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“riding a motorcycle, sitting” “hands knocking on the closed 
door, facing the door, standing”

“stretching legs and sitting on 
the saddle on a standing cow”

“picking up dumbbells on a 
shelf, standing, bending over”

Figure 1. Given an arbitrary 3D scene, GenZI can synthesize virtual humans interacting with the 3D environment at specified locations
from a brief text description. Our approach does not require any 3D human-scene interaction training data or 3D learning. By distilling
interaction priors from powerful 2D vision-language models, we optimize for 3D human-scene interaction synthesis in a flexible fashion,
with simple language-based control and high generality to various types of scene environments.

Abstract

Can we synthesize 3D humans interacting with scenes
without learning from any 3D human-scene interaction
data? We propose GenZI1, the first zero-shot approach to
generating 3D human-scene interactions. Key to GenZI
is our distillation of interaction priors from large vision-
language models (VLMs), which have learned a rich seman-
tic space of 2D human-scene compositions. Given a natu-
ral language description and a coarse point location of the
desired interaction in a 3D scene, we first leverage VLMs
to imagine plausible 2D human interactions inpainted into
multiple rendered views of the scene. We then formulate
a robust iterative optimization to synthesize the pose and
shape of a 3D human model in the scene, guided by con-
sistency with the 2D interaction hypotheses. In contrast to
existing learning-based approaches, GenZI circumvents the
conventional need for captured 3D interaction data, and al-
lows for flexible control of the 3D interaction synthesis with
easy-to-use text prompts. Extensive experiments show that
our zero-shot approach has high flexibility and generality,
making it applicable to diverse scene types, including both
indoor and outdoor environments.

1Project page: craigleili.github.io/projects/genzi

1. Introduction

Scenes are typically constructed to enable human interac-
tions with the environment, like sitting on a couch, playing
a piano, or opening a mailbox. Understanding these inter-
actions between humans and scenes, also known as affor-
dances [9, 17], has gained increasing attention in the fields
of computer vision and graphics. In particular, achieving
controllable and generalizable synthesis of human-scene in-
teractions (or HSIs) holds immense potential for various
applications, such as robotics, architectural design, video
games, and virtual reality experiences, among many others.

Generating realistic humans interacting with a 3D scene
is a challenging task, requiring holistic semantic under-
standing of both the environment and possible human ac-
tions therein. Existing approaches to HSI synthesis [11, 46,
50, 51] rely heavily on supervised training using meticu-
lously captured data of real people interacting in 3D envi-
ronments. Unfortunately, collecting large-scale datasets of
3D scenes and human interactions is exorbitantly difficult.
It not only demands accurate tracking and reconstruction
of both people and their environments, but also needs to en-
sure sufficient diversity in subjects and scenes. Existing HSI
datasets currently contain very limited quantities of scenes
and actions, for example, PROX [10, 51] only consisting



of 12 indoor scenes and humans interacting with 11 object
categories. The scarcity of ground truth data for supervi-
sion has thus strongly limited the applicability and gener-
alization of the learning-based approaches for synthesizing
diverse sets of actions in arbitrary 3D scenes.

We thus consider an alternative perspective to HSI syn-
thesis and pose the following question: Can we achieve
plausible HSI synthesis without using any captured 3D in-
teraction data? To this end, we present a novel zero-
shot approach to 3D HSI generation. We propose the first
method to leverage the powerful capabilities exhibited by
recent vision-language models (VLMs) [19, 20, 30, 33, 34,
37] to synthesize plausible 2D images of human interac-
tions, and introduce a robust optimization to distill inferred
2D pose information into 3D human synthesis in a 3D
scene.

More concretely, given a 3D scene, a text prompt and a
coarse point location of the desired interaction, GenZI opti-
mizes for the pose and shape of a 3D human performing the
action in the scene, guided by a large VLM [34]. We first
leverage the VLM to imagine possible 2D humans by in-
painting images from multiple rendered views of the scene.
We automate this 2D human insertion process with a dy-
namic masking scheme that automatically updates proposed
masks through the inpainting process, eliminating the need
for manual specifications of human inpainting regions. We
then lift these 2D interaction hypotheses to 3D and optimize
for a parametric 3D human body model [23, 29] that is most
consistent with the 2D pose guidance. We further refine the
generated 3D human in the scene by iterating through the
VLM-based 2D inpainting and robust 3D lifting stages. We
demonstrate the flexibility and generality of GenZI in vari-
ous types of 3D environments (Fig. 1), encompassing both
indoor and outdoor scenes.

In summary, our contributions are as follows:
• We introduce GenZI, the first zero-shot approach to gen-

erating realistic 3D humans interacting with a 3D scene
from natural language prompts. GenZI does not require
any supervision from 3D interaction data, thus enabling
flexible synthesis across diverse scenes and actions.

• We propose a dynamically-masked inpainting scheme
that allows for the synthesis of plausible 2D human-scene
compositions via VLMs without requiring manually-
specified human inpainting masks.

• We develop a robust 3D pose optimization to lift var-
ious inferred images of human interactions to a view-
consistent, realistic 3D HSI synthesis.

2. Related Work

3D Human-Scene Interaction Synthesis. Synthesizing
humans in scenes is an important, challenging task in com-
puter vision and graphics, as it models complex high-level

semantic understanding such as affordances and interac-
tions. Existing approaches for human-scene interaction syn-
thesis [11, 12, 16, 21, 27, 39, 43, 44, 50, 51] focus on learn-
ing priors from available collected data of people interacting
with 3D indoor scenes [10] in a supervised manner.

The early work PiGraphs [39] introduced a probabilis-
tic graphical model of human-object interactions, generat-
ing static human-object placements by pose sampling and
model retrieval. Zhang et al. [50] introduced a generative
model of human-scene interaction, using a conditional vari-
ational autoencoder (CVAE) to model the distribution of
3D human poses conditioned on scene depth and seman-
tics. PLACE [49] explicitly represented human-scene inter-
actions with Basis Point Sets (BPS) encoding [32], training
a CVAE to synthesize such representations for generating
natural human poses and contact relations within scenes.
POSA [11] proposed an ego-centric representation by aug-
menting the SMPL-X model [29] with contact labels and
scene semantics, using a CVAE conditioned on SMPL-X
vertex positions to model potential interactions. Recently,
COINS [51] presented a method for compositional human-
scene interaction synthesis with high-level semantic con-
trol, using transformer-based CVAEs conditioned on pro-
vided 3D objects and interaction semantics to regress hu-
man body poses and contact features.

However, these works all require supervision from 3D
human-scene interactions – such datasets are difficult and
expensive to capture and annotate, for instance, the widely
used PROX dataset [10, 51] only has 8 reconstructed indoor
scenes for training and 4 for testing, capturing human inter-
actions with 11 object categories. As such, these methods
are limited to in-domain synthesis, prohibiting applicabil-
ity to general 3D scene settings with arbitary objects and
arrangements. In this work, we deviate from the learning-
based approach and propose to take advantage of estab-
lished large vision-language models [20, 33, 34, 37] for
human-scene interaction synthesis, thereby bypassing the
requirement for data capture and 3D learning.

3D Human Estimation from RGB Images. Over the
past decades, significant progress has been made in 3D hu-
man estimation from RGB images [7, 26, 31, 38]. Among
those, the prominent work SMPLify-X [29] fits the SMPL-
X model to 2D joints estimated from a single image through
optimization. Hassan et al. [10] build upon SMPLify-X
and estimate 3D human poses by incorporating additional
physical contact and penetration contraints between human
and 3D scene. Learning-based approaches [3, 5, 18, 22,
35, 48, 53] have received much research attention in recent
years towards tackling 3D human estimation from monoc-
ular images with improved hand and face estimation. Our
work leverages 2D pose reasoning from multiple different
2D view hypotheses, and proposes a robust 3D formulation
for aggregating the various 2D hypotheses to a consistent
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B

Figure 2. GenZI distills information from vision-language model for 3D human-scene interaction. We first leverage large vision-language
models to synthesize possible 2D humans interactions with the 3D scene S by employing latent diffusion inpainting [34] on multiple
rendered views of the environment at location p using our dynamic masking scheme to automatically estimate inpainting masks. We then
lift these 2D hypotheses to 3D in a robust optimization for a 3D parametric body model B (SMPL-X [29]) that is most consistent with
detected 2D poses in the inpainted 2D hypotheses. This produces a semantically consistent interaction that respects the scene context,
without requiring any 3D human-scene interaction data.

3D human body interacting with a 3D scene.

Distilling Prior from Vision-Language Models. Recent
advances in powerful vision-language models [20, 33, 34,
37] have also inspired various works aiming to distill infor-
mation learned through the models to various tasks, includ-
ing 2D panoptic segmentation [45], 3D semantic segmenta-
tion [36], 3D scene generation [15], and synthesis of images
with hand-object interactions [47]. Our approach leverages
the 2D generative capacity of these models to convey infor-
mation about possible human-scene interactions, which we
then lift to a 3D, consistent interaction.

3. Method

3.1. Overview

Our objective is to synthesize plausible 3D humans inter-
acting with a 3D scene, guided by input text descriptions,
in the absence of 3D interaction data capture for learning.
We present GenZI, a novel optimization-based multi-view
approach that leverages large VLMs to infer spatial rela-
tions of interactions between a human and the scene. Fig. 2
shows an illustration of our approach.

GenZI takes as input a 3D scene S, a text prompt Γ de-
scribing the desired interaction, and an approximate point
location p ∈ R3 in the scene around which the interaction
should occur. Our approach generates a posed 3D human B
as output, performing the specified action in the scene. We

adopt SMPL-X [23, 29] to parameterize the 3D human B,
as it provides a fully differentiable function mapping a set
of pose and shape parameters (R, t,Θ,Φ) to a 3D human
mesh with vertices V and faces F. We thus optimize for
(R, t,Θ,Φ) characterizing B in the scene S, with R ∈ R6

denoting the global orientation as a continuous rotation rep-
resentation [52], t ∈ R3 the global translation, Θ ∈ R32

the body pose in the latent space of VPoser [29] which de-
codes to body joint rotations Θ̂ ∈ R21×3, and Φ ∈ R10

representing the body shape as blend shape coefficients.
GenZI synthesizes the desired interaction between the

3D human B and the scene S by distilling information from
VLMs through 2D human inpainting followed by robust
3D lifting. We first generate a collection of plausible 2D
human-scene compositions by employing a large VLM to
inpaint humans into multiple rendered views of the scene
S (Sec. 3.2). We then introduce a robust 3D lifting proce-
dure that optimizes for the pose and shape of the human B,
guided by consistency with the 2D interaction hypotheses
(Sec. 3.3). We further refine the posed 3D human B by iter-
atively updating the 2D inpaintings and 3D optimization.

3.2. Inpainting Multi-view Interaction Hypotheses

We first leverage a VLM to generate 2D hypotheses of po-
tential human interactions in the scene by automatically in-
painting humans into multiple rendered views of S.

Multi-view Rendering. To capture scene context for 2D



human inpainting, we render multiple views of the 3D scene
S from k virtual cameras looking at p. Cameras are ran-
domly sampled on a hemisphere and filtered according to
the visibility of p; we refer to the supplementary material
for additional camera setup details. We denote the rendered
scene images as {Ii}i∈[1,k]. To simplify notation, we omit
the superscript i indexing each view in this section.

Inpainting with Dynamic Masking. Given a rendered
scene image I and the text prompt Γ , we leverage a state-
of-the-art latent 2D diffusion model [34] to generate a new
image Ī, where a human is inpainted into the scene image
I while adhering to the specified interaction and 2D scene
context. In practice, we opt for the popular Stable Diffusion
Inpainting model [1] as the latent diffusion implementation.

The latent diffusion model, denoted as Ω(zt,M, I, Γ, t),
performs image inpainting by progressively denoising a
noisy latent zt at each time step t. During the denoising
diffusion process, the binary mask M defines the inpaint-
ing region in the image I; however, specifying this mask
typically requires manual effort [1]. Thus, we develop a
fully-automated inpainting process by automatically gener-
ating the mask. Note that using a random or fixed human
mask naively can lead to incorrect inpaintings, as this often
results in scene context incorrectly masked, e.g., the objects
affording the desired action may be entirely masked out,
leading to the generated 2D human poses to be incoherent
with the scene, producing undesirable 3D HSI synthesis.

We propose a masking scheme that dynamically adapts
the mask through the denoising process by leveraging the
internal cross-attention maps [4, 13, 42] from Ω to pro-
pose masks. The cross-attention maps capture rich seman-
tic correlations between image pixels and input text tokens,
playing a crucial role in guiding image generation. Let
A ∈ Rhw×n denote the cross-attention map between an
image feature map of hw pixels and the text prompt Γ
with n tokens, normalized row-wise using softmax. Here,
A[i, j] signifies the influence of the j-th token on the i-th
pixel, and A[:, j] forms a heat map of image regions to be
filled with content related to the j-th token.

Using the cross-attention map At at each time step t of
the diffusion process, we can dynamically derive a mask re-
lated to human tokens. Specifically, at time step t, we obtain
zt−1,At ← Ω(zt,Mt, I, Γ, t) after denoising. To create a
human inpainting mask Mt−1 for time step t − 1, we ex-
tract heat maps from At corresponding to the tokens refer-
ring to the human (e.g., “woman” or “man”), followed by
summation of these extracted heat maps across the tokens
and binarization. At the initial time step T , we initialize
MT as an empty mask. Our dynamic masking approach en-
ables the synthesis of a 2D human-scene composition image
Ī without the need for manually-specified human inpainting
masks. We illustrate our dynamic masking scheme in Fig. 3.

“A woman playing piano”
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t = T � 30

Figure 3. Human inpainting with dynamic masking. Top: Given
a scene image and a text prompt, a human is inpainted into the
image without a mask specifying the inpainting region for latent
diffusion. Bottom: The masks generated by our dynamic masking
scheme based on cross-attention maps at different diffusion time
steps adaptively shift to find the region of interest.

3.3. Robust Lifting to a 3D Interaction

Given the multi-view scene images inpainted with human
subjects {Īi}i∈[1,k], our aim is to optimize for the pose and
shape parameters (R, t,Θ,Φ) of a 3D human B, guided
by the multi-view interaction cues. We optimize for B by
matching it with the 2D poses extracted from {Īi}. Since
the 2D hypotheses may not be consistent across views, we
formulate this as a robust optimization, simultaneously op-
timizing for the set of views most consistent with B.
2D Pose Estimation To distill interaction guidance for the
3D HSI synthesis, we compute a 2D pose representation for
the inpainted human in each image Īi. We use AlphaPose
[6], an off-the-shelf pose estimation approach that infers a
set of 2D joint positions Ji and the corresponding joint con-
fidence scores ci for the human subject in image Īi.

These 2D pose hypotheses {Ji, ci}i∈[1,k] are then used
to steer the interaction synthesis between the 3D human B
and the scene S . We aim to minimize the following objec-
tive function Etotal:

Etotal =λPFEPF + λVSEVS + λBPEBP+

λBSEBS + λSCESC + λSPESP,
(1)

where the λ denote scalar weights for the energy terms:
pose fitting EPF, view selection EVS, body pose EBP, body
shape EBS, scene penetration ESC, and self-penetration ESP.
Robust View-consistent 3D Pose Fitting. Our primary en-
ergy term EPF minimizes the discrepancy between the pro-
jections of the 3D pose of B and the inpainted poses from
multiple views. However, 2D pose hypotheses can often
be inconsistent across different views, due to the stochas-
tic nature of diffusion models, leading to conflicting opti-
mization signals for B. To address this, we employ a robust
optimization strategy that optimizes additionally for view
selection weights in EPF that promote consistency between
the 3D pose and the most consistent 2D pose hypotheses.



We thus introduce a new set of optimizable variables
w = {wi|wi ∈ [0, 1]}i∈[1,k], representing view consistency
scores, and apply a robust kernel ρ to the per-view joint
fitting constraints. The weights w allow the solver to adap-
tively focus on views with consistent inpainted poses and
downweight the inconsistent ones. Our pose fitting energy
EPF with view consistency is formulated as follows:

EPF =

∑
i w

i
∑

j c
i
jρ
(
Π(Ĵ)ij − Ji

j

)∑
i w

i
, (2)

where Ĵ denotes the 3D joint positions of the SMPL-
X model [29] differentiably computed from the pose and
shape parameters (R, t,Θ,Φ). The function Π(·)ij repre-
sents projection of the j-th joint in the i-th camera view, and
ρ is the robust Geman-McClure error function [8].
Regularizations. Below, we describe the regularization
terms adopted in our optimization.
1) We encourage the per-view weights w to focus on at
least τ views:

EVS = max(τ −
∑
i

wi, 0). (3)

2) To ensure a natural 3D pose, we impose the following
energy term on the body pose parameter:

EBP = ∥Θ∥2 + EJA(Θ̂). (4)

The first term is the VPoser body prior [29] regularizing the
latent pose Θ, and the second term EJA is a simple angle
prior on the body joint rotations Θ̂, decoded from the latent
pose Θ by VPoser, to penalize extreme bending. The for-
mulation of EJA is provided in the supplementary material.
3) We reguarlize the shape parameter Φ to obtain a plausi-
ble body shape via

EBS = ∥Φ∥2, (5)

which measures the Mahalanobis distance between Φ and
the body shape distribution used in SMPL-X [29].
4) To ensure physical contact but also avoid penetration
between the 3D human B and the scene S, we formulate the
spatial constraints as:

ESC =

{
minv∈V Ψ(v), Ψ(v) > 0 ∀v ∈ V∑

v∈V |min
(
Ψ(v), 0

)
|, otherwise

(6)
where Ψ is a pre-computed signed distance field (SDF) [10]
of the scene S. When Ψ(v) has a negative sign, it indicates
that the body vertex v is located inside the nearest scene
object (i.e., penetration). Conversely, a positive sign means
that v is positioned on the outside.

5) Finally, to resolve penetration within the human body
B itself, we include a self-penetration energy ESP based on
detecting colliding body triangles using Bounding Volume
Hierarchies (BVH) [40]. We refer the reader to [2, 10, 41]
for more formulation details on ESP.

3.4. Iterative Refinement

A posed 3D human B interacting with the 3D scene S
is generated after applying the VLM-based 2D inpainting
(Sec. 3.2) and the robust 3D lifting (Sec. 3.3). To improve
the synthesis and consistency of the interaction results, we
employ an iterative refinement scheme over the aforemen-
tioned inpainting and 3D lifting. During refinement, we
render the silhouette of the posed 3D human B in each cam-
era view, and use it as a more precise and consistent mask
M in the latent diffusion inpainting Ω [34], replacing dy-
namic masking. By doing so, the consistency among the 2D
pose hypotheses inpainted into the multi-view scene images
gradually improves, thus leading to an improved 3D HSI
synthesis outcome.

3.5. Implementation Details

We implemented GenZI with PyTorch [28]. For VLM-
based 2D inpainting, we use k = 16 cameras for multi-
view rendering. We use 50 denoising steps in Stable Dif-
fusion Inpainting with a state-of-the-art diffusion sampler
[25]. For dynamic masking during inpainting, we aggregate
cross-attention maps with a resolution of 16×16. Input text
prompts Γ (e.g., “sitting on a bench”) are all appended with
fixed prefix “a woman” and fixed suffix “wearing a white
shirt and blue pants, full body” to better constrain gener-
ation. For robust 3D lifting, we set τ = 3, and optimize
the energy Etotal using gradient descent [24] for 1.6K steps,
which takes ∼ 3 minutes on an NVIDIA A100 GPU. In the
iterative refinement, we dilate the rendered human silhou-
ette with a kernel size of 11 × 11 for mask generation, and
the refinement is performed once.

4. Experiments

We demonstrate the effectiveness and generality of our ap-
proach GenZI on a diverse collection of 3D scene mod-
els from Sketchfab.com. We conduct both quantitative and
qualitative evaluations to compare GenZI with alternative
baselines approaches [10, 51] to our new task.

Dataset. In our Sketchfab dataset, we gathered 8 large-
scale 3D scenes encompassing a variety of indoor and out-
door environments with diverse geometric structures, in-
cluding a realistic Venice city, a gym, and a cartoon-style
food truck. We collected 4-5 text prompts per scene describ-
ing human interactions with the scene for specified approx-
imate point locations, resulting in 38 actions for evaluation.



Baselines. To the best of our knowledge, there are no base-
lines that estimate 3D human-scene interactions based on
natural language text input in a zero-shot fashion. We thus
perform comparisons with related baseline approaches:
• COINS [51] is a state-of-the-art approach estimating 3D

humans in indoor 3D scans with a fixed vocabulary of
actions and objects, given object segmentations. It takes
as input ⟨action, object⟩ pairs for semantic control, and
requires full supervision in its CVAE training, using cap-
tured 3D interaction data with both instance segmenta-
tions of 3D objects and action labelling. Due to being
trained on a small, closed set of indoor interactions, we
adapt COINS to a subset of the most similar Sketchfab
actions by manually segmenting corresponding 3D ob-
jects from the scenes similar to its indoor training data
and mapping the text prompts to its ⟨action, object⟩ input.
Note that our approach GenZI does not require any 3D
scene segmentations.

• Hassan et al. [10] perform 3D human estimation from a
single RGB image. To adapt this to Sketchfab, we reuse
the multi-view scene images {Īi}i∈[1,k] inpainted with
humans from our dynamic masking scheme (Sec. 3.2),
where the view with the best image-text cosine similarity
(i.e., CLIP score [33]) is used as the input for 3D human
estimation under the known virtual camera parameters.

• Ours-Single View: Finally, we consider a baseline lever-
aging 3D body estimation from our method, but limited
to only one inpainted view. The same best view image, as
described above, is also as input for this baseline.

Evaluation Metrics. To measure 3D HSI quality, we con-
duct perceptual studies and compute metrics including se-
mantic consistency, diversity, and physical plausibility.

We first carry out two perceptual studies to assess the re-
alism and semantic accuracy of the synthesized interactions.
The first is a binary-choice study, where interaction samples
generated by two different methods based on the same text
prompt are shown, and the participants are asked to choose
the sample that is more realistic and better matched the text.
The second study is a unary test, where for each interac-
tion sample, the participants are asked to rate the realism
and consistency between the shown sample and text prompt
from 1 (strongly disagree) to 5 (strongly agree).

To evaluate the semantic consistency between a synthe-
sized 3D interaction and the input text prompt, we calculate
the CLIP score [33], where the 3D interaction is re-rendered
into k view images, and the image-text cosine similarities
from CLIP ViT-B/32 are averaged across all views.

Additionally, we include quantitative metrics from ex-
isting works to evaluate diversity and physical plausibility.
We observe that these metrics often do not reflect percep-
tual quality, as generated bodies can be diverse but have
interpenetrations without demonstrating any physical or se-
mantic coherence. Nevertheless, to measure the synthesis

(a) Binary Perceptual Study

(b) Unary Perceptual Study

Figure 4. User study of 3D human-scene interaction synthesis on
the Sketchfab dataset, where participants show a strong preference
for the generations by our approach, in comparison with all base-
lines, COINS [51], Hassan et al. [10], and Ours-Single View.

diversity, we follow [50, 51] and cluster the SMPL-X pa-
rameters of the generated humans into 20 clusters with K-
means and compute the entropy of the cluster ID histogram
of all the samples. We also calculate the cluster size as the
mean distance to cluster centers. For the physical plausi-
bility, we evaluate the collision and contact between body
meshes and scene meshes, following [50, 51]. The non-
collision score is computed as the ratio between the number
of body mesh vertices with positive SDF values (Sec. 3.3)
and the number of all body mesh vertices. The contact score
is defined as the ratio between the number of body meshes
with scene contact and the number of all generated body
meshes. A body mesh is in contact with the scene if any
body mesh vertex has a non-positive SDF value.

4.1. Comparison to Alternative Approaches

Quantitative Evaluation. Fig. 4 shows the results of the
perceptual studies collected from 30 participants across a
binary study and a unary study. In the binary study, we
observe that participants overwhelmingly favor the genera-
tions by our GenZI compared to all baselines – more than
87% of the time. In the unary test, the average realism rating
for our interaction generations is 3.6, the highest compared
to the baselines, which are all below 2.0. These perceptual
results strongly indicate that our GenZI can synthesize real-
istic 3D humans interacting with various 3D scenes without
requiring any captured 3D interaction data.

Tab. 1 presents the quantitative evaluation of semantic
consistency, diversity, and physical plausibility on the full
Sketchfab dataset. Our approach achieves the best semantic
consistency score, echoing the strong user preference for



“sitting and playing piano, 
hands on piano keys, feet flat 

on the ground”

Text Prompt OursOurs-SVHassan et al.

“climbing a ladder, hands 
gripping side rails”

“sitting and paddling a 
wooden boat, spreading arms”

“walking on a bridge”

“picking up a trash bag, 
standing, bending over”

“walking out of a door”

“riding a recumbent bike, 
sitting”

COINS

<sit on, chair>

<walk on, floor>

<sit on, chair>

Figure 5. Qualitative results on the Sketchfab dataset. Our GenZI synthesizes more realistic 3D human-scene interactions and generalizes
better across diverse scene types, compared to the baselines COINS [51], Hassan et al. [10], and Ours-Single View. For COINS, we
show the used ⟨action, object⟩ labels from its closed set of indoor interactions; its closed setting can lead to degraded results from out-of-
distribution object classes (e.g., curved bridge deck as the floor, chair at a different height or shape than those in the training set).



Semantics Diversity Physical Plausibility
Method CLIP ↑ Entropy ↑ Cluster Size ↑ Non-collision ↑ Contact ↑
Hassan et al. [10] 0.2598 2.7014 1.1907 0.8824 0.9669
Ours-SV 0.2613 2.6452 1.5813 0.9765 1.0000
Ours 0.2710 2.7304 1.0500 0.9767 0.9868

Table 1. Quantitative comparisons on the Sketchfab dataset. Our
approach achieves the best semantic consistency, diversity entropy,
and non-collision scores, with the contact score on par. Note that
single view methods Hassan et al. [10] and Ours-SV tend to pro-
duce increased diversity at the cost of semantic plausibility.

w/o DM w/o VC w/o IR Ours
CLIP ↑ 0.2639 0.2694 0.2664 0.2710

Table 2. Ablation study on the Sketchfab dataset. The seman-
tic consistency of 3D interaction generations degrades without dy-
namic masking (DM), view consistency (VC), or iterative refine-
ment (IR), compared to our full approach.

w/o DM w/o VC w/o IR Ours

Figure 6. Visualization of our method ablations on Sketchfab
dataset for the input text: “sitting on a bar stool”. Without dy-
namic masking (DM) or view consistency (VC), the person floats
above the middle stool. Without iterative refinement (IR), the per-
son penetrates the stool. Our full approach results in a more real-
istic synthesis.

GenZI in the perceptual studies. We note that since both
Hassan et al. [10] and Ours-Single View operate on sin-
gle inpainted view samples, results can be very diverse but
lack 3D plausibility. This suggests that the CLIP score is a
more reliable metric for assessing the HSI synthesis quality,
compared to the diversity and physical plausibility metrics,
which reflect less about the generation realism. Neverthe-
less, our approach has the best diversity entropy and non-
collision scores, with the contact score on par.

Qualitative Evaluation. We show qualitative comparisons
in Fig. 5. COINS is severely limited by its training on the
closed set of indoor interactions, and thus fails to generalize
to outdoor scenes and unseen objects (e.g., no curved floors
exist during training, and limited sets of heights and shapes
of chairs). As Hassan et al. [10] and Ours-Single View op-
erate from single views, they both suffer from insufficient
pose constraints from other views for plausible interaction
generation. In contrast, our approach demonstrates high
flexibility and generality to a diverse set of 3D indoor and
outdoor scenes by leveraging large VLMs to imagine multi-
view interaction hypotheses and then robust 3D lifting.

4.2. Ablation Studies

We conduct ablation studies on the Sketchfab dataset to val-
idate the effectiveness of our proposed dynamic masking

scheme (Sec. 3.2), robust 3D lifting with view consistency
(Sec. 3.3), and iterative refinement (Sec. 3.4). Results are
presented in Fig. 6 and Tab. 2.
Dynamic Masking (DM). We replace our dynamic mask-
ing, used during latent diffusion inpainting, with random
masking. We sample a random mask around the image cen-
ter covering at least 30% of the image area, and use it as
a fixed mask input to the latent diffusion model Ω. We ob-
serve that random masking results in noticeably worse qual-
ity of interaction synthesis (Tab. 2), and incoherence with
the scene (Fig. 6, floating on the stool). This indicates that
our dynamic masking is effective in incorporating sufficient
scene context for human inpainting.
View Consistency (VC). We evaluate the role of view con-
sistency in robust 3D lifting by fixing the optimizable scores
to w = 1. Using all inpainted views leads to averaged, less
expressive 3D human poses (Tab. 2, Fig. 6) due to potential
inconsistent 2D pose hypotheses across views. By allow-
ing the solver to adaptively focus on views with consistent
inpaintings, our approach generates more realistic 3D HSIs.
Iterative Refinement (IR). Finally, we show the effective-
ness of iterative refinement by applying our VLM-based 2D
inpainting and robust 3D lifting only once. Tab. 2 and Fig. 6
show that iterative refinement improves synthesis quality.
Limitations. Our approach is limited by the inpainting ca-
pability of latent diffusion models to imagine possible 2D
human-scene compositions, and the diffusion models are
also known to be slow at inference time due to their itera-
tive nature [14]. Nevertheless, we believe that our approach
can directly benefit from the rapid advancement of VLMs
for improved HSI synthesis.

5. Conclusion
We have presented the first approach to synthesize general
3D human-scene interactions guided by text inputs. Key
to our approach is effective distillation of knowledge from
large vision-language models, enabling generating 3D hu-
mans in scenes without requiring any 3D interaction data for
training. We leverage these powerful vision-language mod-
els to generate hypotheses for inpainted 2D human-scene
interactions. We then formulate a robust optimization to lift
the hypotheses to 3D in a view-consistent fashion by simul-
taneously optimizing for the most informative 2D hypothe-
ses. Our approach is flexible and can be applied to general
scene settings for a variety of actions. We believe this opens
up new opportunities for 3D understanding without requr-
ing expensive capture of 3D/4D data.
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