R≥0 by

XV
i (θ) = γV

i (Aθ) = d(θi,WCH(Aθ))

and
XA

i (θ) = γA
i (Aθ) = dH(θi,WC(Aθ)).

XV
i and XA

i are F -measurable since they are (by definition) constant on all atoms of F (sets A ∈ F
such that no nonempty B ⊊ A is in F ). The invalidity/inaccuracy distributions on R≥0 are given by

Pr(a ≤ XV
i ≤ b) = µ({θ ∈ Θ : a ≤ γV

i (Aθ) ≤ b}) = µ(∪{Aθ : a ≤ γV
i (Aθ) ≤ b}).
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The generalized version of Mζ,λ that receives as input a side information structure for each agent
i given by (Θi,Fi, µi) works as follows. It samples θ̃i ∼ Θi according to (Fi, µi) and draws
ki ∼unif. {0, . . . ,Ki} where Ki is defined as before. It then sets

Θ̂i = B
(
Aθ̃i

, ζi + 2kiλi

)
.

Executing the same analysis in the proofs of Theorems 4.4, 4.5, and 4.6 for a fixed θ̃i, then taking
expectation over the draw of θ̃i yields similar guarantees with γV

i and γA
i replaced by E[XV

i ] and
E[XA

i ], respectively. To show this, we loosen the bounds in Theorems 4.4, 4.5, and 4.6 slightly to
make the multiplicative terms convex. As XV

i ≥ 0, we have⌈
log+2

(
XV

i − ζi
λi

)⌉
=

⌈
max

(
0, log2

(
XV

i − ζi
λi

))⌉
≤ 1 + log2

(
1 +

XV
i − ζi
λi

)
and therefore

E
[
1− ⌈log+2 ((XV

i − ζi)/λi)⌉
1 + ⌈log2((H − ζi)/λi)⌉

]
≥ E

[
1− 1 + log2(1 + (XV

i − ζi)/λi)

1 + ⌈log2((H − ζi)/λi)⌉

]
≥ 1− 1 + log2(1 + (E[XV

i ]− ζi)/λi)

1 + ⌈log2((H − ζi)/λi)⌉
by Jensen’s inequality. The corresponding versions of Theorems 4.4, 4.5, and 4.6 follow.

Theorem C.1. E[welfare] ≥ max{(1−maxi
1+log2(1+(E[XV

i ]−ζi)/λi)
1+⌈log2((H−ζi)/λi)⌉ ), 1

1+⌈maxi log2((H−ζi)/λi)⌉}OPT.

Theorem C.2 (Revenue bound 1). Let ρi = E[2(XV
i − ζi)1(ζi +λi < XV

i )+λi1(ζi +λi ≥ XV
i )].

Then E[revenue] ≥ 1
1+⌈maxi log2((H−ζi)/λi)⌉ (OPT−

∑n
i=1(E[XA

i ] + ζi + E[ρi])).

Theorem C.3 (Revenue bound 2). E[revenue] ≥ (1 − maxi
1+log2(1+(E[XV

i ]−ζi)/λi)
1+⌈log2((H−ζi)/λi)⌉ )(OPT −∑n

i=1(γ
A
i + ζi))−

∑n
i=1

4H
1+⌈log2((H−ζi)/λi)⌉ .

D Beyond the VCG mechanism: affine maximizers

Given agent-specific multipliers ω = (ω1, . . . , ωn) ∈ R≥0 and an allocation-based boost function
λ : Γ → R≥0, we define the following meta-mechanism M(ω, λ) which is a generalization of our
meta-mechanism M. The mechanism designer receives as input Θ̃1, . . . , Θ̃n, and based on these
decides on prediction sets Θ̂1, . . . , Θ̂n. The agents are then asked to reveal their true types θ1, . . . , θn.
The allocation used is

αω,λ = argmax
α∈Γ

n∑
i=1

ωiθi[α] + λ(α).

Let

pi =
1

ωi

 min
θ̃i∈Θ̂i

max
α∈Γ

∑
j ̸=i

ωjθj [α] + ωiθ̃i[α] + λ(α)

−

∑
j ̸=i

ωjθj [αω,λ] + λ(αω,λ)

 .

Let
I = {i : θi[αω,λ]− pi ≥ 0}.

Agents in i enjoy allocation αω,λ and pay pi. Agents not in i do not participate and receive zero
utility.

This mechanism is the natural generalization of the affine-maximizer mechanism [45] parameterized
by ω, λ to our setting. The special case where agent misreporting is limited to Θ̂i is the natural
generalization of the weakest-competitor VCG mechanism of Krishna and Perry [34] to affine-
maximizer mechanisms. The following is a simple consequence of the proofs that M and the affine-
maximizer mechanism parameterized by ω, λ are incentive compatible and individually rational.
Theorem D.1. For any ω ∈ Rn

≥0 and λ : Γ → R≥0, M(ω, λ) is incentive compatible and
individually rational.
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Let OPT(ω, λ) =
∑n

i=1 θi[αω,λ] be the welfare of the (ω, λ)-efficient allocation. All of the guaran-
tees satisfied by M carry over to M(ω, λ), the only difference being the modified benchmark of
OPT(ω, λ). Of course, OPT(ω, λ) ≤ OPT is a weaker benchmark than the welfare of the efficient
allocation. However, the class of affine maximizer mechanisms is known to achieve much higher
revenue than the vanilla VCG mechanism. We leave it as a compelling open question to derive even
stronger guarantees on mechanisms of the form M(ω, λ) when the underlying affine maximizer is
known to achieve greater revenue than vanilla VCG.
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