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ABSTRACT

Zero-shot medical detection enhances existing models without relying on an-
notated medical images, offering significant clinical value. By using grounded
vision-language models (GLIP) with detailed disease descriptions as prompts,
doctors can flexibly incorporate new disease characteristics to improve detection
performance. However, current methods often oversimplify prompts as mere equiv-
alents to disease names and lacks the ability to incorporate visual cues, leading to
coarse image-description alignment. To address this, we propose StructuralGLIP,
a framework that encodes prompts into a latent knowledge bank, enabling more
context-aware and fine-grained alignment. By selecting and matching the most
relevant features from image representations and the knowledge bank at layers,
StructuralGLIP captures nuanced relationships between image patches and tar-
get descriptions. This approach also supports category-level prompts, which can
remain fixed across all instances of the same category and provide more comprehen-
sive information compared to instance-level prompts. Extensive experiments show
that StructuralGLIP outperforms previous methods across eight zero-shot medical
detection benchmarks. Additionally, it can be seamlessly integrated into GLIP
models fine-tuned on medical data, further enhancing performance with additional
linguistic prompts and showcasing its practical value alongside supervised models.
The code will be available after the review.

1 INTRODUCTION

Zero-shot medical detection is crucial in healthcare as it enhances detection capabilities without
requiring additional annotated medical images, even after model fine-tuning (Badawi et al., 2024;
Mahapatra et al., 2021; Qin et al., 2022). This is particularly valuable in clinical settings, where
doctors often encounter new disease characteristics not previously documented. In such cases,
clinicians can temporarily create custom prompts to guide the detection process, allowing models to
adapt to novel scenarios more effectively. Recent studies have explored the potential of grounded
language-image pre-training models (GLIP) (Phan et al., 2024; Tiu et al., 2022; Li et al., 2022c; Yao
et al., 2022) to reduce dependence on annotations by leveraging prior knowledge. These models
conduct detection by contrasting image features with descriptive texts, known as contextual prompts,
generated by visual question-answer models for query objects. To adapt GLIP to the medical domain,
recent works (Qin et al., 2022; Wu et al., 2023b; Guo et al., 2023) have employed medically enhanced
question-answer models like PubMedBERT (Gu et al., 2021) and BLIP (Li et al., 2022a) to create
attribute-rich prompts. These prompts capture nuanced characteristics of query targets, improving
domain adaptation and performance beyond traditional supervised training.

However, existing contextual prompt-based methods often suffer from coarse alignment between
images and target descriptions, resulting in two key issues. First, these methods typically treat
prompts as contexts that are equivalent to the target, easily causing distribution shift problems to
the target’s representation. This often leads to sub-optimal detection performance and misalignment
with the actual visual cues in the image (see Fig. E). Second, these methods struggle to handle
category-level descriptions, such as "tissue with pink or red color, irregular or round shape" for a
"bump". This is because the context-based prompt methods can not precisely match the most relevant

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

RPN

Language
Encoder 

Layer

Image 
Encoder 

layer

Language
Encoder 

Layer

Polyp is red, round,…

(b) Structural prompt methods

polyp

Mutual Selection

bump
[cls]

pink
red

Structural Representation

N x 

Target Description

Polyp is red, round,…polyp

RPN

Language
Encoder 
Layers

Image
Encoder 
Layers

N x 

[x1, x2, y1, y2]
(a) Contextual prompt methods

[x1, x2, y1, y2]

Target Description
Main Branch Auxiliary Branch

Figure 1: (a) Contextual prompt methods directly concatenate the prompt and target. (b) Our structural
prompt method encodes prompts into a latent knowledge bank.

prompt with the input image, causing misalignment in detecting nuanced variations within medical
images.

To address the aforementioned issues, we present StructuralGLIP, a novel zero-shot medical detec-
tion model that derives structural representations, which are delicately organized sets of features
specifically designed to represent the nuances of the target and the input image. Specifically, as
shown in Fig. 1, instead of simply concatenating prompts with the target, StructuralGLIP adopts a
dual-branch architecture. The main branch processes the target name and input image, while the
auxiliary branch encodes the prompts into a latent knowledge bank. At each layer, rather than directly
performing cross-modal fusion between vision and language features, StructuralGLIP introduces
a mutual selection mechanism. This mechanism matches vision features from the main branch
with relevant prompt features stored in the latent knowledge bank, where we extract latent prompt
tokens and latent vision tokens that both highly relevant to the target and the current input image,
forming fine-grained structural representations. Once these structural representations are formed,
the image and language features from the main branch are fused with the selected prompt tokens
via cross-modality multi-head attention (Vaswani et al., 2017). This enhances the overall feature
alignment and improves the fusion process within the main branch. Conceptually, the hierarchical
knowledge bank in StructuralGLIP functions like a memory system (Bi, 2021; Paivio, 2013). As the
image is processed, relevant knowledge is dynamically retrieved from the bank. This enables the
model to better align the image features with the prompt information, resulting in more accurate and
context-aware detection.

In this way, StructuralGLIP can address the challenge of effectively utilizing category-level prompts,
which provide broader yet consistent information for all instances within the same category (see
Fig. B for visualization). StructuralGLIP’s instance-wise selection mechanism ensures that even fixed
category-level prompts are dynamically aligned with the specific visual features of each instance.
This not only improves detection precision but also enhances efficiency, as category-level prompts
can remain fixed across instances of the same category. To validate the proposed method, we bench-
mark StructuralGLIP against previous state-of-the-art methods on eight datasets under endoscopy,
microscopy, photography, and radiology four imaging conditions, and conduct a comprehensive
analysis towards StructuralGLIP’s structural representations. The primary contributions of our work
are as follows:

• We introduce StructuralGLIP, a novel architecture that achieves adaptive, context-aware alignment
between visual features and target descriptions by utilizing a dual-branch structure with mutual
selection, enhancing the precision of medical object detection.

• We propose the use of category-level prompts, which remain fixed for all instances of the same
target. Unlike instance-level prompts, category-level prompts provide more comprehensive prior
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knowledge about the target disease, reducing the need for prompt generation for each individual
image while maintaining strong detection performance.

• We explore zero-shot medical detection in more practical settings by demonstrating how zero-
shot enhancement can further improve the performance of models fine-tuned on medical data.
StructuralGLIP not only surpasses fully supervised methods such as RetinaNet but also seamlessly
integrates into GLIP models fine-tuned on medical datasets, achieving an average improvement of
+4% AP.

2 RELATED WORK

Zero-shot medical detection aims to identify and locate pathology concepts in medical images
without relying on annotated data from the target domain (Vilouras et al., 2024; Qin et al., 2022;
Paul et al., 2021; Mahapatra et al., 2021; Sahasrabudhe et al., 2020; Le Bescond et al., 2022).
Classical strategies include cross-domain generalization (Bian et al., 2022; Bansal et al., 2024) and
unsupervised learning (Sahasrabudhe et al., 2020; Le Bescond et al., 2022; Paul et al., 2021). Cross-
domain generalization utilizes data from related domains under varied conditions, such as different
imaging techniques (Bian et al., 2022) or demographic differences (Bansal et al., 2024), to adapt
models across diverse scenarios. Unsupervised learning methods leverage side information to bypass
direct supervision, such as using cell nuclei structure for image resolution analysis (Sahasrabudhe
et al., 2020), employing GANs with public annotations to enhance mask quality (Le Bescond et al.,
2022), and correlating medical reports with disease features to increase detection accuracy (Paul
et al., 2021). However, these methods are often tightly coupled to specific data priors and exhibit a
considerable performance gap compared to supervised models, limiting their clinical significance.

Recent approaches have integrated expert-level knowledge into vision-language models trained on
natural images to facilitate domain transfer (Liu et al., 2023a; Lai et al., 2024; Tiu et al., 2022; Wu
et al., 2023a; Zhang et al., 2023). However, most of these efforts focus on medical classification, while
the more practical and complex task of medical detection remains underexplored. For example, (Qin
et al., 2022) conducted a comprehensive study on medical detection using prompts generated by
a medically-enhanced language model, PubMedBERT (Gu et al., 2021). Follow-up studies (Wu
et al., 2023b; Lu et al., 2023; Phan et al., 2024) employed BLIP (Li et al., 2022a) to generate
image-specific linguistic attributes, or used GPT (Achiam et al., 2023) to detail target concepts with
nuanced descriptions. Recent work (Guo et al., 2023) further advanced this approach by introducing
an ensemble strategy for fusing multiple prompts to improve detection accuracy. However, these
methods require unique prompts for each instance, significantly reducing efficiency. Our method,
StructuralGLIP, addresses these challenges by introducing a vision-language model that leverages a
knowledge bank to store a wide range of prompts, enabling instance-dynamic prompt selection in the
latent feature space.

Knowledge-bank-based prompt method is initially developed for continual learning, which utilizes
a prompt pool designed to enhance cross-domain generalization (Wang et al., 2022b;a; Smith et al.,
2023; Wang et al., 2023; Du et al., 2022). Previous works (Wang et al., 2022b;a) select top-k prompts
aligned with input image features, facilitating domain-specific modeling. Recent advances have
evolved this strategy, replacing the top-k prompt selection with a more flexible continuous prompt
fusion strategy (Smith et al., 2023), exploring its potential for vision-language model (Wang et al.,
2023), and expanding applications to open-vocabulary detection tasks (Du et al., 2022). However,
these methods typically require an additional training phase and are restricted to prompt retrieval in
the input layer. In contrast, StructuralGLIP explores a linguistically accessible avenue by directly
utilizing the attributes predefined by the generative models and embeds these attribute prompts into
a hierarchy knowledge bank situated within an auxiliary branch to achieve a layer-wise selection
process.

3 METHODOLOGY

3.1 PRELIMINARIES

Zero-shot medical object detection means improving the model’s medical detection performance
without the use of supervised image labels. This formulation emphasizes "further improvement
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Figure 2: Experimental settings for zero-shot medical detection and enhancement.
without supervised images", which contains two experimental settings. Firstly, in the classical setting,
the model, without fine-tuning on medical datasets, uses pre-trained vision-language models with
prompts to infer medical concepts (see Fig. 2 (a) and (b)). Secondly, considering the clinical setting
prefers supervised models for their excellent performance, we propose a zero-shot enhancement
setting. This involves fine-tuning the model on medical datasets first, and then using prompts to
further improve performance on unseen medical images, without requiring additional labels (see
Fig. 2(c) and (d)). This setting mirrors real-world clinical needs, where models can be continuously
improved with new knowledge without the need for labeled data.

GLIP redefines object detection as a phrase-grounding task by employing a late fusion dual-tower
architecture to align image and text features. It uses separate backbones EncI and EncT to extract
initial encodings O0 and P 0 for images and text, respectively. These features are then integrated
through a cross-modal multi-head attention module (X-MHA), enabling fine-grained interaction
between the modalities. The integration of image and text features through the deep fusion module
(X-MHA) is formalized as follows:

Oi
t2v, P

i
v2t = X-MHA(Oi, P i), (1)

Oi+1 = f i
I(O

i +Oi
t2v), P i+1 = f i

L(P
i + P i

v2t), (2)

where f i
I and f i

L are the ith encoder layers for images and text, respectively, and i ∈ [1, N ]. After N
layers of interaction, the final image and text representations are denoted as ON and PN , respectively.
These representations are used as input to the RPN for generating object proposals:

RGLIP = RPN(ON , PN ), (3)

where RGLIP denotes the set of region proposals of GLIP generated by the RPN. Each proposal r ∈ R
is characterized by its bounding box coordinates and a confidence score, indicating the likelihood of
the region containing the target object.

3.2 ZERO-SHOT DUAL-BRANCH PROMPT FRAMEWORK

In the proposed StructuralGLIP framework, we introduce a novel zero-shot architecture to achieve
fine-grained alignment between target description and medical images. The overall pipeline is shown
in Fig. 3.

Structurally separated auxiliary and main branches. StructuralGLIP adopts a dual-branch
architecture. The main branch processes the target name and input image, while the auxiliary branch
encodes the prompts into a latent knowledge bank. Given the object target T and the prompt Prompt,
the initial representations T 0 and B0 are obtained as follows:

T 0 = EncL1(T ), B0 = EncL2(Prompt), (4)

where EncL1
and EncL2

are language backbones with shared parameters for the main and auxiliary
branches, respectively. Here, T 0 and B0 ∈ RNl×D represent the initial encoded features of the target
and prompts, with [PAD] tokens used to pad the input sentences to a uniform length Nl. The encoded
prompts B0 are then processed through the language encoder layers:

Bi = f i
L2
(Bi−1), (5)
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where f i
L2

is the ith language encoder layer of the auxiliary branch, and Bi denotes representation of
prompt bank at the ith layer.

Mutual prompt selection mechanism for structural representation in the auxiliary branch.
This mechanism identifies mutually relevant tokens between the visual tokens from the main branch
and the linguistic tokens from the auxiliary branch. For selecting the Top-P relevant visual tokens
from the latent representation of the input image, we calculate their similarity with latent prompt
features. The visual and linguistic representations in the i-th layer are denoted as Oi

q ∈ RNv×D and
Bi

q ∈ RNl×D, respectively. We have the following:

Oi
q = [oi

1,o
i
2, . . . ,o

i
Nv

], Ki
v = Top-Pmax

([
key = oi

j , value = oi
jB

i
q

]Nv

j=1

)
, (6)

where Top-Pmax ([key, value]) denotes selecting the keys with the Top-P maximal values, Ki
v is

the selected visual tokens in the i-th encoder layer, and Nv is the token length of the visual encoder.
Similarly, to select the Top-Q tokens from the latent representation of the prompt, we use the similarity
to the selected visual tokens Ki

v:

Bi
q = [bi1, b

i
2, . . . , b

i
Nl
], Ki

l = Top-Qmax
([

key = bij , value = bijKi
v

]Nl

j=1

)
, (7)

where Top-Qmax ([key, value]) denotes selecting the keys with the Top-Q maximal values. Ki
l is

the selected linguistic tokens in the i-th layer, and Nl is the token length of the language encoder.
These selected prompt tokens Ki

v and Ki
l are highly relevant to the target and the current input image,

forming fine-grained structural representations.

Deep fusion with the vision-language prompt in the main branch. Once the structural representa-
tions are obtained, we serve these selected prompt tokens Ki

v and Ki
l as latent prompts for the deep

fusion process of GLIP. Instead of using the auxiliary language encoder to enhance the features, the
main branch’s vision and language encoders leverage the knowledge from the selected tokens Ki

l

and Ki
v. This ensures that comprehensive knowledge from the prompts can be extracted precisely

and applied in an instance-wise manner to enhance the detection process. Specifically, we employ a
multi-head attention (MHA) mechanism Vaswani et al. (2017) for (Ki

v , T i
q ) and (Ki

l , O
i
q):

OtopQ
t2v = MHA(Q = Ki

v,KV = T i
q) T topP

v2t = MHA(Q = Ki
l ,KV = Oi

q), (8)

where Q denotes the query item and KV denotes the key and value items for MHA, and OtopQ
t2v , T topP

v2t
is the input image and target representations that incorporate the prior knowledge about the target
from the selected tokens, respectively. These representations are then combined with the original
layer representation using the following residual connection:
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Oi+1 = f i
I(O

i +OtopQ
t2v ), T i+1 = f i

L(T
i + T topP

v2t ). (9)

This deep fusion mechanism ensures that the model dynamically integrates relevant prompts at each
layer, significantly enhancing instance-specific adaptation for zero-shot medical detection. After
N layers of interaction, we obtain the final image and text representations from the main branch,
denoted as ON and TN , respectively. Here, TN represents the target’s representation, which has
fused prompt information relevant to the current instance, achieving a more precise alignment with
ON . These representations are then used as input to the RPN for generating object proposals:

RStructuralGLIP = RPN(ON , TN ), (10)

where RStructuralGLIP denotes the set of region proposals generated by the RPN in StructuralGLIP.
This process effectively combines the structural representations from both the visual and language
modalities to achieve accurate and context-aware zero-shot detection.

3.3 INSTANCE/CATEGORY-LEVEL MEDICAL PROMPT AUTOMATIC GENERATION

As shown in Fig. 3(b), we propose a dual-level prompt generation mechanism that constructs a com-
prehensive prompt repository at both the instance and category levels. This enables StructuralGLIP to
dynamically apply the most relevant knowledge during inference, significantly improving detection
accuracy.

Instance-level Prompt Generation. For each medical image, we generate instance-specific prompts
to capture unique visual features such as shape, color, and morphology using a Visual Question
Answering (VQA) model like BLIP Li et al. (2022a). We query the model with targeted questions
(e.g., “What is the shape of the polyp?”), and the responses form a set of instance-level contextual
prompts (e.g., “[pink-white, bump-like, round]”). This process ensures that the model can dynamically
adapt to the specific characteristics of each image, providing fine-grained descriptions that are crucial
for precise detection.

Category-level Prompt Generation. In parallel, we construct a category-level prompt bank con-
taining general attributes relevant to each medical category. Using a language model like GPT-4,
we generate detailed descriptions for common attributes such as shape, color, and morphology (e.g.,
“typical shapes of polyps include round, oval, and nodular-like”). This enriched prompt bank serves as
a static reference, enabling the model to capture the broader context of each category and generalize
effectively across diverse medical cases. Finally, we gather all attributes from the instance-level
prompt and concatenate them with the GPT-4 augmented results to derive the category-level prompt
(displayed in Appendix F).

Application. Category-level prompts provide comprehensive information for entire classes of medical
images and remain fixed across all images within the same category, offering higher efficiency
compared to instance-specific prompts. Despite this advantage, prior methods Guo et al. (2023); Qin
et al. (2022); Wu et al. (2023b) have not fully benefited from general prompts (see Tab. 2) due to
their lack of adaptive prompt selection. StructuralGLIP, however, utilizes an instance-wise selection
mechanism that supports category-level prompts effectively. This allows the model to dynamically
select the most relevant prompts from the prompt bank, achieving performance comparable to or
even better than instance-level prompts on certain datasets. This demonstrates that our method can
efficiently leverage general prompts to enhance zero-shot detection without the need for instance-
specific generation.

4 EXPERIMENT

We illustrate our experiment settings in Fig. 2, where we design four distinct settings to evaluate the
model’s performance. In Sec. 4.2, we follow traditional zero-shot setups to evaluate StructuralGLIP
in a zero-shot setting without any fine-tuning on medical datasets, using both instance-specific and
category-specific prompts (see Fig. 2(a) and (b)). In Sec. 4.3, we simulate clinical environments
where supervised models are typically preferred. Here, we fine-tune the backbone of the proposed
methods, i.e., GLIP, (without using prompts) on medical datasets to form a refined detector. After
fine-tuning, we incorporate linguistic prompts for the target disease into StructuralGLIP to perform
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Table 1: Comparative experiment results on zero-shot medical detection across seven datasets, where
gray-shaded rows represent the instance-level prompt results, while the unshaded rows represent

the category-level prompt results.

Methods CVC-300 Kvasir ColonDB ClinicDB ETIS ISIC 2016 BCCD Avg.

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

GLIP 29.8 37.9 25.9 33.6 21.7 32.4 22.1 29.6 6.7 9.7 10.5 20.0 8.9 18.4 17.9 25.9

MIU-VL 36.5 66.6 28.7 36.6 19.8 35.6 28.2 40.6 9.4 15.4 21.7 35.7 11.4 20.4 22.2 35.8

AutoPrompter 52.7 70.6 30.4 39.7 31.9 45.9 22.0 30.6 17.7 26.5 19.9 32.9 12.9 22.3 26.7 38.3

Ours (instance) 54.3 72.8 34.7 43.1 35.3 51.3 28.6 38.2 22.2 31.9 27.7 40.8 13.5 24.1 30.9 43.1

MPT w. WBF 3.27 9.40 12.2 14.4 14.2 19.1 11.2 14.0 12.0 17.0 1.13 5.37 1.22 4.75 7.8 12.0

MPT w. Cluster36.7 47.5 12.0 17.0 11.9 21.4 11.2 14.0 12.0 17.0 19.8 30.9 14.3 33.8 16.8 25.9

Ours (category)63.9 89.8 42.0 50.5 42.1 66.0 42.0 57.0 30.4 40.3 21.8 33.5 23.6 40.9 37.9 54.0

zero-shot enhancement, evaluating the model’s ability to improve performance even after fine-tuning
(see Fig. 2(c) and (d)). The fine-tuned details are provided in Appendix C.

4.1 EXPERIMENTAL SETUP

Datasets. We select four types of medical imaging datasets involving eight benchmarks: 1) Endoscopy
datasets for polyp detection: ClinicDB Bernal et al. (2015); Fernández-Esparrach et al. (2016),
ColonDB Bernal et al. (2012), Kvasir Jha et al. (2020), ETIS Silva et al. (2014); 2) Microscopy
dataset: BCCD shenggan et al. (2018) for blood cells detection; 3) Photography dataset: ISIC-
2016 for skin lesions detection (benign lesion; malignant lesion); 4) Radiology image datasets:
TBX11K Liu et al. (2023b) for tuberculosis detection in lung X-rays. Detailed elaboration is given in
the Appendix B.

Metric and baseline. To evaluate our approach, we primarily benchmark against recent studies,
mainly following Qin et al. Qin et al. (2022) (2023) and Wu et al. Wu et al. (2023b) (2023).
Our baselines include recent GLIP-based methods (vanilla GLIP Li et al. (2022b), MIU-VL Qin
et al. (2022), and AutoPrompter Wu et al. (2023b)) for instance-specific prompt generation setting,
and works attempt to use category-specific prompt for detection (MPT Guo et al. (2023), and its
variants MPT+SoftNMS Bodla et al. (2017), MPT+WBF Solovyev et al. (2021)). For zero-shot
enhancement experiments, fully supervised detection models (RetinaNet Lin et al. (2020) and
DyHead Dai et al. (2021)) are also included to provide a comprehensive evaluation landscape for our
zero-shot enhancement experiments. The training details of the GLIP are elaborated in Appendix C.

4.2 RESULTS OF ZERO-SHOT MEDICAL DETECTION

Superior transfer performance across various medical scenarios. For fairness, we ensured that
all methods used consistent prompts for a fair comparison. For instance-specific prompt methods, we
utilized BLIP (Li et al., 2022a) as the vision-question answering model for all approaches, except for
vanilla GLIP (Li et al., 2022b), which directly used the target name as text input. For MIU-VL (Qin
et al., 2022), we additionally used PubMedBert Gu et al. (2021) to generate prompts specific to the
target disease. AutoPrompter (Wu et al., 2023b) uses GLIP to produce the initial bounding box with
instance-specific prompt and refine them with a self-training process with Yolo-X (Zheng et al., 2021).
The experimental results are shown in Tab. 1 (instance-specific prompt), where all prompt methods
enhance the original GLIP model’s performance by providing additional descriptions. Among them,
StructuralGLIP achieved the greatest improvement, with an average +4.2% AP ↑, +4.8% AP50 ↑
across seven datasets. We do not exhibit the results for the radiology dataset TBX-11k here, as the
initial performance of the GLIP model on this dataset was poor, and the performance improvement
for each prompt method is not distinguishable.
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Table 2: AP% of vanilla GLIP and the
proposed methods with instance-specific
(I) and category-specific (C) prompt under
zero-shot detection setting.

CVC-300 ClinicDB Kvasir Avg.
C I C I C I C I

GLIP 34.3 29.8 17.9 22.1 22.3 25.9 24.8 25.9
ours 63.9 54.3 42.0 28.6 42.0 34.9 48.3 39.2

Table 3: AP% of fine-tuned GLIP and the proposed
methods with instance-specific (I) and category-
specific (C) prompt under zero-shot enhancement
setting.

CVC-300 ClinicDB Kvasir Avg.
C I C I C I C I

GLIP 70.0 67.5 54.3 63.0 44.5 51.1 56.2 60.5
ours 77.2 74.9 70.4 68.4 71.3 69.6 72.9 70.9

Knowledge bank facilitates category-level prompts. In this experiment, we focus on the effec-
tiveness of category-level prompts generated by BLIP and GPT-4, which expand attributes related
to the target across different dimensions such as colors, shapes, textures, and locations. These
category-level prompts, being about 10 times longer than instance-specific prompts, remain consistent
across all instances within the same class, and their details are provided in Appendix F. To benchmark
against other methods, we include the MPT (Guo et al., 2023) approach, which is built upon the
GLIP backbone and designed specifically to handle category-level prompts. MPT employs different
prompt ensemble strategies, such as Weighted Box Fusion (WBF) and clustering, to split the category
prompts into multiple groups and fuse the outputs for improved performance. Table 1 shows the
performance comparison under different ensemble strategies. As seen in the results, StructuralGLIP
achieves superior average performance across seven datasets compared to MPT. More importantly,
StructuralGLIP consistently outperforms instance-specific prompt methods when utilizing category-
level prompts (a +7% average AP ↑ across seven datasets). This suggests that StructuralGLIP can
effectively harness the richer and more comprehensive information encoded in the category prompts.

We attribute this advantage to the dual-branch architecture of StructuralGLIP, where the prompts
and image features are separated into an auxiliary and main branch, respectively. By introducing an
instance-wise selection mechanism, StructuralGLIP can dynamically select the most relevant parts of
the category prompt based on the input image. To further verify this, we directly feed the category
prompt for GLIP to obtain GLIP’s performance under the category prompt and follow MIU-VL to
obtain its performance under the instance prompt, As shown in Table 2. The results demonstrate a
significant improvement (average AP of 24.8 → 49.3) in StructuralGLIP’s performance compared to
the vanilla GLIP with category-level prompts. Interestingly, by comparing the performance of GLIP
between using category-level prompt (see Tab. 2) and instance-level prompt (see Tab. 1), vanilla GLIP
exhibit performance degradation when category prompts are employed (average AP of 25.7 → 24.8).
In contrast, StructuralGLIP shows a significant AP improvement (39.2 → 49.3). This highlights the
advantage of StructuralGLIP’s knowledge modeling and its ability to dynamically extract the most
relevant prompt information for each instance, effectively leveraging the comprehensive knowledge
provided by category-level prompts.

4.3 RESULTS OF ZERO-SHOT ENHANCEMENT FOR MEDICAL DETECTION

StructuralGLIP surpasses the fully-supervised methods. In this experiment, we evaluate zero-shot
enhancement and also compare fine-tuned GLIP-based models with classic object detection models,
such as FasterRCNN Ren et al. (2015) and RetinaNet Lin et al. (2020), which were fully supervised.
As shown in Tab. 4, while the refined GLIP performs similarly to the supervised RetinaNet (55.2 vs.
56.6 average AP), incorporating instance-level prompts with StructuralGLIP raises the performance
to 59.3 AP, a notable +2.7% improvement. For category-level prompts, StructuralGLIP achieves an
average AP of 60.6, showing a slight improvement over instance-level prompts. However, given that
category-level prompts remain fixed across all images of the same class and can be pre-encoded in
our auxiliary branch, this performance boost comes with only the inference cost for calculating the
attention matrix of prompt, further demonstrating the efficiency of our approach.

StructuralGLIP facilitates further improvement on fine-tuned models. Interestingly, we observe
that not all prompt-based methods effectively enhance a fine-tuned GLIP model. As shown in Tab. 4,
methods like MIU-VL and AutoPrompter experience performance degradation when applied to the
refined GLIP (MIU-VL: 56.6 → 50.7 AP, AutoPrompter: 56.6 → 53.3 AP). This decline likely occurs
because these methods treat prompts as simple contextual information for the target name. During
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Table 4: Comparative zero-shot enhancement experiment results across datasets, s, where
gray-shaded rows represent the instance-level prompt results, while the last unshaded block repre-

sents the category-level prompt results.

Methods Kvasir ColonDB ClinicDB ETIS CVC-300 ISIC 2016 BCCD TBX-11k
AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

FasterRCNN 63.4 - 44.1 - 71.6 - 44.5 - 59.4 - 50.3 - 56.9 - 33.9 73.9
RetinaNet 64.1 - 49.8 - 71.9 - 46.6 - 61.6 - 54.0 - 56.7 - 37.0 77.9

GLIP 64.8 82.2 56.8 79.1 65.1 82.6 60.4 77.0 75.2 95.9 39.9 50.9 55.4 78.2 35.2 75.3
MIU-VL 67.7 86.2 48.8 75.2 63.0 82.6 48.9 68.8 67.5 97.2 29.7 38.7 44.5 58.9 35.5 76.7
AutoPrompter 70.0 87.5 57.8 81.3 67.5 85.3 59.6 76.8 75.2 97.1 37.3 49.0 23.4 33.2 35.7 76.5
Ours (instance) 69.6 87.9 58.1 81.0 68.4 87.5 60.3 77.0 74.9 96.3 49.5 62.7 56.9 80.2 37.3 78.2

MPT+Cluster 25.1 30.0 22.3 29.5 24.8 29.3 24.7 29.8 33.4 41.5 25.6 33.7 22.8 30.6 31.4 68.2
Ours (category)71.3 89.0 62.0 85.3 70.4 88.2 62.4 79.5 77.2 96.5 45.9 58.3 57.8 82.4 37.8 79.2

Table 5: Ablation results for Top-Q (y-axis)
and Top-P (x-axis) on CVC-300 dataset with
zero-shot medical detection seting.

(a) Ablation on the selected attribute and visual tokens (b) Robust abalysis for the prompt perturbation
To

To
p-

Q

p-P

Table 6: Ablation study results (AP%) on the genera-
tion of category prompt using VQA and GPT across
four datasets.

Methods Kvasir ColonDB ClinicDB ETIS

MPT+VQA+GPT 12.2 14.2 11.2 12.0
Ours+VQA 37.6 38.9 38.8 26.3
Ours+VQA+GPT 42.0 42.1 42.0 30.4

fine-tuning, only the target name is used as the linguistic input, causing a significant distribution shift
when prompts are introduced during inference. In contrast, StructuralGLIP encodes prompts into
a latent knowledge bank via the auxiliary branch, where prompts are used to construct structural
representations during vision-language fusion. However, the final RPN inference still relies on the
target name representation. In this way, StructuralGLIP incorporates additional knowledge about
the target and alleviates the distribution shifting problem at the same time. This approach allows
StructuralGLIP to achieve further performance gains on fine-tuned GLIP (56.6 → 59.3 AP).

4.4 ABLATION AND ANALYSIS

Prompt as Knowledge Bank. StructuralGLIP uses a dual-branch architecture and mutual selection
mechanism to encode prompts into a latent knowledge bank, effectively supporting category-level
prompts with rich attribute knowledge. To validate this, we directly feed category-level prompts of
StructuralGLIP and instance-level prompt of MIU-VL for a vanilla GLIP to gain its performance with
category-level prompt and instance-level prompt, respectively. As shown in Tab. 2, when employing
category-level prompt, GLIP suffers a performance degradation (25.9→24.8) while StructuralGLIP
gains additional performance improvement (39.2→48.3). This indicates that mutual selection helps
StructuralGLIP effectively leverage category prompts by selecting the most relevant information for
each image.

Another advantage of embedding prompts as a knowledge bank is that this design enables the precise
integration of additional knowledge without affecting the distribution of the target representation.
To validate this, we conducted ablation studies on the fine-tuned GLIP model, where only the
target name is used during the training phase. Then, we evaluate the performance of GLIP and
StructuralGLIP under a zero-shot enhancement setting. We present the experimental result in Tab. 3.

9
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cvc300 colondb clinicdb kvasir etis avg min max
1 2 3 4 5 6 1 2 3 4 5 6
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0.7
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0.5

0.4

0.3

0.2

(a) Fusing at specific layer (b) Starting from a Specific Layer to the Last Layer

Figure 4: Ablation towards the fusing layer of the proposed method

Similar to the analysis in Tab. 2, the proposed StructuralGLIP effectively incorporates the knowledge
from the bank without a performance degradation. As discussed in Sec. 4.3, with dual-branch
architecture, the knowledge bank functions as a residual feature in thee modality fusing phase, which
prevents the distribution shift by encoding prompts separately from the target representation, ensuring
smooth integration of prompt knowledge during inference.

Category-prompt generation methods. To validate the effectiveness of incorporating the prompt
generated with the large language model, we exhibit the comparison of only using the VQA model
and combing the results of VQA and GPT without fine-tuning the GLIP model in Tab. 4.4. Our
experimental results show that GPT can provide more comprehensive knowledge about the target and
further improve the performance.

Ablation on Q andP . We explore the joint effects of hyper-parameters of the selected visual tokens
and prompt numbers Q and P on CVC-300 under zero-shot detection without the fine-tuned model.
As shown in Tab. 4.4, the model achieves the optimal performance with P = 10 and Q = 10. Further
increasing P or Q introduces redundant information and degrades performance.

Ablation on the fusing layer. We performed an ablation study to analyze how the layer at which the
latent knowledge bank is fused impacts the performance. Fig. 4 illustrates two fusion strategies. The
first strategy, shown in Fig. 4(a), explores the effect of fusing at specific layers. The results indicate
that fusion at Layer 5 yields the highest performance across multiple datasets, suggesting that this
layer contains the most relevant features for effectively incorporating prompt knowledge. In contrast,
earlier layers such as Layer 1 and Layer 2 exhibit lower performance, likely due to their focus on
low-level features that are less compatible with the semantic richness of the prompts.

The second strategy, depicted in Figure 4(b), investigates the effect of starting from a specific layer
and fusing through to the last layer (Layer 6). The results reveal a hierarchical pattern (Fusing Layer4-
Layer6>Layer5-Layer6>Layer6), where starting fusion from Layer 4 and continuing to Layer 6
achieves the best results. This indicates a progressively integrating the prompt knowledge at deeper
layers allows the model to better utilize the information from the knowledge bank, rather than directly
fusing at the last layer. A further analysis of this hierarchy characteristic is conducted in Appendix D,
and more insights into the improvement of StructuralGLIP are shown in Appendix G.

5 CONCLUSION AND LIMITATION

We introduced StructuralGLIP, a novel zero-shot medical detection model that achieves fine-grained
alignment between target descriptions and medical images. Unlike prior works that directly transfer
vision-language models to the medical domain, we extended zero-shot medical detection to a more
practical setting by exploring both category-level prompts and zero-shot enhancement. Through ex-
tensive experiments, we demonstrated that StructuralGLIP excels under these conditions, significantly
outperforming existing methods. In future work, we aim to extend the applicability of StructuralGLIP
to more diverse medical and non-medical domains, potentially improving its adaptability to varied
visual conditions and more complex multimodal tasks.
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A COMPARATIVE VISUALIZATION

We illustrate the detection results on the ColonDB and BCCD dataset in Fig. E, where we employ the
vanilla GLIP for these prompt-based methods. Intuitively, both AutoPrompter and MIU-VL struggle
with either over-detection or missing critical targets. This is likely due to the coarse alignment
between vision and target representations, leading to false positives and missed detections. For
example, in ColonDB, both methods produce inconsistent bounding boxes, failing to accurately
localize the polyp. On the other hand, StructuralGLIPdemonstrates more precise localization with
category-level prompts, leading to fewer missed targets and improved confidence scores.

ours (category) AutoPrompter (instance) MIU-VL (instance)

Figure A: Visualization Results on the ColonDB and BCCD datasets.
We demonstrate example detection results on the ISIC2016 and TBX11K datasets in Fig. B below,
where we employ the fine-tuned GLIP and AutoPrompter for comparison. As shown in Fig. B(a),
it is evident that vanilla GLIP and AutoPrompter fail to produce correct classification results for
lesion detection. In contrast, our method, benefiting from the category-level prompt, makes corrects
classification. For radiographic datasets, our instance method achieves higher confidence scores using
the same prompts with AutoPrompter.

B DATASET INTRODUCTION

We select four types of medical imaging datasets involving eight benchmarks:

1) Endoscopy datasets for polyp detection: ClinicDB Bernal et al. (2015); Fernández-Esparrach
et al. (2016), ColonDB Bernal et al. (2012), Kvasir Jha et al. (2020), ETIS Silva et al. (2014). There
are 2,248 images and 2,374 bboxes in total. The complete training and validation images for the
entire benchmark are 1160 and 290, respectively. And the number of test set images for CVC-300,
CVC-ClinicDB, CVC-ColonDB, Kvasir, and ETIS datasets are 60, 62, 380, 100, and 196 respectively.
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a. GLIP

b. AutoPrompter

c. Ours(category) Ground Truth

GLIP (0.66)
tuberculosis

Ours (0.69)
gray rectangle tuberculosis

AutoPrompter (0.67)
gray rectangle tuberculosis

(a) (b)

Figure B: Visualization Resultson the ISIC2016 and TBX11K datasets.

The primary challenge involves highly variable polyp appearances, obscured views due to mucus and
bleeding, and low contrast against surrounding tissues.

2) Microscopy dataset: BCCD shenggan et al. (2018) for blood cell detection (white blood cells, red
blood cells, and platelets). The BCCD dataset is designed for blood cell detection tasks, including
three classes: white blood cells, red blood cells, and platelets. There are 874 images with 11,789
bboxes for the entire BCCD dataset.

3) Photography dataset: ISIC-2016 for skin lesions detection (benign lesion, malignant lesion). The
ISIC-16 dataset consists of 1,279 images with 1,282 bboxes for benign skin lesions and melanoma
detection, divided into 720/180/379 images for training, validation, and testing. This dataset pose
difficulties due to the small size and high density of the targets, and variations in staining which affect
visual clarity and consistency.

4) Radiology image datasets: TBX11k Liu et al. (2023b) for tuberculosis detection in lung x-rays.
These datasets are challenging due to the subtle nature of disease indicators, which can obscure
key features. The TBX11K dataset is used for tuberculosis detection in the lung, including 799
images and 1,211 bbox labels. Moreover, this dataset is divided into 479/120/200 images for training,
validation, and testing sets, respectively.

We demonstrate some example images of these datasets in Fig. F below.

C TRAINING DETAILS FOR GLIP’S ZERO-SHOT ENHANCEMENT EXPERIMENT

The zero-shot enhancement aims to further improve the performance of models after supervised
training on the downstream datasets. We follow Qin et al. (2022) to use a fine-tuned GLIP model
optimized with the Adam optimizerKingma & Ba (2014), where the initial learning rate is set to
1× 10−4 (1× 10−5 for the BERT text encoder). A weight decay of 0.05 is applied to prevent over-
fitting, and the bottom two layers of the image encoder are frozen to preserve fundamental features.
Our expressive prompts tailored to the characteristics of the target’s appearance are generated using
GPT-4 Achiam et al. (2023). Full details of these prompts are available in the Appendix.
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Figure C: Examples of medical images under different imaging conditions.

D ANALYSIS FOR THE HIERARCHICAL CHARACTERISTIC OF THE
STRUCTURAL REPRESENTATION.

To validate the hierarchical nature of the structural representations derived through layer-wise prompt
retrieval, we analyzed the distribution of selected prompts across six GLIP model encoder layers.
Specifically, we conducted this analysis using StructuralGLIP with category-level prompts on two
medical detection tasks: BCCD red blood cell detection and ClinicDB polyp detection. Prompts
were categorized into four types: color, location, shape, and texture (see detailed prompt categories
in Appendix F). The results, shown in Fig. D, reveal distinct differences in the frequency of selected
prompt types across layers (see Tab. A for the concrete value of the figure). In both tasks, color
prompts were consistently selected across all layers, highlighting its importance in medical detection.
For ClinicDB, the frequency of shape and texture prompts increased in deeper layers, indicating that
these features become more relevant as the model abstracts more complex attributes. In contrast, for
red blood cell detection, color remains the predominant feature across layers, while the selection of
shape and texture prompts decreases. This analysis demonstrates that StructuralGLIP can dynamically
retrieve task-relevant prompts from the knowledge bank at different layers, confirming the adaptable
nature of our zero-shot medical detection framework.

E EFFECT OF PROMPT QUALITY.

As shown in Tab. B, we present the detailed target description (query name with prompt) for red
blood cells detection task, and only using the category name “red blood cells” as input to the model
of GLIP resulted in poor detection performance, with an AP of just 1.7%. From Tab. B, it is evident
that the design of prompt methods significantly affects the ability of vision-language models to
utilize prompts for domain enhancement. For instance, our method, with the simple prompt, “pink
oval”, outperforms MIU-VL, which uses multiple types of attributes, achieving a +7.4%AP50 and
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Figure D: Results of the selected frequency (y-axis) of different types of prompts across the network’s
layer (x-axis).

Attribute colors locations shapes texture

Dataset polyp red blood cell polyp red blood cell polyp red blood cell polyp red blood cell

layer1 1436 1192 183 233 770 474 467 233
layer2 1468 1073 473 17 690 562 572 149
layer3 1475 1109 158 122 702 499 223 136
layer4 1505 1160 436 133 1131 653 883 245
layer5 1498 1062 416 59 1163 565 779 269
layer6 1450 1117 182 21 904 433 452 48

Table A: The selected frequencies of different types of prompts across GLIP’s different layers

+4.3%AP improvement. This improvement is attributed to our structural representation, which
achieves hierarchical vision-language alignment, thereby enhancing the utilization of prompts for
medical image analysis. Additionally, the structural representation involves fine-grained vision-
language alignment, enabling precise selection of attribute tokens from prompts. This capability
allows our method to effectively incorporate more comprehensive prompts, leading to a further
improvement of 5.1%AP50 based on the simple short prompt. This demonstrates the effectiveness
and robustness of our approach in generating and utilizing prompts for zero-shot detection tasks,
showcasing its superiority in achieving efficient and accurate medical image analysis.

Table B: Comparison of different methods with different prompts based on the red blood detection
task of BCCD dataset (complete prompts are shown in Appendix F).

Methods Target Description (name+prompt) AP AP50

GLIP [name] red blood cells 1.7 4.3
MIU-VL [name] + red color + spherical shape + in birth 12.0 24.7

AutoPrompter [name] + pink oval 12.6 27.0
Ours [name] + pink oval 16.3 34.4

MPT+Cluste [name] + (four prompts below) 12.5 25.6[flesh-colored, pink, round, blood]

Ours (category) [name]+ [color] pale bright, et al.+ [shape] oval round, et al.
+ [texture] smooth rough et al.+ [location] peripheral central, et al. 19.3 39.5

F DETAILED CATEGORY-PROMPT FOR THE MEDICAL DATASETS

Colors Shapes Textures Locations
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Polyp white, yellow, orange,
red, brown, pink,
pale, tan, gray-white,
gold, cream, ruby,
turquoise, indigo,
violet

octagon, circle,
round, heart, oblong,
oval, small, rounded,
jagged, wide, large,
bulbous, spherical,
circular, irregular,
diamond

smooth, textured,
cracked, striped,
shiny, dull, speckled,
raised, rough, gran-
ular, grooved, glossy,
veined, pigmented,
uneven, mottled,
interwoven, lines,
patches, complex,
reticular, structure

rectal, mucosal, el-
evated, demarcated,
creased, folded, iso-
lated, clustered, soli-
tary, honeycombed

Red
Blood
Cells

pale, bright red, dark
red, pinkish, crimson,
ruby, coral, salmon,
cherry, scarlet, rusty,
maroon, wine, bur-
gundy, rosy, flamingo,
peach, copper, ma-
hogany, terracotta

disc-shaped, oval,
round, elongated,
spherical, ring-
like, bean-shaped,
crescent, irregular,
biconcave, elliptical,
cuboidal, trian-
gular, squamous,
fusiform, polygonal,
rod-shaped, fibrillar,
amorphous, lobed

smooth, rough, gran-
ular, fibrous, glossy,
matte, sticky, velvety,
spongy, creased, crys-
talline, jelly-like, pit-
ted, wrinkled, spiny,
bumpy, flaky, mucous,
papillary, striated

peripheral, central,
upper, lower, me-
dial, lateral, distal,
proximal, anterior,
posterior, cervical,
thoracic, abdominal,
pelvic, inguinal,
axillary, oral, nasal,
occipital parietal

White
Blood
Cells

purple, white, pink,
gray, blue, translu-
cent, lavender, milky,
yellow, pale, clear,
light purple, ivory,
cream, faint blue, sil-
ver, off-white, light
gray, opalescent

round, oval, irregular,
lobed, segmented,
spherical, kidney-
shaped, amoeboid,
polymorphous,
triangular, elon-
gated, bean-shaped,
cuboidal, crescent,
spindle-shaped,
fusiform, irregularly-
shaped, star-shaped,
flattened, discoid

granular, rough,
smooth, wrinkled,
spongy, matte, glossy,
fibrous, pitted, veined,
speckled, raised,
lobulated, ridged,
reticular, grooved,
folded, striated, flaky,
nodular, uneven

circulating, pe-
ripheral, thoracic,
abdominal, pelvic,
cervical, axillary,
lymphatic, spleen,
marrow, mediastinal,
proximal, distal,
inguinal, occipital,
parietal, cranial,
vertebral, lumbar,
sacral

Platelets yellow, gray, pink,
translucent, clear,
beige, orange, white,
pale yellow, light
gray, light pink,
golden, amber, straw,
ivory, light orange,
peach, tan, light
brown, opalescent

small, round, oval, ir-
regular, disc-shaped,
spiked, star-shaped,
elongated, granular,
fragmented, jagged,
ring-shaped, crescent,
cuboidal, polygonal,
fibrillar, amorphous,
fusiform, spherical,
irregularly-shaped

granular, smooth,
rough, spongy,
fibrous, pitted,
wrinkled, matte,
glossy, veined, lobu-
lated, striated, flaky,
nodular, reticular,
ridged, bumpy, raised,
speckled, uneven,
lumpy

circulating, periph-
eral, marrow, spleen,
liver, thoracic, ab-
dominal, lymphatic,
distal, proximal, cer-
vical, axillary, cra-
nial, vertebral, sacral,
pelvic, mediastinal,
inguinal, parietal, oc-
cipital

Benign
Lesion

light brown, tan,
pale pink, beige,
ivory, light yellow,
flesh-colored, clear,
translucent, white,
pink, light red, off-
white, cream, soft
yellow, gray, peach,
faint brown, faint
yellow, light orange

round, oval, smooth-
edged, well-defined,
regular, flat, slightly
raised, small, lobu-
lated, dome-shaped,
circular, symmetrical,
uniform, elongated,
flat-topped, irregu-
lar, semi-spherical,
oblong, disc-shaped,
heart-shaped

smooth, glossy, matte,
uniform, fine, clear,
unbroken, even, pol-
ished, soft, thin, flat,
reticular, striated,
nodular, shallow,
granular, homoge-
neous, light-textured,
delicate

superficial, epi-
dermal, dermal,
non-invasive, iso-
lated, peripheral,
central, facial, limb,
torso, scalp, back,
upper, lower, anterior,
posterior, lateral,
abdominal, neck, arm
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Malig-
nant

Lesion

dark brown, black,
red, purple, blue,
gray, deep red, ma-
roon, dark purple,
crimson, burgundy,
dark gray, navy,
violet, yellowish,
pale gray, dark
pink, reddish-brown,
orange, tan

irregular, asymmetric,
poorly-defined, multi-
lobed, jagged, raised,
ulcerated, irregular-
edged, large, deep,
multi-colored, nodu-
lar, star-shaped,
rough-edged, uneven,
angular, oblong,
rough, distorted,
fragmented

rough, scaly, gran-
ular, ulcerated,
cracked, irregular,
firm, thick, pitted,
fibrous, bumpy,
crusty, glossy, uneven,
speckled, reticular,
indurated, papillary,
pigmented, veined

invasive, dermal,
subcutaneous, nodal,
systemic, spread,
clustered, axial, limb,
facial, scalp, back,
chest, abdominal,
upper, lower, lateral,
posterior, anterior,
proximal, distal

Tuber-
culosis

white, gray, patchy,
cloudy, translucent,
opaque, pale, faint,
bright, shadowed,
dull, smoky, hazy,
diffused, misty, dense,
light gray, speckled,
milky, gray-white

irregular, nodular,
patchy, lobular,
diffuse, multi-focal,
rounded, asymmet-
rical, large, small,
streaked, segmented,
thickened, elon-
gated, fragmented,
scattered, spotty,
uneven, consolidated,
granular

rough, fibrotic,
granular, nodular,
scarred, thick, tex-
tured, coarse, uneven,
reticular, banded,
streaked, fibrous, pit-
ted, grooved, layered,
striated, indurated,
dense, veined

apical, upper lobe,
lower lobe, central,
peripheral, posterior,
anterior, lateral,
mediastinal, pleu-
ral, diaphragmatic,
tracheal, hilum,
bronchiolar, thoracic,
cervical, upper, lower,
rib, clavicle

G ANALYSIS TOWARDS THE FEATURE DISTRIBUTION OF STRUCTURALGLIP.

To provide more insight into the improvement brought by StructuralGLIP, we focus on vision
and language features input into the RPN detection model before and after applying our proposed
approach. We conduct experiments on five datasets (cvc300, colondb, clinicdb, kvasir, etis) on the
vanilla GLIP without fine-tuning and calculate the average value of vision and target representation’s
attention matrix (termed "average attention strength"). The prompt we used is category-level prompt.
Then, we employ a kernel density estimation method to estimate the distribution of average attention
strength. We found that there is a significant increase in average attention strength for the proposed
StructuralGLIP compared with the vanilla GLIP, indicating better alignment between vision and
language representations.

H VISUALIZATION ON NATURAL IMAGES

Here we demonstrate the visualization of the proposed StructuralGLIP and GLIP on natural images.
The prompt for each category is as follows:

1. Cosmos: broad, delicate, slightly ruffled petals radiating symmetrically around a vibrant
yellow center, with a lightweight and airy appearance that contrasts beautifully against the
surrounding colors

2. Peony: lush, voluminous, soft, delicate, vibrant, radiant, layered, rounded, ruffled, full,
graceful, elegant, eye-catching, rich, luxurious, intricate, symmetrical, silky, and captivating

3. Hematite: flat and irregularly shaped, with a coarse and slightly grainy surface indicative of
its iron-rich composition
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Figure E: Feature distribution of the average attention strength using KDE estimation on five datasets
(cvc300, colondb, clinicdb, kvasir etis). The x-axis is the value and the y-axis is the density.
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Figure F: Examples of natural images with GLIP and StructuralGLIP.
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