Lua-LLM: Learning Unstructured-Sparsity Allocation
for Large Language Models

Mingge Lu Jingwei Sun® Junqing Lin Zechun Zhou Guangzhong Sun*
University of Science and Technology of China
mingge@mail.ustc.edu.cn, sunjw@ustc.edu.cn, linjunging@mail.ustc.edu.cn,
zhouzechun@mail .ustc.edu.cn, gzsun@ustc.edu.cn

Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities, yet
their extensive parameter scales pose significant challenges for practical deploy-
ment. Unstructured pruning has emerged as an effective model compression
strategy with minimal performance loss, which introduces fine-grained sparsity for
weight parameters. While existing methods employ a layer-wise pruning strategy
to avoid the complexity of global pruning for billion-scale LLMs, they require
appropriate sparsity allocation for the layer-wise pruning objectives and often lead
to suboptimal solutions for the overall model. In this paper, we propose Lua-LLM
(Learning unstructured-sparsity allocation in LLMs), a learning-based global prun-
ing framework that explores the optimal unstructured sparsity allocation. Unlike
existing pruning methods, which primarily focus on allocating per-layer sparsity,
Lua-LLM achieves flexible allocation for both layer-wise and intra-layer spar-
sity. Furthermore, Lua-LLM leverages a soft Top-K operator to approximate the
importance-based mask selection mechanism, enabling efficient binary mask learn-
ing. Experimental results on LLaMA and OPT families demonstrate significant
performance improvements over existing methods.

1 Introduction

Large Language Models (LLMs) [} 1251167, [79] have demonstrated remarkable performance across
a wide range of downstream tasks in natural language processing [9, 68, 169]. However, their
ever-increasing parameter scales require substantial memory and computational resources, posing
major challenges for their practical deployment on various platforms and applications. For instance,
LLaMA-3.1-405B model [24]] requires more than 754 GB memory to store its parameters in half-
precision (FP16) format, far surpassing available memory on resource-constrained devices. To
make LLLMs more accessible and efficient, considerable efforts have been made to compress these
models, including pruning [3} 19} 133} 48 164]], quantization [20, |31} 73]], and knowledge distillation
[36] 1564 165]]. Pruning is an effective model compression approach and has been applied successfully
in various model structures [[10, 32} 45! |60].

Unstructured pruning [[18} 26} 50] selectively removes less critical weight parameters at the element
granularity. This process introduces element-wise sparsity in weight matrices while maintaining
minimal degradation in model performance. Conventional pruning methods [49,61] propose a global
pruning strategy, which solves an optimization problem to minimize the overall model loss. However,
given the massive parameter scale in LLMs, these methods become impractical due to the substantial
computational overhead. To address this, recent studies like SparseGPT [[19] and Wanda [[64]] split
the global pruning objective into multiple local subproblems, each of which focuses on minimizing
layer-wise pruning error that can be solved faster. Despite their efficiency gains, these methods

*Corresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

LLaMA-7B LLaMA2-7B LLaMA3-8B OPT-13B

--- Dense Model 70 —--- Dense Model --- Dense Model 5o~~~ Dense Model
80 —e— Wanda 60 ||~ Wanda 100 —e— Wanda —e— Wanda

—a— OWL —s— OWL —a— OWL —a— OWL
60— DSA 50— DSA 80— DsSA o psa

—#— Lua-LLM (Ours) 40 —#— Lua-LLM (Ours) 60 —#— Lua-LLM (Ours) —+— Lua-LLM (Ours)

WikiText2 PPL
IS
&

N
S

10 =

20% 30% 40% 50% 60% 70% 20% 30% 40% 50% 60% 70% 20% 30% 40% 50% 60% 70% 20% 30% 40% 50% 60% 70%
Sparsity Sparsity Sparsity Sparsity

Figure 1: Model perplexity | results on WikiText2 dataset with 2048 sequence length.

employ uniform pruning ratios across all layers and only focus on minimizing the local errors, posing
the risk of removing important weights for more sensitive layers and leading to suboptimal solutions.
Especially at high sparsity levels, these methods suffer severe performance degradation, undermining
their practical applicability.

Recent studies like OWL [76] have thus focused on layer-adaptive sparsity allocation [29} 37,138, 147,
76] to fulfill the potential of LLM pruning. While these techniques have demonstrated noticeable
performance improvements over uniform pruning strategies, two substantial challenges remain:
First, existing layer-adaptive approaches overlook intra-layer sparsity allocation. Following
the pruning strategy in prior work [[19,|64], these methods divide the weight matrix of a layer into
finer-grained comparison groups, each employing a uniform sparsity level. Although BESA [74]
aims to learn sparsity for these fine-grained groups, the substantial computational overhead caused
by neural architecture search forces it to minimize the error of each transformer block, which still
yields suboptimal solutions. Second, layer-wise importance statistics are insufficient to indicate
the inherent distribution of unstructured sparsity. OWL uses layer outlier ratio as a heuristic
proxy for per-layer sparsity allocations, which requires empirical sparsity mapping and lacks a solid
theoretical foundation. DSA [37]] conducts an evolutionary algorithm to find the optimal allocation
function based on importance scores, yet the search process takes at least 12 hours for LLaMA-7B
model, and the searched allocation function faces generalization issues for other models.

To address these challenges, we propose Lua-LLM, a gradient-based global pruning framework
that learns fine-grained sparsity allocation to minimize the overall model performance loss. Our
key insight is that Wanda’s pruning strategy primarily focuses on activation sparsity in the input
dimension, while its uniform row-wise sparsity configuration overlooks output sparsity, leading to
an imbalanced sparsity distribution. Thus, we develop our Lua-LLM method by building upon an
adaptive row-wise sparsity allocation problem. Lua-LLM decomposes the selection of overall
pruning masks into row-wise pruning subproblems, each of which leverages a Top-K selection
operator to represent the mask selection process based on existing element-wise importance
metric. The non-differentiable Top-K operator is approximated using Sigmoid function, where
the row-wise sparsity is transformed into a single pruning threshold parameter, enabling parameter-
efficient mask learning. After optimizing the row-wise threshold parameters with end-to-end model
performance loss, Lua-LLM identifies a sub-network within the original model, which achieves
adaptive sparsity allocation for both layer-wise and intra-layer sparsity. For LLaMA-7B model,
Lua-LLM learns sparsity allocation in only 1 hour on 2x NVIDIA A100 GPUs, which demonstrates
superior efficiency compared to DSA.

We evaluate Lua-LLM on several LLMs, including LLaMA-7B/13B, LLaMA2-7B/13B, LLaMA3-8B,
and OPT-6.7B/13B. Compared to existing sparsity allocation methods, Lua-LLM achieves significant
performance improvements for compressed models, particularly at high sparsity ratios. As shown in
Figure[I} Lua-LLM reduces the perplexity on LLaMA3-8B under a 70% pruning ratio by 99.5, 67.29,
and 79.14 compared to Wanda, OWL, and DSA, respectively. Under a 60% pruning ratio, Lua-LLM
improves the average accuracy on LLaMA-7B by 4.92%, 3.47%, 4.09%, compared to Wanda, OWL,
and DSA, respectively, while incurring only a 3.18% accuracy degradation from the original model.
When integrated with Splnfer [16]], a GPU inference framework for sparse LLMs, Lua-LLM achieves
end-to-end inference speedup for the compressed models with 50% - 70% sparsity levels on an
NVIDIA A100 80 GB GPU, ranging from 1.18 x to 1.73x. Our experiment results demonstrate that
Lua-LLM achieves more adaptive sparsity allocation, enhancing the practical applicability for LLM
pruning at high sparsity levels.

2 Related Work

Unstructured Pruning for LLMs. Pruning has a long history [27,[34] and has been successfully
applied to compress neural networks of various structures [[10}28}|32}145]160]. Compared to structured
[2, 16, 21} 1481 155 72, [78], 181} [84] and semi-structured [17, [80, [82]] pruning strategies, unstructured
pruning [4} 19,152} 164, 83]] introduces finer-grained sparsity and leads to minimal performance loss.
SparseGPT [19] proposes a post-training pruning framework that computes Hessian metrics for
weight elimination and update. Wanda [64]] designs a novel pruning metric and pattern, which
outperforms SparseGPT at 50% sparsity without any weight updates. SparseLLM [4] leverages
auxiliary variables for the decomposition of the global pruning problem and achieves alternating
optimization into the subproblems with global optimality. To achieve practical inference speedup for
unstructured sparse neural networks on GPUs, multiple works [16, 22} 141} [71]] have been proposed to
optimize the kernel latency of sparse matrix-matrix multiplication (SpMM) operation.

Adaptive Layer-wise Sparsity. To address the limitation of prior uniform pruning methods [4}
19,1521 164]], recent studies have thus focused on layer-adaptive sparsity allocation techniques. Based
on observation of the correlation between activation outliers and performance of LLMs, OWL [76]]
adjusts the per-layer sparsity ratio according to layerwise outlier distribution. ALS [38]] estimates
inter-layer correlations using information orthogonality and then employs linear optimization to
selectively prune features in intermediate layers. DSA [37]] conducts an evolutionary algorithm to
find an allocation function that establishes a mapping from element-wise scores to sparsity ratios
and generalizes across different models. AlphaPruning [47] uses heavy-tailed self regularization to
allocate layerwise sparsity in a theoretical manner. ATP [29] reduces the process of determining
sparsity rates for multiple layers to the determination of a single common difference hyperparameter
with a monotonically increasing arithmetic progression.

NAS-based Pruning for LLMs. Neural Architecture Search (NAS) [15} 139, 43| 51} 58, [66]]
is a pivotal technique in machine learning that automates the design of optimal neural network
architectures. Recent studies have applied NAS to automatically identify the optimal sparsity
pattern in pre-trained LLMs. Using the evolutionary algorithm, Pruner-Zero [[14] evolves symbolic
pruning metrics. DSA [37] searches for effective sparsity allocation functions. Search-LLM [63]
identifies structured sub-networks using mask mutation. The gradient-based method also serves as an
important NAS strategy. DISP-LLM [23]] formulates dimension-independent structured pruning as an
optimization problem and uses Straight-Through gradient estimator [44] to enable mask learning.
MaskLLM [17]] incorporates Gumbel Softmax for differentiable sampling of semi-structured pruning
masks. BESA [74] parameterizes local sparsity objectives with learnable combinations of candidate
pruning rates and minimizes block-wise reconstruction error. Given the massive parameter scale of
LLMs, searching for element-wise unstructured pruning masks is much more challenging due to
prohibitively high computational costs.

3 Preliminary

3.1 Problem Formulation

Given a pre-trained large language model with parameter W, pruning is formulated as a constrained
optimization problem, which utilizes inputs X to derive a sparse model with a binary pruning mask

M and possibly updated weights W that minimizes the task performance loss:

mw LXM O \/7\\/') s.t. Sparsity(M) = p, (1)

min

where the pruning mask M is constrained with target sparsity p. Since jointly optimizing both the
pruning mask and the remaining weights is an NP-hard problem [8], a popular approach is to separate
the pruning problem into mask selection and weight reconstruction.

Challenges. The massive parameter scale of LLMs introduces significant computational overhead
for global pruning optimization problems. To reduce the complexity of the global pruning problem,
prior methods [4} [19, 52, 164]] split the full-model pruning problem into layer-wise subproblems.
Despite the efficiency gains, the layer-wise pruning strategy presents two primary limitations. Firstly,
it focuses on minimizing the local pruning error of each linear layer, while the non-linear operations

in LLMs suggest that such a layer-wise approach may yield a suboptimal solution for the entire
network [40]]. Secondly, it requires handcrafting an appropriate sparsity ratio p, for each layer, as
the individual contributions of layers to the final model performance exhibit significant variation
[76]]. In this paper, we aim to address these challenges with an end-to-end learning method,
which achieves adaptive sparsity allocation while minimizing the overall performance loss.

3.2 Revisit Wanda Pruning

Attention W, B Preserved

Wanda [64] is a one-shot layer-wise pruning method,
which prunes model weights without the weight recon-
struction process. However, it achieves superior model
performance at 50% sparsity level compared to methods
that require weight update, such as SparseGPT [19]]. The

success of Wanda underscores the effectiveness of a better B2
mask selection strategy, including careful design of the § 2
weight importance metric and the comparison group. ; 2
First, to capture the importance of model weight, Wanda | BS
proposes a novel pruning metric. Formally, given weight g’
matrix W € R%uwtxCin and its input activation X € l
RE*xCin where L is the input sequence length and C..;, i
C;y, are the output and input dimension, respectively, the L
importance score for weight element W; is computed as : I
below: nput Outliers

Sij = [Wis| - [[X.5]l2, @)
where [W ;| is the weight magnitude and ||X. ;||2 is the Figure 2: Visualization of the weight
¢ norm of the j-th column of input feature. matrix Wo under Wanda sparsity pattern

and the corresponding input and output

Second, Wanda chooses output channels, which refer to magnitude outliers.

the rows in a weight matrix, as the groups for weight im-

portance comparison and applies a uniform sparsity level to all rows. Through extensive experiments,
Wanda demonstrated that using row-wise comparison groups outperforms alternative configurations,
including the entire matrix, single columns, multiple columns, or multiple rows.

Observations. Prior works 42] have demonstrated that activations in LLMs exhibit heavy-
tailed distributions, characterized by a subset of features with exceptionally large outliers. These
outliers have been proven to play a vital role in the remarkable performance of LLMs. From Figure 2]
we notice that Wanda’s sparsity pattern maintains low sparsity in the input dimensions corresponding
to these outliers, which provides an intrinsic explanation for its effectiveness. However, Wanda
misses a potential issue that the output dimensions also contain outlier magnitudes, while using the
same row-wise pruning ratio might eliminate important weights in the output dimensions that are
extremely sensitive, particularly at high sparsity levels.

Motivating Study. To verify our hypothesis, we perform a preliminary study for the output sparsity
in weight matrices. Formally, given weight matrix W € R€utXCin and its input X € RL*Cin | the
output Y € REL*Cout is computed as below:

Y =XW"'. 3)

We collect the output magnitude y € R%ut, where its j-th element y; = |[Y. ;||2 is the £, norm of
the j-th column of output feature.

We first apply the Wanda pruning strategy to uniformly prune the rows with 80% sparsity level for
weight matrices in LLaMA-2-7B model. Then we adjust the row-wise sparsity ratios for each layer
as follows: according to the output magnitude y, we reduce the sparsity to 60% for the top 128 rows,
and increase the sparsity to 100% for the bottom 128 rows. Although completely removing some
output channels will introduce structured sparsity, which empirically leads to lower performance
than unstructured sparsity, we still observe that the perplexity on WikiText2 [53] dataset decreases
from 2335 to 1532, indicating that our heuristic strategy enhances the model performance. This
non-uniform importance distribution in the output dimension motivates our pruning approach towards
an adaptive row-wise sparsity pattern.

Layer-wise Sparsity Normalized Importance Score ~ Threshold Layer-wise Sparsity

. - ‘ Intra-layer Sparsity III . .’"_: Inra»lay‘r Sparsity

ﬂ TopK Approximation

/

i | ‘ ﬂ Sigmoid e :“L‘-‘; 3
; § Soft Mask ";" /,/"
(4} |

| | :

|

1

- AN | Hard Mask ’___':'
- AEERE |
(1) Uniform Initialization (2) Row Mask Learning (3) Adaptive Unstructured Sparsity Allocation

Figure 3: Overview of the proposed Lua-LLM pruning framework.

4 Lua-LLM: Learning Unstructured-Sparsity Allocation for LL.Ms

In this section, we motivate and describe our pruning method, Lua-LLM, which learns a more flexible
and balanced sparsity allocation pattern from a global optimization perspective. Lua-LLM splits
the global pruning mask selection problem into multiple row-wise subproblems, each of which is
transformed into a single learnable threshold parameter using a soft Top-K operator, thereby enabling
the end-to-end optimization of the model performance through gradient descent. An overview of our
pruning framework is presented in Figure 3]

4.1 Row-Wise Mask Selection with Weight Importance Metric

To address the limitations of layer-wise pruning, we aim to identify optimal pruning masks by solving
the global pruning optimization problem. However, directly learning the binary pruning masks for
LLMs is prohibitively expensive. Motivated by our observation in Section [3.2] we reformulate the
global pruning problem as an adaptive row-wise sparsity allocation problem. Within each row of
weight matrices, we directly use the Wanda importance metric, which is introduced in Equation
([2), and prune the less important weights according to the allocated sparsity. We first formulate the
row-wise mask selection process as below.

Formally, let w € R denote a row in the weight matrix of a model layer, and let s € R
represent the corresponding importance scores derived from the Wanda pruning metric. For a target
sparsity ratio p € [0, 1], we define the pruning threshold ¢ € R as the K-th largest value in s, where

K=[(1-p) Cinl, Q)
ensuring that exactly K weights are retained. This threshold ¢ enforces the sparsity constraint:

Cin

1
P=G D (s < 1), ©)

i=1

where I(-) is the indicator function. A mask selection function f, which retains the Top-K most
important weights, maps the importance score s to a binary mask m € {0, 1}% as follows:

17 if S; > t,
0, otherwise,

m; = f(si,t) = 0.5 - sign(s; — 1) + 0.5 = { ©6)

where m; = 1 indicates that the corresponding weight w; will be preserved, and m; = 0 indicates
that the weight w; will be pruned.

4.2 Soft Approximation for Top-K Selection Function

After constructing pruning masks for each row of the weight matrices, we need to solve the adaptive
row-wise sparsity allocation problem. However, the non-differentiable nature of the discontinuous
mask selection function f poses a major challenge for generating differentiable masks, preventing
the use of common optimization solvers such as the gradient descent technique.

Algorithm 1 The multi-stage Lua-LLM pruning algorithm.

Input: training dataset X, pre-trained LLM model, and target sparsity p.
Output: unstructured sparse model.
1: Inmitialization: integrate mask modules into Attn and MLP layers, prepare uniform importance
scores within [0, 1], initialize all threshold parameters to target sparsity p.
for t < 1to T do:
for each weight matrix W' do:
Generate soft pruning mask M! with row-wise thresholds {t; }f:“’f by Eqn.,
end for
Forward propagation: Liotq1 = Ltask(X; M O W) + ey Lreg(M;p),
Update row-wise threshold parameters during back-propagation,
end for
Save the row-wise threshold parameters for each weight matrix,
Pruning: computing hard masks for pruning by Eqn. ().

SYRIAIN K LY

—

To address this challenge, we employ the straight-through-estimator (STE) technique [5]], enabling
gradient computation via a soft approximation when processing non-differentiable functions. Intu-
itively, we employ the sigmoid function to construct a soft approximation of the Top-K selection
function, so that each row-wise pruning mask can be generated with a single learnable threshold
parameter ¢. To mitigate the training instability caused by importance outliers (Section [3.2), we map
the importance scores to a uniform distribution within [0, 1]. Then, given a row of weights w € R%in
with the uniformly distributed importance scores s € [0, 1], we reparameterize the target sparsity
p as a learnable threshold parameter ¢, and compute the soft pruning mask m € [0, 1]%~ with a

differentiable mask selection function f:
mi = f(si,t) = o(A(s: — 1)), (7)

where o(z) = (1 + =)~ ! is the sigmoid function and) controls the approximation level. We set
the value of parameter A to C;,,, which is large enough to provide a precise approximation. The soft
alternative for the Top-K selection function makes the loss function £ differentiable with respect to
the pruning threshold ¢, and the global pruning problem can be optimized with a gradient descent
method. Formally, the gradient for parameter ¢ can be computed as:

oc S oL om0y 9o (A(si — 1))
o om0t oo

®)

i=1

Remark. Equation (/) provides a row-wise differentiable mask constructed from the underlying
pruning threshold ¢ and importance score s. Since the operation patterns across all rows are identical,
we can leverage the broadcast computation mechanism in PyTorch to compute row-wise pruning
masks in parallel for each weight matrix. Another gradient-based unstructured pruning method for
LLMs, BESA [74], requires a customized CUDA operator to support the parallel generation for
intra-layer probabilistic pruning masks, while Lua-LLM does not induce any backend modification.

4.3 Learning Row-wise Sparsity Allocation

With the proposed soft mask selection technique, we can formulate the global pruning optimization
problem based on row-wise sparsity allocation and conduct the end-to-end learning process with the
gradient descent method. To reduce our search cost and improve convergence, we employ a uniform
initialization strategy, and then enforce the target sparsity with a regularization term.

Initialization. Before training, we first employ Wanda pruning method to obtain the importance
scores for weight parameters. As introduced in Section #.2] we map the importance scores to a
uniform distribution within [0, 1] to mitigate the training instability caused by importance outliers.
With this preprocessing approach, we can directly initialize the row-wise threshold parameter ¢ as the
target sparsity p, leading to a uniform sparsity initialization pattern.

Learning Objective. For a pre-trained large language model, we integrate learnable mask modules
into the Attention and MLP layers while freezing the original model parameters, thus facilitating

Table 1: Model Perplexity | results of different unstructured sparsity allocation methods evaluated on
WikiText2 dataset with 2048 sequence length.

Method Sparsity WikiText2 Perplexity |

LLaMA-7B LLaMA-13B LLaMA2-7B LLaMA2-13B LLaMA3-8B | OPT-6.7B OPT-13B
Dense 0% 5.68 5.09 5.47 4.88 6.14 10.86 10.13
Wanda 7.25 6.15 6.92 597 9.82 11.98 11.93
OWL 50% 7.22 6.08 6.86 5.92 9.68 12.21 12.23
DSA 7.26 6.11 7.07 6.11 9.81 12.40 13.00
Lua-LLM 7.12 6.05 6.85 5.89 8.87 11.96 10.94
Wanda 10.73 8.77 10.79 8.38 23.58 15.22 15.90
OWL 60% 9.35 7.67 9.18 7.56 18.68 15.54 16.77
DSA 9.48 7.71 10.36 8.27 23.80 16.65 18.69
Lua-LLM 8.75 6.97 8.54 6.89 12.21 14.46 13.79
Wanda 91.83 56.26 75.42 45.63 122.02 157.48 55.26
OWL 0% 24.46 16.95 30.23 20.57 89.81 42.92 30.23
DSA 22.31 16.37 63.05 35.85 101.66 47.86 41.14
Lua-LLM 12.21 9.26 12.92 8.98 22.52 37.45 20.96
Wanda 2889.94 4008.78 2334.70 1134.94 894.99 4259.55 12516.03
OWL 30% 1192.58 411.04 587.19 214.25 763.36 15370.94 5785.20
DSA 934.29 316.81 1436.02 864.85 894.01 9664.09 533.89
Lua-LLM 37.65 26.52 30.27 24.76 85.39 537.12 414.81

an end-to-end mask training process. To control the overall sparsity ratio, we introduce a sparsity
regularization loss L,..4 as below:

IOg(N(M)/(pNtotal))a lf N(M) > pNtOta17
‘Creg =10, if N(M) = pNiotal,)
- IOg(N(M)/(pNtotal))y if N(M) < pNtotah

where N (M) is the number of removed weight parameters with pruning mask M, p is the target
sparsity ratio, and N, is the number of weight parameters in the original model. The sparsity
regularization loss encourages the sparsity of the overall model to converge to the target sparsity level
p. The training objective is to minimize the language modeling loss L4, of next token prediction
computed via the cross-entropy loss function. Combining the regularization loss £,., with the
language modeling loss L5, our total training loss in mask learning stage is:

ﬁtotal = Etask(X; M © W) +)\regﬁreg(M;p)a (10)

where X denotes the input tokens from training data, W represents the original weights, and A,.cg is
used to control the penalty for deviating from the target sparsity. Section [5.5] presents an ablation
study on A4, showing that our method achieves stable performance when A, is large enough.

5 Experiments

5.1 Experimental Settings

Models. We evaluate our Lua-LLLM method on several LLMs as follows: LLaMA family [67]:
LLaMA-7/13B, LLaMA-2-7/13B, LLaMA-3-8B; OPT family [79]: OPT-6.7B, OPT-13B.

Datasets and Evaluation. To train the learnable pruning masks, we use 2048-token segments
from C4 [59] dataset, which is also used to sample calibration data in previous works. We evaluate
the language modeling perplexity on the validation set of raw-WikiText2 [53]] dataset. To ensure
a fair comparison, the sequence length for all models is set to 2048. Following previous works,
we also evaluate the zero-shot accuracy of pruned models on seven downstream tasks, including
BoolQ [1L1], PIQA [7], HellaSwag [[77], WinoGrande [62], ARC-easy [12], ARC-challenge [12]], and
OpenbookQA [54], based on the EleutherAl LM-Evaluation-Harness [35]] framework.

Baselines. We compare our Lua-LLM method against Wanda [64]], the uniform pruning method
introduced in Section [ZZ], and four adaptive sparsity allocation methods, OWL [76], DSA [37],
AlphaPruning [47]] and ATP [29]].

Table 2: Zero-shot accuracy 1 results on seven downstream tasks for the pruned LLaMA-7B, LLaMA2-
7B and LLaMA3-8B models at 70% sparsity level.

Model Method BoolQ 1 PIQA 1T HellaSwag? WinoGrande? ARC-eT ARC-c1 OBQAT | Mean 1
Dense 73.12 78.67 56.41 67.09 67.30 38.31 28.20 58.44
Wanda 61.83 57.62 28.49 50.83 31.06 19.03 12.80 37.38
LLaMA-7B OWL 62.97 64.53 34.78 56.67 42.30 24.74 16.40 43.20
DSA 62.45 63.44 34.59 55.80 42.09 24.83 16.60 42.83
ATP 65.79 67.46 37.44 61.43 50.63 25.68 20.80 47.03
Lua-LLM 63.74 69.15 42.02 58.62 56.79 27.22 20.20 48.25
Dense 71.13 78.07 56.69 67.17 69.28 39.93 31.60 59.12
Wanda 49.14 55.39 27.99 49.49 30.77 18.17 11.80 34.68
OWL 62.23 62.19 31.88 55.41 43.77 20.39 16.80 41.81
LLaMA2-78 DSA 58.81 57.40 28.48 49.80 32.28 17.58 12.60 36.71
ATP 62.39 66.81 36.08 61.01 50.76 23.38 20.40 45.83
Lua-LLM | 66.12 68.88 42.69 58.96 58.50 26.79 22.00 49.13
Dense 81.25 79.71 60.18 72.69 80.09 50.51 34.80 65.60
Wanda 55.35 56.09 27.38 47.20 32.07 17.66 12.60 35.48
LLaMA3-8B OWL 61.90 58.22 28.37 50.43 35.35 17.15 13.20 37.80
DSA 61.44 55.88 31.90 48.30 33.71 17.15 12.60 37.28
ATP 61.79 62.18 31.46 54.93 41.79 20.39 16.40 41.28
Lua-LLM | 65.23 65.83 37.29 57.06 50.08 23.38 17.20 45.15

Table 3: WikiText2 perplexity | results Table 4: End-to-end inference throughput (token/s) and
compared to AlphaPruning and ATP. speedup of sparse models.

Method LLaMA-7B LLaMA2-7B Model Sparsity Dense | 50% 60% 70%
70% 80% | 70% 80% OPT.6.7 | Throughput 1 | 696.6 | 8428 | 1012.7 | 1202.3
AlphaPruning | 23.86 698.56 | 28.87 1672.49 Speedup T - 1.22x | 1.45x | 1.73x
ATP 20.16 176.80 | 22.16 425.12 OPT.13p | Throughput 1 | 401.6 | 4728 | 5634 | 685.1
Lua-LLM 12.21 37.65 | 12.92 30.27 Speedup T - 1.18x | 1.40x | 1.71x
Implementation. We implement Lua-LLM in PyTorch [57] and use HuggingFace transformers

library [[70] for the evaluated LLMs. We integrate learnable mask modules into the Attention and
MLP layers while freezing the original model parameters, thus facilitating an end-to-end mask
learning process. We utilize the AdamW [46] optimizer with the learning rate set to 5 x 1073 and
weight decay set to 0.05. The learnable threshold parameters are trained for 500 iterations, conducted
on NVIDIA A100 80 GB GPUs.

5.2 Model Performance

In Table 1] we report the language modeling perplexity of pruned LLaMA and OPT models from
50% to 80% sparsity levels. We also compare our method to AlphaPruning and ATP in Table 3]
Our Lua-LLM consistently outperforms the uniform Wanda pruning baseline and the state-of-the-art
sparsity allocation methods. For example, under a 70% pruning ratio, Lua-LLM reduces the perplexity
on LLaMA3-8B by 99.5, 67.29, and 79.14 compared to Wanda, OWL, and DSA, respectively. The
performance improvement is particularly larger at higher sparsity levels. At the 80% sparsity level,
Lua-LLM reduces the perplexity on LLaMA2-7B by 1642.22 and 394.85 compared to AlphaPruning
and ATP, respectively. Notably, Lua-LLM achieves a perplexity result of 30.27 for the LLaMA-2-7B
model at the 80% sparsity level, which is comparable to the performance of other methods at a
lower 70% sparsity. Our experimental results demonstrate that directly extracting an unstructured
sub-network from the original LLM can maintain acceptable performance with minimal degradation,
even at higher sparsity levels.

In addition to model perplexity results, we report the zero-shot accuracy of LLaMA models at 70%
sparsity level in Table[2] More results for 60% and 80% sparsity levels are shown in Table [IT]and
Table|12|of Appendix respectively. Under a 60% pruning ratio, Lua-LLM improves the average
accuracy on LLaMA-7B by 4.92%, 3.47%, 4.09%, compared to Wanda, OWL, and DSA, respectively,
while incurring only a 3.18% accuracy degradation from the original model. Our method achieves
superior performance than baselines under various models, tasks, and sparsity levels, verifying our
effectiveness in preserving important weights with adaptive sparsity allocation.

LLaMA-2-7B Layerwise Sparsity Training Loss Convergence Comparison PPL with Different Metrics

—e— 60%
= 70%
—— 80%

—e— Random ----- Dense Model
-~ Uniform —=— Magnitude
—e— Wanda

—=— Pruner-Zero

Total Loss
WikiText2 PPL

Sparsity Ratio
3

S

e Y

05— 3 T %5 30 0 50 100 150 200 250 300 350 400 450 500 20% 40%

) 15 20 X 50% 60% 70% 80%
Layer Index Iteration Sparsity

Figure 4: Layer-wise sparsity — Figure 5: Convergence for dif- Figure 6: WikiText2 PPL under
distribution for LLaMA2-7B. ferent initialization strategies. different importance metrics.

Attention W, Attention Wy

Figure 7: Intra-layer sparsity allocation for Attention layers in the 70% sparse LLaMA2-7B model.

5.3 Inference Speedup

Unstructured pruning achieves high sparsity levels while maintaining minimal performance degrada-
tion, but the element-wise sparsity pattern it introduces cannot achieve a direct inference speedup
on GPUs. Fortunately, a recent study proposes SpInfer [16], a sparse LLM inference framework
specifically designed to optimize the kernel latency of sparse matrix-matrix multiplication (SpMM)
operations at moderate sparsity levels on GPU Tensor Core architectures. We evaluate the pruned
OPT-6.7B and OPT-13B models on an NVIDIA A100 80GB GPU and report the end-to-end inference
throughput across different sparsity levels in Table[9] We use the testcase with batch size set to 8,
input sequence length set to 32, and output sequence length set to 256. The compressed models
achieve practical speedups on the GPU at sparsity levels from 50% to 70%, ranging from 1.18 x to
1.73x compared to the dense model.

5.4 Sparsity Allocation

In Figure [we visualize the layer-wise average sparsity distribution of the pruned LLaMA2-7B
model under varying global sparsity levels. Our results show that the distribution maintains a
consistent pattern across different sparsity ratios, like prior studies [29, 37, [76], with layer-wise
sparsity generally increasing across layers. Notably, we identify a distinct pattern that the first
layer demonstrates substantially higher redundancy, and then the layer-wise sparsity exhibits a sharp
decline within subsequent layers. The potential reason is that the sparsity levels of MLP modules in
the first few layers are significantly higher than the average level. Additionally, we observe that the
final layer exhibits a decreasing trend, deviating from the overall pattern.

We also show the intra-layer sparsity pattern in Figure[7] [I0} Our method achieves adaptive intra-
layer sparsity allocation for different types of modules, which provides an intuitive explanation
for the significant performance improvement over prior methods. From Figure[7} we can observe
the fine-grained channel-wise sparsity pattern within each self-attention head, which is compatible
with findings in prior literature [30} [75]. Results for the layer-wise distribution of other models and
the intra-layer sparsity pattern for MLP modules are shown in Appendix [A] We hope that these
observations can help researchers to gain insights into the inherent sparsity pattern of LLMs and
design more adaptive one-shot model compression strategies in future work.

5.5 Ablation Study

Search Efficiency. We demonstrate the effectiveness of the initialization stage (Section {.3) in
helping Lua-LLM obtain the prior sparsity pattern of Wanda. We build a baseline that, instead
of uniformly initializing the threshold parameters with the target pruning ratio, adopts randomly
initialized thresholds. Figure [5|shows the convergence efficiency of the training loss within 500
iterations. We observe that training with uniformly initialized parameters significantly helps to reduce
the training loss at the beginning, which proves the effectiveness of our initialization strategy. We
further report the training costs of our Lua-LLM method in Table 3

Impact of Regularization Hyperparameter \..,. As discussed in Section the regularization
loss hyperparameter), is used to control the penalty for deviating from the target sparsity. In Table
[l we show the perplexity at 70% sparsity level with various hyperparameter values for LLaMA2-7B
model. The results show that the performance of the learned sparsity pattern is stable when the
hyperparameter \,..q is large enough. Specifically, if the regularization hyperparameter is not large
enough, the regularization loss fails to converge to zero. This indicates that the pruning mask learned
by our method does not meet the target sparsity, and the overall sparsity level is actually lower than
the target one, since this can lead to better model performance and lower training loss. We mark the
case as Not Converge, since it leads to an unfair comparison.

Importance Metric. We further explore whether an appropriate importance metric can enhance
the performance of our methods. Specifically, we integrate Lua-LLM with three pruning metrics
to prune LLaMA2-7B model, including Magnitude, Wanda[64], and Pruner-Zero [14]. In Figure
[6l we compare the perplexity of three pruning metrics across different sparsity ratios. We observe
that Pruner-Zero consistently outperforms other metrics, which demonstrates that careful designs for
weight importance metrics can further improve the resulting sparsity pattern.

Table 5: Training costs for different model sizes. Table 6: Impact of hyperparamter A,
Training Cost (Time / GPUs) LLaMA-2-7B WikiText2 Perplexity (PPL) Dense:5.47
6.7B 7B 8B 13B Areg | 20 40 80 120 160 200 240
377min/2x 425min/2x 60.5min/2x 2 hours/4x PPL [NC NC NC 1318 1292 13.11 1296

6 Conclusion

In this paper, we propose Lua-LLM, a gradient-based global pruning framework that learns un-
structured sparsity allocation for large language models. Lua-LLM splits the global mask selection
problem into multiple row-wise subproblems, and leverages a soft Top-K operator to generate dif-
ferentiable pruning masks for each row with a single learnable threshold, which enables efficient
end-to-end optimization for the model performance. Extensive experiments show that Lua-LLM
outperforms existing methods in perplexity and accuracy, especially at high sparsity levels. Our
pruning framework achieves adaptive allocation for both layer-wise and intra-layer sparsity, which
reveals the inherent sparsity distribution in LLMs and enhances their practical applicability under
high sparsity levels.

7 Limitation and Future Work

While Lua-LLM achieves significant improvements in model performance over existing methods,
there are still some limitations for our methods. First, the end-to-end sparsity learning process for
LLMs requires sufficient GPU resources to fulfill the training efficiency, and the learning-based
pruning approach is computationally more expensive than metric-based one-shot pruning. Second,
similar to other adaptive unstructured pruning methods, the element-wise sparsity pattern requires
specific inference frameworks to achieve practical speedup on GPUs, and the SpInfer framework
employed in our paper still faces limitations during the prefill phase when batch size and sequence
length are large, which leads to higher memory access overhead for the SpMM operations. Future
work will explore flexible one-shot pruning methods and advanced techniques for optimizing inference
performance for sparse LLMs.

10

Acknowledgement

This research was supported by the 2023 Top-Notch Student Training Program 2.0 for Basic Disci-
plines (20231008).

References

(1]

[2

—

13

—

[4

—_

(5]

[6

—_

[7

—

[8

—_—

(9]

(10]

(1]

[12]

(13]

(14]

[15]

(16]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 10865-10873, 2024.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.

Guangji Bai, Yijiang Li, Chen Ling, Kibaek Kim, and Liang Zhao. Sparsellm: Towards global pruning for
pre-trained language models. Advances in neural information processing systems, 2024.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits with
edge pruning. Advances in Neural Information Processing Systems, 37:18506-18534, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical common-
sense in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 7432-7439, 2020.

Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations. Journal of
Fourier analysis and Applications, 14:629-654, 2008.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

Christos Chatzikonstantinou, Dimitrios Konstantinidis, Kosmas Dimitropoulos, and Petros Daras. Recurrent
neural network pruning using dynamical systems and iterative fine-tuning. Neural Networks, 143:475-488,
2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 2924-2936.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multipli-
cation for transformers at scale. Advances in Neural Information Processing Systems, 35:30318-30332,
2022.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu. Pruner-
zero: Evolving symbolic pruning metric from scratch for large language models. In Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pages 11346-11374. PMLR, 21-27 Jul 2024.

Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. Advances in Neural
Information Processing Systems, 32, 2019.

Ruibo Fan, Xiangrui Yu, Peijie Dong, Zeyu Li, Gu Gong, Qiang Wang, Wei Wang, and Xiaowen Chu.
Spinfer: Leveraging low-level sparsity for efficient large language model inference on gpus. In Proceedings
of the Twentieth European Conference on Computer Systems, pages 243-260, 2025.

11

[17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov,
and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language models. Advances in
neural information processing systems, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pages 10323-10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Yonggan Fu, Zhongzhi Yu, Junwei Li, Jiayi Qian, Yongan Zhang, Xiangchi Yuan, Dachuan Shi, Roman
Yakunin, and Yingyan Celine Lin. Amoeballm: Constructing any-shape large language models for efficient
and instant deployment. Advances in Neural Information Processing Systems, 37:78299-78319, 2024.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning. In SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis, pages
1-14. IEEE, 2020.

Shangqgian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang Hsu.
Disp-llm: Dimension-independent structural pruning for large language models. Advances in Neural
Information Processing Systems, 37:72219-72244, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in Ilms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network pruning.
In IEEE international conference on neural networks, pages 293-299. IEEE, 1993.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE international conference on computer vision, pages 1389-1397, 2017.

Weizhong Huang, Yuxin Zhang, Xiawu Zheng, Fei Chao, and Rongrong Ji. Determining layer-wise sparsity
for large language models through a theoretical perspective. In Proceedings of the 42nd International
Conference on Machine Learning, volume 267 of Proceedings of Machine Learning Research, pages
26175-26201. PMLR, 13-19 Jul 2025.

Mingyu Jin, Kai Mei, Wujiang Xu, Mingjie Sun, Ruixiang Tang, Mengnan Du, Zirui Liu, and Yongfeng
Zhang. Massive values in self-attention modules are the key to contextual knowledge understanding. In
Proceedings of the 42nd International Conference on Machine Learning, volume 267 of Proceedings of
Machine Learning Research, pages 28063-28096. PMLR, 13-19 Jul 2025.

Sehoon Kim, Coleman Richard Charles Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen,
Michael W Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In International
Conference on Machine Learning, pages 23901-23923. PMLR, 2024.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
A fast post-training pruning framework for transformers. Advances in Neural Information Processing
Systems, 35:24101-24116, 2022.

Qi Le, Enmao Diao, Ziyan Wang, Xinran Wang, Jie Ding, Li Yang, and Ali Anwar. Probe pruning:
Accelerating Ilms through dynamic pruning via model-probing. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Stella Biderman ... Leo Gao, Jonathan Tow. A framework for few-shot language model evaluation, 2022.

12

(36]

[37]

(38]

(391

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

Lei Li, Yongfeng Zhang, and Li Chen. Prompt distillation for efficient llm-based recommendation. In
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management,

pages 1348-1357, 2023.

Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu, Qiang Wang, Wenhan Luo, Wei Xue, Qifeng Liu,
Xiaowen Chu, and Yike Guo. Discovering sparsity allocation for layer-wise pruning of large language
models. Advances in Neural Information Processing Systems, 37:141292—-141317, 2024.

Wei Li, Lujun Li, Mark Lee, and Shengjie Sun. Adaptive layer sparsity for large language models via
activation correlation assessment. Advances in Neural Information Processing Systems, 37:109350-109380,
2024.

Yanyu Li, Pu Zhao, Geng Yuan, Xue Lin, Yanzhi Wang, and Xin Chen. Pruning-as-search: Efficient neural
architecture search via channel pruning and structural reparameterization. In Thirty-First International
Joint Conference on Artificial Intelligence, 2022.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approximations:
A novel pruning approach for attention matrix. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025.

Junging Lin, Jingwei Sun, Xiaolong Shi, Honghe Zhang, Xianzhi Yu, Xinzhi Wang, Jun Yao, and
Guangzhong Sun. Lo-spmm: Low-cost search for high-performance spmm kernels on gpus. ACM
Transactions on Architecture and Code Optimization, 21(4):1-25, 2024.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-free
activation sparsity in large language models. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025.

Kai Liu, Ruohui Wang, Jianfei Gao, and Kai Chen. Differentiable model scaling using differentiable topk.
In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR, 2024.

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, and Jianfeng Gao. Bridging discrete and backpropaga-
tion: Straight-through and beyond. Advances in Neural Information Processing Systems, 36:12291-12311,
2023.

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Proceedings of the IEEE international
conference on computer vision, pages 2736-2744, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W Mahoney, and Yaoqing Yang.
Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise pruning of large
language models. Advances in Neural Information Processing Systems, 37:9117-9152, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. Advances in neural information processing systems, 36:21702-21720, 2023.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
7765-7773, 2018.

Gabryel Mason-Williams and Fredrik Dahlqvist. What makes a good prune? maximal unstructured pruning
for maximal cosine similarity. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without training.
In International conference on machine learning, pages 7588-7598. PMLR, 2021.

Xiang Meng, Kayhan Behdin, Haoyue Wang, and Rahul Mazumder. Alps: Improved optimization for
highly sparse one-shot pruning for large language models. Advances in neural information processing
systems, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

13

[55]

[56]

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

Juan Pablo Muifloz, Jinjie Yuan, and Nilesh Jain. Mamba-shedder: Post-transformer compression for
efficient selective structured state space models. In Proceedings of the 2025 Conference of the Nations of
the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025, pages
3851-3863. Association for Computational Linguistics, 2025.

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Li, and Jun Huang. Meta-kd: A meta
knowledge distillation framework for language model compression across domains. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 3026-3036, 2021.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. Advances in Neural
Information Processing Systems, 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via
parameters sharing. In International conference on machine learning, pages 4095-4104. PMLR, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1-67, 2020.

Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp-based pruning of connections and weight
quantization in spiking neural networks for energy-efficient recognition. /IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(4):668-677, 2018.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Xuan Shen, Pu Zhao, Yifan Gong, Zhenglun Kong, Zheng Zhan, Yushu Wu, Ming Lin, Chao Wu, Xue Lin,
and Yanzhi Wang. Search for efficient large language models. Advances in Neural Information Processing
Systems, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for
large language models. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024.

Siqi Sun, Zhe Gan, Yuwei Fang, Yu Cheng, Shuohang Wang, and Jingjing Liu. Contrastive distillation on
intermediate representations for language model compression. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 498-508, 2020.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International conference on machine learning, pages 6105-6114. PMLR, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 35:24824-24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pages 38—45, 2020.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,

and Shuaiwen Leon Song. Flash-1lm: Enabling cost-effective and highly-efficient large generative model
inference with unstructured sparsity. Proceedings of the VLDB Endowment, 17(2):211-224, 2023.

14

[72]

(73]

[74]

[75]

[76]

(771

(78]

(791

(80]

(81]

(82]

(83]

[84]

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International Conference
on Machine Learning, pages 38087-38099. PMLR, 2023.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao,
and Ping Luo. BESA: pruning large language models with blockwise parameter-efficient sparsity allocation.
In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming Xiong,
and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. In The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025, 2025.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret sauce
for pruning llms to high sparsity. In International Conference on Machine Learning, pages 57101-57115.
PMLR, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 4791-4800.
Association for Computational Linguistics, 2019.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. Lo-
raprune: Structured pruning meets low-rank parameter-efficient fine-tuning. In Findings of the Association
for Computational Linguistics ACL 2024, pages 3013-3026, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-and-
play: An efficient post-training pruning method for large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: adaptive pruning and tuning pretrained
language models for efficient training and inference. In Proceedings of the 41st International Conference
on Machine Learning, pages 60812-60831, 2024.

Kang Zhao, Tao Yuan, Han Bao, Zhenfeng Su, Chang Gao, Zhaofeng Sun, Zichen Liang, Liping Jing, and
Jianfei Chen. Beyond 2: 4: exploring v: N: M sparsity for efficient transformer inference on gpus. arXiv
preprint arXiv:2410.16135, 2024.

Pu Zhao, Fei Sun, Xuan Shen, Pinrui Yu, Zhenglun Kong, Yanzhi Wang, and Xue Lin. Pruning foundation
models for high accuracy without retraining. In Findings of the Association for Computational Linguistics:
EMNLP 2024, pages 9681-9694, 2024.

Haizhong Zheng, Xiaoyan Bai, Xueshen Liu, Zhuoqing Morley Mao, Beidi Chen, Fan Lai, and Atul
Prakash. Learn to be efficient: Build structured sparsity in large language models. Advances in Neural
Information Processing Systems, 37:101969-101991, 2024.

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Introduction. The main claims made in the abstract and
introduction clearly discuss the findings and challenges in prior work, as well as our method
and achievement.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section[/} We discuss the limitation of our method and provide insights
for possible improvements in future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

Answer: [NA]

Justification: Our paper does not include theoretical assumptions and results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Experiments. We provide the information needed for the reproduction of
main experiment results, including setup, hyperparameters, libraries, and devices.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See supplemental material. We provide our code with sufficient instructions to
enable reproduction for the experiment results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Experiments. We provide the experimental settings and test details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Experiments. We provide the computational cost of our method, including
devices, memory, and execution time.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research confirm with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: This paper only focuses on technical reports.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the code, datasets and models used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

20

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method proposed in our paper does not involve LLMs as important
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Adaptive Unstructured Sparsity Allocation

0.90 LLaMA-7B Layerwise Sparsity 0.85 LLaMA3-8B Layerwise Sparsity
—o— 60% —o— 60%
—u— 70% —u— 70%
0.85 —— 80% 0.80 —— 80%
0.80
o o 0.75
E= =}
So7s 2
oy 2070 P E—— e D
070 o
o ®
Q Q
w W 065
0.65
R i
0.60 0.60] e
0.55 0.55
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Index Layer Index

Figure 8: Layer-wise sparsity distribution for ~ Figure 9: Layer-wise sparsity distribution for
LLaMA-7B. LLaMA3-8B.

MLP Wy MLP Wyp

MLP Waown

Figure 10: Intra-layer sparsity allocation for MLP layers in the 70% sparse LLaMA2-7B model.

B Additional Ablation Studies

Pruning Granularity. To verify the scalability of the observation in Wanda that row-wise pruning
is the optimal choice for weight importance comparison, we conduct an ablation experiment under
different pruning granularities, i.e. different comparison group selection strategies. The results in
Table[7]demonstrate that row-wise comparison remains the optimal choice for the adaptive sparsity
allocation scenario, aligning with Wanda’s observations for the uniform pruning strategy, which is
discussed in Section [3.2]of our paper.

Training Datasets Size and Domain. Furthermore, we explore the sensitivity of our method to the
training dataset used (e.g., the size of the training set and its domain/distribution). We conduct an
ablation study on the LLaMA2-7B model with different size of C4 training dataset across different
sparsity levels. The results demonstrate that the performance improves with larger training datasets.

23

Table 7: Perplexity of sparse LLaMA2-7B on WikiText-2 under different pruning granularities.

Granularity | 50% | 60% 70% 80%

Row-wise 6.85 | 8.54 | 12.92 30.27
Column-wise | 7.16 | 9.42 | 14.17 51.76

Layer-wise | 7.32 | 14.40 | 210.48 | 28599.64

Table 8: Perplexity on Wikitext2 with different training samples and domains.

Samples 128 256 512 1024 Datasets 50% | 60% | 70%
70% 60.82 | 22.52 | 16.05 | 12.92 C4 6.85 | 8.54 | 12.92
80% 211.17 | 68.38 | 38.46 | 30.27 WikiText103 | 6.20 | 7.45 | 10.57

We also conduct an ablation study on the LLaMA2-7B model with C4 and WikiText103 datasets
across different sparsity levels. The results in Table 8|reveal that our method on two different training
datasets achieve similar performance, demonstrating the robustness and generalization capability of
our method across different datasets. Moreover, we notice that the perplexity of the sparsity pattern
learned from WikiText103 is better than C4. A potential reason is that the WikiText103 training
dataset has a more similar distribution to the validation data, which is obtained from WikiText2.

Speedups for Different Pruning Methods. We evaluate the inference speedups of Wanda and
Lua-LLM for OPT-6.7B model at 50%-70% sparsity levels. The results in Table [0 shows that the
speedups of different pruning methods are quite the same for each sparsity level, which is compatible
with the parameter counts. The results demonstrate that although adaptive unstructured pruning
methods introduce a more irregular pattern for the sparse weight matrices, we can achieve meaningful
speedup for the overall model with multiple performance optimization techniques employed in SpMM
kernels like Splnfer, such as efficient sparse format and fine-grained execution pipeline.

Relative Order for Importance Metric. We conduct an ablation study on LLaMA2-7B (Multi-
Head Attention architecture) and Mistral-7B (Grouped-Query Attention architecture) models at 70%
sparsity with different importance metrics (Magnitude, Wanda), and allocation strategies (with or
without Lua-LLM). The results in Table [E]demonstrate that: (1) When integrated with Lua-LLM, the
relative order among Magnitude and Wanda importance metrics is preserved under different models
and metrics. (2) For different importance metrics and model architectures, our Lua-LLM consistently
outperforms the uniform pruning baseline Wanda.

Table 9: End-to-end inference throughput (token/s) speedups for different pruning methods.

Method Sparsity Dense | 50% 60% 70%
Wanda Throughput T | 696.6 | 844.9 | 1013.5 | 1200.6
Speedup * - 1.21x | 1.45x | 1.72x
Lua-LLM Throughput T | 696.6 | 842.8 | 1012.7 | 1202.3
Speedup 1 - 1.21x | 1.45x | 1.73x

Table 10: Perplexity evaluation for importance metrics, model architectures and allocation strategies.

Metric Magnitude Wanda
Model w/o Lua-LLM | w/Lua-LLM | w/o Lua-LLM | w/ Lua-LLM
LLaMA2-7B 141643 24.14 75.42 12.92
Mistral-7B 221.88 16.10 60.03 11.54

24

C Additional Evaluation Results

C.1 Zero-shot Accuracy Evaluation

Table 11: Zero-shot accuracy 1 results on seven downstream tasks for the pruned LLaMA-7B,
LLaMAZ2-7B and LLaMA3-8B models at 60% sparsity level.

Model Method BoolQ 1 PIQA 1 HellaSwag 1t WinoGrandet ARC-etT ARC-c1 OBQA1 | Mean 1
Dense 73.12 78.67 56.41 67.09 67.30 38.31 28.20 58.44
Wanda 67.92 72.20 43.45 59.75 56.57 29.95 24.20 50.58
LLaMA-7B | OWL 69.30 72.80 46.21 61.88 56.36 31.57 25.20 51.90
DSA 68.26 72.52 45.97 61.88 54.46 31.83 24.40 51.33
Lua-LLM | 70.89 73.88 52.82 64.17 62.04 35.24 26.20 55.03
Dense 71.13 78.07 56.69 67.17 69.28 39.93 31.60 59.12
Wanda 65.29 71.70 43.77 64.17 64.60 30.97 25.80 52.33
LLaMA2-7B | OWL 66.85 72.74 46.64 66.77 67.76 32.34 27.60 54.39
DSA 71.71 72.63 45.39 65.75 65.32 31.91 28.80 54.50
Lua-LLM | 70.28 73.29 52.69 65.51 65.70 37.29 30.00 56.39
Dense 81.25 79.71 60.18 72.69 80.09 50.51 34.80 65.60
Wanda 68.10 67.95 37.75 60.30 59.51 27.56 20.00 48.74
LLaMA3-8B | OWL 71.22 70.95 41.65 64.01 62.29 31.66 23.40 52.17
DSA 65.32 68.88 37.08 60.06 60.52 27.13 22.00 48.71
Lua-LLM | 7541 73.12 44.32 70.48 63.11 32.06 28.60 55.30

Table 12: Zero-shot accuracy 1 results on seven downstream tasks for the pruned LLaMA-7B,
LLaMAZ2-7B and LLaMA3-8B models at 80% sparsity level.

Model Method BoolQ 1 PIQA 1 HellaSwag 1t WinoGrandet ARC-etT ARC-c1 OBQA1 | Mean 1
Dense 73.12 78.67 56.41 67.09 67.30 38.31 28.20 58.44
Wanda 37.86 53.43 26.44 48.38 26.56 20.82 13.40 3241
LLaMA-7B | OWL 49.82 53.70 26.54 50.67 26.35 19.71 11.00 33.97
DSA 37.83 54.08 26.68 49.80 27.61 20.73 10.40 32.45
Lua-LLM | 61.71 64.36 35.03 51.78 40.70 22.35 17.80 41.96
Dense 71.13 78.07 56.69 67.17 69.28 39.93 31.60 59.12
Wanda 37.83 52.61 25.87 48.54 26.64 19.54 13.40 32.06
LLaMA2-7B | OWL 37.86 54.35 26.43 49.96 27.65 19.28 13.00 32.65
DSA 37.83 53.86 26.38 49.09 27.06 19.80 12.00 32.29
Lua-LLM | 61.38 61.32 32.18 55.01 38.93 19.62 17.80 40.89
Dense 81.25 79.71 60.18 72.69 80.09 50.51 34.80 65.60
Wanda 37.83 52.77 26.52 49.64 28.19 19.37 10.80 32.16
LLaMA3-8B | OWL 42.29 53.54 26.80 47.75 28.32 20.48 13.60 33.25
DSA 37.83 53.26 26.56 48.70 27.99 19.20 16.60 32.88
Lua-LLM | 58.10 58.38 28.73 51.07 34.22 18.77 14.00 37.47

C.2 Few-shot Knowledge Reasoning Evaluation

We evaluate the 5-shot accuracy on the MMLU dataset for LLaMA-7/13B and LLaMA2-7/13B
models pruned by Wanda, OWL and Lua-LLM, with 50%-70% sparsity levels as well as the dense
baselines. The results show that:

(1) Compared to the dense LLaMA2-7B model (45.8%), the 60% sparse LLaMA?2-13B model pruned
with Lua-LLM demonstrates superior performance (46.6%), while Wanda (35.3%) and OWL (40.4%)
cannot achieve this superiority at 60% sparsity level. A similar trend is observed for the LLaMA-V1
pair (35.1% vs. 38.4%). These findings demonstrate that in terms of the so-called “large+sparse
vs. small+dense” comparison, Lua-LLM achieves useful improvements at the higher sparsity level,
which enhances its practical benefits.

(2) For larger models with 13B parameters, the performance gains of Lua-LLLM are much larger
than that of smaller models. This indicates that when pruning the smaller models (e.g., with 7B

25

Table 13: 5-shot MMLU accuracies (%) across different models, sparsity levels, and methods.

Method Sparsity | LLaMA-7B | LLaMA-13B | LLaMA2-7B | LLaMA2-13B
Dense 0% 35.1 47.0 45.8 55.7
Wanda 30.5 38.7 34.2 48.3
OWL 50% 30.9 40.6 33.6 48.7
Lua-LLM 31.3 41.2 34.8 494
Wanda 27.2 31.8 28.9 353
OWL 60% 28.5 343 30.3 40.4
Lua-LLM 30.1 38.4 32.1 46.6
Wanda 24.6 25.3 24.5 26.8
OWL 70% 25.8 27.3 25.6 28.2
Lua-LLM 26.7 30.6 26.5 32.0

parameters), their MMLU accuracies are relatively harder to preserve. Moreover, OWL faces
performance degradation (33.6%) compared to Wanda (34.2%) for the 50% sparse LLaMA2-7B
model, while Lua-LLM (34.8%) consistently outperforms the Wanda baseline, which demonstrates
the robustness of our method across different sparsity levels and models.

C.3 Integrate with Post-training Pruning Techniques

Lua-LLM is compatible with post-training pruning techniques like SparseGPT. Although SparseGPT
iteratively selects block-wise masks and updates the other unpruned weights to compensate the
pruning error, which is expensive to integrate into the training process, we can use our Lua-LLM to
search for block-wise sparsity, and then apply the sparsity allocation to SparseGPT.

To verify this, we adopt a block-wise mask selection granularity for Lua-LLM, and search for the
optimal sparsity allocation for these intra-layer groups. After the learning process, we consider the
searched sparsity allocation as the block-wise sensitivity statistics to weight pruning, and apply it
to SparseGPT, which uses the searched sparsity to select block-wise masks and updates the other
weights. The results show that our allocation strategy achieves superior performance at different
sparsity levels. However, the results also demonstrate that the weight update strategy adopted by
SparseGPT is not sufficient to recover model performance at higher sparsity ratios, which underscores
the importance of mask selection granularity.

Table 14: Wikitext2 perplexity of sparse LLaMA2-7B models pruned with SparseGPT.

Method 50% | 60% | 70% 80%

SparseGPT 6.99 | 10.18 | 28.50 | 113.36
SparseGPT w. OWL 6.94 | 921 | 2032 | 90.44
SparseGPT w. Lua-LLM | 6.83 | 9.05 | 16.14 | 43.63

C.4 Integrate with Fine-tuning Process

LoRA fine-tuning. We conduct an ablation study on sparse LLaMA2-7B pruned with Wanda and
Lua-LLM for LoRA fine-tuning with Alpaca training dataset. Each model is fine-tuned on 1 A100
GPU for 3 epochs, which takes about 13 hours. We report the training loss and evaluate the model
performance after fine-tuning. The results show that: (1) The loss converges in around 3 epochs,
ensuring a meaningful comparison. (2) Compared to the final converged training loss of Wanda (in
around 13 hours), our Lua-LLM achieves comparable values in 0.5 epoch (in around 2 hours). (3)
Compared to Wanda, our Lua-LLM improves model quality after fine-tuning.

Full Parameter Fine-tuning. We conduct full parameter fine-tuning on the auxiliary_train subset
of MMLU datasets for the sparse weights in 70% sparse LLaMA2-7B models, pruned by Wanda and
Lua-LLM, respectively. Each model is fine-tuned on 4 A100 GPUs for 20000 steps (in around 25
hours). The results show that Lua-LLM achieves superior performance compared to Wanda under
further fine-tuning, which is consistent with the findings in prior literature that optimizing the mask
selection strategy helps to improve the performance of pruned models under re-training/fine-tuning

26

process. Moreover, the experiment also demonstrates the substantial computational overhead of the
full parameter fine-tuning process on large language models, and we would like to explore other
cost-effective weight reconstruction strategies with global optimality in our future study.

Table 15: Training loss convergence of sparse LLaMA2-7B during the LoRA fine-tuning process.

Epoch 0 0.5 1 1.5 2 25 3

Wanda (70%) 409 | 1.21 | 1.16 | 1.14 | 1.13 | 1.12 | 1.12
Lua-LLM (70%) | 2.50 | 1.10 | 1.07 | 1.05 | 1.04 | 1.03 | 1.02
Wanda (80%) 7.03 | 192 | 1.78 | 1.72 | 1.68 | 1.66 | 1.66
Lua-LLM (80%) | 3.10 | 1.42 | 1.35 | 1.32 | 1.31 | 1.29 | 1.28

Table 16: MMLU (%) evaluation with and without fine-tuning process.

Method MMLU (%)
Wanda 24.5
Wanda w. LoRA FT 26.8
Wanda w. Full FT 31.3
Lua-LLM 26.5
Lua-LLM w. LoRA FT 30.3
Lua-LLM w. Full FT 35.6

27

	Introduction
	Related Work
	Preliminary
	Problem Formulation
	Revisit Wanda Pruning

	Lua-LLM: Learning Unstructured-Sparsity Allocation for LLMs
	Row-Wise Mask Selection with Weight Importance Metric
	Soft Approximation for Top-K Selection Function
	Learning Row-wise Sparsity Allocation

	Experiments
	Experimental Settings
	Model Performance
	Inference Speedup
	Sparsity Allocation
	Ablation Study

	Conclusion
	Limitation and Future Work
	Adaptive Unstructured Sparsity Allocation
	Additional Ablation Studies
	Additional Evaluation Results
	Zero-shot Accuracy Evaluation
	Few-shot Knowledge Reasoning Evaluation
	Integrate with Post-training Pruning Techniques
	Integrate with Fine-tuning Process

