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Abstract
Large language models (LLMs) have revo-001
lutionized cardiological diagnostics through002
agentic design. However, a significant chal-003
lenge remains: the misalignment between real-004
world clinical reports used in hospitals and the005
publicly available datasets used to fine-tune006
LLMs. This discrepancy limits the reliabil-007
ity of LLMs in cardiological practices. In008
this work, we address this gap from two key009
perspectives. First, we introduce Z-BENCH,010
a benchmark derived from in-hospital cardi-011
ological reports, where patient records com-012
prise multimodal electrocardiograms (ECGs)013
enriched with cardiological metrics. Second,014
we propose ZODIAC, an LLM-powered agentic015
framework designed to enhance cardiological016
diagnostics. ZODIAC operates by systemati-017
cally extracting clinically relevant characteris-018
tics, detecting significant arrhythmias, and gen-019
erating preliminary diagnostic reports, which020
are then reviewed and refined by cardiologists.021
Experimental results demonstrate that ZODIAC022
surpasses industry-leading LLMs from Ope-023
nAI, Meta, Google, and DeepSeek, as well as024
medical-specialist models such as Microsoft’s025
BioGPT. Our findings highlight the transforma-026
tive potential of specialized LLMs in health-027
care, showcasing their ability to deliver medi-028
cal solutions that meet the rigorous demands of029
cardiological guidelines.030

1 Introduction031

As technology continues to transform healthcare,032

large language models (LLMs) have become a033

pivotal component of digital health (FDA, 2020).034

With their human-like conversational abilities and035

extensive pre-trained knowledge, LLMs are in-036

creasingly being adopted as clinical agents (Boon-037

stra et al., 2024; Gala and Makaryus, 2023; Xu038

et al., 2024). This shift has led to the development039

of various medical-specialist applications (Chen040

et al., 2023a, 2024b; ContactDoctor, 2024; Wang041

et al., 2024c; Luo et al., 2022; Chen et al., 2023b).042
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Figure 1: An example layout of cardiological report.

Despite these advancements, the integration of 043

LLMs into real-world cardiac practice is hindered 044

by two critical challenges. First, available public 045

datasets, such as PTB-XL (Wagner et al., 2020), 046

MIMIC-IV-ECG (Gow et al., 2023), and CODE 047

(Ribeiro et al., 2020), exhibit misalignment be- 048

tween the available evidence and the clinical re- 049

ports used in hospitals. As illustrated in Figure 1, 050

clinical reports are typically synthesized from mul- 051

timodal evidence (Kline et al., 2022; Cicerone et al., 052

2000). Training LLMs on misaligned cardiologi- 053

cal evidence consequently disrupts their alignment 054

with the standardized diagnostic process, poten- 055

tially compromising their clinical reliability (Dav- 056

enport and Kalakota, 2019; Asan et al., 2020). 057

Second, current LLM-based clinical agents often 058

struggle to achieve cardiologist-level proficiency. 059

While these models may be trained on a broad 060

range of clinical tasks (Peng et al., 2023; Chen 061

et al., 2024a), they lack the specialized alignment 062

for medical decision-making (Khan et al., 2023; 063

Wang et al., 2021; Kerasidou et al., 2022). Those 064

gap underscores the need to enhance the reliability 065

of LLMs in specialized medical fields. 066

Our Work. We address these gaps through two 067

complementary layers: enhancing data-driven pro- 068

ficiency by benchmarking diagnostic scenarios and 069

advancing technique-driven capabilities within the 070

LLM paradigm: 071
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I) Data Proficiency: We introduce Z-BENCH, a072

benchmark derived from in-hospital patient records,073

incorporating cardiologist-adjudicated texts and074

aligning with clinical guidelines. Z-BENCH en-075

sures cardiologist-level proficiency in two aspects.076

First, it captures real-world cardiological charac-077

teristics, such as arrhythmias and their contribut-078

ing factors, to accurately reflect clinical realities.079

Second, the direct involvement of human experts080

(cardiologists) ensures that the dataset encapsulates081

expert-level performance, while adherence to clini-082

cal guidelines mitigates potential biases and errors,083

thereby enhancing diagnostic accuracy and safety.084

II) LLM-as-Cardiac-Agent: Next, we propose085

ZODIAC, a cardiologist-level diagnostic agent us-086

ing multi-agent framework to analyze multimodal087

patient records. ZODIAC outperforms single-agent088

design while improving the identification of key089

characteristics and interpreting clinically signif-090

icant arrhythmias (details in Section 5.3). Fur-091

thermore, we integrate instruction tuning and in-092

context learning into ZODIAC, wherein instruction093

tuning embeds data proficiency from Z-BENCH094

into the LLMs, while in-context learning provides095

professional demonstrations to further reinforce096

ZODIAC’s diagnostics. Finally, we incorporate097

fact-checking against established cardiological098

guidelines (Goff Jr et al., 2014) to ensure the sys-099

tem generates accurate, expert-verified diagnostics.100

Through extensive evaluations on Z-BENCH, we101

demonstrate that industry-leading LLMs, including102

OpenAI’s ChatGPT, Google’s Gemini, and Meta’s103

Llama, fall short in performing cardiological di-104

agnoses based on in-hospital clinical reports. In105

contrast, ZODIAC not only excels in numerical106

analysis but also generates expert-level diagnos-107

tic narratives and structured reports approbatory by108

cardiologists. Furthermore, we show that ZODIAC109

is generalizable in analyzing other ECG datasets110

beyond Z-BENCH, highlighting its adaptiveness to111

meet diverse organizational needs.112

In summary, this work makes the following con-113

tributions:114

• We introduce Z-BENCH, a benchmark aligned115

with in-hospital cardiological reports, enhanc-116

ing data-driven proficiency in AI research and117

model development.118

• We develop ZODIAC, which serves as a119

blueprint for constructing clinical-grade LLM120

agents while providing a scalable framework121

applicable across various clinical domains.122

• Through evaluations, we demonstrate the prac- 123

tical applications of Z-BENCH in integrating 124

human insights through the AI development 125

and validate the effectiveness of ZODIAC in 126

advancing clinical AI development with high 127

reliability. 128

For anonymization, we temporarily release 129

the benchmark and code at https://anonymous. 130

4open.science/r/Zbench-Zodiac-8A2A. 131

2 Related Work 132

LLMs in Clinical Diagnostics. LLMs have shown 133

considerable progress in processing and interpret- 134

ing vast amounts of unstructured medical data, such 135

as patient records, medical literature, and diagnos- 136

tic reports. For example, Han et al. (2024) intro- 137

duced a system that automatically summarizes clin- 138

ical notes during interactions between patients and 139

clinicians, while Ahsan et al. (2023) explored the 140

role of LLMs in retrieving key evidence from elec- 141

tronic health records (EHRs). Despite these suc- 142

cesses, concerns persist regarding LLMs’ domain- 143

specific expertise and professional performance 144

in high-stakes, life-critical clinical settings (Nash- 145

wan and AbuJaber, 2023; Jahan et al., 2024; Wang 146

et al., 2024a; Li et al., 2024). This work addresses 147

these concerns by designing and validating ZO- 148

DIAC through our design and experiments specifi- 149

cally for cardiological diagnostics. 150

Cardiological Diagnostic Systems. Current car- 151

diological diagnostic systems primarily depend on 152

rule-based algorithms or single-agent approaches 153

for identifying cardiovascular risk factors or pre- 154

dicting cardiac events (Goff Jr et al., 2014; Sud 155

et al., 2022; Olesen et al., 2012). In recent years, 156

deep learning models have been introduced into 157

cardiology (Hannun et al., 2019; Acharya et al., 158

2019). However, there remains a significant gap 159

in incorporating recent LLMs into cardiological 160

diagnostics—a gap that this work addresses signifi- 161

cantly. 162

Multi-Agent Frameworks. Multi-agent frame- 163

works have been extensively studied to enhance 164

LLM capabilities in handling complex tasks and 165

managing distributed processes (Wang et al., 166

2024b; Hong et al., 2023; Du et al., 2023; Chan 167

et al., 2023). In healthcare, where collaboration 168

across different expertise is essential, multi-agent 169

frameworks have shown their potential in optimiz- 170

ing patient management, coordinating care between 171

various agents (e.g., doctors, nurses, administra- 172
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tive systems), and supporting decision-making pro-173

cesses (Furmankiewicz et al., 2014; Jemal et al.,174

2014; Shakshuki and Reid, 2015). Recent studies175

have also focused on leveraging multi-LLM agents176

to reduce manual tasks in healthcare workflows.177

For instance, Chen et al. (2024a) employed Chat-178

GPT in distinct roles within a coordinated work-179

flow, to automate tasks like database mining and180

drug repurposing, while ensuring quality control181

through role-based collaboration.182

3 Z-BENCH: A Cardiac Benchmark183

Aligned with In-Hospital Diagnostics184

This section presents Z-BENCH and its alignment185

with in-hospital diagnostics. We begin by introduc-186

ing diagnostic tasks (Section 3.1), followed by the187

construction of Z-BENCH (Section 3.2).188

3.1 Components of Cardiological Data189

This paper focuses on diagnosing clinically signif-190

icant arrhythmias using patient data. We classify191

the key components into two categories: patient192

records and diagnostic outputs.193

Patient Data is comprised of three sections:194

(1) Biostatistical information (B) provides details195

about the patient such as date of birth, gender, and196

age group. (2) Metrics (M) summarize cardio-197

logical attributes and their numerical values pre-198

sented in a tabular format, providing an overview199

of 24-hour monitored statistics for a patient. For200

example, AF Burden: 12% indicates that the pa-201

tient experienced atrial fibrillation for 12% of the202

whole monitoring period. (3) Tracings (T ) in-203

cludes ECG images depicting clinically significant204

arrhythmias such as AFib/Flutter (Atrial Fibrilla-205

tion / Atrial Flutter), Pause, VT (Ventricular Tachy-206

cardia), SVT (Supraventricular Tachycardia), and207

AV Block (Atrioventricular Block). T presents a208

concise but representative segment of the 24-hour209

monitoring, such as a 10-second strip highlighting210

the highest degree of AV block.211

Diagnostic Outputs is comprised of two ele-212

ments: Clinical Findings (F) and Interpretation213

(I), both presented as expert-crafted natural lan-214

guage statements by cardiologists. F outlines key215

observations from clinically relevant characteris-216

tics, while I offers the final diagnostics, interpret-217

ing these findings. For example, the finding PR In-218

terval is 210 milliseconds in the ECG tracings leads219

to the interpretation: The PR interval is slightly pro-220

longed, suggesting a first-degree AV block.221
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Figure 2: Statistics of Z-BENCH, subgrouped by gender,
age, race, and arrhythmia classes – Class I: normal
arrhythmias. Class II: clinically significant arrhythmias.
Class III: life-threatening arrhythmias. Detailed clinical
implications are provided in Appendix C.

OnceF and I are completed by cardiologists (or 222

by ZODIAC), a clinical end-of-study report is gen- 223

erated for the patient, including (B,M, T ,F , I), 224

as illustrated in Figure 1. 225

3.2 Data Collection and Cardiologist- 226

Incorporated Curation 227

Z-BENCH is characterized as real, representative, 228

and cardiologist-incorporated. 229

Real-World Patient Data. Instead of relying 230

on existing third-party or synthetic data—which 231

often raise concerns about trustworthiness or mis- 232

alignment with clinical practice (Chouffani El Fassi 233

et al., 2024; Fehr et al., 2024; Youssef et al., 234

2024)—we collect ECG data sourced from our 235

collaborating healthcare institutions under an IRB- 236

approved protocol, with de-identified patient to en- 237

sure privacy protection. The raw data consists of 238

270+ metricsM and 5 ECG tracing T per patient. 239

To ensure the clinical relevance, we engaged five 240

cardiologists to review the data, resulting in a final 241

dataset of 5,400+ samples. Of these, 1,500 were 242

used for evaluation (Section 5), while the remainder 243

were used for fine-tuning (Section 4.2). 244

Representative Groups. Z-BENCH adheres to 245

the FDA’s guidelines (Food et al., 2021) to ensure 246

a representative population, encompassing compre- 247

hensive arrhythmia types and diverse racial groups 248

while maintaining balanced age and gender demo- 249

graphics, as detailed in Figure 2. 250

Incorporating Cardiologist-Level Expertise. 251

When reviewing the raw data, cardiologists are 252
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Figure 3: ZODIAC aligns with cardiological practice through a multi-agent framework that integrates patient data
across various modalities: ➀ Patient data is collected in two modalities: tabular metrics and ECG tracings (images).
➁ A metrics-to-findings LLM agent processes the tabular metrics and generates text-based clinical findings. ➂ An
tracings-to-findings LLM agent analyzes the ECG tracings to produce additional text-based clinical findings. ➃
The clinical findings from both agents are then combined. ➄ A findings-to-interpretation LLM agent synthesizes
these findings with clinical guidelines into comprehensive diagnostic interpretation. ➅ ZODIAC generates a patient-
specific report by integrating the metrics, tracings, clinical findings, and diagnostic interpretation. ➆ A cardiologist
validates the quality of the generated findings and interpretations (details in Section 5). For simplicity, we omit the
biostatistics (B) in this figure, which is considered in steps ➀➁➂ by default.

asked to write professional findings (F) and in-253

terpretation (I) in accordance with established254

clinical guidelines (G) (Association et al., 2023;255

Krumholz et al., 2020). This process facilitates256

the follow-up fine-tuning, embedding cardiologist-257

level expertise into LLMs. To save the cardiol-258

ogists’ time,Additionally, each cardiologist ran-259

domly audits at least 50% of their peers’ drafts to260

identify and rectify issues such as incompleteness,261

inconsistencies, or diagnostic inaccuracies. This262

peer-review process helps standardize wording and263

structure across cardiologists, ensuring consistency264

and reliability in the reports.265

4 ZODIAC: LLM-as-Cardiac-Agent266

4.1 Formulation of Cardiological Diagnostics267

Real-world cardiological diagnostics begins by re-268

viewing the patient’s data (B,M, T ) to identify269

clinically relevant characteristics, such as the PR270

interval, which are key for diagnosing arrhythmias.271

These identified characteristics are then summa-272

rized into natural language statements, referred to273

as findings F , which integrate insights from both274

tabular metricsM and image-based ECG tracings275

T . For example, the PR interval is derived from T ,276

while the AF burden is obtained fromM. Finally,277

cardiologists synthesize the findings F with their278

clinical expertise and the established guidelines G279

to form the final interpretation I.280

As illustrated in Figure 3, we follow established281

cardiological practices to develop ZODIAC. Rather282

than compressing multimodal data into a single 283

LLM, ZODIAC employs a multi-agent collabora- 284

tion framework, where each agent is responsible 285

for a specific stage of the diagnostic process. This 286

design enhances the LLM’s focus on diagnostic 287

behavior within each modality. ZODIAC comprises 288

three specialized agents: 289

1. Metrics-to-Findings Agent (θM2F): A table- 290

to-text LLM that extracts key characteristics 291

from metricsM, while incorporating patient 292

biostatistics B to generate clinical findings. 293

2. Tracings-to-Findings Agent (θT2F): An image- 294

to-text LLM that identifies key factors from 295

ECG tracings T , integrates relevant informa- 296

tion from B, and produces clinical findings. 297

3. Findings-to-Interpretation Agent (θF2I): A 298

text-based LLM that synthesizes findings F 299

from both the θM2F and θT2F, applies clinical 300

guidelines G, and generates interpretation I. 301

ZODIAC formulates the diagnostic process as: 302

I ← θF2I(F ,G) s.t.

F ← θM2F(M,B) ∪ θT2F(T ,B)
(1) 303

wherein θM2F and θT2F independently generate clini- 304

cal findings based onM and T , respectively, which 305

are then combined to form F . This approach ad- 306

heres to cardiological diagnostics as each finding in 307

F corresponds to evidence derived from a specific 308

modality – either metrics or ECG tracings. 309
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As a cardiologist, your role is to extract clinically relevant findings from a 
patient's data. Follow these instructions:

Task: Cardiological Diagnostics from Patient Data

You will be given a table of patient data with the following columns:
• Metric: Contains clinically important attributes (e.g., heart rate…).
• Value: The recorded value for each metric.

Based on the identified key characteristics, create a detailed, itemized list of 
findings that include the following components:

• Summary of the clinical study and the patient’s biostatistical info.
• Analysis of Ventricular Ectopic Beats (VEB)
• Analysis of Supraventricular Ectopic Beats (SVEB)
• ……

(a) Instruction (b) Demonstration

Example 1:

• Study duration: 09/15/2023 12:54:00 to 09/16/2023 11:43:00 
(22:49:00 total).

• VEB:
• 2603 isolated Ventricular Ectopic Beats detected (burden: 1.95%).
• 58 couplet episodes observed (burden: 0.09%).

• SVEB: ……

Example 2: 

Input:

[Patient Data] (Table format: Metric | Value)
……

• [LLM response about biostatistical information]
• [LLM response about VEB]
• [LLM response about SVEB]
• ……

(c) Response Template

……(patient data in table format: Metric | Value)

Findings:

Input:

Example 3: 

……

……

Findings: 

“Demonstrations (examples) are used for 
in-context learning during inference”

“Fine-tuning leverages cardiologist-
adjudicated texts following this template”

Response:

Input Format:

Draft Findings:

Figure 4: The prompts used for θM2F (prompts for θT2F and θF2I are in Figure 8): (a) the instruction (or “system
prompt”) used for both fine-tuning and inference; (b) the demos used for ICL during inference; and (c) the LLM
response structure. During fine-tuning, (c) is filled with cardiologist-adjudicated texts, whereas during inference, (c)
retains the format presented above to specify the response format.

4.2 Instruction Fine-Tuning310

Instruction fine-tuning embeds cardiologist-level311

expertise from Z-BENCH into θM2F, θT2F, and θF2I.312

We use Llama-3.2-3B as the base model for θM2F313

and θF2I, and LLaVA-7B for θT2F. Each model is314

fine-tuned individually on relevant subsets of Z-315

BENCH, tailored to its specific task. For example,316

as shown in Figure 4, θM2F is fine-tuned using sys-317

tem prompts as exemplified in (a) and cardiologist-318

adjudicated texts in the format of (c), aligning with319

its metric-to-findings task.320

Let θAgent denote the trainable parameters of any321

LLM agent, with X and Y representing the instruc-322

tional input and expected response from Z-BENCH,323

D. The fine-tuning process is formulated as:324

θ∗Agent = arg min
θAgent

E(X,Y )∈DL(θAgent(X), Y ) (2)325

The goal is to minimize the average of the summed326

loss E(L(·, ·)) given each pair of (X,Y ) within327

D. Specifically, when θAgent is θM2F, we have X =328

(M,B) and Y = F . For θT2F, X = (T ,B) and329

Y = F . Lastly, for θF2I, X = (F ,G) and Y = I.330

4.3 Inference331

As outlined Figure 3, ZODIAC’s inference involves332

a multi-agent collaboration. First, θM2F processes333

patient metricsM and θT2F handles ECG tracings334

T , together generating findings F . These findings335

are then interpreted by θF2I as the diagnostic in-336

terpretation (I). Each agent leverages in-context337

learning to enhance diagnostic accuracy, with fact-338

checking applied afterward for self-correction.339

In-Context Learning (ICL). For each fine-340

tuned LLM agent, we implement ICL using a set341

of demonstrations (or “demos”, as shown in Figure342

4-(b)) containing cardiologist-adjudicated F and I .343

The content of each demo is tailored to the specific344

Algorithm 1: Fact Checking
Input: F – originally generated findings;
I – originally generated interpretation;
G – cardiological guidelines;
Output: Updated F and I;

1 foreach interpretation item i ∈ I do
2 Extract correlated findings fi ∈ F ;
3 while (fi, i) misaligned with G do
4 g ← violated guidelines from G ;

// θ ∈ {θM2F, θT2F}
5 θ ← agent that generates fi;
6 pf , pi ← prompts about (fi, i)’s

misalignment with g ;
7 f∗

i ← θ(pf ); i∗ ← θF2I(pi) ;
8 break after 3 iterations;
9 end

10 Update F , I by f∗
i , i

∗ ;
11 end
12 return F , I;

agent. To ensure relevance to the target patient’s 345

case, we categorize patient data into subgroups as 346

shown in Figure 2. We then select three demos 347

from the training dataset that match the patient’s 348

group (age, gender, race, and arrhythmia) and inte- 349

grate them into the prompt for inference. 350

Fact-Checking. After θF2I generates the inter- 351

pretation I, ZODIAC applies cardiological guide- 352

lines G to verify whether the findings F correctly 353

support I. As detailed in Algorithm 1, since F , I, 354

and G are structured as itemized lists, each item 355

i ∈ I is evaluated against its corresponding finding 356

fi ∈ F to check for violations of G. 357

If discrepancies g ∈ G are detected, ZODIAC 358

automatically prompts its agents with (fi, i, g) for 359

regeneration, continuing until an aligned (f∗
i , i

∗) 360

set is produced or the maximum iteration (3 by 361
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Model
Z-BENCH: Finding (F) Z-BENCH: Interpretation (I)

P R F1 IoU BS P R F1 IoU BS

GPT-4o 0.8032 0.8429 0.8226 0.6986 0.8112 0.7932 0.8561 0.8235 0.6999 0.8563
Gemini-Pro 0.7892 0.8604 0.8233 0.6996 0.8441 0.7625 0.8151 0.7879 0.6501 0.7925
Llama-3.2-90B 0.7415 0.8279 0.7823 0.6425 0.7785 0.6385 0.7684 0.6975 0.5355 0.8076
Mixtral-8x22B (+V) 0.8203 0.8765 0.8475 0.7353 0.8228 0.8125 0.8864 0.8478 0.7359 0.8247
DeepSeek-Janus-7B 0.6548 0.6221 0.6380 0.4685 0.7604 0.6109 0.7242 0.6627 0.4956 0.7785
LLaVA-13B 0.7356 0.7934 0.7634 0.6173 0.8025 0.7072 0.8169 0.7581 0.6104 0.8290

BioGPT-Large (+V) 0.2214 0.1206 0.1561 0.0847 0.5562 0.1275 0.0894 0.1051 0.0555 0.5168
Meditron-70B (+V) 0.6336 0.7127 0.6708 0.5047 0.7582 0.5782 0.6450 0.6098 0.4386 0.7864
Med42-70B (+V) 0.5209 0.4317 0.4721 0.3090 0.6337 0.4078 0.3710 0.3885 0.2411 0.5872

ZODIAC 0.9902 0.9710 0.9805 0.9618 0.8831 0.9442 0.9683 0.9561 0.9159 0.9012

Table 1: Results on Z-BENCH. P: precision, R: Recall, BS: BERT Score. For text-based LLMs, we integrate
LLaVA-13B to process ECG, labeling as (+V). Boldface and Underline highlight the best and second-best results.

default) is reached. Due to space constraints, ex-362

amples of G and further fact-checking details are363

provided in Appendix D.364

5 Experiments365

5.1 Experimental Setting366

Our experiments aim to address the following re-367

search questions:368

RQ1: How effective are LLMs on Z-BENCH?369

RQ2: What are the influential factors to ZODIAC?370

RQ3: Is ZODIAC generalizable to other datasets?371

RQ4: Is ZODIAC helpful for cardiologists?372

Baseline. We evaluate three groups of base-373

lines: (1) Industry-Leading LLMs: GPT-4o, Gem-374

ini, Llama-3.2, Mixtral, DeepSeek, and LLaVA.375

(2) Clinical-Specialist LLMs: BioGPT-Large (Luo376

et al., 2022), Meditron (Chen et al., 2023b), and377

Med42 (Christophe et al., 2024), all derived from378

Llama. (3) Ablations: This includes a single-agent379

version of ZODIAC, a dual-agent variant, and an380

ablated version of ZODIAC with key components381

removed, as detailed in Section 5.3. For text-based382

baselines (e.g., Mixtral and BioGPT), we integrate383

the vision-capable LLM, LLaVA-13B, to assist in384

analyzing ECG tracings.385

Dataset. We utilize two groups of datasets for386

evaluation: (1) Z-BENCH: By default, we assess387

1,500 patient records from Z-BENCH while using388

the remaining data to fine-tune ZODIAC. Evaluat-389

ing on Z-BENCH can test the varying proficiency of390

LLMs in in-hospital cardiological diagnostics, as it391

reflects real-world, representative, and cardiologist-392

incorporated diagnostics (3.2). (2) Generalization393

Assessment: To demonstrate ZODIAC’s capability394

beyond Z-BENCH, we also evaluate it on PTB-XL395

(Wagner et al., 2020), MIMIC-IV-ECG (Gow et al.,396

2023), and CODE (Ribeiro et al., 2020) (in 5.4).397

Metrics. We separately evaluate findings (F) 398

and interpretation (I) using the following metrics, 399

leveraging their itemized nature: (i) Precision– The 400

ratio of items in the generated F and I that match 401

those in Z-BENCH. (ii) Recall– The ratio of items 402

in Z-BENCH that are successfully generated. (iii) 403

F1 Score– The harmonic mean of precision and 404

recall. (iv) IoU (Intersection over Union)– Also 405

known as Jaccard similarity, measuring the overlap 406

between generated outputs and items in Z-BENCH. 407

(v) BERT Score– A text similarity measure using 408

BERT to compare the generated F and I against 409

their corresponding items in Z-BENCH. 410

To assess precision and recall, we use GPT-01 411

for binary classification, labeling each item in F 412

and I as either "Matched" or "Not Matched". 413

5.2 Diagnostic Effectiveness (RQ1) 414

Table 1 presents evaluation results on Z-BENCH. 415

Notably, there is a significant performance gap be- 416

tween ZODIAC and other LLMs. For instance, ZO- 417

DIAC surpasses GPT-4o by approximately 19% in 418

precision for diagnosing findings and 15% in gen- 419

erating interpretations. Importantly, the 1,500 test 420

reports from Z-BENCH were never seen by ZO- 421

DIAC during development, and ZODIAC operates 422

with only 13B parameters (3B+7B+3B). This high- 423

lights the necessity of specialized customization 424

in redeveloping LLMs—particularly in life-critical 425

fields like healthcare—rather than relying solely on 426

general-purpose LLMs, despite their broad success 427

across multiple domains. 428

Interestingly, medical-specialist LLMs per- 429

formed worse than generic LLMs. While the 430

small scale of BioGPT-Large (1.5B parameters) 431

understandably limits its diagnostic capabilities, a 432

more critical issue is that the data used for fine- 433
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Monitoring started on 06/05/2023 04:49:26 and continued for 23:28:22.
    - AF/AFL: AF/AFL was not present. No episodes of AFib/Flutter were detected.
    - VEB: VEB was present (0.25% burden). The total number of isolated VEB was 286. The longest episode of VEB was not 
observed.
    - VT: VT was not present. No episodes of VT were detected.
  - ... ...

**AF/AFL**: There were no occurrences of atrial fibrillation or atrial flutter recorded during the monitoring period (AFib/
Flutter Burden: 0%).
**VEB**: The patient demonstrated a total of 318 ventricular ectopic beats (VEB) with a VEB burden of 0.28%. There were 286 
isolated VEBs, with the notable presence of 26 VEBs forming ventricular couplets, contributing to a VEB couplet burden of 
0.02%. No ventricular bigeminy or trigeminy were recorded.
**VT**: There were no occurrences of ventricular tachycardia (VT Burden: 0%).
... ...

Monitoring started on 06/05/2023 at 04:49:26 and continued for 23:28:22.
- AF/AFL: Not present.
- VEB: 286 isolated VEB were detected (burden: 0.25%). 13 couplet episodes were observed (burden: 0.02%).
- VT: Not present.
- ... ...

(a) Zodiac

(b) GPT-4o

(c) Gemini

Missing basic ECG info at headline

Redundant wording and repeating info

Concise wording 

Key info hidden in the middle

Key info present at the beginning Identified key characteristics

Misinformation provided

Figure 5: Examples of interpretation generated by ZODIAC, GPT-4o, and Gemini-Pro.

Model
Z-BENCH: Finding (F) Z-BENCH: Interpretation (I)

P R F1 IoU BS P R F1 IoU BS

Single Agent (T2F only) 0.8762 0.8671 0.8716 0.7725 0.8459 0.8292 0.8782 0.8530 0.7437 0.8341
Dual Agent (M2F←F2I) 0.8825 0.8741 0.8783 0.7830 0.8686 0.8758 0.9153 0.8951 0.8101 0.8849
Dual Agent (T2F←M2F) 0.9362 0.9174 0.9267 0.8634 0.8589 0.9031 0.9527 0.9272 0.8643 0.8652
Dual Agent (T2F←F2I) 0.9675 0.9481 0.9577 0.9188 0.8652 0.9122 0.9528 0.9321 0.8728 0.8467

w/o Fine-Tuning 0.7462 0.6859 0.7148 0.5562 0.7658 0.7069 0.7833 0.7431 0.5913 0.7496
w/o ICL 0.9636 0.9627 0.9631 0.9289 0.8816 0.9204 0.9450 0.9325 0.8736 0.8864
w/o Fact-Checking 0.9374 0.9317 0.9345 0.8771 0.8637 0.9078 0.9192 0.9135 0.8407 0.8872

Table 2: Ablation study results, where "Dual Agent" reuses one agent to perform another’s function. For example,
"M2F←F2I" indicates the removal of θF2I, with θM2F performing its tasks.

tuning models like Meditron-70B appear to be mis-434

aligned with real-world clinical practice. Even435

when aided by in-context learning demos, these436

specialist LLMs struggle to meet the specific re-437

quirements and security demands of clinical tasks.438

Case Study. Figure 5 compares the interpreta-439

tions generated by ZODIAC, GPT-4o, and Gemini.440

ZODIAC produces concise, well-structured state-441

ments that allow cardiologists to efficiently extract442

key information. In contrast, other LLMs exhibit443

several limitations: GPT-4o omits critical details444

(e.g., missing the diagnostic headline), Gemini in-445

troduces inaccuracies (e.g., erroneous numerical446

summaries), and both models tend to generate re-447

dundant wording, making their outputs harder for448

cardiologists to rely on with confidence.449

5.3 Ablation Study (RQ2)450

We conduct an ablation study on two levels: (1)451

reducing the number of agents and (2) removing452

key components from ZODIAC.453

Single and Dual-Agent. Table 2 examines the454

impact of agentic design variations on ZODIAC ’s455

performance, revealing clear limitations in diagnos-456

tic accuracy. For example, removing θF2I results in457

an 11% decrease in F1 score for summarizing find-458

ings. This suggests that a single LLM struggles to 459

effectively handle multiple diagnostic stages (e.g., 460

both M2F and F2I), as each stage requires a distinct 461

focus—M2F emphasizes information retrieval and 462

summarization, while F2I integrates cardiological 463

expertise. These results highlight the necessity of 464

a collaborative multi-agent approach to distribute 465

tasks efficiently and enhance diagnostic precision. 466

Ablative Component. Table 2 also presents 467

results from removing fine-tuning, ICL, and fact- 468

checking. Notably, fine-tuning has the most signifi- 469

cant impact on diagnostic performance, demonstrat- 470

ing its critical role in embedding domain expertise 471

directly into the LLMs’ parameters. Additionally, 472

ICL and fact-checking further refine the model’s 473

proficiency, emphasizing the importance of inte- 474

grating these techniques to enhance diagnostic ac- 475

curacy and reliability. 476

5.4 Generalization (RQ3) 477

While ZODIAC is developed on Z-BENCH, we eval- 478

uate its generalization capability using additional 479

ECG datasets: PTB-XL (Wagner et al., 2020) for 480

diagnosing 71 clinical statements, and MIMIC-IV- 481

ECG (Gow et al., 2023) and CODE (Ribeiro et al., 482

2020) for identifying arrhythmia types. For each 483

7



(a) PTB-XL (b) MIMIC-IV-ECG (c) CODE

Figure 6: Diagnostic accuracy in the generalization evaluation using three additional ECG datasets.

Val Metric Rubric (Items in F and I should ...)

Accuracy (ACC) have correct statements, aligning with G.
Completeness (CPL) contain complete items from patient data.
Accessibility (ACS) be brief and easy-to-follow the key info.
Professionalism (PRO) use professional wording or abbreviations.

Table 3: Human validation metrics and descriptions of
ideal cases. Each metric is rated on a scale from 1 to
5, where: 1 — Not at all; 2 — Below acceptable; 3 —
Acceptable; 4 — Above acceptable; 5 — Excellent.

dataset, we utilize the provided ECG signals as484

tracings (T ) and incorporate available patient in-485

formation as metrics (M). Notably, the amount of486

M in these datasets is significantly lower than in487

Z-BENCH, which includes over 270 metrics.488

Figure 6 presents diagnostic accuracy across489

these datasets, where we compare ZODIAC against490

the best medical-specialist agent (Meditron-70B)491

and the top three industry-leading LLMs (GPT-4o,492

Gemini-Pro, and Mixtral) from Table 1. We further493

evaluate two inference settings: (1) 0-shot (using494

only the patient’s T andM as instructions) and (2)495

5-shot (incorporating five demonstrations from pa-496

tients). Notably, even in the 0-shot setting, ZODIAC497

achieves strong accuracy (>80%), surpassing other498

baselines. Incorporating 5-shot demonstrations fur-499

ther enhances its performance, highlighting ZO-500

DIAC ’s adaptability for in-hospital applications.501

This demonstrates that ZODIAC can be easily cus-502

tomized with task-specific demonstrations to meet503

organizational needs.504

5.5 Human Validation (RQ4)505

Involving human experts in validation is essential506

for enhancing the credibility and acceptance of ad-507

vanced techniques (Tierney et al., 2024; Sallam508

et al., 2024). To this end, we engaged five cardiol-509

ogists to evaluate ZODIAC using four metrics, as510

detailed in Table 3. To streamline the assessment511

process, we developed a structured questionnaire512

that begins with patient data, followed by gener-513

ated findings and interpretations, and concludes514

Model
Human Val Metric

ACC CPL ACS PRO

GPT-4o 3.7 (±1.1) 4.1 (±1.1) 4.0 (±1.0) 3.2 (±1.4)
Gemini-Pro 3.7 (±1.1) 4.1 (±1.1) 3.9 (±1.0) 2.8 (±1.7)
Mixtral +(V) 3.6 (±1.0) 4.2 (±1.0) 4.1 (±0.7) 3.1 (±1.2)
Meditron +(V) 3.3 (±1.1) 3.3 (±1.2) 3.6 (±1.1) 2.3 (±1.2)

ZODIAC 4.7 (±0.2) 4.8 (0.1) 4.7 (±0.4) 4.6 (±0.3)

Table 4: LLM diagnostic performance across human
validation metrics. Each cell presents “mean (±std)”
among ratings from all cardiologists across all test data
(same as Table 1). Boldface highlight the best results.

with rating options on a 1–5 scale. Notably, we 515

anonymized the model names to prevent cardi- 516

ologists from assigning biased scores based on 517

their familiarity with or perceived reputation of 518

specific models. 519

As baselines, we include the same choice of best 520

subset as in Section 5.4. The results show that ZO- 521

DIAC not only achieves the highest performance 522

across all human validation but also delivers more 523

stable diagnostics, as evidenced by its lower stan- 524

dard deviation (e.g., ±0.1 CPL). These findings 525

underscore the importance of incorporating refined 526

technical strategies to improve consensus among 527

cardiologists and enhance real-world applicability. 528

6 Conclusion 529

We introduce Z-BENCH, a cardiologist-adjudicated 530

dataset comprising real-world, representative pa- 531

tient reports. Additionally, we develop ZODIAC, 532

an LLM-powered multi-agent framework designed 533

to achieve cardiologist-level diagnostics. Together, 534

Z-BENCH and ZODIAC bridge the gap between 535

clinicians and LLMs in cardiology. Through clin- 536

ical validation, we demonstrate that ZODIAC out- 537

performs other LLMs while exhibiting strong gen- 538

eralizability and practical utility. In conclusion, 539

ZODIAC marks a significant step toward develop- 540

ing clinically viable LLM-based diagnostic tools. 541
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Limitations542

Data Scale. Clinical benchmarks are typically543

extensive, as exemplified by PTB-XL (Wagner544

et al., 2020), which contains approximately 19K545

patient records. While we have demonstrated that546

Z-BENCH is sufficient for developing cardiologist-547

level agents and conducting robust clinical evalu-548

ations, expanding the dataset remains a key long-549

term objective. As we establish collaborations with550

more institutions, we aim to continuously enrich551

Z-BENCH with diverse, high-quality clinical data,552

further enhancing its representativeness and utility553

in real-world cardiological diagnostics.554

Development with Trustworthiness. As em-555

phasized by FDA’s guiding principles (FDA, 2024),556

securing the development and deployment of LLMs557

is as important as achieving functional effective-558

ness. While our current evaluation addresses pro-559

fessionalism, the next phase will prioritize further560

development of security measures to enhance trust.561

This will involve investigating third-party adversar-562

ial influences in data, identifying inherent weak-563

nesses in LLMs that could lead to vulnerabilities564

(e.g., backdoors), proposing defensive strategies565

to safeguard ZODIAC in life-critical diagnostic ap-566

plications, and promoting transparency to foster567

human understanding and effective collaboration568

in human-machine intelligence.569
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A A Real-world Cardiological Report 857

Figure 7 presents a real-world report on patient data 858

and diagnostics (including findings and interpreta- 859

tion), with identifying information (such as patient 860

name, date of birth, physician name, and company 861

name) anonymized. The report layout is identical 862

to that shown in Figure 3. 863

B Additional Prompts 864

Corresponding to Figure 4-(a)(b)(c), we provide 865

the prompts used for agents θT2F and θF2I in Figure 866

8. 867

C Details about Arrhythmia Classes 868

In this work, we categorize arrhythmias into three 869

subgroups: 870

Class I — Normal Arrhythmias: Also known 871

as benign or physiological arrhythmias, these irreg- 872

ular heart rhythms can occur in healthy individuals 873

and typically do not lead to serious health issues. 874

They are generally considered harmless and may 875

not require treatment. In our patient data, Class 876

I arrhythmias include Sinus Bradycardia, Sinus 877

Tachycardia, and Sinus Arrhythmia. 878

Class II — Clinically Significant Arrhyth- 879

mias: These arrhythmias involve abnormal heart 880

rhythms that can cause symptoms, lead to com- 881

plications, or require medical intervention. They 882

may disrupt the heart’s ability to pump blood ef- 883

fectively, increasing the risk of serious events such 884

as stroke, heart failure, or sudden cardiac death. 885

In our patient data, Class II arrhythmias include 886

Pause (<3s), Ventricular Premature Beat (PVC), 887

and Atrial Fibrillation (AF). 888

Class III — Life-Threatening Arrhythmias: 889

These abnormal heart rhythms can result in severe 890

consequences, such as cardiac arrest, stroke, or 891

sudden cardiac death, requiring immediate medical 892

attention and often emergency intervention. In our 893

patient data, Class III arrhythmias include Ventric- 894

ular Flutter (VF), Complete Heart Block (Third- 895

Degree AV Block), Atrial Fibrillation (AFib) with 896

Rapid Ventricular Response, Prolonged Pause, 897

Atrial Flutter (AFL), Ventricular Tachycardia (VT), 898

and Supraventricular Tachycardia (SVT). 899

In our experiments, we use these arrhythmia 900

classes (I, II, III) for subgroup analysis rather than 901

specific arrhythmias to avoid the limitations of 902

small patient sample sizes for individual conditions. 903

Subgroup analysis based on arrhythmia classes pro- 904

vides a comprehensive view of the LLMs’ diagnos- 905
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Figure 7: A real-world cardiological report, with identify-related information anonymized.

tic capabilities across different levels of urgency,906

offering valuable insights for data collection and907

performance improvement toward more balanced908

diagnostics.909

D Fact Checking Using Clinical Guideline 910

Clinical guidelines are systematically developed 911

statements designed to assist healthcare providers 912

and patients in making decisions about appropri- 913

ate health care for specific clinical circumstances. 914
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As a cardiologist, your role is to extract clinically relevant findings from a patient's data. Follow these 
instructions:

Task: Cardiological Diagnostics from Patient Data

You will be given electrocardiograph (ECG or EKG) in image format with the patient information as 
follows: ……

Based on the identified key characteristics, create a detailed, itemized list of findings that include the 
following components:

• PR Interval: how many milliseconds, with further Diagnostics and Interpretation of PR Interval
• QT Interval: how many milliseconds, with further Diagnostics and Interpretation of QT Interval
• P-wave: present or not, and explain the reasons. If present, what's the indication

(a) Instructions for T2F Agent

Input Format:

Draft Findings:

(b) Demonstrations for T2F Agent

Example 1:

• PR Interval: 210 milliseconds. The PR interval is slightly prolonged, ……
• QT Interval: 400 milliseconds. The QT interval is within normal limits for the patient's heart rate 

…… 
• P-wave: Present and consistent, ……

Example 2: 

……(patient ECG with descriptive information)

Findings:

Input:

Example 3: 

……

……

Input:

[Patient ECG] (Patient ECG with descriptive information)
……

• [LLM response about PR Interval]
• [LLM response about QT Interval]
• [LLM response about P-wave]
• ……

(c) LLM Response Template for T2F Agent

Findings: 
Response:

As a cardiologist, your role is to draft diagnostic interpretation based on clinical findings from a patient's 
data. Follow these instructions:

Task: Cardiological Diagnostics from Patient Data

You will be given a list of clinical findings containing following items:
• PR Interval: how many milliseconds, ……
• …….

Based on the clinical findings, create a detailed, itemized list of interpretation that include the following 
components:

• AF/AFL ……
• VEB ……
• ……

(d) Instructions for F2I Agent

Input Format:

Draft Interpretation:

(e) Demonstrations for F2I Agent

Example 1:

• Monitoring started on 2024-Jul-11 at 10:49 and continued for 2 days and 23 hours.
• AF/AFL: AF/AFL was present(98.9%). The Longest episode was 18:49:30, Day 1 / 16:53:30 and 

the Fastest episode was 163 bpm, Day 2 / 00:32:27.
• VEB: 2603 isolated (1.95% burden), 58 couplets, 4 bigeminy, 2 trigeminy episodes.
• ……

Example 2: 

……(list of itemized findings)

Interpretation:

Input:

Example 3: 

……

……

Input:

[Findings] (list of itemized findings)
……

• [LLM response about AF/AFL]
• [LLM response about VEB]
• ……

(f) LLM Response Template for F2I Agent

Interpretation: 
Response:

Figure 8: Prompts used for θT2F and θF2I: (a)(d) – instructions or “system prompt”; (b)(e) –demonstrations used
during in-context learning; (c)(f) – LLM response template.

These guidelines are based on the best available915

evidence and aim to standardize care, improve the916

quality of treatment, and ensure patient safety. For917

example, a section of clinical guidelines about PR918

Interval is provided in Figure 9.919

Fact-Checking using Guidelines. We perform920

fact-checking by enumerating every itemized find-921

ing and corresponding interpretation to identify922

any misalignment with established guidelines. For923

example, if the PR interval exceeds 200 millisec-924

onds, the interpretation should include a diagnosis925

of “a prolonged PR interval, which may indicate a926

first-degree AV block or the potential for a more ad-927

vanced block”. Failure to include such a diagnosis928

would signal an inaccurate assessment by ZODIAC.929

In response, we prompt the relevant LLM agents930

(θT2F and θF2I in this case) to re-examine the pa-931

tient data, verify the accuracy of the findings, and932

update the interpretation accordingly.933

E Experimental Configurations934

We conducted our experiments using a set of935

NVIDIA RTX A6000 ADA GPUs, each equipped936

with 48GB of memory and running CUDA ver-937

sion 12.3. Table 5 provides a detailed overview938

of the default hyper-parameters and experimental 939

settings. 940

Moreover, our experiments use a fixed set of 941

hyperparameters as commonly used among other 942

works (Qi et al., 2023; Yang et al., 2023) without 943

hyperparameter search. 944

Models and Fine-Tuning (Customization)
Training Data (& Statistics) Z-BENCH (3,907 samples)

Test Data (& Statistics)

Z-BENCH (1,500 samples)
PTB-XL (2,000 samples)
MIMIC-IV-ECG (2,000 samples)
CODE (2,000 samples)

LLMs Llama-3.2-3B (x2)
LLaVA-7B

Max sequence length 2,048 (Train); 4,096 (Test)
Batch size 16

Training epochs 50
Learning rate 1e-5

Optimizer AdamW
Fine-Tuning Method LoRA

GPU Hours 1.62

Inference Temperature: 1.0
top-p 0.95

Table 5: Implementation and evaluation details of ZO-
DIAC.
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PR Interval:

1. Definition of PR Interval
The PR interval measures the period from the onset of atrial depolarization (beginning of the P wave) to the onset of ventricular 

depolarization (beginning of the QRS complex). It reflects the time taken for the electrical impulse to travel from the sinus node through the 
atria, AV node, His bundle, bundle branches, and Purkinje fibers to reach the ventricular myocardium.

2. Range
● Normal: 120-200 milliseconds
● Prolonged: >200 milliseconds, indicating first-degree AV block
● Shortened: <120 milliseconds, may suggest pre-excitation syndromes like Wolff-Parkinson-White syndrome

3. Clinical Relevance
● Normal PR Interval

○ Finding: PR interval within 120-200 milliseconds.
○ Interpretation: Indicates normal atrioventricular (AV) conduction. The electrical signal travels from the atria to the ventricles 

through the AV node and His-Purkinje system within the expected time frame, suggesting healthy cardiac electrical function.

● Prolonged PR Interval
○ Finding: PR interval longer than 200 milliseconds.
○ Interpretation:

■ First-Degree AV Block: The prolongation is uniform across all heartbeats. This is often benign but can be associated with 
increased vagal tone, intrinsic AV nodal disease, or effects of certain medications (like beta-blockers, calcium channel blockers, or digoxin).

■ Higher degree AV block predisposition: Indicates potential for progression to higher degree AV block, especially in the 
setting of structural heart disease or acute myocardial infarction.

● Short PR Interval
○ Finding: PR interval less than 120 milliseconds.
○ Interpretation:

■ Pre-excitation Syndromes: Such as Wolff-Parkinson-White (WPW) syndrome where there is an accessory pathway (like the 
bundle of Kent) allowing premature ventricular activation.

■ Junctional Rhythms: If associated with an abnormal P wave morphology or positioning, may indicate that the impulse 
originates near or within the AV node rather than the atria.

● Variable PR Interval
○ Finding: Fluctuating PR intervals across different heartbeats.
○ Interpretation:

■ Second-Degree AV Block Type I (Wenckebach): Progressive lengthening of the PR interval until a P wave is not followed by 
a QRS complex.

■ Atrial Fibrillation with Variable Conduction: If associated with an irregularly irregular rhythm, indicates atrial fibrillation 
where AV nodal conduction is unpredictably variable.

● PR Interval with Grouped Beating
○ Finding: Groups of beats with a consistent PR interval followed by a longer pause.
○ Interpretation:

■ Second-Degree AV Block Type II: Typically associated with fixed PR intervals on conducted beats, interspersed with non-
conducted P waves without prior change in the PR duration.

■ Mobitz Type II or Advanced Block: Often a precursor to complete heart block, requiring immediate assessment and 
potentially pacing intervention.

● Alternating PR Interval
○ Finding: Alternation in the length of the PR interval from beat to beat.
○ Interpretation:

■ Electrophysiological Variability: May be due to alternating dominance of different AV nodal pathways, a rare phenomenon 
or related to autonomic tone fluctuations.

■ Underlying Heart Disease: Consider evaluation for ischemic heart disease or infiltrative cardiac conditions that may 
intermittently affect AV nodal conduction.

Figure 9: Part of clinical guidelines.

F Responsible Checklist945

This section elaborates on the checklist for ARR946

submission:947

F.1 Potential Risks 948

This work address the LLM-as-Agent contribution 949

on cardiological domain. Even though the research 950

lies on healthcare, which is life-sensitive, our con- 951

tributed benchmark and agent help to advance the 952
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LLM development in this domain. Moreover, this953

work doesn’t introduce any harmful or sensitive954

message, so the contributed benchmark and model955

are safe to use in research and development pur-956

pose.957

As to the data, we de-identified all patient data958

before releasing. So no identifiable message could959

be recognized. Thus we protect potential privacy960

leakage.961

F.2 Use of Artifacts962

This work utilizes public LLMs and datasets.963

Model Licenses. The licenses for the LLMs964

used in this work vary depending on the model.965

Llama-3.2-3B follows the "Llama 3" license, which966

permits public use of its open-source model in ac-967

cordance with Llama’s user policy (Meta Platforms,968

2024). LLaVA-7B is released under the Apache969

2.0 license (Foundation, 2004), which allows free970

model download, modification, distribution, and971

even commercialization.972

Data and Other Licenses. The datasets em-973

ployed in this study are sourced from public974

GitHub repositories and our IRB-approved data.975

The use of public data adhere to the MIT license976

(of Technology, 1988). This license permits free977

use, modification, and distribution of the data and978

code made available in these repositories. Our con-979

tributed benchmark is with IRB: No. Pro00065572.980

Artifact Use Consistent With Intended Use.981

Given the permissions granted by the model, data,982

and other licenses involved in this work, our de-983

velopment aligns with the intended use of these984

artifacts, ensuring compliance with their original985

licensing terms.986

Offensive Content. There is no offensive con-987

tent in this paper.988

Personally Identifiable Information. This989

work does not involve any personally identifiable990

information. All used data is de-identified.991

F.3 Descriptive Statistics992

We have elaborated on the statistics of metrics in (1)993

Section 5.1 regarding the descriptions of metrics994

and (2) Section 5.5 regarding additional descrip-995

tions of evaluation metrics (mean and std).996

F.4 Use of Packages997

Our evaluations largely rely on Hugging998

Face TRANSFORMER packages and TORCH,999

other packages are regular Python li-1000

braries such as NUMPY and MATPLOTLIB,1001

which can be seen at our released codes: 1002

https://anonymous.4open.science/r/Zbench- 1003

Zodiac-8A2A 1004

F.5 Use of AI 1005

This work primarily uses AI as an evaluator to com- 1006

pute whether two items are match and BERT score. 1007

This approach aligns with prior studies (Eapen and 1008

Adhithyan, 2023; Qi et al., 2023; Yang et al., 2023; 1009

Chen et al., 2021). 1010

F.6 Instructions Given to Participants 1011

Introduction Thank you for participating in this 1012

study. Your expertise as a cardiologist is crucial 1013

in annotating clinical reports and evaluating the 1014

performance of our AI-based model. These instruc- 1015

tions will guide you through the annotation and 1016

evaluation process. 1017

Objective The goal of this task is to: 1018

1. Annotate clinical reports by writing structured 1019

findings and interpretation. 1020

2. Evaluate the performance of an AI model by 1021

comparing its generated reports against expert 1022

annotations. 1023

Annotation Guidelines Each clinical report will 1024

be provided with raw data, including imaging re- 1025

sults, ECG readings, and physician notes. Your 1026

task is to: 1027

1. Findings: Summarize the key observations in 1028

a structured manner. 1029

2. Interpretation: Provide a concise clinical in- 1030

terpretation of the findings. 1031

Formatting Rules 1032

• Use complete sentences and precise medical 1033

terminology. 1034

• Follow a structured format for each report. 1035

• Avoid subjective language; remain clinically 1036

objective. 1037

Model Performance Evaluation You will be 1038

provided with AI-generated reports alongside your 1039

annotated reports. Please evaluate the AI output 1040

using the following criteria: 1041

Evaluation Criteria 1042

1. Accuracy: How well the AI-generated find- 1043

ings and interpretation match expert observa- 1044

tions and align with guidelines. 1045
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2. Completeness: Whether the AI-generated1046

findings and interpretation obtain comprehen-1047

sive information from patient’s report.1048

3. Accessibility: Whether AI maintains brief1049

statements across reports, with highlighted in-1050

formation easy to be caught by cardiologists.1051

4. Professionalism: Whether AI use profes-1052

sional wording and jarjons among experts.1053

Scoring System For each criterion, use the fol-1054

lowing rating scale:1055

• 1 - Not at all1056

• 2 - Below acceptable1057

• 3 - Acceptable1058

• 4 - Above acceptable1059

• 5 - Excellent1060

Submission Instructions1061

• Submit your annotations and evaluations via1062

the provided portal.1063

• Use the provided spreadsheet template for1064

scoring.1065

• Ensure all reports are reviewed within the1066

given timeframe.1067

Confidentiality and Ethical Considerations1068

• Maintain patient confidentiality at all times.1069

• Do not share data outside the scope of this1070

study.1071

• Follow HIPAA and institutional guidelines for1072

handling clinical information.1073

F.7 Payment Policy1074

There is no payment assigned to our collaborative1075

cardiologists.1076

F.8 Discussion on Consent and Ethical1077

Considerations (IRB Protocol No.1078

Pro00065572)1079

This study is conducted under the ethical over-1080

sight of the Institutional Review Board (IRB)1081

at "Anonymized Name" under Protocol No.1082

Pro00065572. The research involves the use of1083

multi-modal clinical data, including cardiological1084

diagnostic reports, for benchmarking in an LLM-as- 1085

Agent framework. Given the sensitivity of clinical 1086

data, the study strictly adheres to regulatory and 1087

ethical guidelines for data handling, consent, and 1088

privacy protection. 1089

The dataset used in this study originates from 1090

"Anonymized Collaborative Institutions". The data 1091

includes structured and unstructured cardiological 1092

diagnostic reports, imaging results, and correspond- 1093

ing clinical notes. If the dataset is publicly avail- 1094

able, it has been previously de-identified and made 1095

accessible for research use, eliminating the need for 1096

direct patient consent. If institutionally collected, 1097

the data was obtained through "Anonymized Col- 1098

laborative Institutions", following IRB-approved 1099

data access protocols. 1100

To ensure privacy protection, all personally iden- 1101

tifiable information (PII) has been removed or 1102

anonymized before data processing. Anonymiza- 1103

tion steps include removing patient names, med- 1104

ical record numbers, and geographic identifiers, 1105

de-identifying text-based clinical reports using au- 1106

tomated and manual review methods, and encrypt- 1107

ing and restricting access to dataset files, allowing 1108

only approved personnel to interact with the data. 1109

The research follows HIPAA and GDPR compli- 1110

ance standards to prevent re-identification risks and 1111

ensure data security. 1112

This dataset is used strictly for benchmarking 1113

multi-modal cardiological diagnostics and will not 1114

be re-shared outside the scope of the IRB-approved 1115

study. Any further data use beyond the LLM-as- 1116

Agent benchmarking framework would require ad- 1117

ditional IRB review and approval. 1118

This study aligns with ethical principles outlined 1119

in the Belmont Report, ensuring respect for per- 1120

sons, beneficence, and justice. The IRB approval 1121

under Protocol Pro00065572 ensures compliance 1122

with institutional and federal regulations, including 1123

the Common Rule (45 CFR 46) for human sub- 1124

ject research, the Health Insurance Portability and 1125

Accountability Act (HIPAA) for medical data pri- 1126

vacy, and the General Data Protection Regulation 1127

(GDPR) for data processing involving European 1128

patients (if applicable). 1129

17


	Introduction
	Related Work
	Z-Bench: A Cardiac Benchmark Aligned with In-Hospital Diagnostics
	Components of Cardiological Data
	Data Collection and Cardiologist- Incorporated Curation

	Zodiac: LLM-as-Cardiac-Agent
	Formulation of Cardiological Diagnostics
	Instruction Fine-Tuning
	Inference

	Experiments
	Experimental Setting
	Diagnostic Effectiveness (RQ1)
	Ablation Study (RQ2)
	Generalization (RQ3)
	Human Validation (RQ4)

	Conclusion
	A Real-world Cardiological Report
	Additional Prompts
	Details about Arrhythmia Classes
	Fact Checking Using Clinical Guideline
	Experimental Configurations
	Responsible Checklist
	Potential Risks
	Use of Artifacts
	Descriptive Statistics
	Use of Packages
	Use of AI
	Instructions Given to Participants
	Payment Policy
	Discussion on Consent and Ethical Considerations (IRB Protocol No. Pro00065572)


