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Abstract

Large language models (LLMs) have revo-
Iutionized cardiological diagnostics through
agentic design. However, a significant chal-
lenge remains: the misalignment between real-
world clinical reports used in hospitals and the
publicly available datasets used to fine-tune
LLMs. This discrepancy limits the reliabil-
ity of LLMs in cardiological practices. In
this work, we address this gap from two key
perspectives. First, we introduce Z-BENCH,
a benchmark derived from in-hospital cardi-
ological reports, where patient records com-
prise multimodal electrocardiograms (ECGs)
enriched with cardiological metrics. Second,
we propose ZODIAC, an LLM-powered agentic
framework designed to enhance cardiological
diagnostics. ZODIAC operates by systemati-
cally extracting clinically relevant characteris-
tics, detecting significant arrhythmias, and gen-
erating preliminary diagnostic reports, which
are then reviewed and refined by cardiologists.
Experimental results demonstrate that ZODIAC
surpasses industry-leading LLMs from Ope-
nAl, Meta, Google, and DeepSeek, as well as
medical-specialist models such as Microsoft’s
BioGPT. Our findings highlight the transforma-
tive potential of specialized LLMs in health-
care, showcasing their ability to deliver medi-
cal solutions that meet the rigorous demands of
cardiological guidelines.

1 Introduction

As technology continues to transform healthcare,
large language models (LLMs) have become a
pivotal component of digital health (FDA, 2020).
With their human-like conversational abilities and
extensive pre-trained knowledge, LLMs are in-
creasingly being adopted as clinical agents (Boon-
stra et al., 2024; Gala and Makaryus, 2023; Xu
et al., 2024). This shift has led to the development
of various medical-specialist applications (Chen
et al., 2023a, 2024b; ContactDoctor, 2024; Wang
et al., 2024c; Luo et al., 2022; Chen et al., 2023b).

. . )
A Sourced Cardiological Report A
+ from Patient - [ A
- Biostat Info i Patient and visiting |
diudicated by DOB: M Physican: NI Start: | details, tabular data !
O Adjudicated by Gender: N Practice: NN End: @ | TTTTTTC  A—

w . Cardiologist
) Tracings Metrics ;M
s Heart Rate $

PO — e = p— por
+ Multiple ECG signals for E'" M opm M opm MW Large-scale numerical |
i arrhythmias, image data | Ectopics - records about cardiac |
VEBS | evidence, tabular data |
“/\/'M/\/'“"/\/"“"/\/V‘ SVEBS [ I -t

!: A\ B
4 Findings Interpretation C

R e I T | D e i A

i Summarized evidence — — 17} Written diagnostics (by
§ (by agents), be finalized | _ | o | 1 | agents), be finalized by |
by cardiologists, 14 cardiologists, itemized |

E itemized textual data | | textual data

Figure 1: An example layout of cardiological report.

Despite these advancements, the integration of
LLM:s into real-world cardiac practice is hindered
by two critical challenges. First, available public
datasets, such as PTB-XL (Wagner et al., 2020),
MIMIC-IV-ECG (Gow et al., 2023), and CODE
(Ribeiro et al., 2020), exhibit misalignment be-
tween the available evidence and the clinical re-
ports used in hospitals. As illustrated in Figure 1,
clinical reports are typically synthesized from mul-
timodal evidence (Kline et al., 2022; Cicerone et al.,
2000). Training LLMs on misaligned cardiologi-
cal evidence consequently disrupts their alignment
with the standardized diagnostic process, poten-
tially compromising their clinical reliability (Dav-
enport and Kalakota, 2019; Asan et al., 2020).

Second, current LLM-based clinical agents often
struggle to achieve cardiologist-level proficiency.
While these models may be trained on a broad
range of clinical tasks (Peng et al., 2023; Chen
et al., 2024a), they lack the specialized alignment
for medical decision-making (Khan et al., 2023;
Wang et al., 2021; Kerasidou et al., 2022). Those
gap underscores the need to enhance the reliability
of LLMs in specialized medical fields.

Our Work. We address these gaps through two
complementary layers: enhancing data-driven pro-
ficiency by benchmarking diagnostic scenarios and
advancing technique-driven capabilities within the
LLM paradigm:



I) Data Proficiency: We introduce Z-BENCH, a
benchmark derived from in-hospital patient records,
incorporating cardiologist-adjudicated texts and
aligning with clinical guidelines. Z-BENCH en-
sures cardiologist-level proficiency in two aspects.
First, it captures real-world cardiological charac-
teristics, such as arrhythmias and their contribut-
ing factors, to accurately reflect clinical realities.
Second, the direct involvement of human experts
(cardiologists) ensures that the dataset encapsulates
expert-level performance, while adherence to clini-
cal guidelines mitigates potential biases and errors,
thereby enhancing diagnostic accuracy and safety.

II) LLM-as-Cardiac-Agent: Next, we propose
ZODIAC, a cardiologist-level diagnostic agent us-
ing multi-agent framework to analyze multimodal
patient records. ZODIAC outperforms single-agent
design while improving the identification of key
characteristics and interpreting clinically signif-
icant arrhythmias (details in Section 5.3). Fur-
thermore, we integrate instruction tuning and in-
context learning into ZODIAC, wherein instruction
tuning embeds data proficiency from Z-BENCH
into the LLMs, while in-context learning provides
professional demonstrations to further reinforce
ZODIAC’s diagnostics. Finally, we incorporate
fact-checking against established cardiological
guidelines (Goff Jr et al., 2014) to ensure the sys-
tem generates accurate, expert-verified diagnostics.

Through extensive evaluations on Z-BENCH, we
demonstrate that industry-leading LLMs, including
OpenAl’s ChatGPT, Google’s Gemini, and Meta’s
Llama, fall short in performing cardiological di-
agnoses based on in-hospital clinical reports. In
contrast, ZODIAC not only excels in numerical
analysis but also generates expert-level diagnos-
tic narratives and structured reports approbatory by
cardiologists. Furthermore, we show that ZODIAC
is generalizable in analyzing other ECG datasets
beyond Z-BENCH, highlighting its adaptiveness to
meet diverse organizational needs.

In summary, this work makes the following con-
tributions:

* We introduce Z-BENCH, a benchmark aligned
with in-hospital cardiological reports, enhanc-
ing data-driven proficiency in Al research and
model development.

* We develop ZODIAC, which serves as a
blueprint for constructing clinical-grade LLM
agents while providing a scalable framework
applicable across various clinical domains.

* Through evaluations, we demonstrate the prac-
tical applications of Z-BENCH in integrating
human insights through the Al development
and validate the effectiveness of ZODIAC in
advancing clinical Al development with high
reliability.

For anonymization, we temporarily release
the benchmark and code at https://anonymous.
4open.science/r/Zbench-Zodiac-8A2A.

2 Related Work

LLMs in Clinical Diagnostics. LLMs have shown
considerable progress in processing and interpret-
ing vast amounts of unstructured medical data, such
as patient records, medical literature, and diagnos-
tic reports. For example, Han et al. (2024) intro-
duced a system that automatically summarizes clin-
ical notes during interactions between patients and
clinicians, while Ahsan et al. (2023) explored the
role of LLMs in retrieving key evidence from elec-
tronic health records (EHRs). Despite these suc-
cesses, concerns persist regarding LLMs’ domain-
specific expertise and professional performance
in high-stakes, life-critical clinical settings (Nash-
wan and AbuJaber, 2023; Jahan et al., 2024; Wang
et al., 2024a; Li et al., 2024). This work addresses
these concerns by designing and validating ZoO-
DIAC through our design and experiments specifi-
cally for cardiological diagnostics.

Cardiological Diagnostic Systems. Current car-
diological diagnostic systems primarily depend on
rule-based algorithms or single-agent approaches
for identifying cardiovascular risk factors or pre-
dicting cardiac events (Goff Jr et al., 2014; Sud
et al., 2022; Olesen et al., 2012). In recent years,
deep learning models have been introduced into
cardiology (Hannun et al., 2019; Acharya et al.,,
2019). However, there remains a significant gap
in incorporating recent LLMs into cardiological
diagnostics—a gap that this work addresses signifi-
cantly.

Multi-Agent Frameworks. Multi-agent frame-
works have been extensively studied to enhance
LLM capabilities in handling complex tasks and
managing distributed processes (Wang et al.,
2024b; Hong et al., 2023; Du et al., 2023; Chan
et al., 2023). In healthcare, where collaboration
across different expertise is essential, multi-agent
frameworks have shown their potential in optimiz-
ing patient management, coordinating care between
various agents (e.g., doctors, nurses, administra-
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tive systems), and supporting decision-making pro-
cesses (Furmankiewicz et al., 2014; Jemal et al.,
2014; Shakshuki and Reid, 2015). Recent studies
have also focused on leveraging multi-LLM agents
to reduce manual tasks in healthcare workflows.
For instance, Chen et al. (2024a) employed Chat-
GPT in distinct roles within a coordinated work-
flow, to automate tasks like database mining and
drug repurposing, while ensuring quality control
through role-based collaboration.

3 Z-BENCH: A Cardiac Benchmark
Aligned with In-Hospital Diagnostics

This section presents Z-BENCH and its alignment
with in-hospital diagnostics. We begin by introduc-
ing diagnostic tasks (Section 3.1), followed by the
construction of Z-BENCH (Section 3.2).

3.1 Components of Cardiological Data

This paper focuses on diagnosing clinically signif-
icant arrhythmias using patient data. We classify
the key components into two categories: patient
records and diagnostic outputs.

Patient Data is comprised of three sections:
(1) Biostatistical information (B) provides details
about the patient such as date of birth, gender, and
age group. (2) Metrics (M) summarize cardio-
logical attributes and their numerical values pre-
sented in a tabular format, providing an overview
of 24-hour monitored statistics for a patient. For
example, AF Burden: 12% indicates that the pa-
tient experienced atrial fibrillation for 12% of the
whole monitoring period. (3) Tracings (T ) in-
cludes ECG images depicting clinically significant
arrhythmias such as AFib/Flutter (Atrial Fibrilla-
tion / Atrial Flutter), Pause, VT (Ventricular Tachy-
cardia), SVT (Supraventricular Tachycardia), and
AV Block (Atrioventricular Block). 7 presents a
concise but representative segment of the 24-hour
monitoring, such as a 10-second strip highlighting
the highest degree of AV block.

Diagnostic Outputs is comprised of two ele-
ments: Clinical Findings (F) and Interpretation
(Z), both presented as expert-crafted natural lan-
guage statements by cardiologists. F outlines key
observations from clinically relevant characteris-
tics, while Z offers the final diagnostics, interpret-
ing these findings. For example, the finding PR In-
terval is 210 milliseconds in the ECG tracings leads
to the interpretation: The PR interval is slightly pro-
longed, suggesting a first-degree AV block.

[ 28 Female
[ Fbe (47.1%)

Figure 2: Statistics of Z-BENCH, subgrouped by gender,
age, race, and arrhythmia classes — Class I: normal
arrhythmias. Class II: clinically significant arrhythmias.
Class III: life-threatening arrhythmias. Detailed clinical
implications are provided in Appendix C.

Once F and 7 are completed by cardiologists (or
by ZODIAC), a clinical end-of-study report is gen-
erated for the patient, including (B, M, T, F,T),
as illustrated in Figure 1.

3.2 Data Collection and Cardiologist-
Incorporated Curation

Z-BENCH is characterized as real, representative,
and cardiologist-incorporated.

Real-World Patient Data. Instead of relying
on existing third-party or synthetic data—which
often raise concerns about trustworthiness or mis-
alignment with clinical practice (Chouffani El Fassi
et al., 2024; Fehr et al., 2024; Youssef et al.,
2024)—we collect ECG data sourced from our
collaborating healthcare institutions under an IRB-
approved protocol, with de-identified patient to en-
sure privacy protection. The raw data consists of
270+ metrics M and 5 ECG tracing 7 per patient.
To ensure the clinical relevance, we engaged five
cardiologists to review the data, resulting in a final
dataset of 5,400+ samples. Of these, 1,500 were
used for evaluation (Section 5), while the remainder
were used for fine-tuning (Section 4.2).

Representative Groups. Z-BENCH adheres to
the FDA’s guidelines (Food et al., 2021) to ensure
a representative population, encompassing compre-
hensive arrhythmia types and diverse racial groups
while maintaining balanced age and gender demo-
graphics, as detailed in Figure 2.

Incorporating Cardiologist-Level Expertise.
When reviewing the raw data, cardiologists are
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Figure 3: ZODIAC aligns with cardiological practice through a multi-agent framework that integrates patient data
across various modalities: @ Patient data is collected in two modalities: tabular metrics and ECG tracings (images).
@ A metrics-to-findings LLM agent processes the tabular metrics and generates text-based clinical findings. ® An
tracings-to-findings LLM agent analyzes the ECG tracings to produce additional text-based clinical findings. @
The clinical findings from both agents are then combined. ® A findings-to-interpretation LLM agent synthesizes
these findings with clinical guidelines into comprehensive diagnostic interpretation. ® ZODIAC generates a patient-
specific report by integrating the metrics, tracings, clinical findings, and diagnostic interpretation. @ A cardiologist
validates the quality of the generated findings and interpretations (details in Section 5). For simplicity, we omit the

biostatistics (B) in this figure, which is considered in steps @@® by default.

asked to write professional findings (F) and in-
terpretation (Z) in accordance with established
clinical guidelines (G) (Association et al., 2023;
Krumbholz et al., 2020). This process facilitates
the follow-up fine-tuning, embedding cardiologist-
level expertise into LLMs. To save the cardiol-
ogists’ time,Additionally, each cardiologist ran-
domly audits at least 50% of their peers’ drafts to
identify and rectify issues such as incompleteness,
inconsistencies, or diagnostic inaccuracies. This
peer-review process helps standardize wording and
structure across cardiologists, ensuring consistency
and reliability in the reports.

4 ZoDIAC: LLM-as-Cardiac-Agent

4.1 Formulation of Cardiological Diagnostics

Real-world cardiological diagnostics begins by re-
viewing the patient’s data (B, M, T) to identify
clinically relevant characteristics, such as the PR
interval, which are key for diagnosing arrhythmias.
These identified characteristics are then summa-
rized into natural language statements, referred to
as findings F, which integrate insights from both
tabular metrics M and image-based ECG tracings
T". For example, the PR interval is derived from T,
while the AF burden is obtained from M. Finally,
cardiologists synthesize the findings F with their
clinical expertise and the established guidelines G
to form the final interpretation Z.

As illustrated in Figure 3, we follow established
cardiological practices to develop ZODIAC. Rather

than compressing multimodal data into a single
LLM, ZODIAC employs a multi-agent collabora-
tion framework, where each agent is responsible
for a specific stage of the diagnostic process. This
design enhances the LLM’s focus on diagnostic
behavior within each modality. ZODIAC comprises
three specialized agents:

1. Metrics-to-Findings Agent (fy2r): A table-
to-text LLM that extracts key characteristics
from metrics M, while incorporating patient
biostatistics B to generate clinical findings.

2. Tracings-to-Findings Agent (67,F): An image-
to-text LLM that identifies key factors from
ECG tracings T, integrates relevant informa-
tion from B, and produces clinical findings.

3. Findings-to-Interpretation Agent (6g,1): A
text-based LLM that synthesizes findings F
from both the Oy, and O1,¢, applies clinical
guidelines G, and generates interpretation Z.

Z0DIAC formulates the diagnostic process as:

T < Or1(F,G)
F HMZF(M7 B) U QTZF(T’ B)

s.t.

)]

wherein Oy,r and 61,F independently generate clini-
cal findings based on M and T, respectively, which
are then combined to form F. This approach ad-
heres to cardiological diagnostics as each finding in
JF corresponds to evidence derived from a specific
modality — either metrics or ECG tracings.



Task: Cardiological Diagnostics from Patient Data Example 1:

As a cardiologist, your role is to extract clinically relevant findings from a

patient's data. Follow these instructions:

Input Format: Findings:

You will be given a table of patient data with the following columns: o ’
+ Metric: Contains clinically important attributes (e.g., heart rate...). (22:49:00 total).
*  Value: The recorded value for each metric. * VEB:

Draft Findings:

Based on the identified key characteristics, create a detailed, itemized list of * SVEB:
findings that include the following components:
¢ Summary of the clinical study and the patient’s biostatistical info.
*  Analysis of Ventricular Ectopic Beats (VEB)
«  Analysis of Supraventricular Ectopic Beats (SVEB)

Example 2:

Example 3: ......

~———— (2) Instruction 7\

Input: ...... (patient data in table format: Metric | Value)
*  Study duration: 09/15/2023 12:54:00 to 09/16/2023 11:43:00

* 2603 isolated Ventricular Ectopic Beats detected (burden: 1.95%).
* 58 couplet episodes observed (burden: 0.09%).

“Demonstrations (examples) are used for
" in-context learning during inference”

(b) Demonstration

N A
Input:
[Patient Data] (Table format: Metric | Value)

Response:
Findings:
* [LLM response about biostatistical information]

* [LLM response about VEB]
«  [LLM response about SVEB]

“Fine-tuning leverages cardiologist-
adjudicated texts following this template”
7\ (c) Response Template ————

Figure 4: The prompts used for Oypr (prompts for 61, and 6g,; are in Figure 8): (a) the instruction (or “system
prompt”) used for both fine-tuning and inference; (b) the demos used for ICL during inference; and (c) the LLM
response structure. During fine-tuning, (c) is filled with cardiologist-adjudicated texts, whereas during inference, (c)
retains the format presented above to specify the response format.

4.2 Instruction Fine-Tuning

Instruction fine-tuning embeds cardiologist-level
expertise from Z-BENCH into Oyzg, O12¢, and Og1.
We use Llama-3.2-3B as the base model for Oyyr
and 6,1, and LLaVA-7B for 01,r. Each model is
fine-tuned individually on relevant subsets of Z-
BENCH, tailored to its specific task. For example,
as shown in Figure 4, Oy, is fine-tuned using sys-
tem prompts as exemplified in (a) and cardiologist-
adjudicated texts in the format of (c), aligning with
its metric-to-findings task.

Let Opgent denote the trainable parameters of any
LLM agent, with X and Y representing the instruc-
tional input and expected response from Z-BENCH,
D. The fine-tuning process is formulated as:

ngent = arg min IE(X,Y)eDﬁ(eAgent (X),Y) @

Agent

The goal is to minimize the average of the summed
loss E(L(-,-)) given each pair of (X,Y") within
D. Specifically, when Ogent is Ouor, we have X =
(M,B)and Y = F. For b, X = (T,B) and
Y = F. Lastly, for 01, X = (F,G)and Y =Z.

4.3 Inference

As outlined Figure 3, ZODIAC’s inference involves
a multi-agent collaboration. First, Oy processes
patient metrics M and 6,F handles ECG tracings
T, together generating findings . These findings
are then interpreted by O,r as the diagnostic in-
terpretation (Z). Each agent leverages in-context
learning to enhance diagnostic accuracy, with fact-
checking applied afterward for self-correction.
In-Context Learning (ICL). For each fine-
tuned LLM agent, we implement ICL using a set
of demonstrations (or “demos”, as shown in Figure
4-(b)) containing cardiologist-adjudicated F and Z.
The content of each demo is tailored to the specific

Algorithm 1: Fact Checking
Input: F - originally generated findings;
T — originally generated interpretation;
G — cardiological guidelines;
Output: Updated F and Z;

1 foreach interpretation item v € 7 do

2 Extract correlated findings f; € F ;
3 while (f;, ) misaligned with G do
4 g < violated guidelines from G ;

/1 0 € {Owar, Oror}
5 0 < agent that generates f;;
6 Pf,Di < prompts about (f;,)’s
misalignment with g ;

7 Ji = 0(py); i* < Ora1(pi) 5

8 break after 3 iterations;

9 end

10 Update F,Z by f,i*;
11 end

12 return F,7;

agent. To ensure relevance to the target patient’s
case, we categorize patient data into subgroups as
shown in Figure 2. We then select three demos
from the training dataset that match the patient’s
group (age, gender, race, and arrhythmia) and inte-
grate them into the prompt for inference.

Fact-Checking. After 0,1 generates the inter-
pretation Z, ZODIAC applies cardiological guide-
lines G to verify whether the findings F correctly
support Z. As detailed in Algorithm 1, since F, Z,
and G are structured as itemized lists, each item
© € T is evaluated against its corresponding finding
fi € F to check for violations of G.

If discrepancies g € G are detected, ZODIAC
automatically prompts its agents with ( f;, ¢, g) for
regeneration, continuing until an aligned (f}*,7*)
set is produced or the maximum iteration (3 by



Z-BENCH: Finding (F)

Z-BENCH: Interpretation (7)

Model
P R F1 ToU BS P R F1 ToU BS

GPT-40 0.8032 0.8429 0.8226 0.6986 0.8112 0.7932 0.8561 0.8235 0.6999 0.8563
Gemini-Pro 0.7892 0.8604 0.8233 0.6996 0.8441 0.7625 0.8151 0.7879 0.6501 0.7925
Llama-3.2-90B 0.7415 0.8279 0.7823 0.6425 0.7785 0.6385 0.7684 0.6975 0.5355 0.8076
Mixtral-8x22B (+V) 0.8203 0.8765 0.8475 0.7353 0.8228 0.8125 0.8864 0.8478 0.7359 0.8247
DeepSeek-Janus-7B  0.6548 0.6221  0.6380 0.4685 0.7604 0.6109 0.7242 0.6627 0.4956 0.7785
LLaVA-13B 0.7356  0.7934 0.7634 0.6173 0.8025 0.7072 0.8169 0.7581 0.6104 0.8290
BioGPT-Large (+V) 0.2214 0.1206 0.1561 0.0847 0.5562 0.1275 0.0894 0.1051 0.0555 0.5168
Meditron-70B (+V)  0.6336  0.7127 0.6708 0.5047 0.7582 0.5782 0.6450 0.6098 0.4386 0.7864
Med42-70B (+V) 0.5209 0.4317 04721 0.3090 0.6337 0.4078 0.3710 0.3885 0.2411 0.5872
ZODIAC 0.9902 0.9710 09805 0.9618 0.8831 0.9442 0.9683 0.9561 0.9159 0.9012

Table 1: Results on Z-BENCH. P: precision, R: Recall, BS: BERT Score.

For text-based LLMs, we integrate

LLaVA-13B to process ECG, labeling as (+V). Boldface and Underline highlight the best and second-best results.

default) is reached. Due to space constraints, ex-
amples of G and further fact-checking details are
provided in Appendix D.

5 Experiments

5.1 Experimental Setting

Our experiments aim to address the following re-
search questions:

RQ1: How effective are LLMs on Z-BENCH?
RQ2: What are the influential factors to ZODIAC?
RQ3: Is ZODIAC generalizable to other datasets?
RQ4: Is ZoDIAC helpful for cardiologists?

Baseline. We evaluate three groups of base-
lines: (1) Industry-Leading LLMs: GPT-40, Gem-
ini, Llama-3.2, Mixtral, DeepSeek, and LLaVA.
(2) Clinical-Specialist LLMs: BioGPT-Large (Luo
et al., 2022), Meditron (Chen et al., 2023b), and
Med4?2 (Christophe et al., 2024), all derived from
Llama. (3) Ablations: This includes a single-agent
version of ZODIAC, a dual-agent variant, and an
ablated version of ZODIAC with key components
removed, as detailed in Section 5.3. For text-based
baselines (e.g., Mixtral and BioGPT), we integrate
the vision-capable LLLM, LLaVA-13B, to assist in
analyzing ECG tracings.

Dataset. We utilize two groups of datasets for
evaluation: (/) Z-BENCH: By default, we assess
1,500 patient records from Z-BENCH while using
the remaining data to fine-tune ZODIAC. Evaluat-
ing on Z-BENCH can test the varying proficiency of
LLMs in in-hospital cardiological diagnostics, as it
reflects real-world, representative, and cardiologist-
incorporated diagnostics (3.2). (2) Generalization
Assessment: To demonstrate ZODIAC’s capability
beyond Z-BENCH, we also evaluate it on PTB-XL.
(Wagner et al., 2020), MIMIC-IV-ECG (Gow et al.,
2023), and CODE (Ribeiro et al., 2020) (in 5.4).

Metrics. We separately evaluate findings (F)
and interpretation (Z) using the following metrics,
leveraging their itemized nature: (i) Precision— The
ratio of items in the generated F and Z that match
those in Z-BENCH. (ii) Recall- The ratio of items
in Z-BENCH that are successfully generated. (iii)
F1 Score— The harmonic mean of precision and
recall. (iv) loU (Intersection over Union)— Also
known as Jaccard similarity, measuring the overlap
between generated outputs and items in Z-BENCH.
(v) BERT Score— A text similarity measure using
BERT to compare the generated F and Z against
their corresponding items in Z-BENCH.

To assess precision and recall, we use GPT-01
for binary classification, labeling each item in F
and 7 as either "Matched" or "Not Matched".

5.2 Diagnostic Effectiveness (RQ1)

Table 1 presents evaluation results on Z-BENCH.
Notably, there is a significant performance gap be-
tween ZODIAC and other LLMs. For instance, ZO-
DIAC surpasses GPT-40 by approximately 19% in
precision for diagnosing findings and 15% in gen-
erating interpretations. Importantly, the 1,500 test
reports from Z-BENCH were never seen by ZO-
DIAC during development, and ZODIAC operates
with only 13B parameters (3B+7B+3B). This high-
lights the necessity of specialized customization
in redeveloping LLMs—particularly in life-critical
fields like healthcare—rather than relying solely on
general-purpose LLMs, despite their broad success
across multiple domains.

Interestingly, medical-specialist LLMs per-
formed worse than generic LLMs. While the
small scale of BioGPT-Large (1.5B parameters)
understandably limits its diagnostic capabilities, a
more critical issue is that the data used for fine-
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Figure 5: Examples of interpretation generated by ZODIAC, GPT-40, and Gemini-Pro.

Z-BENCH: Finding (F)

Z-BENCH: Interpretation (7)

Model
P R F1 IoU BS P R F1 IoU BS

Single Agent (T2F only) 0.8762 0.8671 0.8716 0.7725 0.8459 0.8292 0.8782 0.8530 0.7437 0.8341
Dual Agent (M2F<F2I) 0.8825 0.8741 0.8783 0.7830 0.8686 0.8758 0.9153 0.8951 0.8101 0.8849
Dual Agent (T2F<—M2F) 0.9362 0.9174 0.9267 0.8634 0.8589 0.9031 0.9527 0.9272 0.8643 0.8652
Dual Agent (T2F«+F2I)  0.9675 0.9481 0.9577 0.9188 0.8652 0.9122 0.9528 0.9321 0.8728 0.8467
w/o Fine-Tuning 0.7462 0.6859 0.7148 0.5562 0.7658 0.7069 0.7833 0.7431 0.5913 0.7496
w/o ICL 0.9636 09627 0.9631 0.9289 0.8816 0.9204 0.9450 0.9325 0.8736 0.8864
w/o Fact-Checking 0.9374 0.9317 0.9345 0.8771 0.8637 0.9078 0.9192 09135 0.8407 0.8872

Table 2: Ablation study results, where "Dual Agent" reuses one agent to perform another’s function. For example,
"M2F<+F2I" indicates the removal of 0,1, with Oy, performing its tasks.

tuning models like Meditron-70B appear to be mis-
aligned with real-world clinical practice. Even
when aided by in-context learning demos, these
specialist LLMs struggle to meet the specific re-
quirements and security demands of clinical tasks.
Case Study. Figure 5 compares the interpreta-
tions generated by ZODIAC, GPT-40, and Gemini.
ZODIAC produces concise, well-structured state-
ments that allow cardiologists to efficiently extract
key information. In contrast, other LLMs exhibit
several limitations: GPT-40 omits critical details
(e.g., missing the diagnostic headline), Gemini in-
troduces inaccuracies (e.g., erroneous numerical
summaries), and both models tend to generate re-
dundant wording, making their outputs harder for
cardiologists to rely on with confidence.

5.3 Ablation Study (RQ2)

We conduct an ablation study on two levels: (1)
reducing the number of agents and (2) removing
key components from ZODIAC.

Single and Dual-Agent. Table 2 examines the
impact of agentic design variations on ZODIAC ’s
performance, revealing clear limitations in diagnos-
tic accuracy. For example, removing 6,1 results in
an 11% decrease in F1 score for summarizing find-

ings. This suggests that a single LLM struggles to
effectively handle multiple diagnostic stages (e.g.,
both M2F and F2I), as each stage requires a distinct
focus—M?2F emphasizes information retrieval and
summarization, while F2I integrates cardiological
expertise. These results highlight the necessity of
a collaborative multi-agent approach to distribute
tasks efficiently and enhance diagnostic precision.

Ablative Component. Table 2 also presents
results from removing fine-tuning, ICL, and fact-
checking. Notably, fine-tuning has the most signifi-
cant impact on diagnostic performance, demonstrat-
ing its critical role in embedding domain expertise
directly into the LLMs’ parameters. Additionally,
ICL and fact-checking further refine the model’s
proficiency, emphasizing the importance of inte-
grating these techniques to enhance diagnostic ac-
curacy and reliability.

5.4 Generalization (RQ3)

While ZODIAC is developed on Z-BENCH, we eval-
uate its generalization capability using additional
ECG datasets: PTB-XL (Wagner et al., 2020) for
diagnosing 71 clinical statements, and MIMIC-IV-
ECG (Gow et al., 2023) and CODE (Ribeiro et al.,
2020) for identifying arrhythmia types. For each
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Figure 6: Diagnostic accuracy in the generalization evaluation using three additional ECG datasets.

'Val Metric Rubric (Items in F and Z should ...)

Accuracy (ACC) have correct statements, aligning with G.
Completeness (CPL)  contain complete items from patient data.
Accessibility (ACS) be brief and easy-to-follow the key info.

Professionalism (PRO) use professional wording or abbreviations.

Table 3: Human validation metrics and descriptions of
ideal cases. Each metric is rated on a scale from 1 to
5, where: 1 — Not at all; 2 — Below acceptable; 3 —
Acceptable; 4 — Above acceptable; 5 — Excellent.

dataset, we utilize the provided ECG signals as
tracings (7°) and incorporate available patient in-
formation as metrics (M). Notably, the amount of
M in these datasets is significantly lower than in
Z-BENCH, which includes over 270 metrics.

Figure 6 presents diagnostic accuracy across
these datasets, where we compare ZODIAC against
the best medical-specialist agent (Meditron-70B)
and the top three industry-leading LLMs (GPT-4o,
Gemini-Pro, and Mixtral) from Table 1. We further
evaluate two inference settings: (1) 0-shot (using
only the patient’s 7 and M as instructions) and (2)
5-shot (incorporating five demonstrations from pa-
tients). Notably, even in the 0-shot setting, ZODIAC
achieves strong accuracy (>80%), surpassing other
baselines. Incorporating 5-shot demonstrations fur-
ther enhances its performance, highlighting Zo-
DIAC ’s adaptability for in-hospital applications.
This demonstrates that ZODIAC can be easily cus-
tomized with task-specific demonstrations to meet
organizational needs.

5.5 Human Validation (RQ4)

Involving human experts in validation is essential
for enhancing the credibility and acceptance of ad-
vanced techniques (Tierney et al., 2024; Sallam
et al., 2024). To this end, we engaged five cardiol-
ogists to evaluate ZODIAC using four metrics, as
detailed in Table 3. To streamline the assessment
process, we developed a structured questionnaire
that begins with patient data, followed by gener-
ated findings and interpretations, and concludes

Human Val Metric

Model

ACC CPL ACS PRO
GPT-4o0 3.7 (£1.1) 4.1(£1.1) 40(£1.0) 3.2(+1.4)
Gemini-Pro 3.7 (x1.1) 4.1(£1.1) 3.9(£1.0) 2.8 (+1.7)
Mixtral +(V) 3.6 (£1.0) 4.2 (£1.0) 4.1 (£0.7) 3.1 (£1.2)

Meditron +(V) 3.3 (£1.1) 3.3 (£1.2) 3.6 (£1.1) 2.3 (£1.2)
47 (£0.2) 4.8(0.1) 4.7 (£0.4) 4.6 (£0.3)

ZODIAC

Table 4: LLM diagnostic performance across human
validation metrics. Each cell presents “mean (+std)”
among ratings from all cardiologists across all test data
(same as Table 1). Boldface highlight the best results.

with rating options on a 1-5 scale. Notably, we
anonymized the model names to prevent cardi-
ologists from assigning biased scores based on
their familiarity with or perceived reputation of
specific models.

As baselines, we include the same choice of best
subset as in Section 5.4. The results show that Zo-
DIAC not only achieves the highest performance
across all human validation but also delivers more
stable diagnostics, as evidenced by its lower stan-
dard deviation (e.g., £0.1 CPL). These findings
underscore the importance of incorporating refined
technical strategies to improve consensus among
cardiologists and enhance real-world applicability.

6 Conclusion

We introduce Z-BENCH, a cardiologist-adjudicated
dataset comprising real-world, representative pa-
tient reports. Additionally, we develop ZODIAC,
an LLM-powered multi-agent framework designed
to achieve cardiologist-level diagnostics. Together,
Z-BENCH and ZODIAC bridge the gap between
clinicians and LLMs in cardiology. Through clin-
ical validation, we demonstrate that ZODIAC out-
performs other LLMs while exhibiting strong gen-
eralizability and practical utility. In conclusion,
ZODIAC marks a significant step toward develop-
ing clinically viable LLM-based diagnostic tools.



Limitations

Data Scale. Clinical benchmarks are typically
extensive, as exemplified by PTB-XL (Wagner
et al., 2020), which contains approximately 19K
patient records. While we have demonstrated that
Z-BENCH is sufficient for developing cardiologist-
level agents and conducting robust clinical evalu-
ations, expanding the dataset remains a key long-
term objective. As we establish collaborations with
more institutions, we aim to continuously enrich
Z-BENCH with diverse, high-quality clinical data,
further enhancing its representativeness and utility
in real-world cardiological diagnostics.

Development with Trustworthiness. As em-
phasized by FDA’s guiding principles (FDA, 2024),
securing the development and deployment of LLMs
is as important as achieving functional effective-
ness. While our current evaluation addresses pro-
fessionalism, the next phase will prioritize further
development of security measures to enhance trust.
This will involve investigating third-party adversar-
ial influences in data, identifying inherent weak-
nesses in LLMs that could lead to vulnerabilities
(e.g., backdoors), proposing defensive strategies
to safeguard ZODIAC in life-critical diagnostic ap-
plications, and promoting transparency to foster
human understanding and effective collaboration
in human-machine intelligence.
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A A Real-world Cardiological Report

Figure 7 presents a real-world report on patient data
and diagnostics (including findings and interpreta-
tion), with identifying information (such as patient
name, date of birth, physician name, and company
name) anonymized. The report layout is identical
to that shown in Figure 3.

B Additional Prompts

Corresponding to Figure 4-(a)(b)(c), we provide
the prompts used for agents fr,¢ and Og,1 in Figure
8.

C Details about Arrhythmia Classes

In this work, we categorize arrhythmias into three
subgroups:

Class I — Normal Arrhythmias: Also known
as benign or physiological arrhythmias, these irreg-
ular heart rhythms can occur in healthy individuals
and typically do not lead to serious health issues.
They are generally considered harmless and may
not require treatment. In our patient data, Class
I arrhythmias include Sinus Bradycardia, Sinus
Tachycardia, and Sinus Arrhythmia.

Class II — Clinically Significant Arrhyth-
mias: These arrhythmias involve abnormal heart
rhythms that can cause symptoms, lead to com-
plications, or require medical intervention. They
may disrupt the heart’s ability to pump blood ef-
fectively, increasing the risk of serious events such
as stroke, heart failure, or sudden cardiac death.
In our patient data, Class II arrhythmias include
Pause (<3s), Ventricular Premature Beat (PVC),
and Atrial Fibrillation (AF).

Class III — Life-Threatening Arrhythmias:
These abnormal heart rhythms can result in severe
consequences, such as cardiac arrest, stroke, or
sudden cardiac death, requiring immediate medical
attention and often emergency intervention. In our
patient data, Class III arrhythmias include Ventric-
ular Flutter (VF), Complete Heart Block (Third-
Degree AV Block), Atrial Fibrillation (AFib) with
Rapid Ventricular Response, Prolonged Pause,
Atrial Flutter (AFL), Ventricular Tachycardia (VT),
and Supraventricular Tachycardia (SVT).

In our experiments, we use these arrhythmia
classes (I, II, III) for subgroup analysis rather than
specific arrhythmias to avoid the limitations of
small patient sample sizes for individual conditions.
Subgroup analysis based on arrhythmia classes pro-
vides a comprehensive view of the LLMs’ diagnos-
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Figure 7: A real-world cardiological report, with identify-related information anonymized.

tic capabilities across different levels of urgency,
offering valuable insights for data collection and
performance improvement toward more balanced

diagnostics.
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D Fact Checking Using Clinical Guideline

Clinical guidelines are systematically developed
statements designed to assist healthcare providers
and patients in making decisions about appropri-
ate health care for specific clinical circumstances.



Task: Cardiological Diagnostics from Patient Data

As a cardiologist, your role is to extract clinically relevant findings from a patient's data. Follow these
instructions:

Input Format:

You will be given electrocardiograph (ECG or EKG) in image format with the patient information as

Draft Findings:

Based on the identified key characteristics, create a detailed, itemized list of findings that include the
following components:

Task: Cardiological Diagnostics from Patient Data

As a cardiologist, your role is to draft diagnostic interpretation based on clinical findings from a patient's
data. Follow these instructions:

Input Format:

You will be given a list of clinical findings containing following items:
PR Interval: how many milliseconds, ......
Draft Interpretation:

Based on the clinical findings, create a detailed, itemized list of interpretation that include the following

Findings:

PR Interval: 210 milliseconds. The PR interval is slightly prolonged, ......
QT Interval: 400 milliseconds. The QT interval is within normal limits for the patient's heart rate

components:
PR Interval: how many milliseconds, with further Diagnostics and Interpretation of PR Interval P AF/AFL ......
QT Interval: how many milliseconds, with further Diagnostics and Interpretation of QT Interval VEB......
P-wave: present or not, and explain the reasons. If present, what's the indication | | """
—— i i —
(a) Instructions for T2F Agent 7N (d) Instructions for F2I Agent
e N\ N
Example 1: Example 1:
Input: ...... (patient ECG with descriptive information) Input: ......(list of itemized findings)

Interpretation:

Monitoring started on 2024-Jul-11 at 10:49 and continued for 2 days and 23 hours.

AF/AFL: AF/AFL was present(98.9%). The Longest episode was 18:49:30, Day 1/ 16:53:30 and
the Fastest episode was 163 bpm, Day 2 / 00:32:27.

VEB: 2603 isolated (1.95% burden), 58 couplets, 4 bigeminy, 2 trigeminy episodes.

[Patient ECG] (Patient ECG with descriptive information)

Response:

Findings:
[LLM response about PR Interval]
[LLM response about QT Interval]
[LLM response about P-wave]

Example 2: Example 2:
Example 3: ... Example 3: ...
“————— (b) Demonstrations for T2F Agent 7~ (e) Demonstrations for F2I Agent —8
' ~\ ' ~\
Input: Input:

[Findings] (list of itemized findings)

Response:
Interpretation:

[LLM response about AF/AFL]
[LLM response about VEB]

“—————— (c) LLM Response Template for T2F Agent d

(f) LLM Response Template for F2I Agent ——————

Figure 8: Prompts used for 01,F and 6g,1: (a)(d) — instructions or “system prompt”; (b)(e) —demonstrations used
during in-context learning; (c)(f) — LLM response template.

These guidelines are based on the best available
evidence and aim to standardize care, improve the
quality of treatment, and ensure patient safety. For
example, a section of clinical guidelines about PR
Interval is provided in Figure 9.

Fact-Checking using Guidelines. We perform
fact-checking by enumerating every itemized find-
ing and corresponding interpretation to identify
any misalignment with established guidelines. For
example, if the PR interval exceeds 200 millisec-
onds, the interpretation should include a diagnosis
of “a prolonged PR interval, which may indicate a
first-degree AV block or the potential for a more ad-
vanced block”. Failure to include such a diagnosis
would signal an inaccurate assessment by ZODIAC.
In response, we prompt the relevant LLM agents
(612F and 0,1 in this case) to re-examine the pa-
tient data, verify the accuracy of the findings, and
update the interpretation accordingly.

E Experimental Configurations

We conducted our experiments using a set of
NVIDIA RTX A6000 ADA GPUs, each equipped
with 48GB of memory and running CUDA ver-
sion 12.3. Table 5 provides a detailed overview
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of the default hyper-parameters and experimental
settings.

Moreover, our experiments use a fixed set of
hyperparameters as commonly used among other
works (Qi et al., 2023; Yang et al., 2023) without
hyperparameter search.

Models and Fine-Tuning (Customization)

Training Data (& Statistics) | Z-BENCH (3,907 samples)
Z-BENCH (1,500 samples)
.. PTB-XL (2,000 samples)
Test Data (& Statistics) | iy 1o [v_ECG (2,000 samples)
CODE (2,000 samples)
Llama-3.2-3B (x2)
LLMS |1 L ava-7B
Max sequence length | 2,048 (Train); 4,096 (Test)
Batch size | 16
Training epochs | 50
Learning rate | le-5
Optimizer | AdamW
Fine-Tuning Method | LoORA
GPU Hours | 1.62
Temperature: 1.0
Inference top-p 0.95

Table 5: Implementation and evaluation details of ZO-
DIAC.



PR Interval:

1. Definition of PR Interval

The PR interval measures the period from the onset of atrial dep ization (beginning of the P wave) to the onset of ventricular
ization (beginning of the QRS complex). It reflects the time taken for the electrical impulse to travel from the sinus node through the
atria, AV node, His bundle, bundle branches, and Purkinje fibers to reach the ventricular myocardium.

d

2. Range
o Normal: 120-200 milliseconds
© Prolonged: >200 milliseconds, indicating first-degree AV block
© Shortened: <120 milliseconds, may suggest pre-excitation syndromes like Wolff-Parkinson-White syndrome

3. Clinical Relevance
© Normal PR Interval
o Finding: PR interval within 120-200 milliseconds.

o Interpretation: Indicates normal atrioventricular (AV) conduction. The electrical signal travels from the atria to the ventricles
through the AV node and His-Purkinje system within the expected time frame, suggesting healthy cardiac electrical function.

® Prolonged PR Interval
o Finding: PR interval longer than 200 milliseconds.
o Interpretation:

= First-Degree AV Block: The prolongation is uniform across all heartbeats. This is often benign but can be associated with
increased vagal tone, intrinsic AV nodal disease, or effects of certain medications (like beta-blockers, calcium channel blockers, or digoxin).

= Higher degree AV block predisposition: Indicates potential for progression to higher degree AV block, especially in the
setting of structural heart disease or acute myocardial infarction.

© Short PR Interval
o Finding: PR interval less than 120 milliseconds.
o Interpretation:

= Pre-excitation Syndromes: Such as Wolff-Parkinson-White (WPW) syndrome where there is an accessory pathway (like the
bundle of Kent) allowing premature ventricular activation.

= Junctional Rhythms: If associated with an abnormal P wave morphology or positioning, may indicate that the impulse
originates near or within the AV node rather than the atria.

e Variable PR Interval
o Finding: Fluctuating PR intervals across different heartbeats.
o Interpretation:

= Second-Degree AV Block Type I (Wenckebach): Progressive lengthening of the PR interval until a P wave is not followed by
a QRS complex.

= Atrial Fibrillation with Variable Conduction: If associated with an irregularly irregular rhythm, indicates atrial fibrillation
where AV nodal conduction is unpredictably variable.

o PR Interval with Grouped Beating
o Finding: Groups of beats with a consistent PR interval followed by a longer pause.
o Interpretation:

= Second-Degree AV Block Type II: Typically associated with fixed PR intervals on conducted beats, interspersed with non-
conducted P waves without prior change in the PR duration.

= Mobitz Type II or Advanced Block: Often a precursor to complete heart block, requiring immediate assessment and
potentially pacing intervention.

o Alternating PR Interval
o Finding: Alternation in the length of the PR interval from beat to beat.
o Interpretation:
= Electrophysiological Variability: May be due to alternating dominance of different AV nodal pathways, a rare phenomenon
or related to autonomic tone fluctuations.
= Underlying Heart Disease: Consider evaluation for ischemic heart disease or infiltrative cardiac conditions that may
intermittently affect AV nodal conduction.

Figure 9: Part of clinical guidelines.

F Responsible Checklist F.1 Potential Risks

This work address the LLM-as-Agent contribution
on cardiological domain. Even though the research
This section elaborates on the checklist for ARR  lies on healthcare, which is life-sensitive, our con-
submission: tributed benchmark and agent help to advance the
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LLM development in this domain. Moreover, this
work doesn’t introduce any harmful or sensitive
message, so the contributed benchmark and model
are safe to use in research and development pur-
pose.

As to the data, we de-identified all patient data
before releasing. So no identifiable message could
be recognized. Thus we protect potential privacy
leakage.

F.2 Use of Artifacts

This work utilizes public LLMs and datasets.

Model Licenses. The licenses for the LLMs
used in this work vary depending on the model.
Llama-3.2-3B follows the "Llama 3" license, which
permits public use of its open-source model in ac-
cordance with Llama’s user policy (Meta Platforms,
2024). LLaVA-7B is released under the Apache
2.0 license (Foundation, 2004), which allows free
model download, modification, distribution, and
even commercialization.

Data and Other Licenses. The datasets em-
ployed in this study are sourced from public
GitHub repositories and our IRB-approved data.
The use of public data adhere to the MIT license
(of Technology, 1988). This license permits free
use, modification, and distribution of the data and
code made available in these repositories. Our con-
tributed benchmark is with IRB: No. Pro00065572.

Artifact Use Consistent With Intended Use.
Given the permissions granted by the model, data,
and other licenses involved in this work, our de-
velopment aligns with the intended use of these
artifacts, ensuring compliance with their original
licensing terms.

Offensive Content. There is no offensive con-
tent in this paper.

Personally Identifiable Information. This
work does not involve any personally identifiable
information. All used data is de-identified.

F.3 Descriptive Statistics

‘We have elaborated on the statistics of metrics in (1)
Section 5.1 regarding the descriptions of metrics
and (2) Section 5.5 regarding additional descrip-
tions of evaluation metrics (mean and std).

F.4 Use of Packages

Our evaluations largely rely on Hugging
Face TRANSFORMER packages and TORCH,
other packages are regular Python li-
braries such as NUMPY and MATPLOTLIB,

which can be seen at our released codes:
https://anonymous.4open.science/r/Zbench-
Zodiac-8A2A

F.5 Use of AI

This work primarily uses Al as an evaluator to com-
pute whether two items are match and BERT score.
This approach aligns with prior studies (Eapen and
Adhithyan, 2023; Qi et al., 2023; Yang et al., 2023;
Chen et al., 2021).

F.6 Instructions Given to Participants

Introduction Thank you for participating in this
study. Your expertise as a cardiologist is crucial
in annotating clinical reports and evaluating the
performance of our Al-based model. These instruc-
tions will guide you through the annotation and
evaluation process.

Objective The goal of this task is to:

1. Annotate clinical reports by writing structured
findings and interpretation.

2. Evaluate the performance of an Al model by
comparing its generated reports against expert
annotations.

Annotation Guidelines Each clinical report will
be provided with raw data, including imaging re-
sults, ECG readings, and physician notes. Your
task is to:

1. Findings: Summarize the key observations in
a structured manner.

2. Interpretation: Provide a concise clinical in-
terpretation of the findings.

Formatting Rules

* Use complete sentences and precise medical
terminology.

* Follow a structured format for each report.

* Avoid subjective language; remain clinically
objective.

Model Performance Evaluation You will be
provided with Al-generated reports alongside your
annotated reports. Please evaluate the Al output
using the following criteria:

Evaluation Criteria

1. Accuracy: How well the Al-generated find-
ings and interpretation match expert observa-
tions and align with guidelines.



2. Completeness: Whether the Al-generated
findings and interpretation obtain comprehen-
sive information from patient’s report.

3. Accessibility: Whether Al maintains brief
statements across reports, with highlighted in-
formation easy to be caught by cardiologists.

Professionalism: Whether Al use profes-
sional wording and jarjons among experts.

Scoring System For each criterion, use the fol-
lowing rating scale:

* 1 -Notatall

* 2 - Below acceptable

* 3 - Acceptable

* 4 - Above acceptable

* 5 - Excellent
Submission Instructions

* Submit your annotations and evaluations via
the provided portal.

* Use the provided spreadsheet template for
scoring.

* Ensure all reports are reviewed within the
given timeframe.

Confidentiality and Ethical Considerations
* Maintain patient confidentiality at all times.

* Do not share data outside the scope of this
study.

* Follow HIPAA and institutional guidelines for
handling clinical information.

F.7 Payment Policy

There is no payment assigned to our collaborative
cardiologists.

F.8 Discussion on Consent and Ethical
Considerations (IRB Protocol No.
Pro00065572)

This study is conducted under the ethical over-
sight of the Institutional Review Board (IRB)
at "Anonymized Name" under Protocol No.
Pro00065572. The research involves the use of
multi-modal clinical data, including cardiological
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diagnostic reports, for benchmarking in an LLM-as-
Agent framework. Given the sensitivity of clinical
data, the study strictly adheres to regulatory and
ethical guidelines for data handling, consent, and
privacy protection.

The dataset used in this study originates from
"Anonymized Collaborative Institutions”. The data
includes structured and unstructured cardiological
diagnostic reports, imaging results, and correspond-
ing clinical notes. If the dataset is publicly avail-
able, it has been previously de-identified and made
accessible for research use, eliminating the need for
direct patient consent. If institutionally collected,
the data was obtained through "Anonymized Col-
laborative Institutions", following IRB-approved
data access protocols.

To ensure privacy protection, all personally iden-
tifiable information (PII) has been removed or
anonymized before data processing. Anonymiza-
tion steps include removing patient names, med-
ical record numbers, and geographic identifiers,
de-identifying text-based clinical reports using au-
tomated and manual review methods, and encrypt-
ing and restricting access to dataset files, allowing
only approved personnel to interact with the data.
The research follows HIPAA and GDPR compli-
ance standards to prevent re-identification risks and
ensure data security.

This dataset is used strictly for benchmarking
multi-modal cardiological diagnostics and will not
be re-shared outside the scope of the IRB-approved
study. Any further data use beyond the LLM-as-
Agent benchmarking framework would require ad-
ditional IRB review and approval.

This study aligns with ethical principles outlined
in the Belmont Report, ensuring respect for per-
sons, beneficence, and justice. The IRB approval
under Protocol Pro00065572 ensures compliance
with institutional and federal regulations, including
the Common Rule (45 CFR 46) for human sub-
ject research, the Health Insurance Portability and
Accountability Act (HIPAA) for medical data pri-
vacy, and the General Data Protection Regulation
(GDPR) for data processing involving European
patients (if applicable).
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