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ABSTRACT

We develop a sparse optimization problem for the determination of the total set
of features that discriminate two or more classes. This is a sparse implementa-
tion of the centroid-encoder for nonlinear data reduction and visualization called
Sparse Centroid-Encoder (SCE). We also provide an iterative feature selection al-
gorithm that first ranks each feature by its occurrence, and the optimal number of
features is chosen using a validation set. The algorithm is applied to a wide vari-
ety of data sets including, single-cell biological data, high dimensional infectious
disease data, hyperspectral data, image data, and GIS data. We compared our
method to various state-of-the-art feature selection techniques, including three
neural network-based models (DFS, SG-L1-NN, G-L1-NN), Sparse SVM, and
Random Forest. We empirically showed that SCE features produced better classi-
fication accuracy on the unseen test data, often with fewer features.

1 INTRODUCTION

Technological advancement has made high-dimensional data readily available. For example, in
bioinformatics, the researchers seek to understand the gene expression level with microarray or
next-generation sequencing techniques where each point consists of over 50,000 measurements
(Pease et al. (1994); Shalon et al. (1996); Metzker (2010); Reuter et al. (2015)). The abundance
of features demands the development of feature selection algorithms to improve a Machine Learn-
ing task, e.g., classification. Another important aspect of feature selection is knowledge discovery
from data. Which biomarkers are important to characterize a biological process, e.g., the immune
response to infection by respiratory viruses such as influenza (O’Hara et al. (2013))? Additional ben-
efits of feature selection include improved visualization and understanding of data, reducing storage
requirements, and faster algorithm training times.

Feature selection can be accomplished in various ways that can be broadly categorized into the
filter, wrapper, and embedded methods. In a filter method, each variable is ordered based on a
score. After that, a threshold is used to select the relevant features (Lazar et al. (2012)). Variables
are usually ranked using correlation (Guyon & Elisseeff (2003); Yu & Liu (2003)), and mutual
information (Vergara & Estévez (2014); Fleuret (2004)). In contrast, a wrapper method uses a model
and determines the importance of a feature or a group of features by the generalization performance
of the predetermined model (El Aboudi & Benhlima (2016); Hsu et al. (2002)). Since evaluating
every possible combination of features becomes an NP-hard problem, heuristics are used to find
a subset of features. Wrapper methods are computationally intensive for larger data sets, in which
case search techniques like Genetic Algorithm (GA) (Goldberg & Holland (1988)) or Particle Swarm
Optimization (PSO) (Kennedy & Eberhart (1995)) are used. In embedded methods, feature selection
criteria are incorporated within the model, i.e., the variables are picked during the training process
(Lal et al. (2006)). Iterative Feature Removal (IFR) uses the absolute weight of a Sparse SVM model
as a criterion to extract features from the high dimensional biological data set (O’Hara et al. (2013)).

This paper proposes a new embedded variable selection approach called Sparse Centroid-Encoder
(SCE) to extract features when class labels are available. Our method extends the Centroid-Encoder
model (Ghosh et al. (2018); Ghosh & Kirby (2020)), where we applied a l1 penalty to a sparsity pro-
moting layer between the input and the first hidden layer. We evaluate this Sparse Centroid-Encoder
on diverse data sets and show that the selected features produce better generalization than other
state-of-the-art techniques. Our results showed that SCE picked fewer features to obtain high clas-
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sification accuracy. As a feature selection tool, SCE uses a single model for the multi-class problem
without the need to create multiple one-against-one binary models typical of linear methods, e.g.,
Lasso (Tibshirani (1996)), or Sparse SVM (Chepushtanova et al. (2014)). Although SCE can be
used both in binary and multi-class problems, we focused on the multi-class feature selection prob-
lem in this paper. The work of Li et al. (2016) also uses a similar sparse layer between the input and
the first hidden with an Elastic net penalty while minimizing the classification error with a softmax
layer. The authors used Theano’s symbolic differentiation (Bergstra et al. (2010)) to impose sparsity.
In contrast, our approach minimizes the centroid-encoder loss with an explicit differentiation of the
l1 function using the sub-gradient.

The article is organized as follows: In Section 2 we present the Sparse Centroid-Encoder algorithm.
In Section 3 we apply SCE to a range of bench-marking data sets taken from the literature. In
Section 4, we review related work, for both linear and non-linear feature selection. In Section 5, we
present our discussion and conclusion.

2 SPARSE CENTROID-ENCODER

Centroid-encoder (CE) neural networks are the starting point of our approach (Ghosh & Kirby
(2020); Ghosh et al. (2018); Aminian et al. (2021)). We present a brief overview of CEs and demon-
strate how they can be extended to perform non-linear feature selection.

2.1 CENTROID-ENCODER

The CE neural network is a variation of an autoencoder and can be used for both visualization
and classification tasks. Consider a data set with N samples and M classes. The classes denoted
Cj , j = 1, . . . ,M where the indices of the data associated with class Cj are denoted Ij . We define
centroid of each class as cj = 1

|Cj |
∑

i∈Ij
xi where |Cj | is the cardinality of class Cj . Unlike

autoencoder, which maps each point xi to itself, the CE maps each point xi to its class centroid cj
by minimizing the following cost function over the parameter set θ:

Lce(θ) =
1

2N

M∑
j=1

∑
i∈Ij

‖cj − f(xi; θ))‖22 (1)

The mapping f is composed of a dimension reducing mapping g (encoder) followed by a dimension
increasing reconstruction mapping h (decoder). The output of the encoder is used as a supervised
visualization tool (Ghosh & Kirby (2020); Ghosh et al. (2018)), and attaching another layer to map
to the one-hot encoded labels performs robust classification (Aminian et al. (2021)).

2.2 SPARSE CENTROID-ENCODER FOR FEATURE SELECTION

The Sparse Centroid-encoder (SCE) is a modification to the centroid-encoder architecture as shown
in Figure 1. Unlike centroid-encoder, we haven’t used a bottleneck architecture as visualization is
not our aim here. The input layer is connected to the first hidden layer via the sparsity promoting
layer (SPL). Each node of the input layer has a weighted one-to-one connection to each node of the
SPL. The number of nodes in these two layer are the same. The nodes in SPL don’t have any bias
or non-linearity. The SPL is fully connected to the first hidden layer, therefore the weighted input
from the SPL will be passed to the hidden layer in the same way that of a standard feed forward
network. During training, a l1 penalty will be applied to the weights connecting the input layer and
SPL layer. The sparsity promoting l1 penalty will drive most of the weights to near zero and the
corresponding input nodes/features can be discarded. Therefore, the purpose of the SPL is to select
important features from the original input. Note we only apply the l1 penalty to the parameters of
the SPL.

Denote θspl to be the parameters (weights) of the SPL and θ to be the parameters of the rest of the
network. The cost function of sparse centroid-encoder is given by

Lsce(θ) =
1

2N

M∑
j=1

∑
i∈Ij

‖cj − f(xi; θ))‖22 + λ‖θspl‖1 (2)
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Figure 1: The architecture of sparse centroid-encoder. This is similar to that of a centroid-encoder
except the sparse layer in-between the input layer and first hidden layer. Unlike centroid-encoder,
the SCE doesn’t use a bottleneck architecture.

where λ is the hyper-parameter which controls the sparsity. A larger value of λ will promote higher
sparsity resulting more near-zero weights in SPL. In other words, λ is a knob that controls the
number of features selected from the input data.

Like centroid-encoder, we trained sparse centroid-encoder using error backpropagation, which re-
quires the gradient of the cost function of Equation 2. As l1 function is not differentiable at 0, we
implement this term using the sub-gradient.

2.3 ITERATIVE FEATURE SELECTION USING SPARSE CENTROID-ENCODER

By design, sparse methods identify a small number of features that accomplish a classification task.
If one is interested in all the discriminatory features that can be used to separate multiple classes,
then one can repeat the process of removing good features. This section describes how sparse
centroid-encoder (SCE) can be used iteratively to extract all discriminatory features from a data set;
see O’Hara et al. (2013) for an application of this approach to sparse support vector machines.

SCE is a model based on neural network architecture; hence, it’s a non-convex optimization. As a
result, multiple runs will produce different solutions, i.e., different feature sets on the same training
set. These features may not be optimal given an unseen test set. To find out the robust features
from a training set, we resort to frequency-based feature pruning. In this strategy, first, we divide
the entire training set into k folds. On each of these folds, we ran the SCE and picked the top N
(user select) number of features. We repeat the process T times to get k × T feature sets. Then we
count the number of occurrences of each feature and call this number the frequency of a feature.
We ordered the features based on the frequency and picked the optimum number from a validation
set. We present the feature selection steps in Algorithm 1. In Figure 2, we plotted the magnitude of
the feature weights for MNIST and GSE73072 in descending order to show the ability to promote
sparsity of SCE. In both cases, the model ignored many features by setting their weight to near zero.

3 EXPERIMENTAL RESULTS

Here we present a range of comparative benchmarking experiments on a variety of data sets and
feature selection models. We used five disparate data sets including single-cell data (GM12878),
high dimensional infectious disease data set (GSE73072), vision letter data (MNIST), hyperspectral
imagery (Indian Pines), and GIS data (Forest Cover).

3.1 EXPERIMENTAL DETAILS

We did bench-marking experiments to compare the sparse centroid-encoder with other state-of-the-
art feature selection methods. To make the evaluation objective, we compared the classification
accuracy on the unseen data using the selected features of different models. All experiments share
the following workflow:
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Algorithm 1: Iterative Feature Selection using Sparse Centroid-Encoder.

Input: Labeled data (D) = {xi}Ni=1, xi ∈ Rp. User defined parameters: penalty term λ, no. of
partitions k of training set, max. no. of features from each training fold N , repetition T .

Initialization: Partition D into training (Tr) and validation set (V). Feature set F := ∅
Output: f discriminatory features from D where f < p.
Step 1: Partition Tr into stratified k−fold Tr1, T r2, ..., T rk.
Step 2: For each Tri do
Step 3: Initialize a temporary list Ftemp := ∅
Step 4: Run SCE to get WSPL := SCE(Tri, λ)
Step 5: Sort WSPL on the magnitude of each wi in descending order
Step 6: Pick the top n features corresponding to the largest wi from ordered WSPL using

the Elbow Method
Step 7: Insert the n features in Ftemp

Step 8: If cardinality of Ftemp > N
Step 9: Insert the features in Ftemp to F . Go to Step 2
Step 10: else
Step 11: Remove the n features from Tri and go to Step 4
Step 12: Repeat Step 1 to 11 for T times.
Step 13: Calculate the no. of occurrences (r) of each feature in F . Rank the features in

descending order of r.
Step 14: Using a classifier pick the top f features from ordered set F which gave the highest

accuracy on the validation set.

(a) Sparsity Plot for MNIST. (b) Sparsity Plot of GSE73072

Figure 2: Sparsity plot of the weight of WSPL shown for MNIST (a) and GSE73072 (b). The l1
penalty sets the weight of most of the features to near zero and those features were ignored. The
Elbow method picked 113 and 117 features from the two data sets. The red dot indicates the location
of the elbow.

• SCE is used to select an optimal number of features on the training samples. The l1 penalty
parameter λ = 0.01 for all experiments save for MNIST where λ = 0.001.

• Build K classification models with these features on the training set. We used centroid-
encoder as the classification model (Aminian et al. (2021)).

• Compute the accuracy on the sequestered test set using theK trained models and report the
mean accuracy with standard deviation.

3.2 QUANTITATIVE AND QUALITATIVE ANALYSIS

Now we present the results from a comprehensive analysis across five data sets.
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3.2.1 SINGLE CELL DATA

GM12878 is a single cell data set that has been previously used to test multiclass feature selec-
tion algorithms (Li et al. (2016)). The samples were collected from the annotated DNA region of
lymphoblastoid cell line. Each sample is represented by a 93 dimensional features sampled from
three classes: active enhancer (AE), active promoter (AP) and background (BG) where each class
contains 2, 156 number of samples. The data set is split equally into a separate training, validation
and test sets. We used the validation set to tune hyper-parameters and to pick the optimal number
of features. After the feature selection step, we merged the training and validation set and trained
K = 10 centroid-encoder classifiers with the selected features, and reported classification accuracy
on the test set.

We use the published results for deep feature selection (DFS), shallow feature selection, LASSO,
and Random Forest (RF) from the work of Li et al. to evaluate SCE as shown in Table 1. To compare
with Li et al., we used the top 16 features to report the mean accuracy of the test samples. We also
report the test accuracy using the top 48 features picked from the validation set, this was the best
result in our experiment. When restricted to the top 16, we see that the SCE features still outperform
all the other models.

Feature Selection Method No. of Features Accuracy
Sparse Centroid-encoder 48 89.40± 0.24
Sparse Centroid-encoder 16 88.33± 0.13

Deep DFS 16 85.67
Shallow DFS 16 85.34

LASSO 16 81.86
Random Forest 16 88.21

Table 1: Classification accuracies using the top 16 features by various techniques. Results of Deep
DFS, Shallow DFS, LASSO, and Random Forest are reported from Li et al. (2016). We present
accuracy with the top 48 features which were selected from a validation set.

Among all the models, LASSO features exhibit the worst performance with an accuracy of 81.86%.
This relatively low accuracy is not surprising, given LASSO is a linear model.

The classification performance gives a quantitative measure that doesn’t reveal the biological sig-
nificance of the selected genes. We did a literature survey of the top genes selected by sparse
centroid-encoder and provided the detailed description in the appendix. Some of these genes play
an essential role in transcriptional activation, e.g., H4K20ME1 (Barski et al. (2007)), TAF1 (Wang
et al. (2014)), H3K27ME3 (Cai et al. (2021)), etc. Gene H3K27AC (Creyghton et al. (2010)) plays
a vital role in separating active enhances from inactive ones. Besides that, many of these genes are
related to the proliferation of the lymphoblastoid cancer cells, e.g., POL2 (Yamada et al. (2013)),
NRSF/REST (Kreisler et al. (2010)), GCN5 (Yin et al. (2015)), PML (Salomoni & Pandolfi (2002)),
etc. This survey confirms the biological significance of the selected genes.

3.2.2 MNIST AND FOREST COVER

In this section we compare SCE with the feature selection results presented in Scardapane et al.
(2017) on MNIST and Forest Cover data. Forest Cover is a data set of seven forest cover types
(e.g. ponderosa pine) where each sample is represented by a vector of 54 elements which were
extracted from cartographic data. There are about half million samples. The data is available in UCI
repository. MNIST This is a widely used collection of digital images of handwritten digits (0..9)1

with separate training (60,000 samples) and test set (10,000 samples). Each sample is a grey level
image consisting of 1-byte pixels normalized to fit into a 28 x 28 bounding box resulting in vecced
points in R784. Following Scardapane et al. (2017), each data set was randomly partitioned into a
training and test set with a ratio of 75:25. We used 20% of the training sample as a validation set to
select the optimum number of features and hyper-parameters. After the feature selection using SCE,

1The data set is available at http://yann.lecun.com/exdb/mnist/index.html.
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Feature Selection Method No. of Average Features Accuracy
Sparse Centroid-encoder 355.32 98.44± 0.08

SG-L1-NN 581.8 97.00
L1-NN 658.2 97.00
L2-NN 676.4 98.00

Table 2: Classification result using the top features by various models on the MNIST data set.
Results of SG-L1-NN, L1-NN, and L2-NN are reported from Scardapane et al. (2017).

a CE is trained to predict the class label of the unseen test cases. We repeated the process K = 25
times and reported the mean accuracy with standard deviation.

Table 2 shows the classification accuracy using the features selected by four methods. The features
of SCE produce the best accuracy beating the other sparse models SG-L1-NN and L1-NN by a
margin of 1.44%. More significantly, our classification accuracy is achieved using 355 number of
features on average, which is approximately 45% of the total number of pixels of an MNIST image.
On the other hand, SG-L1-NN, L1-NN, and L2-NN used 74%, 84%, and 86% of the total number of
features, respectively. We further analyze the features from a qualitative point of view. We present
a visual representation of the selected variables of the SCE model in Figure 3 where we show the
spatial location of the selected pixels in a 28 x 28 grid. Observe that most of the selected pixels
are located in the middle of the grid, making sense as most MNIST digits are placed in the middle
of the 28 x 28 bounding box. This fact establishes the robustness of the features of the Sparse
Centroid-encoder.

The classification accuracy of the four models on the Forest Cover data is presented in Table 3.
The average test accuracy is better using the SCE features. At the same time, the number of SCE
features is considerably less than the other sparse models of Scardapane et al. (2017). Note that the
mean accuracy of our model is higher by a margin of 3% − 4%. It’s noteworthy that the models
of Scardapane et al. required most of the features for classification. The data set lives in R54 in
the ambient space. Out of these 54 variables, SG-L1-NN, L1-NN, and L2-NN utilized 52.7, 53,
and 54 features, respectively. In contrast, our model only used 38 features on average. The high
test accuracy with a relatively small feature set establishes the value of SCE as a robust variable
selection technique.

3.2.3 INDIAN PINES HYPERSPECTRAL IMAGERY

Here we compare SCE with sparse support vector machines on the well-known Indian Pines hyper-
spectral imagery of a variety of crops following the experiments in (Chepushtanova et al. (2014)).
The task is to identify the frequency bands which are essential to assign a test sample correctly to
one of the sixteen classes. We took all the 220 bands in the feature selection step, including the
twenty water absorption bands. Note that in literature these noisy water absorption bands are often
excluded before the experiments (Reshma et al. (2016); Cao et al. (2017)). We wanted to check

Figure 3: Locations of selected features of MNIST image shown in a 28 x 28 grid. The selected
pixels are marked in white, and the ignored pixels are marked in black.
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Feature Selection Method No. of Average Features Accuracy
Sparse Centroid-encoder 38.1 87.37± 0.36

SG-L1-NN 52.7 83.00
L1-NN 53.0 83.00
L2-NN 54.0 84.00

Table 3: Classification results using the top features by various models on the Forest Cover data set.
Results of SG-L1-NN, L1-NN, and L2-NN are reported from Scardapane et al. (2017).

whether our model was able to reject them. In fact, our model did discard them as no water absorp-
tion bands were in the top 100 features. It appeared that SSVM included some of these noisy bands
as described in(Chepushtanova et al. (2014)).

We followed the experimental protocol in (Chepushtanova et al. (2014)). The entire data set is split
in half into a training and test set. Because of the small size of the training set, we did a 5-fold
cross-validation on the training samples to tune hyper-parameters. After the feature selection on the
training set, we took top n = 1, 2, 3, 4, 5, 10, 20, 40, 60, 80 features to build a CE classifier on the
training set to predict the class labels of the test samples. For each n we repeat the classification task
K = 10 times. Note that we compared the performance of SCE and SSVM features without spatial
smoothing for a more direct comparison of the classification rates. Figure 4 presents the accuracy
on the test data using the top n bands (n = 1, 2, 3, 4, 5, 10, 20, 40, 60, 80) which were calculated on
the training set. Classification using SCE features generally produces better accuracy. Notice that
SCE features yield better classification performance using fewer bands. In particular, the accuracy
of the top SCE feature (band 13) is at least 15% higher than the top SSVM feature (band 1). See the
Appendix for additional details on the feature sets selected.

Figure 4: Comparison of classification accuracy using SCE and SSVM features.

3.2.4 RESPIRATORY INFECTIONS IN HUMANS

GSE73072 This microarray data set is a collection of gene expressions taken from human blood
samples as part of multiple clinical challenge studies (Liu et al. (2016)) where individuals were
infected with the following respiratory viruses HRV, RSV, H1N1, and H3N2. In our experiment
we excluded the RSV study. Blood samples were taken from the individuals before and after the
inoculation. RMA normalization (Irizarry et al. (2003)) is applied to the entire data set, and the
LIMMA (Ritchie et al. (2015)) is used to remove the subject-specific batch effect. Each sample is
represented by 22,277 probes associated with gene expression. The data is publically available on
the NCBI GeneExpression Omnibus (GEO) with identifier GSE73072.

We conducted our last experiment on the GSE73072 human respiratory infection data where the
goal is to predict the classes control, shedders, and non-shedders at the very early phase of the
infection, i.e., at time bin spanning hours 1-8. Controls are the pre-infection samples, whereas
shedders and non-shedders are post-infection samples picked from the time bin 1-8 hr. Shedders
actually disseminate virus while non-shedders do not. We considered six studies, including two
H1N1 (DEE3, DEE4), two H3N2 (DEE2, DEE5), and two HRV (Duke, UVA) studies. We used
10% training samples as a validation set—the training set comprised all the studies except for the
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DEE5, which was kept out for testing. We did a leave-one-subject-out (LOSO) cross-validation on
the test set using the selected features from the training set. In this experiment we compared SCE
with Random Forest (RF).

The results on this data set in shown in Table 4. The top 35 features of SCE produce the best
Balanced Success Rate (BSR) of 90.61% on the test study DEE5. For the Random Forest model,
the best result is achieved with 30 features. We also included the results with 35 biomarkers, but
the BSR didn’t improve. Note both the models picked a relatively small number of features, 30
and 35 out of the 22,277 genes, but SCE features outperform RF by a margin of 7%. Although RF
selects features with multiple classes using a single model, it weighs a single feature by measuring
the decrease of out-of-bag error. In contrast, SCE looks for a group of features while minimizing its
cost. We think the multivariate approach of SCE makes it a better features detector than RF.

Time Bin Model No. of Features BSR

1− 8
SCE 35 90.61± 2.38
RF 30 83.05± 2.42
RF 35 82.65± 2.51

Table 4: Balanced success rate (BSR) of LOSO cross-validation on the DEE5 test set. The selected
features from training set is used to predict the classes of control, shedder, and non-shedder.

4 RELATED WORK

Feature selection has a long history spread across many fields, including bioinformatics, document
classification, data mining, hyperspectral band selection, computer vision, etc. It’s an active research
area, and numerous techniques exist to accomplish the task. We describe the literature related to the
embedded methods where the selection criteria are part of a model. The model can be either linear
or non-linear.

4.1 FEATURE SELECTION USING LINEAR MODELS

Adding an l1 penalty to classification and regression methods naturally produce feature selectors.
For example, least absolute shrinkage and selection operator or Lasso (Tibshirani (1996)) has been
used extensively for feature selection on various data sets (Fonti & Belitser (2017); Muthukrishnan
& Rohini (2016); Kim & Kim (2004)). Elastic net, proposed by Zou et al. (Zou & Hastie (2005)),
combined the Lasso penalty with the Ridge Regression penalty (Hoerl & Kennard (1970)) to over-
come some limitations of Lasso. Elastic net has been widely applied, e.g., (Marafino et al. (2015);
Shen et al. (2011); Sokolov et al. (2016)). Note both Lasso and Elastic net are convex in the parame-
ter space. Support Vector Machines (SVM) (Cortes & Vapnik (1995)) is a state-of-the-art model for
classification, regression and feature selection. SVM-RFE is a linear feature selection model which
iteratively removes the least discriminative features until a parsimonious set of predictive features
are selected (Guyon et al. (2002)). IFR (O’Hara et al. (2013)), on the other hand, selects a group of
discriminatory features at each iteration and eliminates them from the data set. The process repeats
until the accuracy of the model starts to drop significantly. Note IFR uses Sparse SVM (SSVM),
which minimizes the l1 norm of the model parameters. Lasso, Elastic Net, and SVM-based tech-
niques are mainly applied to binary problems. These models are extended to the multi-class problem
by combining multiple binary one-against-one (OAO) or one-against-all (OAA) models. Chepush-
tanova et al. (2014) used 120 Sparse SVM models to select discriminative bands from the Indian
Pine data set, which has 16 classes. On the other hand, Random forest Breiman (2001), a decision
tree-based technique, finds features from multi-class data using a single model. The model doesn’t
use Lasso or Elastic net penalty for feature selection. Instead, the model weighs the importance of
each feature by measuring the out-of-bag error.

4.2 FEATURE SELECTION USING DEEP NEURAL NETWORKS

While the linear models are fast and convex, they don’t capture the non-linear relationship among
the input features (unless a kernel trick is applied). Because of the shallow architecture, these mod-
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els don’t learn a high-level representation of input features. Moreover, there is no natural way to
incorporate multi-class data in a single model. Non-linear models based on deep neural networks
overcome these limitations. In this section, we will briefly discuss a handful of such models.

Scardapane et al. (2017) used group Lasso (Tibshirani (1996)) to impose the sparsity on a group of
variables instead of a single variable. They applied the group sparsity simultaneously on the input
and the hidden layers to remove features from the input data and the hidden activation. On MNIST,
their algorithm discarded more than 200 features from the input vector with an accuracy of 97% on
the test data. Although on the Forest Cover data set, the algorithm used most of the input variables
52.7 out of 54. Li et al. proposed deep feature selection (DFS), which is a multilayer neural network-
based feature selection technique (Li et al. (2016)). DFS uses a one-to-one linear layer between the
input and the first hidden layer. As a sparse regularization, the authors used elastic-net (Zou & Hastie
(2005)) on the variables of the one-to-one layer to induce sparsity. The standard soft-max function
is used in the output layer for classification. With this setup, the network is trained in an end-to-end
fashion by error backpropagation. Despite the deep architecture, its accuracy is not competitive,
and experimental results have shown that the method did not outperform the random forest (RF)
method. Kim et al. (2016) proposed a heuristics based technique to assign importance to each
feature. Using the ReLU activation, Roy et al. (2015) provided a way to measure the contribution of
an input feature towards hidden activation of next layer. Han et al. (2018) developed an unsupervised
feature selection technique based on the autoencoder architecture. Using a l2,1-norm to the weights
emanating from each input node, they measure the contribution of each feature while reconstructing
the input. The model excavates the input features, which have a minimum contribution. Taherkhani
et al. (2018) proposed a RBM (Hinton et al. (2006); Hinton & Salakhutdinov (2006)) based feature
selection model. This algorithm runs the risk of combinatorial explosion for data set with 50K −
60K features (e.g., microarray gene expression data set).

5 DISCUSSION AND CONCLUSION

In this paper, we presented Sparse Centroid-encoder as an effective feature selection tool for multi-
class classification problems. The benchmarking results span 5 data sets and 7 methods providing
evidence that the features of SCE produce better generalization performance compared to other
models on a diverse set of data sets. We compared SCE with deep feature selection (deep DFS),
a deep neural network-based model, and found that the features of SCE significantly improved the
classification rate on test data. The survey of the known functionality of these genes indicates the
plausible biological significance. We have also demonstrated that our feature selection algorithm
often selected fewer features than other models—the MNIST, Forest Cover experiments establish
this fact. These experiments include the comparison to some neural network-based models where
group-sparsity is applied for variable selection. In addition to extracting the most robust features,
the model shows the ability to discard noisy features. On the Indian Pine data set, our model didn’t
pick any of the water absorption bands considered noisy.

Our model has the advantage over the class of linear techniques, where a binary feature selection
method is used as a multi-class method by one-against-one(OAO) or one-against-all(OAA) class
pairs. For example, Chepushtanova et al. used 120 binary class SSVM models on the Indian Pine
data set. Similarly, Lasso needed three models for the GM12878 data. These models will suffer a
combinatorial explosion when the number of classes increases. In contrast, SCE uses a single model
to extract features from a multi-class data set.

SCE has a potential advantage over the neural network-based models (deep DFS, shallow DFS, SG-
L1-NN, G-L1-NN), where a sample is mapped to its corresponding class label. Mapping samples to
their class label ignores the intra-class variation. Sparse Centroid-encoder can be modified to handle
multi-modality by assigning multiple centers per class. In the future, we will extend our model to
investigate this aspect further.

6 REPRODUCIBILITY STATEMENT

We have uploaded our code package in a separate file as supplementary material. Please read the
”README.txt” before running the code.
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A APPENDIX

A.1 BIOLOGICAL SIGNIFICANCE OF THE SELECTED GENES OF GM12878

• POL2(POLR2A): It’s a subunit of RNA polymerase II, which interacts with nuclear CD26
using a chromatin immunoprecipitation assay. This interaction led to transcriptional repres-
sion of the POLR2A gene, resulting in a proliferation of cancer cells Yamada et al. (2013).

• H4K20ME1 This gene has been implicated in transcriptional activation. Recent studies
showed a strong correlation between H4K20me1 and gene activation in the regions down-
stream of the transcription start site Barski et al. (2007).

• NRSF(REST) NRSF/REST is highly expressed in non-neuronal tissues like the lung. The
findings of Kreisler et at. Kreisler et al. (2010) support that NRSF/REST may act as an
essential modulator of malignant progression in small-cell lung cancer.

• TAF1 It’s the largest integral subunit of TFIID, initiates RNA polymerase II-mediated tran-
scription. Wang et al. discovered a critical promoter-binding function of TAF1 in transcrip-
tion regulation Wang et al. (2014).

• H3K27AC This gene distinguishes active enhancers from inactive/poised enhancer ele-
ments containing H3K4me1 alone Creyghton et al. (2010).

• GCN5 GCN5 functions as a transcriptional coactivator of E2f1 target genes. In small-cell
lung cancer, E2F1 recruits GCN5 to acetylate H3K9, facilitating transcription of E2F1,
CYCLIN E, and CYCLIN D1 (39) all of which promote cellular proliferation and tumor
growth Yin et al. (2015).

• PML The PML gene provides instructions for a protein that acts as a tumor suppressor,
which means it prevents cells from growing and dividing too rapidly or in an uncontrolled
way Salomoni & Pandolfi (2002).

• RUNX3 This gene binds to the core DNA sequence 5’-PYGPYGGT-3’ found in several
enhancers and promoters. It also interacts with other transcription factors. It functions as a
tumor suppressor, and the gene is frequently deleted or transcriptionally silenced in cancer
Yu et al. (2012).

• ZZZ3 It’s prortein binding gene which oftens promotes gene activation Mi et al. (2018).
• H3K27ME3 This gene can function as silencers to regulate gene expression Cai et al.

(2021).

A.2 INDIAN PINES FEATURE SETS

Here we list the top ten features from each model. We have included the WaLuMI + SSVM model,
where SSVM is applied to the WaLuMI features to prune the set further. There is no common feature
among these three sets.
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SCE SSVM WaLuMI + SSVM
13,148,51,47,49 1,34,2,3,29 5,25,100,55,183
43,45,17,134,44 32,41,39,28,42 129,79,52,68,88

Table 5: List of top ten bands from each model. Bands selected by SSVM and SSVM + WaLuMI
are reported from Chepushtanova et al. (2014).
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