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Abstract

Forecasting complex time series is ubiquitous and vital in a range of applications
but challenging. Recent advances endeavor to achieve progress by incorporating
various deep learning techniques (e.g., RNN and Transformer) into sequential
models. However, clear patterns are still hard to extract since time series are
often composed of several intricately entangled components. Motivated by the
success of disentangled variational autoencoder in computer vision and classical
time series decomposition, we plan to infer a couple of representations that depict
seasonal and trend components of time series. To achieve this goal, we propose
LaST, which, based on variational inference, aims to disentangle the seasonal-trend
representations in the latent space. Furthermore, LaST supervises and disassociates
representations from the perspectives of themselves and input reconstruction, and
introduces a series of auxiliary objectives. Extensive experiments prove that
LaST achieves state-of-the-art performance on time series forecasting task against
the most advanced representation learning and end-to-end forecasting models. For
reproducibility, our implementation is publicly available on Github1.

1 Introduction

Time series forecasting plays a significant role in plethora of modern applications, ranging from
climate analysis [1], energy production [2], traffic flows [3] to financial markets and various industrial
systems [4]. The ubiquity and importance of time series data have recently attracted researcher
efforts resulting in a myriad of deep learning forecasting models [5, 6] ameliorating the time series
forecasting. Based on advanced techniques such as RNN and Transformer [7]), these methods usually
learn latent representations to epitomize every instant of the signals, and then derive forecasting
results by a predictor, achieving great progress on forecasting tasks.

However, these models have difficulties to extract exact/clear information related to temporal patterns
(e.g., seasonality, trend, and level), especially in supervised end-to-end architecture without any
constraint on representations [8]. As a consequence, efforts have been made to apply the variational
inference into time series modeling [9, 10, 11], where improved guidance for latent representations
with probabilistic form has been proved beneficial to downstream time series tasks [12]. However,
when various intricately co-evolving constituents exist a time series data, analyzing with a single
representation will result in superficial variable and models’ non-reusability and lack of interpretabil-
ity, due to the highly entangled nature of neural networks [13, 14]. Thus, while providing efficiency
and effectiveness, existing approaches with a single high-dimensional representation sacrifice the
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information utilization and explainability, which may further lead to overfitting and degenerated
performance.

To address the above limitations and seek a new disentangled time series learning framework, we
leverage the ideas from the decomposition strategy [15, 16] to split time series data into several
components, each of which captures an underlying pattern category. The decomposition assists
the analysis process and reveals underlying insights more consistently with human intuition. This
insight motivates us to produce a couple of latent representations that respond to different time series
characteristics (in our case the seasonal and trend), from which we predict the results by formulating
sequence as the sum of these characteristics. The representations should be as independent as possible
to avoid a model prone to feature entanglement, while also having sufficient information to the input
sequence.

Towards that, we propose a novel framework LaST to learn the Latent Seasonal-Trend representations
for time series forecasting. LaST exploits an encoder-decoder architecture and follows variational
inference theory [17] to learn a couple of disentangled latent representations that describe seasonal
and trend of time series. To achieve this goal, LaST enforces the representations into disentanglement
under two constraints: (1) from the input reconstruction, we dissect intrinsic seasonal-trend patterns
which can be readily obtained from raw time series and off-the-shelf measurement methods, and
accordingly design a series of auxiliary objectives; (2) from representations themselves, we minimize
the mutual information (MI) between seasonal and trend representations on the premise that grantee
the consistency between input data and each of them. Our main contributions are threefold:

• We start with the variational inference and information theory to design the seasonal-trend
representations learning and disentanglement mechanisms, and practically demonstrate their
effectiveness and superiority (over the existing baselines) on time series forecasting task.

• We propose LaST, a novel latent seasonal-trend representations learning framework, which
encodes input as disentangled seasonal-trend representations and provides a practicable
approach that reconstructs seasonal and trend separately to avoid chaos.

• We introduce MI terms as a penalty and present a novel tractable lower bound and an
upper bound for their optimizations. The lower bound ameliorates the biased gradient issue
in prevalent MINE approach and ensures informative representations. The upper bound
provides the feasibility to further reduce the overlapping of seasonal-trend representations.

2 Related work

Most of the deep learning methods for time series forecasting are designed as an end-to-end archi-
tecture. Various basic techniques (e.g., residual structure [18, 19], autoregressive network [20, 21],
and convolutions [22, 23]) are exploited to produce expressive non-linear hidden states and embed-
dings that reflect the temporal dependencies and patterns. There is also a body of works that apply
Transformer [7] structure into time series forecasting tasks [24, 25, 26, 6], aiming to discover the
relationships across the sequence and focus on the important time points. Deep learning methods
have achieved superior performance in comparison to the classical algorithms such as ARIMA [27]
and VAR [28], and have become prevalent in multiple applications.

Learning flexible representations has been demonstrated to be beneficial for downstream tasks by
numerous researches [12, 29]. In time series representations domain, early methods, employing
the variational inference, jointly train an encoder and corresponding decoder that reconstructs raw
signals to learn approximate latent representations [10, 30, 31]. Recent efforts have improve these
variational methods [32, 33] by establishing more complex and flexible distributions using techniques
such as copula [32] and normalizing flow [34, 35]. Another group of works exploited the burgeoning
contrastive learning to obtain invariant representations from augmented time series [36, 37, 38],
which avoids the reconstruction process and improves representations without additional supervision.

Time series decomposition [15, 16] is a classical method that splits complex time series into several
components to obtain temporal patterns and interpretability. Recent works have applied machine
learning and deep learning approaches [39, 40, 41] to robustly and efficiently achieve the decomposi-
tion on large-scale datasets. There are also research results that tackle forecasting with the assistance
of decomposition. For example, Autoformer [26] decomposes time series into seasonal-trend parts by
average pooling and introduces an autocorrelation mechanism to empower Transformer [7] for better
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relations discovery. CoST [38] encodes signals into seasonal and trend representations in frequency
and temporal domains, respectively, and introduces contrastive learning to supervise their learning.
Different from our work, these methods exploit simple average pooling decomposition mechanism
which may provide incompatible periodical assumptions, or intuitively disentangle the representations
by processing in different domains. Meanwhile, LaST adaptively epitomizes the seasonality and
trend by disentangled representations and boosts their disassociation from a probabilistic perspective
in the latent space.

3 Latent seasonal-trend representations learning framework

We now formalize the problem definition and introduce the proposed LaST framework. We note that
in LaST we use seasonal and trend characteristics for disentanglement learning but our framework
can be easily extended to adapt to situations that have more than two components to dissociate.

Problem definition. Consider a time series dataset D consisting of N i.i.d. sequences denoted
as X(i)

1:T = {x(i)1 , x
(i)
2 , · · · , x(i)t , · · · , x(i)T }, where i ∈ {1, 2, . . . , N}, and each x(i)t is univariate or

multivariate value representing the current observation(s) at time instant t (e.g., price and rainfall).
We aim to derive a model that outputs expressive representations Z1:T , suitable for predicting future
sequence(s) Y = X̂T+1:T+τ . Hereafter, when there is no ambiguity we omit the superscripts and
the subscript 1:T . A model that infers the likelihood between observation X and future Y with latent
representation Z can be formulated as follows:

P (X,Y ) = P (Y |X)P (X) =

∫
Z

P (Y |Z)P (Z|X)dZ

∫
Z

P (X|Z)P (Z)dZ. (1)

From the perspective of variational inference (cf. [17]), the likelihood P (X|Z) is calculated by a
posterior distribution Qϕ(Z|X) and maximized by the following evidence lower bound (ELBO):

logPΘ(X,Y ) ≥ log

∫
Z

Pψ(Y |Z)Qϕ(Z|X)dZ + EQϕ(Z|X)[logPθ(X|Z)]

−KL(Qϕ(Z|X)||P (Z)) = LELBO, (2)

where Θ is composed of ψ, ϕ, and θ denotes learned parameters.
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Figure 1: Overview of proposed LaST framework.

However, as pointed out in Sec. 1, this faces an entanglement problem and cannot clearly extract
complicated temporal patterns. To ameliorate this limitation, we incorporate the decomposition
strategy into our LaST that learns a couple of disentangled representations to depict seasonal and
trend dynamics. Specifically, we formulate the temporal signals X and Y as the sum of seasonal
and trend components, i.e., X = Xs +Xt. Accordingly, the latent representation Z is factorized
into Zs and Zt, assumed to be independent of each other – i.e., P (Z) = P (Zs)P (Zt). Figure 1
illustrates the two parts of the LaST framework: (a) representations learning, producing disentangles
seasonal-trend representations (separate reconstructions and MI constraints); and (b) prediction based
on learned representations.
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Theorem 1. With the decomposition strategy, Eq. (2) (i.e., the ELBO) naturally has the following
factorized form:

LELBO = log

∫
Zs

∫
Zt

Pψ(Y |Zs, Zt)Qϕs,ϕt(Zs, Zt|X)dZsdZt (predictor) (3)

+ EQϕs (Zs|X)[logPθs(X
s|Zs)] + EQϕt (Zt|X)[logPθt(X

t|Zt)] (reconstruction) (4)

−KL(Qϕs(Zs|X)||P (Zs))−KL(Qϕt(Zt|X)||P (Zt)). (KL divergence) (5)

The detailed inference process of the above formula is provided in Appendix A.1. The ELBO is split
into three main units, i.e., Eqs. (3), (4), and (5). The predictor makes forecasting and measures the
accuracy (e.g,. L1 or L2 losses), reconstruction and KL divergence are served as regularization terms
aiming to improve the learned representations. The three units are described in the following.

Predictor: The predictor (cf. Eq. (3) and Figure 1(b)) can be regarded as the sum of two indepen-
dent parts: log

∫
Zs Pψs(Y s|Zs)Qϕs(Zs|X)dZs and log

∫
Zt Pψt(Y t|Zt)Qϕt(Zt|X)dZt. Here we

introduce two specialized approaches to harness the seasonal-trend representations combining their
own characteristics. Given the seasonal latent representation Zs ∈ RT×d, the seasonal predictor
first employs the discrete Fourier transform (DFT) algorithm to detect the seasonal frequencies, i.e.,
ZsF = DFT(Zs) ∈ CF×d, where F = ⌊T+1

2 ⌋ due to the Nyquist theorem [42]. Then, we inverse
the frequencies back to the temporal domain to extend the representation to the future part, i.e.,
Z̃s = iDFT(ZsF ) ∈ Rτ×d. More details of the DFT and iDFT functions can be found in Appendix
B.1. Given Zt, trend predictor provides a feed forward network (FFN) f : T → τ to produce a
predictable representation Z̃t ∈ Rτ×d. We end the predictor with two FFNs to map Z̃s and Z̃t into
Y s and Y t, respectively, and obtain the forecasting result Y by their sum.

Reconstruction and KL divergence: Among these two terms, the KL divergence can be easily
estimated by Monte Carlo sampling with prior assumptions. Here we take a widely used setting that
priors both follow N (0, I) for efficiency, more discussions of our priors can be found in Appendix
C. As for reconstruction term, it cannot be directly measured owing to the unknown Xs and Xt.
Besides, merging these two terms into EQϕs,ϕt (Zs,Zt|X)[logPθs,θt(X|Zs, Zt)] will result in chaos
since the decoder is prone to reconstruct the intricate time series from every representation.
Theorem 2. With the Gaussian distribution assumption, the reconstruction loss Lrec can be estimated
without leveraging Xs and Xt, and Eq. (4) can be replaced with the following formula:

Lrec = −
T−1∑
κ=1

∥∥AXX(κ)−AX̂sX̂s(κ)
∥∥2 + CORT(X, X̂t)−

∥∥∥X̂t + X̂s −X
∥∥∥2 , (6)

CORT(X, X̂t) =

∑T−1
i=1 ∆Xt

i∆X̂
t
i√∑T−1

i=1 ∆Xt

√∑T−1
i=1 ∆X̂t

, (7)

where AXX(κ) =
∑T−κ
i=1 (Xt − X̄)(Xt+κ − X̄) is the autocorrelation coefficient with lagged value

κ (we employ an efficient implementation in frequency domain [43], details are in Appendix B.2),
CORT(X, X̂t) is the temporal correlation coefficient, and ∆Xi = Xi −Xi−1 is the first difference.

The proof is provided in Appendix A.2. According to Eq. (6), the reconstruction loss now can be
estimated and, conversely, used to supervise disentangled representation learning. However, we find
that this framework still holds certain drawbacks: (1) The KL divergence tends to narrow down the
distance between posterior and prior. The modeling choice tends to sacrifice the variational inference
vs. data fit when modeling capacity is not sufficient to achieve both [44]. The posterior may become
almost non-informative for the inputs, which causes the forecastings irrelevant to the observations.
(2) The disentanglement of the seasonal-trend representations is boosted indirectly by the separate
reconstruction, where we need to impose a direct constraint on the representations themselves.
We alleviate these limitations by introducing additional mutual information regularization terms.
Specifically, we increase the mutual information between Zs, Zt and X to alleviate the divergence
narrowing problem [44, 45], while decreasing mutual information between Zs and Zt to further
dissociate their representations. The maximizing objective of LaST becomes

LLaST = LELBO + I(X,Zs) + I(X,Zt)− I(Zs, Zt), (8)
where I(·, ·) denotes the mutual information between two representations. However, the two mutual
information terms are untraceable [46, 47, 48]. We address this problem in the next section.
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4 Mutual information bounds for optimization

We now address the traceable mutual information bounds, maximizing I(X,Zs) and I(X,Zt), and
minimizing I(Zs, Zt) in Eq. (8), and provide lower and upper bounds for the model optimization.

Lower bound for I(X,Zs) or I(X,Zt). We omit the superscript s or t when analyzing lower
bound. Among the prior approaches exploring the lower bounds for MI [49, 50, 51], MINE [51], for
example, employs KL divergence between the joint distribution and marginals and defines an energy-
based variational family to achieve a flexible and scalable lower bound. This can be formulated
as I(X,Z) ≥ EQϕ(X,Z)[γα(X,Z)] − logEQ(x)Qϕ(z)[e

γα(X,Z)] = IMINE , where γα is a learned
normalized critic with parameters α. However, this bound suffers from the biased gradient owing to
the parametric logarithmic term (see Appendix A.3 for proof). Inspired by [47], we substitute the
logarithmic function by its tangent family to ameliorate the above biased bound:

IMINE ≥ EQϕ(X,Z)[γα(X,Z)]− (
1

η
EQ(x)Qϕ(z)[e

γα(X,Z)] + log η − 1)

≥ EQϕ(X,Z)[γα(X,Z)]−
1

η
EQ(x)Qϕ(z)[e

γα(X,Z)], (9)

where η denotes the different tangent points. The first inequality relies on the concave negative
logarithmic function – the values on the curve are upper bounds for that on the tangent line, and is tight
when the tangent point overlaps the independent variable, i.e., the true value of EQ(x)Q(z)[e

γ(X,Z)].
The closer the distance between tangent point and independent variable, the greater the lower bound.
Therefore, we set η as the variational term EQ(x)Qϕ(z)[e

γα(X,Z)] that estimates the independent
variable to obtain as great lower bound as possible. In the second inequality, γα(x, z) – a critic
function activated by Sigmoid – is limited within [0, 1] and thus −(log η − 1) ≥ 0. This inequality is
tight only if EQ(x)Qϕ(z)[γα(X,Z)] = 1, which means γα can discriminate whether a pair of variables
(X,Z) is sampled from the joint distribution or marginals. Similarly to MINE, this consistency
problem can be addressed by the universal approximation theorem for neural networks [52]. Thus,
Eq. (9) provides a flexible and scalable lower bound for I(X,Z) with an unbiased gradient.

For the evaluation, we exploit a traceable manner [53, 51] that draws joint samples (X(i), Z(i)) by
Q(Z(i)|X(i))PD(X(i)). As for the marginal Qϕ(Z), we randomly select a datapoint j and then
sample it from Qϕ(Z|X(j))PD(X(j)). Details of the optimization are shown in Algorithm 1.

Upper bound for I(Zs, Zt). Few efforts have been made that explore the traceable upper bound for
mutual information [54, 47, 55]. Existing upper bounds (listed in Appendix D.1) are traceable with
known probabilistic density of joint or conditional distributions here being Q(Zs|Zt), Q(Zt|Zs) or
Q(Zs, Zt). However, these distributions lack interpretability and can hardly be directly modeled,
which leads to untraceable estimations of the above upper bounds.

To avoid the direct estimation of unknown probabilistic densities, we introduce an energy-based
variational family for Q(Zs, Zt) that uses a normalized critic γβ(Zs, Zt) like Eq. (9) to establish a
traceable upper bound. Specifically, we incorporate the critic γβ into the upper bound ICLUB [55] to
obtain a traceable Seasonal-Trend Upper Bound (STUB) for I(Zs, Zt), which is defined as:

I(Zs, Zt) ≤ EQ(Zs,Zt)[logQ(Zs|Zt)]− EQ(Zs)Q(Zt)[logQ(Zs|Zt)] = ICLUB (10)

= EQϕs,ϕt (Zs,Zt)[γβ(Z
s, Zt)]− EQϕs (Zs)Qϕt (Zt)[γβ(Z

s, Zt)] = ISTUB. (11)

The derivation details of this formula are provided in Appendix D.2. The inequality in Eq. (10) is
tight only if Zs and Zt are a pair of independent variables [55]. This is exactly a sufficient condition
for ISTUB, since MI and Eq. (11) are both zeros on the independent situation, which is our seasonal-
trend disentanglement optimal objective. The critic γβ , similar to γα, takes on the discriminating
responsibility but provides converse scores, constraining the MI to a minimum. However, Eq. (11)
may get negative values during the learning of parameter β, resulting an invalid upper bound for MI.
To alleviate this problem, we additionally introduce a penalty term ∥InegSTUB∥

2 to assist the model
optimization, which is an L2 loss of the negative parts in ISTUB.

For the evaluation, we take the same sampling manner as the one in the lower bound and optimization
details are also shown in Algorithm 1.

5



Algorithm 1 An epoch of the optimization of LaST.
1: Initialize the parameters of LaST: Θ = {ψs, ψt, ϕs, ϕt, θs, θt}, Γ = {αs, αt, β}.
2: for a mini-batch with size B consisting of {X(i), Y (i)}i∈B in training set do
3: Get samples of the latent representations {Zs(i)}i∈B and {Zt(i)}i∈B from distributions

{Qϕs(Zs|X(i))}i∈B and {Qϕt(Zt|X(i))}i∈B, respectively;
4: Shuffle the {Zs(i)}i∈B and {Zt(i)}i∈B and form {Zs(j)}j∈B and {Zt(j)}j∈B, respectively;
5: Compute the ηs, ηt: ηs ← 1

B
∑B
i=j=1 e

γαs (X(i),Zs(j)), ηt ← 1
B
∑B
i=j=1 e

γαt (X
(i),Zt(j));

6: Update parameters Θ: Θ ← G(∇Θ)[LELBO + 1
B
∑B
i=j=1(γαs(X(i), Zs(i)) −

1
η e
γαs (X(i),Zs(j)) + γαt(X(i), Zt(i)) − 1

η e
γαt (X

(i),Zt(j))) − 1
B
∑B
i=j=1(γβ(Z

s(i), Zt(i)) −
γβ(Z

s(i), Zt(j))) + average(
∥∥(γβ(Zs(i), Zt(i))− γβ(Zs(i), Zt(j)))neg∥∥2)];

7: Update parameters Γ: Γ ← G(∇Γ)[
1
B
∑B
i=j=1(γαs(X(i), Zs(i)) − 1

η e
γαs (X(i),Zs(j)) +

γαt(X(i), Zt(i)) − 1
η e
γαt (X

(i),Zt(j))) − 1
B
∑B
i=j=1(γβ(Z

s(i), Zt(i)) − γβ(Z
s(i), Zt(j)) +

average(
∥∥(γβ(Zs(i), Zt(i))− γβ(Zs(i), Zt(j)))neg∥∥2)];

8: end for

5 Experiments

We now present the results of our extensive experimental evaluations comparing LaST with state-of-
the-art baselines and report a series of empirical results, along with ablation study and visualizations
of seasonal-trend representations. Further details and results are provided in Appendix F.

5.1 Settings

Datasets and Baselines. We conducted our experiments on seven real-world benchmark datasets
from four categories of mainstream time series forecasting applications: (1) ETT 2[25]: Electricity
Transformer Temperature consists of the target value “oil temperature” and six “power load” fea-
tures, recorded hourly (i.e., ETTh1 and ETTh2) and every 15 minutes (i.e., ETTm1 and ETTm2)
over two years. (2) Electricity, from the UCI Machine Learning Repository 3 and preprocessed
by [56], is composed of the hourly electricity consumption of 321 clients in kWh from 2012 to
2014. (3) Exchange [56] with daily exchange rates of eight countries from 1990 to 2016. (4)
Weather 4 contains 21 meteorological indicators (e.g., temperature and humidity) and is recorded
every 10 minutes in 2020. We compare our LaST with the latest state-of-the-art methods on time
series modeling and forecasting tasks from two categories: (1) representation learning techniques,
including COST [38], TS2Vec [37], and TNC [36]; (2) end-to-end forecasting models, including
VAE-GRU [10], Autoformer [26], Informer [25], and TCN [22]. Further descriptions and settings of
these baselines are provided in appendix F.1.

Evaluation setup. Following the prior work, we run our model on both univariate and multivariate
forecasting settings. In multivariate forecasting, LaST accepts and forecasts all variables in datasets.
In univariate forecasting, LaST only considers a specific feature in each dataset. We employ the
standard normalization and set input length T = 201 for all datasets. For the dataset split, we follow
a standard protocol that categorizes all datasets into training, validation, and test set in chronological
order by the ratio of 6:2:2 for all datasets. We report the evaluation results on the test set while the
model achieves the best performance on the validation set.

Implementation details. As for the network structure of LaST, we use a single-layer fully connected
network as the feed forward network (FFN), which is applied in the modeling of posterior, reconstruc-
tion, and predictor. Besides, we employ the 2-layer MLP for the critic γ in MI bound estimations.
Dimensions of seasonal and trend representations are consistent. We set them as 32 in univariate
forecasting and as 128 in multivariate forecasting on other datasets. MAE loss is used to measure the

2https://github.com/zhouhaoyi/ETDataset
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams
4https://www.bgc-jena.mpg.de/wetter
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Table 1: Univariate forecasting comparisons. Complete results on ETT benchmark are shown in
appendix F.4. Best performance is highlighted in bold font and the second best results are underlined.

Method LaST CoST TS2Vec TNC VAE-GRU Autoformer Informer TCN
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.030 0.131 0.040 0.152 0.039 0.151 0.057 0.184 0.042 0.155 0.057 0.189 0.098 0.247 0.104 0.254
48 0.051 0.169 0.060 0.186 0.062 0.189 0.094 0.239 0.077 0.218 0.070 0.207 0.158 0.319 0.206 0.366
168 0.078 0.211 0.097 0.236 0.142 0.291 0.171 0.329 0.172 0.344 0.108 0.260 0.183 0.346 0.462 0.586
336 0.100 0.246 0.112 0.258 0.160 0.316 0.179 0.345 0.140 0.301 0.119 0.281 0.222 0.387 0.422 0.564
720 0.138 0.298 0.148 0.306 0.179 0.345 0.235 0.408 0.204 0.381 0.109 0.264 0.269 0.435 0.438 0.578

E
T

T
m

1

24 0.011 0.077 0.015 0.088 0.016 0.093 0.019 0.103 0.013 0.082 0.022 0.115 0.030 0.137 0.027 0.127
48 0.021 0.108 0.025 0.117 0.028 0.126 0.045 0.162 0.026 0.120 0.032 0.138 0.069 0.203 0.040 0.154
96 0.033 0.134 0.038 0.147 0.045 0.162 0.054 0.178 0.046 0.164 0.045 0.168 0.194 0.372 0.097 0.246
288 0.069 0.197 0.077 0.209 0.095 0.235 0.142 0.290 0.127 0.294 0.071 0.207 0.401 0.554 0.305 0.455
672 0.100 0.239 0.113 0.257 0.142 0.290 0.136 0.290 0.217 0.399 0.102 0.254 0.512 0.644 0.445 0.576

E
le

ct
ri

ci
ty 24 0.151 0.277 0.243 0.264 0.260 0.288 0.252 0.278 0.330 0.406 0.290 0.411 0.251 0.275 0.243 0.367

48 0.186 0.307 0.292 0.300 0.313 0.321 0.300 0.308 0.437 0.481 0.310 0.408 0.346 0.339 0.283 0.397
168 0.243 0.346 0.405 0.375 0.429 0.392 0.412 0.384 0.433 0.476 0.435 0.490 0.544 0.424 0.357 0.449
336 0.286 0.379 0.560 0.473 0.565 0.478 0.548 0.466 0.472 0.504 0.646 0.606 0.713 0.512 0.355 0.446
720 0.322 0.422 0.889 0.645 0.863 0.651 0.859 0.651 0.543 0.563 0.609 0.587 1.182 0.806 0.387 0.477

Average 0.121 0.236 0.208 0.268 0.222 0.289 0.234 0.328 0.219 0.326 0.201 0.306 0.345 0.400 0.278 0.403

forecasting derived from the predictor. For the training strategy, we use the Adam [57] optimizer, and
training process is early stopped within 10 epochs. We initialize the learning rate with 10-3 and decay
it with 0.95 weight every epoch.

5.2 Performance comparisons and model analysis

Effectiveness. Tables 1 and 2 summarize the results of univariate and multivariate forecastings
respectively. LaST achieves state-of-the-art performance against the advanced representation base-
lines on five real-world datasets. The relative improvements on MSE and MAE are 25.6% and
22.1% against the best representation learning method CoST and are 22.0% and 18.9% against the
best end-to-end models Autoformer. We note that Autoformer achieves better performance on long
horizons forecasting on hourly ETT datasets and think there are two reasons: (1) Transformer-based
models intrinsically establish long-range dependencies, which plays a crucial role in long sequence
forecasting; (2) it employs a simple decomposition by average pooling with a fixed kernel size, which
is more suitable for strongly periodic datasets like hourly ETT. This phenomenon is beneficial to
long-term forecasting but limits the sensitivity to local context, and the bonus does not have significant
impact on other datasets. Compared with baselines, LaST extracts the seasonal and trend patterns
with disentangled representations adaptively and thus can be applied to intricate time series.

Ablation study. We investigated the performance benefits brought by each mechanism of LaST on a
synthetic dataset (generation details are provided in appendix F.3) and ETTh1. The results are shown
in Table 3, consisting of two groups: M1 validates the mechanisms of seasonal-trend representations
learning framework. In it, “w/o seasonal” and “w/o trend” denote LaST without the seasonal
and trend components respectively; “w/o coe” denotes LaST without autocorrelation and CORT
coefficients while estimating the reconstruction loss. M2 judges the introduction and estimations
of MI, where“w/o lower” and “w/o upper” indicate the removal of the lower and upper bounds for
MI in regularization terms respectively; “with MINE” denotes that we replace our lower bound with
MINE. The results show that all mechanisms improve the performance on the forecasting task. We
notice that the quality drops a lot when removing the trend component. The reason is that seasonal
forecasting derives from the iDFT algorithm, which is essentially a periodical repetition of historical
observations. However, it captures the seasonal patterns and assists the trend component in complete
LaST to bring the superiority, especially in the long-term settings and strongly periodical synthetic
dataset. Besides, we observe that with biased regularization term MINE, the performance becomes
unstable and sometimes even worse than LaST without MI lower bound, while our unbiased bound
(cf. Eq.(9)) continuously outperforms it.

Representation disentanglement. We visualize the seasonal-trend representations with the t-
SNE [58] technique in Figure 2. We also visualize the embeddings in last layer of Autoformer
decoder as a comparison. The points with same color have a clearer and closer clustering in LaST,
while they mix together without decomposition mechanisms (“w/o dec” indicates removal of the two
decomposition mechanisms (autocorrelation and CORT coefficients, and the upper bound to MI).
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Table 2: Multivariate forecasting comparisons. Complete results on ETT benchmark are shown in
appendix F.4. Best performance is highlighted in bold font and the second best results are underlined.

Method LaST CoST TS2Vec TNC VAE-GRU Autoformer Informer TCN
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.324 0.368 0.386 0.429 0.590 0.531 0.708 0.592 0.529 0.534 0.384 0.428 0.577 0.549 0.583 0.547
48 0.351 0.380 0.437 0.464 0.624 0.555 0.749 0.619 0.612 0.593 0.392 0.419 0.685 0.625 0.670 0.606
168 0.468 0.453 0.643 0.582 0.762 0.639 0.884 0.699 0.758 0.647 0.490 0.481 0.931 0.752 0.811 0.680
336 0.566 0.512 0.812 0.679 0.931 0.728 1.020 0.768 0.844 0.692 0.505 0.484 1.128 0.873 1.132 0.815
720 0.740 0.650 0.970 0.771 1.063 0.799 1.157 0.830 1.045 0.816 0.498 0.500 1.215 0.896 1.165 0.813

E
T

T
m

1

24 0.218 0.289 0.246 0.329 0.453 0.444 0.522 0.472 0.509 0.452 0.383 0.403 0.453 0.444 0.522 0.472
48 0.280 0.329 0.331 0.386 0.592 0.521 0.695 0.567 0.642 0.543 0.454 0.453 0.494 0.503 0.542 0.508
96 0.323 0.360 0.378 0.419 0.635 0.554 0.731 0.595 0.600 0.540 0.481 0.463 0.678 0.614 0.666 0.578
288 0.392 0.403 0.472 0.486 0.693 0.597 0.818 0.649 0.769 0.678 0.634 0.528 1.056 0.786 0.991 0.735
672 0.491 0.466 0.620 0.574 0.782 0.653 0.932 0.712 0.799 0.673 0.606 0.542 1.192 0.926 1.032 0.756

E
le

ct
ri

ci
ty 24 0.125 0.222 0.136 0.242 0.287 0.375 0.354 0.423 0.190 0.250 0.165 0.286 0.312 0.387 0.235 0.346

48 0.146 0.245 0.153 0.258 0.309 0.391 0.376 0.438 0.228 0.280 0.178 0.295 0.392 0.431 0.253 0.359
168 0.170 0.265 0.175 0.275 0.335 0.410 0.402 0.456 0.240 0.297 0.215 0.327 0.515 0.509 0.278 0.372
336 0.188 0.280 0.196 0.296 0.351 0.422 0.417 0.466 0.262 0.318 0.218 0.329 0.759 0.625 0.287 0.382
720 0.223 0.309 0.232 0.327 0.378 0.440 0.442 0.483 0.296 0.347 0.252 0.356 0.969 0.788 0.287 0.381

E
xc

ha
ng

e 24 0.033 0.122 0.033 0.127 0.108 0.252 0.105 0.236 0.064 0.178 0.060 0.178 0.611 0.626 2.483 1.327
48 0.056 0.162 0.058 0.165 0.200 0.341 0.162 0.270 0.133 0.262 0.091 0.222 0.680 0.644 2.328 1.256
168 0.190 0.320 0.198 0.327 0.412 0.492 0.397 0.480 0.334 0.432 0.405 0.473 1.097 0.825 2.372 1.279
336 0.430 0.482 0.512 0.523 1.339 0.901 1.008 0.866 0.614 0.606 0.509 0.524 1.672 1.036 3.113 1.459
720 1.521 0.898 1.855 0.998 2.114 1.125 1.989 1.063 2.285 1.117 1.447 0.941 2.478 1.310 3.150 1.458

W
ea

th
er

24 0.105 0.134 0.293 0.369 0.170 0.309 0.200 0.312 0.117 0.147 0.180 0.263 0.162 0.235 0.170 0.287
48 0.131 0.174 0.558 0.515 0.231 0.375 0.284 0.367 0.227 0.270 0.241 0.310 0.348 0.400 0.327 0.365
168 0.197 0.238 0.812 0.671 0.470 0.532 0.475 0.502 0.234 0.280 0.295 0.355 0.444 0.463 0.517 0.569
336 0.257 0.285 1.196 0.832 1.360 0.875 1.405 0.881 0.309 0.339 0.359 0.395 0.578 0.523 0.639 0.608
720 0.315 0.327 1.620 1.002 2.173 1.120 2.034 1.018 0.444 0.410 0.419 0.428 1.059 0.741 0.639 0.610

Average 0.330 0.347 0.533 0.482 0.654 0.575 0.731 0.591 0.487 0.468 0.394 0.415 0.819 0.661 1.008 0.663

Table 3: Ablation study results on the two parts: M1 and M2.

Method Original M1 M2

LaST w/o seasonal w/o trend w/o coe w/o lower w/o upper with MINE
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Synthetic 24 0.129 0.250 0.179 0.298 2.870 1.089 0.135 0.257 0.133 0.256 0.146 0.266 0.131 0.252
168 0.631 0.617 0.830 0.644 2.868 1.032 0.635 0.619 0.632 0.618 0.634 0.620 0.633 0.620
336 1.054 0.797 1.505 0.925 2.864 1.016 1.061 0.805 1.056 0.801 1.055 0.798 1.055 0.801

ETTh1

24 0.324 0.368 0.328 0.373 0.631 0.548 0.334 0.380 0.339 0.383 0.332 0.376 0.332 0.375
48 0.351 0.380 0.360 0.389 0.973 0.695 0.358 0.386 0.360 0.389 0.361 0.390 0.358 0.387

168 0.468 0.453 0.482 0.463 1.106 0.788 0.497 0.474 0.508 0.482 0.477 0.459 0.502 0.484
336 0.566 0.512 0.579 0.531 1.206 0.843 0.598 0.546 0.604 0.543 0.582 0.534 0.603 0.545
720 0.740 0.650 0.788 0.672 1.240 0.854 0.803 0.689 0.766 0.665 0.768 0.670 0.780 0.669

Average 0.533 0.503 0.631 0.537 1.720 0.858 0.553 0.520 0.550 0.517 0.544 0.514 0.549 0.517

Notably, though Autofomer with the simple moving average block achieves satisfying decomposition
from the time series perspective, their representations are still prone to entanglement. These results
suggest that (1) learning disentangled seasonal-trend representations is not trivial, and (2) the proposed
decomposition mechanisms successfully disentangle the seasonal-trend representations in latent space,
each paying attention to a specific temporal pattern.

Input settings. We further investigate the influence of hyperparameter input length to validate
the sensitivity and Table 4 shows the results. Long look-back window improves the performance
especially in long-term forecasting, while others even have performance degradation. This verifies
that LaST can effectively utilize past information to understand patterns and make predictions.

Table 4: Multivariate forecasting performance with different input lengths on ETTm1 datasets.

Input length 96 168 201 672 AverageOutput length 48 288 672 48 288 672 48 288 672 48 288 672

LaST MSE 0.321 0.427 0.532 0.286 0.401 0.516 0.280 0.392 0.491 0.279 0.373 0.463 0.397
MAE 0.359 0.421 0.493 0.338 0.413 0.493 0.329 0.403 0.466 0.334 0.391 0.448 0.407

CoST MSE 0.390 0.514 0.644 0.335 0.467 0.611 0.331 0.472 0.620 0.349 0.474 0.612 0.485
MAE 0.422 0.507 0.585 0.392 0.484 0.569 0.386 0.486 0.574 0.399 0.486 0.567 0.488

AutoFormer MSE 0.454 0.634 0.606 0.460 0.578 0.529 0.463 0.545 0.562 0.562 0.656 0.695 0.562
MAE 0.453 0.528 0.542 0.456 0.514 0.504 0.452 0.512 0.516 0.503 0.571 0.586 0.511
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Figure 2: Visualizations of seasonal (red) and trend (blue) representations on ETTh1 dataset.

(a) ETTh1 (b) ETTm1 (c) Exchange

Figure 3: Top: learned seasonality visualizations (autocorrelation statistics of reconstructed seasonal
sequences). Bottom: seasonal (red) and trend (blue) reconstructions to the ground truths (black).

Observations from a case-study. We further validate LaST by by visualizing the extracted seasonality
and trend in specific cases. As shown in Figure 3, LaST can capture the seasonal patterns on real-
world datasets. For example, a strong daily period is indicated on hourly and 15-minutes ETT
datasets. Even though the period on Exchange dataset is not obvious, LaST still provides some
long-term periods on the daily data. Besides, trend and seasonal components jointly accurately restore
the original sequence with their own perspective, which supports that LaST can produce workable
disentangled representations for intricate time series.

6 Conclusion

We presented LaST, a disentangled variational inference framework with mutual information con-
straints to disassociate a couple of seasonal-trend representations in latent space, for effective fore-
casting of time series. Our extensive experiments demonstrated that LaST successfully disentangles
the seasonal-trend representations and achieves state-of-the-art performance. Our future work will
focus on tackling other challenging downstream tasks in the time series domain, e.g., generation and
imputation. In addition, we plan to model stochastic factors explicitly in decomposition strategies,
which will better understand the real-world time series.
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