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Abstract

We study pointwise estimation and uncertainty quantification for a sparse varia-
tional Gaussian process method with eigenvector inducing variables. For a rescaled
Brownian motion prior, we derive theoretical guarantees and limitations for the
frequentist size and coverage of pointwise credible sets. For sufficiently many
inducing variables, we precisely characterize the asymptotic frequentist coverage,
deducing when credible sets from this variational method are conservative and
when overconfident/misleading. We numerically illustrate the applicability of our
results and discuss connections with other common Gaussian process priors.

1 Introduction

Consider the standard nonparametric regression model, where we observe n training samples Dn =
{(x1, y1), . . . , (xn, yn)} arising from the model

yi = f(xi) + εi, εi ∼iid N (0, σ2), (1)

where σ2 > 0 and the design points xi ∈ X ⊂ Rd are either fixed or considered as i.i.d. random
variables. Our goal is to predict outputs y∗ based on new input features x∗, while accounting for the
statistical uncertainty arising from the training data. A widely-used Bayesian approach is to endow
f with a Gaussian process (GP) prior [25], which is especially popular due to its ability to provide
uncertainty quantification via posterior credible sets.

While explicit expressions for the posterior distribution are available, a well-known drawback is that
these require O(n3) time and O(n2) memory complexity, making computation infeasible for large
data sizes n. To avoid this, there has been extensive research on low-rank GP approximations, where
one chooses m≪ n inducing variables to summarize the posterior, thereby reducing computation to
O(nm2) time and O(nm) memory complexity, see the recent review [20].

We consider here the sparse Gaussian process regression (SGPR) approach introduced by Titsias
[31], which is widely used in practice (see [1, 9] for implementations) and has been studied in
many recent works [13, 21, 5, 6, 38, 28, 32, 22, 23]. While the computational dependence on the
number of inducing variables m is relatively well-understood, fewer theoretical results are available
on understanding how m affects the quality of statistical inference. In particular, it is crucial to
understand how large m needs to be to achieve good statistical uncertainty quantification, ideally
close to that of the true computationally expensive posterior. The present work contributes to this
research direction by establishing precise theoretical guarantees for pointwise inference using a
natural choice of SGPR with eigenvector inducing variables.

A main appeal of Bayesian methods is their ability to perform uncertainty quantification (UQ) via
credible sets, often at the 95% level, see Figure 1 for a visualization involving a full GP and two
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Figure 1: Plot of the (sparse) posterior means with the ribbons representing 95% posterior pointwise
credible intervals for the i) SGPR with m = 5 inducing variables (red); ii) SGPR with m = 106
inducing variables (green); iii) full GP (blue) and iv) the true function (black). Here, n = 500 and the
covariance kernel is the rescaled Brownian motion with γ = 0.5.

SGPR approximations. We focus here on the canonical problem of pointwise estimation and UQ for
f(x) at a single point x ∈ X , which corresponds to the practically relevant problem of quantifying
the uncertainty of a prediction f(x) based on a new input x. We study the frequentist behaviour
of the resulting SGPR credible sets, with our main conclusion being that for well-calibrated priors
and sufficiently many inducing points m, SGPRs can indeed provide reliable, though conservative,
uncertainty quantification.

Concretely, we consider a rescaled Brownian motion prior that models Hölder smooth functions
[33, 36, 29] and whose pointwise UQ for the corresponding full posterior was studied in [29]. We
extend this analysis to the SGPR setting using the eigendecomposition of the sample covariance
matrix as inducing variables, i.e. the optimal rank-m posterior approximation. We provide a rigorous
theoretical justification for pointwise estimation and UQ using this SGPR, providedm is large enough.
Our main theoretical contributions are summarized that in dimension d = 1, for an α-smooth truth
f0, γ-smooth prior, α, γ ∈ (0, 1], and at least m≫ n

1
1+2γ ( 2+α

1+α ) inducing variables:

1. The SGPR recovers the true value f0(x) at a point x with convergence rate n−
min(α,γ)

2γ+1 . If
α = γ, this gives the minimax optimal rate n−

α
2α+1 .

2. For truths that are smoother than the prior (α > γ), SGPR credible sets are conservative
with their frequentist coverage converging to a value strictly between their nominal level
and one, which we characterize.

3. For truths that are rougher than the prior (α ≤ γ), coverage can be arbitrarily bad.

4. It is not necessary for the KL divergence between the SGPR and true posterior to vanish as
n→ ∞ to get good (though conservative) coverage.

5. We provide a more general small-bias condition under which the coverage of SGPR credible
sets is at least that of credible sets from the true posterior.

Our proofs exploit specific properties of Brownian motion to obtain explicit expressions, which
allow us to obtain the above precise results. Such expressions seem difficult to obtain for other
commons GPs (e.g. Matérn, squared exponential), meaning that existing theoretical guarantees for
the Matérn SGPR apply to enlarged credible sets [32, 23]. Since our results indicate that pointwise
SGPR credible sets are already conservative, such enlargements make the SGPR UQ procedure very
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conservative, see Section 4. We provide a complimentary perspective to these works, studying true
credible sets from a related GP, rather than modified credible sets from the Matérn.

The Brownian motion prior we consider here shares many similarities with the Matérn process,
meaning our main qualitative conclusions also apply there, as we demonstrate in simulations. We
thus verify the applicability of our limit theorems in numerical simulations, confirming they provide
a good guide to the behaviour of SGPRs for finite sample sizes, including those based on Matérn
priors. To the best of our knowledge, our work is the first establishing exact theoretical coverage
guarantees for SGPR pointwise credible sets, and can be viewed as a guide of what to expect for the
other Gaussian processes, see Section 4.

Related work. Rigorous theoretical guarantees for Bayesian UQ using the full posterior have received
much recent attention. In parametric models, the classic Bernstein–von Mises theorem [35] ensures
that regular credible sets are asymptotic confidence sets, justifying Bayesian UQ from a frequentist
perspective. However, such a result fails to hold in high- and infinite-dimensional settings [10, 16],
such as GPs, where the performance is sensitive to the choice of prior and model. Theoretical
guarantees for UQ using full GPs have been established mainly involving L2-type credible sets (e.g.
[17, 7, 30]) which, while mathematically more tractable, are less reflective of actual practice than
pointwise credible sets. Results for pointwise Bayesian UQ are more difficult to obtain and are
correspondingly much rarer [29, 40, 39], see Section 3. From a technical perspective, we perform a
careful and novel analysis of the gap between the pointwise behaviour of the true posterior and its
SGPR approximation, after which we can invoke ideas from the proofs for the full posterior [29].

While the frequentist asymptotic properties of VB have increasingly been investigated, this is usually
in the context of estimation, convergence rates or approximation quality (e.g. [24, 2, 41, 27, 26],
including for SGPRs [5, 6, 22]) rather than UQ. Available results on mean-field VB often show that
this factoriazable approach provides overconfident UQ by underestimating the posterior variance
[3, 4], though there exist more positive results in certain low-dimensional models [37]. Regarding UQ
for SGPRs, Nieman et al. [23] investigate the frequentist coverage of global L2-credible sets from
certain SGPRs, showing these can have coverage tending to 1, possibly after enlarging them. Vakili
et al. [32] similarly show that enlarged pointwise or uniform credible sets can have good coverage in
a different bandit-like setting.

Organization. In Section 2 we detail the problem setup, including notation and an overview of
(sparse variational) Gaussian process regression. Main results on pointwise convergence and UQ for
SGPRs based on a Brownian motion prior are found in Section 3, discussion on the connections with
other GPs in Section 4, simulations in Section 5 and discussion in Section 6. In the supplement, we
provide the proofs of our results (Section A) and additional simulations (Section B).

2 Problem setup and sparse variational Gaussian process regression

Recall that we observe n training examples Dn = {(x1, y1), . . . , (xn, yn)} from model (1), and
write y = (y1, . . . , yn)

T and f = (f(x1), . . . , f(xn))
T . We denote by Pf the probability distri-

bution of y from model (1) and by Ef the corresponding expectation. For u,v ∈ Rn we write
⟨u,v⟩ =

∑n
i=1 uivi for the inner-product on Rn and ∥u∥ = ⟨u,u⟩1/2 for the usual Euclidean

norm. Write C(X ) for the space of continuous real-valued functions on X . For α ∈ (0, 1], we
further define the class of Hölder smooth functions on [0, 1] by Cα = Cα[0, 1] = {f : [0, 1] → R :

supx ̸=y
|f(x)−f(y)|

|x−y|α <∞}. Throughout the paper we make the following frequentist assumption:

Assumption 2.1. There is a true f0 ∈ L2(X ) generating the data y ∼ Pf0 according to (1).

We differentiate f coming from the Bayesian model with the ‘true’ generative f0.

2.1 Sparse variational Gaussian process regression

In model (1), we assign to f ∼ GP (ν0, k) a Gaussian process (GP) prior with mean function
ν0 : X → R and covariance kernel k : X × X → R. We henceforth take the prior mean ν0 = 0
for simplicity since this will not alter the spirit of our results, see Remark 3.3 below. The resulting
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posterior distribution is again a GP by conjugacy [25], with mean and covariance functions equal to

νn(x) = kn(x)
T (Knn + σ2In)

−1y,

kn(x, x
′) = k(x, x′)− kn(x)

T (Knn + σ2In)
−1kn(x

′),
(2)

where kn(x) = (k(x, x1), . . . , k(x, xn))
T and [Knn]ij = k(xi, xj). In particular, the posterior

variance at a point x ∈ X is σ2
n(x) = kn(x, x). In Section 3.2 below, we will specifically consider

the choice X = [0, 1] and rescaled Brownian motion prior kernel k(x, x′) = (n+1/2)
1−2γ
1+2γ min(x, x′)

for γ > 0.

We consider here the sparse variational Gaussian process (SGPR) approximation using inducing
variables proposed by Titsias [31]. The idea is to summarize the posterior via a relatively small
number of inducing variables u = {u1, . . . , um}, m≪ n, which are linear functionals of the prior
process f . By assigning u a multivariate normal distribution, one obtains a low-rank variational
family. Titsias [31] explicitly computed the minimizer in Kullback Leibler sense between this family
of GPs and the full posterior, which yields the SGPR Q∗ = GP (νm, km) with mean and covariance

νm(x) = Kxm(σ2Kmm +KmnKnm)−1Kmny

km(x, x′) = k(x, x′)−KxmK−1
mmKmx′ +Kxm(Kmm + σ−2KmnKnm)−1Kmx′ ,

(3)

where Kxm = (cov(f(x), u1), . . . , cov(f(x), um)) = KT
mx, [Kmm]ij = cov(ui, uj) and we write

[Knm]ij = cov(f(xi), uj). Recalling that cov(f(x), f(x′)) := k(x, x′) under the prior, for uj of the
form uj =

∑n
i=1 v

i
jf(xi) (see (4) below) we obtain cov(f(x), uj) =

∑n
j=1 v

i
jk(x, xi). The SGPR

variance at x ∈ X is σ2
m(x) = km(x, x). The computational complexity of obtaining νm and km is

O(nm2), which is much smaller than the O(n3) needed to compute the full posterior for m≪ n.

2.2 Eigenvector inducing variables

The approximation quality of the SGPR depends on the inducing variables being well chosen. We
consider here arguably the conceptually simplest and most canonical sparse approximation based
on the eigendecomposition of Knn. Let µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 be the eigenvalues of the
positive semi-definite matrix Knn with corresponding orthonormal eigenvectors v1, . . . ,vn. Writing
vj = (v1j , . . . , v

n
j )
T ∈ Rn, we take as inducing variables

uj = vTj f =

n∑
i=1

vijf(xi), j = 1, . . . ,m, (4)

so that uj is a linear combination of the inducing points placed at each data point with weights
proportional to the entries of the jth-largest eigenvector of Knn. Setting Vm := [v1 . . .vm] ∈
Rn×m, this choice of inducing points implies

Kxm = kn(x)
TVm, Kmm = diag(µ1, . . . , µm), Knm = Vmdiag(µ1, . . . , µm) = KT

mn,

see Section C.1 of [5]. Writing Knn =
∑n
i=1 µiviv

T
i and substituting these expressions into (3), we

obtain the SGPR with mean and covariance functions

νm(x) = kn(x)
T

[
m∑
k=1

ηkvkv
T
k

]
y (5)

km(x, x′) = k(x, x′)− kn(x)
T

[
m∑
k=1

ηkvkv
T
k

]
kn(x

′), (6)

where ηk = 1
σ2+µk

. We study inferential properties of the SGPR with mean (5) and covariance (6).

Comparing these expressions with those for the full posterior (2), we see that this SGPR is the optimal
rank-m approximation in the sense that we have replaced (Knn + σ2In)

−1 =
∑n
i=1 ηiviv

T
i in both

the mean and covariance (2) with
∑m
i=1 ηiviv

T
i , corresponding to the m largest eigenvalues of Knn.

These inducing variables are an example of interdomain inducing features [19], which can yield
sparse representations in the spectral domain and computational benefits [14]. Computing this SGPR
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involves numerically computing the first m eigenvalues and corresponding eigenvectors of Knn,
which can be done in O(n2m) time using for instance Lanczos iteration [18].

This choice of SGPR using eigenvector inducing variables has been shown to minimize certain upper
bounds for the Kullback-Leibler (KL) divergence between order m SGPRs and the true posterior
[5], reflecting that it can provide a good posterior approximation. Indeed, one can show that for
m = mn growing fast enough (though sublinearly in n), this SGPR converges to the posterior in the
KL sense as n → ∞ [5]. Under weaker growth conditions on m, this SGPR still converges to the
true generative f0 at the minimax optimal rate in the frequentist model [22], even when the SGPR
does not converge to the true posterior as n→ ∞. Our results include both scenarios and will show
that one can still obtain good frequentist UQ performance even for m small enough that the SGPR
diverges from the full posterior (see Remark 3.7) unlike in [5].

3 Main results

3.1 General results on pointwise inference

We now present our main results concerning estimation and uncertainty quantification at a point
x ∈ X using the SGPR Q∗ with eigenvector inducing variables. Since both the posterior and
SGPR are GPs, their marginal distributions at x satisfy f(x)|Dn ∼ N (νn(x), σ

2
n(x)) and f(x) ∼

N (νm(x), σm(x)2), respectively. It thus suffices to study these quantities under the frequentist
assumption that there is a ‘true’ f0 generating the data, i.e. Assumption 2.1. We further define the
frequentist bias and variance of the (sparse) posterior mean:

bn(x) = Ef0(νn(x)− f0(x)), bm(x) = Ef0(νm(x)− f0(x)),

t2n(x) = varf0(νn(x)), t2m(x) = varf0(νm(x)),

where the expectation and variance are taken over y ∼ Pf0 . We have the following useful relationships
between these quantities for the variational posterior and full posterior, which assumes fixed design,
so that all statements are taken conditional on the design points x1, . . . , xn ∈ X . For simplicity, we
take the noise variance to be σ2 = 1 in (1) for our theoretical results.

Lemma 3.1. For f0 ∈ L2(X ), x ∈ X and rm(x) :=
[∑n

j=m+1 ηjvjv
T
j

]
kn(x), we have:

bm(x) = bn(x)− ⟨rm(x), f0⟩ (7)

t2m(x) = t2n(x)− ∥rm(x)∥2 ≤ t2n(x) (8)

σ2
m(x) = σ2

n(x) + ⟨rm(x),kn(x)⟩ ≥ σ2
n(x). (9)

The quantity rm(x) measures the rank gap due to ignoring the smallest n−m eigenvalues of Knn.
The SGPR approximation increases the posterior variance σ2

m(x) ≥ σ2
n(x) while reducing the

frequentist variance of the posterior mean t2m(x) ≤ t2n(x). Thus if one can control the biases in
(7), credible sets from the SGPR will have coverage at least as large as the full posterior. One can
therefore ensure good coverage by taking m = mn sufficiently small, but this can still lead to poor
UQ by making the resulting credible intervals extremely wide, and therefore uninformative. We thus
first study the effect of m on the quality of estimation, via the posterior convergence rate.
Proposition 3.2 (Pointwise contraction). For f0 ∈ C(X ), x ∈ X and m = mn → ∞,

Ef0Q
∗(f : |f(x)− f0(x)| > Mnεm|Dn) → 0,

as n→ ∞, where Mn → ∞ is any (arbitrarily slowly growing) sequence and

ε2m = b2n(x) + t2n(x) + σ2
n(x) + |⟨rm(x), f0⟩|2 + |⟨rm(x),kn(x)⟩|2.

If ⟨rm(x), f0⟩ = o(bn(x)) and ⟨rm(x),kn(x)⟩ = o(σ2
n(x)) as n → ∞, then the rate matches that

of the true posterior ε2n = b2n(x) + t2n(x) + σ2
n(x).

The last result says that the SGPR contracts about the true f0 at rate εm, i.e. it puts all but a
vanishingly small amount of probability on functions for which |f(x)− f0(x)| ≤Mnεm, where f0
is the true function generating the data. Such results not only quantify the typical distance between a
point estimator f̂(x) (e.g. SGPR mean/median) and the truth ([11], Theorem 8.7), but also the typical
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spread of Q∗ about the truth. Ideally, most of the Q∗-probability should be concentrated on such sets
with radius εm proportional to the optimal (minimax) rate, whereupon they have smallest possible
size from an information-theoretic perspective.

Contraction rates in global L2-losses have been considered in the variational Bayes literature [24,
2, 41, 27, 26, 22]. Such results crucially rely on the true posterior concentrating exponentially fast
about the truth (see e.g. Theorem 5 in [26]), which happens in losses which geometrize the statistical
model [15]. This is known not to be true for pointwise or uniform loss [15], and hence these previous
proof approaches cannot be applied to the present pointwise setting. We must thus use an alternative
approach, exploiting the explicit Gaussian structure of the SGPR.

The SGPR approach in UQ is to consider a smallest pointwise credible set of probability 1− δ:

Cδm = Cδm(Dn) = [νm(x)− z1−δσm(x), νm(x) + z1−δσm(x)], (10)

with P (|N(0, 1)| ≤ z1−δ) = 1− δ. We next establish guarantees on the frequentist coverage of Cδm,
i.e. the probability 1− δ′ with inff0∈F Pf0(f0(x) ∈ Cδm) ≥ 1− δ′ over a target function class F .
Remark 3.3 (Zero prior mean). Since f0 is a-priori unknown, such coverage guarantees must hold
uniformly over a function class F to be meaningful. For symmetric function classes, where f ∈ F
implies −f ∈ F , taking a good prior mean ν0 for f will make estimating −f correspondingly more
difficult. Thus without loss of generality we may take zero mean ν0 = 0.
Proposition 3.4 (Pointwise UQ). Suppose that ⟨rm(x), f0⟩ = o(bn(x)) as n → ∞. Then for
m = mn ≤ n and any δ ∈ (0, 1), the frequentist coverage of the credible sets satisfies

lim inf
n→∞

Pf0(f0(x) ∈ Cδm) ≥ lim inf
n→∞

Pf0(f0(x) ∈ Cδn).

If in addition ∥rm(x)∥2 = o(t2n(x)) and ⟨rm(x),kn(x)⟩ = o(σ2
n(x)), then

lim
n→∞

Pf0(f0(x) ∈ Cδm) = lim
n→∞

Pf0(f0(x) ∈ Cδn).

The first conclusion says that if the rank gap is smaller than the posterior bias (a ‘small-bias’
condition), SGPR credible sets will have asymptotic coverage at least at the level of the original full
posterior, though perhaps larger, including possibly tending to one. The second conclusion gives
further conditions on the rank gap under which the asymptotic coverages will be the same. Together
with Proposition 3.2, the goal is to obtain a credible set Cδm of smallest possible diameter subject to
having sufficient coverage.

3.2 Fixed design with rescaled Brownian motion prior

We now apply our general results to a specific GP and find conditions on the number of inducing
variables m needed to get good UQ. Consider the domain X = [0, 1] with regularly spaced design
points xi = i

n+1/2 for i = 1, . . . , n. For B a standard Brownian motion, consider as prior f =
√
cnB, where cn = (n + 1/2)

1−2γ
1+2γ for γ > 0. Thus f is a mean-zero GP with covariance kernel

k(x, x′) = cn(x ∧ x′), where x ∧ x′ := min(x, x′). The scaling factor cn controls the smoothness
of the sample paths of the GP and plays the same role as the lengthscale parameter for stationary GPs.
The present rescaled Brownian motion is a suitable prior to model Hölder functions of smoothness
γ ∈ (0, 1] (e.g. [33, 17, 29]). In particular, for a true f0 ∈ Cα, α ∈ (0, 1], one obtains (full)
posterior contraction rate n−

α∧γ
2γ+1 in the global L2-loss [33]. We sometimes write Q∗

γ = Q∗ for the
corresponding SGPR to make explicit that the underlying prior is γ-smooth.
Theorem 3.5. Let f0 ∈ Cα[0, 1], α ∈ (0, 1] and x ∈ (0, 1). Consider the SGPR Q∗

γ with rescaled
Brownian motion prior of regularity γ ∈ (0, 1] and m = mn → ∞ inducing variables. Then

Ef0Q
∗
γ(f : |f(x)− f0(x)| > Mn(n

− α∧γ
1+2γ + n

2
1+2γm−1+α + n

1/2−γ
1+2γ m−3/2)|Dn) → 0

as n → ∞, where Mn → ∞ is any (arbitrarily slowly growing) sequence. If mn ≫ n
1

1+2γ ( 2+α
1+α )

then the contraction rate of the SGPR matches that of the full posterior n−
α∧γ
1+2γ .

Theorem 3.5 shows that for m≫ n
1

1+2γ ( 2+α
1+α ) inducing points, the SGPR attains the same pointwise

contraction rate as the full posterior. If γ = α, we then recover the optimal (minimax) rate of

6



convergence for a Cα-smooth function. For instance if α = γ = 1, our result indicates that one
can do minimax optimal pointwise estimation based on mn ≫

√
n inducing variables, a substantial

reduction over the full n observations. Note this convergence guarantee can still hold in cases when
the SGPR diverges from the posterior as n→ ∞, see Remark 3.7.

The restriction α ∈ (0, 1] comes from rescaling the underlying Brownian motion [33]. One can
extend this to α > 1 by considering a smoother baseline process [33], such as integrated Brownian
motion, but the more complex form of the resulting eigenvectors and eigenvalues of Knn make our
explicit proof approach difficult. Note also that the prior fixes the value f(0) = 0. One can avoid this
by adding an independent normal random variable to f , but since we consider pointwise inference at
a point x > 0, this will not affect our results and we thus keep f(0) = 0 for simplicity. Nonetheless,
the message here is clear: for sufficiently many inducing variables (but polynomially less than n), an
SGPR based on a γ-smooth prior can estimate an α-smooth truth at rate n−

α∧γ
1+2γ . We next turn to UQ.

Theorem 3.6. Let f0 ∈ Cα[0, 1], α ∈ (0, 1] and x ∈ (0, 1). Consider the SGPR Q∗
γ with rescaled

Brownian motion prior of regularity γ ∈ (0, 1] and m = mn ≫ n
1

1+2γ ( 2+α
1+α ) inducing variables. For

δ ∈ (0, 1), let qδm := Pf0(f0 ∈ Cδm(x)) denote the frequentist coverage of the 1 − δ credible set
Cδm(x) given by (10). Then as n→ ∞:

(i) (Undersmoothing case) If α > γ, then qδm → P (|N(0, 1/2)| ≤ z1−δ) =: pδ > 1− δ for all
f ∈ Cα[0, 1], where P (|N(0, 1)| ≤ z1−δ) = 1−δ andN(0, 1/2) is the normal distribution
with mean zero and variance 1/2.

(ii) (Correct smoothing case) If α = γ, then for each p ∈ (0, pδ], there exists f ∈ Cα[0, 1] such
that qδm → p.

(iii) (Oversmoothing case) If α < γ, there exists f ∈ Cα[0, 1] such that qδm → 0.

Theorem 3.6 provides exact expressions for the asymptotic coverage when the credible interval Cδm
has diameter O(n−

α∧γ
1+2γ ). In the undersmoothing case α > γ, the 1 − δ SGPR credible sets are

conservative from a frequentist perspective, i.e. their coverage converges to a value strictly between
1− δ and 1. For instance if δ = 0.05 (0.1), the 95% (90%) credible set will have asymptotic coverage
99.4% (98.0%), indicating one does not want to enlarge such credible sets if using enough inducing
variables. A desired asymptotic coverage can also be achieved by targetting the credibility according
to the formula in Theorem 3.6(i). Reducing γ towards zero will generally ensure coverage for Hölder
functions, but this will also increase the size of the credible intervals to size O(n−

γ
1+2γ ), making

them less informative. Note that the convergence in (i) is uniform over Cα-balls of fixed radius.

In the oversmoothing case α < γ, the posterior variance underestimates the actual uncertainty and
so the credible interval is too narrow, giving overconfident (bad) UQ for many Hölder functions. In
the correct smoothing case α = γ, where we obtain the minimax optimal contraction rate n−

α
1+2α ,

coverage falls between these regimes - it does not fully tend to zero, but one can find a function
whose coverage is arbitrarily bad, i.e. close to zero.

The best scenario thus occurs when the prior slightly undersmooths the truth, in which case the SGPR
credible interval will have slightly conservative coverage but its width O(n−

γ
1+2γ ) is not too much

larger than the minimax optimal size O(n−
α

1+2α ). Our results match the corresponding ones for the
full computationally expensive posterior and the main messages are the same: undersmoothing leads
to conservative coverage while oversmoothing leads to poor coverage [29].

Remark 3.7 (Kullback-Leibler). If the number of inducing variables grows like n
1

1+2γ ( 2+α
1+α ) ≪ m≪

n
2

1+2γ , then the conditions of Theorems 3.5 and 3.6 are met, but the KL-divergence between the
SGPR and the true posterior tends to infinity as n→ ∞ (Lemma A.6 in the supplement). Thus one
does not need the SGPR to be an asymptotically exact approximation of the posterior to get similarly
good frequentist pointwise estimation and UQ. In particular, one can take m polynomially smaller in
n than is required for the KL-divergence to vanish, see [5] for related bounds and discussion.

While [5] consider approximation quality as measured by the KL-divergence between the SGPR
and true posterior, we consider here the different question of whether the SGPR behaves well for
pointwise inference, even when it is not a close KL-approximation. The data-generating setup in [5]
is also not directly comparable to ours. They take expectations over both the data (x, y) and prior
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on f , so their results are ‘averaged’ over the prior, which downweights the effect of sets of small
prior probability. In contrast, the frequentist guarantees provided here hold assuming there is a true
function f0 which generates the data according to (1) (Assumption 2.1), meaning that one seeks to
understand the performance of the method for any fixed f0, including worst-case scenarios. Such
setups can lead to very different conclusions, see e.g. Chapters 6.2-6.3 in [11].

4 Connections with other Gaussian process priors

The rescaled Brownian motion (rBM) prior we consider here can be thought of as an approximation to
the Matérn process of regularity γ ∈ (0, 1] since they both model γ-smooth functions. The rescaling
factor cn = (n+ 1/2)

1−2γ
1+2γ in the covariance function k(x, x′) = cn(x ∧ x′) plays the same role as

the lengthscale parameter for the Matérn and calibrates the GP smoothness. We thus expect similar
theoretical results and conclusions to also hold for the Matérn process, which seems to be the case in
practice, as we verify numerically in Section 5. Indeed, similar UQ properties to the rBM posterior
are conjectured to hold for the full Matérn posterior [39], in particular that the coverage of credible
sets satisfies similar qualitative conclusions to the three cases in Theorem 3.6.

On a more technical level, the success of GPs in nonparametric estimation is known to depend on
their sample smoothness, as measured through their small ball probability [33, 36]. The posteriors
based on both GPs converge to a Cα-truth at rate n−

α∧γ
2γ+1 in L2-loss ([33] for rBM, [34] for Matérn),

indicating the closeness of their small-ball asymptotics and hence that both GPs distribute prior mass
similarly over their supports. This gives a more quantitative notion of the similarities of these GPs.

Theoretical guarantees do exist for the Matérn SGPR. Theorem 3.5 of [32] nicely establishes that in
a bandit-like setting and if the true f0 is in the prior reproducing kernel Hilbert space H (roughly
α = γ + 1/2), then inflating credible sets by a factor depending on the rank gap and an upper
bound for ∥f0∥H guarantees coverage. Our parallel results suggest that this inflation is not necessary,
since SGPR credible sets in this case will already be conservative. However, since our proofs rely
on explicit expressions available for rBM but not for the Matérn, it seems difficult to extend our
approach to the different setting considered in [32] (and vice-versa); other techniques are required.
Our results can thus be viewed as a guide as to what to expect when using a Matérn SGPR and
provide a different perspective reinforcing the main messages of [32], namely that SGPRs can provide
reliable, if conservative, UQ.

On the other hand, the squared exponential kernel seems to behave qualitatively differently in
numerical simulations, giving different coverage behaviour in the cases considered in Theorem 3.6,
see Section 5. This is due to the difference in the smoothness of the sample paths, with squared
exponential prior draws being far smoother, in particular analytic. This leads to somewhat different
UQ behaviour for the true posterior [12]. Rescaled Brownian motion is a less good approximation for
the squared exponential kernel than for the Matérn, and one must thus be cautious about transferring
the messages derived here to the squared exponential.

5 Numerical simulations

We next investigate empirically the applicability of our theoretical results in finite sample sizes and
whether the conclusions extend to related settings, such as different designs and other GP priors.
We consider various nonparametric regression settings of the form (1) with Cα-smooth truths and
γ-smooth priors. We compute both the full posterior (columns marked GP) and SGPR (marked
SGPR) with m≪ n eigenvector inducing variables for f(x0) at a fixed point x0 ∈ X , and report the
root-mean square error (RMSE), negative log predictive density (NLPD), and the length and coverage
of the 90%-credible intervals of the form (10) (i.e. δ = 0.1), see Section B in the supplement for
definitions. The true noise variance in (1) is taken to be σ2 = 1, but is considered unknown and is
estimated by maximizing the log-marginal likelihood as usual. We ran all simulations 500 times and
report average values and their standard deviations when relevant. Simulations were run on a 2 GHz
Quad-Core Intel Core i5 processor on a 2020 Macbook Pro with 16GB of RAM.

Settings of the theoretical results. We consider the setting of our theoretical results in Section 3
with X = [0, 1] and xi = i/(n + 1/2) for i = 1, . . . , n. To generate the data, we take f0(x) =
|x−0.5|α, which is exactly α-Hölder at x0 = 0.5, and investigate pointwise inference at x0 = 0.5 for
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different choices of α. As Gaussian priors, we consider (i) rescaled Brownian motion of regularity γ
described in Section 3, (ii) the Matérn kernel with parameter γ and (iii) the square exponential kernel
k(x, x′) = exp{− 1

2ℓ2n
(x − x′)2}, where the lengthscale ℓn = n−

1
1+2γ is chosen to be appropriate

for estimating γ−Hölder smooth functions [33]. We take m∗ := n
1

1+2γ
2+α
1+α inducing variables for

the SGPR. Results are given in Table 1: Fixed Design, n = 1000. We also consider the related case
of uniform random design where xi ∼ U(0, 1) (Table 1: Random Design, n = 500).

Prior Coverage Length RMSE NLPD
GP SGPR GP SGPR GP SGPR GP SGPR GP

Fixed Design: n = 1000, (α, γ) = (1.0, 0.5)
rBM 0.98 0.98 0.41 0.41 0.09 0.09 -0.90 (0.21) -0.90 (0.21)

Matérn 0.98 0.98 0.49 0.49 0.10 0.10 -0.68 (0.16) -0.68 (0.16)
SE 0.91 0.91 0.65 0.65 0.19 0.19 -0.28 (0.30) -0.28 (0.30)

Fixed Design: n = 1000, (α, γ) = (0.5, 0.5)
rBM 0.74 0.74 0.41 0.41 0.18 0.18 -0.09 (0.35) -0.09 (0.35)

Matérn 0.84 0.84 0.49 0.49 0.17 0.17 -0.40 (0.32) -0.40 (0.32)
SE 0.88 0.88 0.65 0.65 0.21 0.21 -0.21 (0.31) -0.21 (0.31)

Random Design: n = 500, (α, γ) = (1.0, 0.5)
rBM 0.98 0.98 0.49 (0.02) 0.49 (0.02) 0.11 0.11 -0.65 (0.15) -0.65 (0.15)

Matérn 0.96 0.96 0.59 (0.03) 0.59 (0.03) 0.13 0.13 -0.55 (0.14) -0.55 (0.14)
SE 0.92 0.92 0.76 (0.08) 0.76 (0.08) 0.20 0.20 -0.02 (0.25) -0.02 (0.25)

Random Design: n = 500, (α, γ) = (0.3, 0.5)
rBM 0.25 0.25 0.49 (0.02) 0.49 (0.02) 0.37 0.37 2.23 (0.86) 2.23 (0.86)

Matérn 0.47 0.47 0.59 (0.02) 0.59 (0.02) 0.34 0.34 0.91 (0.66) 0.91 (0.66)
SE 0.71 0.71 0.77 (0.08) 0.77 (0.08) 0.31 0.31 0.36 (0.52) 0.36 (0.52)

Table 1: Comparison of SGPR and full posterior (marked GP) for 90% pointwise credible intervals for
different values of (α, γ). For the SGPR we use m∗ := n

1
1+2γ

2+α
1+α inducing variables, corresponding

to 178, 316, 106 and 244 in the four (n, α, γ) regimes above (top-to-bottom).

Theorem 3.6 predicts that for 90% credible sets (δ = 0.1), m≫ m∗ and α > γ, the coverage should
converge to p0.1 = P (|N(0, 1/2)| < z0.9) = 0.98. We see that for n = 1000, the observed coverages
for both the full posterior and SGPR based on the Brownian motion prior are very close to this
predicted value, and are indeed conservative. In the oversmoothing case α < γ, coverage is poor and
far below the nominal level, while in the correct smoothing case (α = γ), coverage is moderately
below the nominal level. We see that the asymptotic theory is applicable for reasonable samples sizes.

The Matérn process behaves qualitatively similarly to Brownian motion in these three cases, though
the (still conservative) limiting coverage in the undersmoothing case is predicted to be slightly
different [39], as reflected in Table 1. On the other hand, the square exponential behaves differently
in all cases and generally has wider sets with this lengthscale choice. The wider credible intervals
and larger RMSE suggest greater bias of the posterior mean. While rescaled Brownian motion seems
a reasonable guide for the Matérn, it does not seem so for the squared exponential, see Section 4.

For all three GP priors, the reported metrics are practically indistinguishable between the SGPR and
the full GP, confirming that m≫ n

1
1+2γ

2+α
1+α inducing variables seems sufficient to obtain virtually

the same pointwise credible intervals as the full posterior. However, since m∗ ≪ n
2

1+2γ for any
α > 0, the KL-divergence between the SGPR and the full posterior grows to infinity as n→ ∞ in
the Brownian motion case (Lemma A.6), and hence the SGPR will differ from the posteriors in some
ways. This reflects that one does not necessarily need to fully approximate the posterior in order to
match its pointwise inference properties. Note that for fixed design, the length of the credible sets is
not random since it depends only on the features x1, . . . , xn, and so no standard errors are reported.

Other settings. We turn to simulation settings not covered by our theory. Given the above discussion,
we consider only the Matérn process in dimension d = 10 and the corresponding SGPR with
m = m∗

d := n
d

d+2γ . As features, consider random design with (i) xi ∼ U([−1/2, 1/2]d) and (ii)
Xi ∼ Nd(0,Σρ) for [Σρ]ij = 1 for i = j and [Σρ]ij = ρ otherwise. To better reflect correlation in
real-world data, we also consider a semi-synthetic dataset with real features but simulated responses.
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As features, we took the first d = 10 columns and randomly sampled n = 2000 rows from a
Korean meteorological dataset [8]. In all cases, we consider estimating the α−Hölder function
f0(x) = ∥x− x0∥α at x0 = 0, and the resulting pointwise 90%-credible sets at x0 coming from the
Matérn SGPR. Results are presented in Table 2, where we see that for m = m∗

d the performance of
the pointwise credible sets from the SGPR matches that of the full posterior in each design. Due to
the higher dimension, credible intervals are less confident (wider) and have larger coverage.

Multidimensional Random Design, n = 1000
Design Smoothness Coverage Length NLPD

Type ρ α γ SGPR GP SGPR GP SGPR GP
Uniform 0.5 0.5 0.96 0.96 1.46 (0.03) 1.46 (0.03) 0.96 (0.26) 0.96 (0.26)
Gaussian 0.0 0.7 0.5 0.99 0.99 2.17 (0.05) 2.17 (0.05) 1.34 (0.11) 1.34 (0.11)
Gaussian 0.2 0.9 0.5 1.00 1.00 2.13 (0.06) 2.13 (0.06) 1.90 (0.14) 1.90 (0.14)
Gaussian 0.5 1.1 0.5 1.00 1.00 2.03 (0.06) 2.03 (0.06) 1.36 (0.12) 1.36 (0.12)

Semi-synthetic Data, n = 2000
Smoothness Coverage Length RMSE NLPD
α γ SGPR GP SGPR GP SGPR GP SGPR GP

1.0 0.5 1.00 1.00 2.29 2.29 0.16 0.16 3.22 (0.47) 3.22 (0.47)

Table 2: Comparison of SGPR and full posterior (GP) with Matérn prior for 90% pointwise credible
intervals for different values of (α, γ). The SGPR uses 534 and 1002 inducing variables in the first
four rows and fifth row, respectively.

6 Discussion

In this work, we established the frequentist asymptotic behaviour of pointwise credible intervals
coming from sparse variational Gaussian process regression (SGPR) with eigenvector inducing
variables based on a rescaled Brownian motion prior. We showed that if the prior undersmooths
the truth and with enough inducing variables, SGPR credible sets can provide reliable, though
conservative, uncertainty quantification, with the coverage converging to a value strictly between
the nominal level and one. If the prior oversmooths the truth, UQ can be poor. We further showed
that it is not necessary for the SGPR to converge to the true posterior in KL-divergence to have
similar behaviour of the credible sets. Our results suggest that properly calibrated SGPRs can perform
reliable UQ. We verified these conclusions in simulations and discussed connections with other GPs.

Despite the widespread use of SGPR, there are still relatively few theoretical guarantees for their use,
particularly for UQ. Our work provides some new results in this direction, but most of this research
area is still wide open. A key step would be to prove similar results for the most commonly used GP
priors, notably the Matérn and squared exponential. Similarly, one would like to extend these results
to other choices of inducing variables, for instance the eigenfunctions of the kernel operator. While
our results give some intuition of what one can expect, they rely on a careful analysis of Brownian
motion with fixed design, and new ideas and techniques will be needed for these other settings.

It is also unclear what minimal number of inducing variables is needed to get good pointwise UQ.
When α = γ, the threshold for minimax convergence rates for estimation in L2 is n

1
1+2α [22], which

is smaller than our bound n
1

1+2α ( 2+α
1+α ), see Section B in the supplement for some related numerical

simulations. Our results are also non-adaptive since they assume fixed prior smoothness γ, whereas
one often selects γ in a data-driven way, for instance by maximizing the marginal likelihood or
evidence lower bound (ELBO). However, adaptive UQ is a subtle topic which typically requires
further assumptions (e.g. self-similarity) on the true generative function to even be possible [30], and
extending our results to such settings will require significant technical and conceptual work.

Acknowledgements. We are grateful to four anonymous reviewers for helpful comments that
improved the manuscript. The authors would like to thank the Imperial College London-CNRS PhD
Joint Programme for funding which supported Luke Travis in his studies.
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Supplementary material to “Pointwise uncertainty quantification for sparse
variational Gaussian process regression with a Brownian motion prior”

A Proofs

Throughout this section, for sequences an and bn, we will write an ≲ bn if there exists C > 0 such
that an ≤ Cbn for n large enough, and we will write an ≍ bn if both an ≲ bn and bn ≲ an. Recall
that for simplicity, we take the noise variance σ2 = 1 in the regression model (1).

A.1 General results on pointwise inference

Proof of Lemma 3.1. Using the definitions (2) and (3) of the posterior and SGPR means, we have
νm(x) = νn(x)− ⟨rm(x),y⟩, from which (7) follows on taking the Ef0-expectation. Next, recall

that νn(x) = kn(x)
T
[∑n

j=1 ηjvjv
T
j

]
y, and thus

t2n(x) = Var(νn(x)) =

∥∥∥∥∥∥
 n∑
j=1

ηjvjv
T
j

kn(x)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
 m∑
j=1

ηjvjv
T
j

kn(x) + rm(x)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
 m∑
j=1

ηjvjv
T
j

kn(x)

∥∥∥∥∥∥
2

+ ∥rm(x)∥2

= t2m(x) + ∥rm(x)∥2,

from which (8) follows. Finally,

σ2
n(x) = kn(x, x) = k(x, x)− kn(x)

T

 n∑
j=1

ηjvjv
T
j

kn(x)

= k(x, x)− kn(x)
T

 m∑
j=1

ηjvjv
T
j

kn(x)− kn(x)
T

 n∑
j=m+1

ηjvjv
T
j

kn(x),

which gives (9).

Proof of Proposition 3.2. We will prove this for the full posterior, with the expressions for the SGPR
following the same. Denoting by EΠ|Y the expectation with respect to the posterior, Markov’s
inequality yields,

Π(|f(x)− f0(x)| > Mnεn|Y ) ≤
EΠ|Y (f(x)− f0(x))

2

M2
nε

2
n

.

Moreover,

EΠ|Y (f(x)− f0(x))
2
= (νn(x)− f0(x))

2
+ VarΠ|Y (f(x)) = (νn(x)− f0(x))

2
+ σ2

n(x).

Now,

Ef0

[
EΠ|Y (f(x)− f0(x))

2
]
= Ef0

[
(νn(x)− f0(x))

2
]
+ σ2

n(x) = b2n(x) + t2n(x) + σ2
n(x).

Thus for ε2n(x) ≍ b2n(x)+ t
2
n(x)+σ

2
n(x) and anyMn → ∞, Ef0Π(|f(x)− f0(x)| > Mnεn|Y ) →

0.

Proof of Proposition 3.4. We have,

Pf0(f0(x) ∈ Cδm) = Pf0(|νm(x)− f0(x)| ≤ z1−δσm(x)) = Pf0(|Vm| ≤ z1−δ),
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for Vm ∼ N
(
bm(x)
σm(x) ,

t2m(x)
σ2
m(x)

)
. Now, if ⟨rm(x), f0⟩ = o(bn(x)), we have bm(x) = bn(x)(1 + o(1))

and further, by expressions (8) and (9) we have t2m(x)
σ2
m(x) ≤

t2n(x)
σ2
n(x)

, and thus,

lim inf
n→∞

Pf0 (|Vm| ≤ z1−δ) ≥ lim inf
n→∞

Pf0 (|Vn| ≤ z1−δ) = lim inf
n→∞

Pf0
(
f0(x) ∈ Cδn

)
.

If in addition, we have ∥rm(x)∥2 = o(t2n(x)) and ⟨rm(x),kn(x)⟩ = o(σ2
n(x)) then by expressions

(8) and (9) we have t2m(x) = t2n(x)(1 + o(1)) and σ2
m(x) = σ2

n(x)(1 + o(1)) and thus,

lim
n→∞

Pf0 (|Vm| ≤ z1−δ) = lim
n→∞

Pf0 (|Vn| ≤ z1−δ) = lim
n→∞

Pf0
(
f0(x) ∈ Cδn

)
.

A.2 Rescaled Brownian motion prior

Recall that we take regularly spaced design points xi = i
n+1/2 , i = 1, . . . , n, and that we consider

the rescaled Brownian motion prior, which is a mean-zero Gaussian process with covariance kernel
k(x, x′) = cn(x∧y) = cnmin(x, y) with cn = (n+1/2)

1−2γ
1+2γ for γ > 0. For notational convenience,

we write N = (n+ 1/2)/cn = (n+ 1/2)1−
1−2γ
1+2γ . The kernel matrix Knn evaluated at the sample

points then equals

Knn = cn


1/(n+ 1/2) 1/(n+ 1/2) . . . 1/(n+ 1/2)
1/(n+ 1/2) 2/(n+ 1/2) . . . 2/(n+ 1/2)

...
...

. . .
...

1/(n+ 1/2) 2/(n+ 1/2) · · · n/(n+ 1/2)

 =
1

N


1 1 . . . 1
1 2 . . . 2
...

...
. . .

...
1 2 · · · n

 .

For this specific choice of prior and design, we can compute fairly explicit expressions for the
eigenvalues and eigenvectors of Knn, which will in turn allow us to obtain the precise pointwise
asymptotics of the VB method needed for our results.
Lemma A.1 (Eigenvalues and eigenvectors). The eigenvalues (µj)nj=1 of the covariance matrix Knn

are given by

µj =
1

2N(1− cos(ψj))
with ψj =

j − 1/2

n+ 1/2
π

for j = 1, . . . , n. Moreover, their size satisfies

µj ≍
1

Nψ2
j

≍ (n+ 1/2)cn
1

(j − 1/2)2
.

The corresponding orthonormal eigenvectors v1, . . . ,vn, where vj = (v1j , . . . , v
n
j )
T , are given by

vlj =
2 sin(lψj)√

2n+ 1
.

Proof. Let v be an eigenvector of Knn with corresponding eigenvalue µ, so that Knnv = µv.
Applying elementary row operations to this equation, we arrive at the following equivalent equations:

1

N


v1

v2

...
vn−1

vn

 = µ


2v1 − v2

2v2 − v1 − v3

...
2vn−1 − vn−2 − vn

vn − vn−1

 .
From this, one can see that to obtain a non-trivial eigenvector v ̸= 0, we require v1 ̸= 0. We thus
consider the unnormalized eigenvector w = (w1, . . . , wn)T ∈ Rn, for which we set w1 = 1 for
simplicity. Further define w0 = 0 and w−1 = −1, so that the first (n − 1) equations in the last
display are equivalent (after rearranging) to the recurrence relation

wj =

(
2− 1

µN

)
wj−1 − wj−2, j = 1, . . . , n, (11)
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while the last equation gives the boundary condition

wn =
µN

µN − 1
wn−1. (12)

The linear recurrence relation (11) has solution

wj =
1

ϕ+ − ϕ−

(
ϕj+ − ϕj−

)
, (13)

for

ϕ± = 1− 1

2µN
± 1

2

√
1

µ2N2
− 4

µN
=: x± iy,

with x = 1 − 1
2µN and y = 1

2

√
4
µN − 1

µ2N2 (computation of the eigenvalues below reveals that
1

µ2N2 − 4
µN < 0 for all eigenvalues µ.) Note that (13) provides the solution to (11) for any arbitrary

value of µ, but that (12) will later be needed to ensure that µ is an eigenvalue of Knn. Since
x2 + y2 = 1, we can conveniently rewrite this in complex exponential form as

ϕ± = e±iψ, where cosψ = Re(ϕ±) = x = 1− 1

2µN
, (14)

and ψ is an alternative parametrization of µ. This form makes it easy to compute expressions for ϕj±,
and hence evaluate (13). Indeed, we have

wj =
1

ϕ+ − ϕ−
(ϕj+ − ϕj−) =

sin(jψ)

sinψ
, (15)

giving the form of the unnormalized eigenvector w = (1, w2, . . . , wn)T corresponding to an eigen-
value µ via (14). To normalize the eigenvector, using that cos(2jψ) = 1− 2 sin2(jψ),

∥w∥22 =

n∑
j=1

(wj)2 =

n∑
j=1

sin2(jψ)

sin2 ψ
=

1

sin2 ψ

n∑
j=1

1

2
(1− cos(2jψ))

=
1

4 sin2 ψ

(
2n+ 1− sin((2n+ 1)ψ)

sinψ

)
,

where in the last line we have used the Lagrange trigonometric identity that
∑n
j=0 cos(2jψ) =

1
2 +

sin(2n+1)ψ)
2 sinψ for any ψ ̸= 0(mod π) (else it equals n+ 1). On computing the values ψ corresponding

to the eigenvalues in (17) below, one has sin((2n+1)ψ) = 2 sin((n+1/2)ψ) cos((n+1/2)ψ) = 0,
and hence ∥w∥22 = 2n+1

4 sin2 ψ
. Thus the normalized eigenvector with v = w/∥w∥2 has the required

coordinates,

vj =
2 sin(jψ)√
2n+ 1

. (16)

Turning to the computation of the eigenvalues, the boundary condition (12) defines whether µ is an
eigenvalue. Substituting the solution (15) into (12), any µ that satisfies

sin(nψ)

sinψ
=

µN

µN − 1

sin((n− 1)ψ)

sinψ
,

or equivalently

(µN − 1) sin(nψ) = µN sin((n− 1)ψ) and sinψ ̸= 0,

is an eigenvalue of Knn. Indeed, if one approaches the problem in the traditional way, by computing
the determinant of (Knn − µIn) (see Lemma A.2 below), then one has

|Knn − µIn| =
(−1)n

sinψ

([
µn − µn−1

N

]
sin(nψ)− µn sin((n− 1)ψ)

)
= 0

⇔
[
µ− 1

N

]
sin(nψ)− µN sin((n− 1)ψ) = 0 and sinψ ̸= 0

⇔ (µN − 1) sin(nψ)− µN sin((n− 1)ψ) = 0 and sinψ ̸= 0,
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exactly as above. Recalling that ψ and µ are related by cosψ = 1 − 1
2µN , this last expression is

equivalent to

0 =

(
1− 1

µN

)
sin(nψ)− sin((n− 1)ψ)

= (2 cosψ − 1) sin(nψ)− sin((n− 1)ψ)

= sin((n+ 1)ψ)− sin(nψ)

= 2 sin(ψ/2) cos((n+ 1/2)ψ),

where we have used the identity 2 cosA sinB = sin(A + B) − sin(A − B) twice. By (14), the
eigenvalues µ are only defined by cosψ, and hence we may restrict ψ to [−π, π) and look for solutions
within this range. For ψ in this range, the condition sinψ ̸= 0 then implies sin(ψ/2) ̸= 0, and hence
we need only look for solutions to the equation cos((n+ 1/2)ψ) = 0. For ψ ∈ [−π, π), these are
given by

ψj =
j − 1/2

n+ 1/2
π, j = −n,−n+ 1, . . . , n. (17)

By symmetry, cosψj = cosψ1−j for j = 1, . . . , n and hence we may discard the roots j =
−n+ 1, . . . , 0. Moreover, sinψ−n = 0 violating the restriction sinψ ̸= 0. This leaves us with the n
eigenvalues

µj =
1

2N(1− cosψj)
, j = 1, . . . , n

as desired.

It remains only to quantify the size of the eigenvalues µj . Expanding cosx = 1− x2/2! + x4/4! +
o(x4), we have x2 − x4/12 ≤ 2(1− cosx) ≤ x2 for all x, and thus

1

Nx2
≤ 1

2N(1− cosx)
≤ 1

Nx2(1− x2/12)
.

Since ψj =
j−1/2
n+1/2π, we have ψ2

j /12 < 5/6 (on bounding π2 by 10 and the fraction by 1) and so
1

Nψ2
j (1−ψ2

j/12)
< 6

Nψ2
j

. Hence we have 1
Nψ2

j
≤ µj ≤ 6

Nψ2
j

and µj ≍ 1
Nψ2

j
.

Let |A| denote the determinant of a matrix A.
Lemma A.2. The solutions to the characteristic equation of Knn, |Knn − µIn| = 0, are given by
the solutions to

(−1)n

sinψ

((
µn − 1

N
µn−1

)
sin(nψ)− µn sin((n− 1)ψ)

)
= 0,

where cosψ = 1− 1
2Nµ .

Proof. Using row operations, the desired determinant equals

|Knn − µIn| =

∣∣∣∣∣∣∣∣∣
1
N − µ 1

N · · · 1
N

1
N

2
N − µ . . . 2

N
...

...
. . .

...
1
N

2
N · · · n

N − µ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣

1
N − µ 1

N · · · · · · 1
N

µ 1
N − µ 1

N . . . 1
N

0 µ
. . . . . .

...
...

. . . . . . 1
N − µ 1

N
0 · · · 0 µ 1

N − µ

∣∣∣∣∣∣∣∣∣∣∣∣
,

which can be further be reduced to

|Knn − µIn| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2
N − µ µ 0 · · · 0

µ 2
N − µ µ

. . .
...

0 µ
. . . . . . 0

...
. . . . . . 2

N − µ µ
0 · · · 0 µ 1

N − µ

∣∣∣∣∣∣∣∣∣∣∣∣∣
=: dn,
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the determinant of a symmetric tridiagonal n × n matrix. Using the Laplace expansion of the
determinant in terms of the determinants of its (n − 1) × (n − 1) submatrices, we obtain the
recurrence relation dn =

(
2
N − µ

)
dn−1 − µ2dn−2. The solution to this recurrence is given by

dn =
1

ϕ+ − ϕ−

(
ϕn+1
+ − ϕn+1

−
)
,

where ϕ± satisfy ϕ2 −
(

2
N − µ

)
ϕ+ µ2 = 0. That is,

ϕ± =
( 2
N − µ)±

√
4
N2 − 4µ

N

2
.

Similar to when we solved the recurrence in the proof of Lemma A.1, we end up with ϕ± = µe±iψ
′
,

where cos(ψ′) = 1
2Nµ − 1. We use the notation ψ′ to emphasise that these angles are different

to the ψ′s found in the proof of Lemma A.1; indeed, it is easy to see that ψ′ = ψ + π, so that
sin(nψ′) = (−1)n sin(nψ). This yields

dn = (−1)n
µn

sin(ψ)
sin((n+ 1)ψ),

and the result is shown by seeing

|Knn − µI| =
(

1

N
− µ

)
dn−1 − µ2dn−2

= (−1)n−1

(
1

N
− µ

)
µn−1

sin(ψ)
sin(nψ)− (−1)n−2µ2 µ

n−2

sin(ψ)
sin((n− 1)ψ)

=
(−1)n

sinψ

((
µn − 1

N
µn−1

)
sin(nψ)− µn sin((n− 1)ψ)

)

Given the explicit expressions derived for the eigenvalues and eigenvectors of the covariance matrix
Knn, we derive bounds for the size of the remainder terms presented in Lemma 3.1.

Lemma A.3. Suppose that f0 ∈ Cα[0, 1], α ∈ (0, 1], and consider the rescaled Brownian motion
prior of regularity γ ∈ (0, 1]. The corresponding SGPR Q∗ based on the first m = mn → ∞
eigenvector inducing variables satisfies, as n→ ∞,

bm(x) = bn(x) +O(ncnm
−(1+α)) (18)

t2m(x) = t2n(x) +O(nc2nm
−3) (19)

σ2
m(x) = σ2

n(x) +O(nc2nm
−3). (20)

Proof. First, suppose that x = xi is a design point. Starting with the bias, we have,

bm(x) = bn(x) + kn(x)
T

 n∑
j=m+1

ηjvjv
T
j

 f0 = bn(x) +

n∑
j=m+1

ηj(kn(x)
Tvj)(v

T
j f0).

In this case kn(xi)Tvj = µjv
i
j and the next step is to bound vTj f0 for each j. Using the explicit form

for vj given in Lemma A.1,

vTj f0 =

n∑
l=1

2√
2n+ 1

sin(lψj)f0(xl) =
2√

2n+ 1

n∑
l=1

sin

(
l
(j − 1/2)π

n+ 1/2

)
f0(xl)

=
2√

2n+ 1

n∑
l=1

sin (xl(j − 1/2)π) f0(xl).

18



Now, writing πj := (j − 1/2)π, we have sin(xlπj) =
1
2i (e

ixlπj − e−ixlπj ) and thus∣∣∣∣∣
n∑
l=1

sin (xl(j − 1/2)π) f0(xl)

∣∣∣∣∣ ≲
∣∣∣∣n∫ 1

0

sin(t(j − 1/2)π)f0(t)dt

∣∣∣∣+ n1−α

≤
∣∣∣∣ n2i

[∫ 1

0

eixπjf0(x)dx−
∫ 1

0

e−ixπjf0(x)dx

]∣∣∣∣+ n1−α

≲ nπ−α
j + n1−α ≍ nπ−α

j ,

for f0 ∈ Cα([0, 1]), where the first inequality follows from Lemma A.4 below. We have thus shown
that |vTj f0| ≲

√
n(j − 1/2)−α. Using this, that µj ≍ (n+ 1/2)cn

1
(j−1/2)2 by Lemma A.1 and that

ηj ≲ 1,

|bm(x)− bn(x)| ≲
n∑

j=m+1

ηjµjv
i
j

√
n(j − 1/2)−α ≍ ncn

n∑
j=m+1

j−2−α ≍ ncnm
−(1+α)

as required. Next, we have,

t2m(x) = t2n(x)− ∥rm(x)∥2 = t2n(x)− kn(x)
T

n∑
j=m+1

η2jvjv
T
j kn(x).

Using again that x = xi and so kn(xi)
Tvj = µjv

i
j , we have,

kn(x)
T

 n∑
j=m+1

η2jvjv
T
j

kn(x) =

n∑
j=m+1

η2jµ
2
j (v

i
j)

2 ≲
1

n

n∑
j=m+1

n2c2n
(j − 1/2)4

≲ nc2nm
−3,

as required. Finally,

σ2
m(x) = σ2

n(x) + kn(x)
T

 n∑
j=m+1

ηjvjv
T
j

kn(x), (21)

and again at a design point x = xi,

kn(x)
T

 n∑
j=m+1

ηjvjv
T
j

kn(x) =

n∑
j=m+1

ηjµ
2
j (v

i
j)

2 ≲ nc2nm
−3.

This establishes the three relations at the design points x = xi.

Turning to the general case x ∈ [0, 1], let i be such that xi < x < xi+1. Recalling that the covariance
function equals k(x, x′) = cn(x ∧ x′), we obtain

kn(x) = cn



x1
...
xi
x
...
x


= kn(xi) + cn



0
...
0

x− xi
...

x− xi


,

where 0 < x− xi <
1

n+1/2 . Consider first the case of the SGPR variance σ2
m(x). The last display

implies that (kn(x) − kn(xi))
Tvj = cn(x − xi)

∑n
l=i+1 v

l
j , and hence the quadratic term in (21)

can be rewritten as

kn(x)
T

 n∑
j=m+1

ηjvjv
T
j

kn(x) = kn(xi)
T

 n∑
j=m+1

ηjvjv
T
j

kn(xi)

+ 2cn

n∑
j=m+1

ηj

[
(x− xi)

n∑
l=i+1

vlj

]
vTj kn(xi)

+ c2n

n∑
j=m+1

ηj

[
(x− xi)

n∑
l=i+1

vlj

]2
.

(22)
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The first term is exactly the quadratic term evaluated at the design point xi, which we showed above
has size O(nc2nm

−3). Using Lemmas A.1 and A.4,
n∑

l=i+1

vlj =
2√

2n+ 1

n∑
l=i+1

sin(xl(j − 1/2)π)

=
2n√
2n+ 1

(∫ 1

xi

sin(t(j − 1/2)π)dt+O(n−1)

)
=

2n√
2n+ 1

cos(xi(j − 1/2)π)

(j − 1/2)π
+O(n−1/2) = O

( √
n

j − 1/2

)
+O(n−1/2).

By Lemma A.1, vTj kn(xi) = µjv
i
j = O(cn

√
nj−2). Since also ηj ≲ 1, the second term in (22) is

bounded by a multiple of

cn√
n

n∑
j=m+1

j−1|vTj kn(xi)| ≲ c2n

n∑
j=m+1

j−3 ≲ c2nm
−2 = O(nc2nm

−3).

The third term in (22) can similarly be shown to be O(c2nn
−1m−1) = O(nc2nm

−3). We have thus
shown that (22) is of size O(nc2nm

−3) exactly as in the case where x was a design point, which
implies the desired bound for the SGPR variance σ2

m(x).

The case t2m(x) follows in a similar fashion, simply replacing ηj by η2j , while the bias bm(x) uses
additionally the bound |vTj f0| ≲

√
n(j − 1/2)−α derived above. In conclusion, the three quantities

bm(x), t2m(x) and σ2
m(x) satisfy the same bounds as when x is a design point, which completes the

proof.

The next standard bound controls the error when approximating a Cα function by its Riemann sum.
Lemma A.4. If f ∈ Cα[0, 1] with α ∈ (0, 1], then∣∣∣∣∣

∫ 1

0

f(t)dt− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ≤ (n+ 1/2)−α,

with xi = i
n+1/2 for i = 1, . . . , n.

The following lemma shows that for m large enough, the bias, frequentist variance of the SGPR mean
and SGPR variance can each be related to those of the full posterior derived in [29].

Lemma A.5. If m≫ n
1

1+2γ (
2+α
1+α ), then the SGPR satisfies

bm(x) = bn(x)(1 + o(1))

t2m(x) = t2n(x)(1 + o(1))

σ2
m(x) = σ2

n(x)(1 + o(1)).

Proof. From [29], we have the following expressions for the full posterior:

|bn(x)| ≲ n−
α

1+2γ , t2n(x) ≍ n−
2γ

1+2γ , σ2
n(x) ≍ n−

2γ
1+2γ .

Thus, if we can show that the O terms given in equations (18)-(20) are smaller than their respective
terms above, we have the result. By Lemma A.3, we have bm(x) = bn(x) + O(ncnm

−(1+α)),
and ncnm−(1+α) = n

2
1+2γm−(1+α) ≲ n−

α
1+2γ if and only if n

1
1+2γ ( 2+α

1+α ) ≪ m. Thus, if m ≫
n

1
1+2γ ( 2+α

1+α ) then ncnm−(1+α) = o(bn(x)) and bm(x) = bn(x)(1 + o(1)). Similarly,

nc2nm
−3 ≪ t2n(x) = σ2

n(x) ≍ n−
2γ

1+2γ ⇔ m≫ n
1

1+2γ .

Thus, t2m(x) = t2n(x)(1 + o(1)) and σ2
m(x) = σ2

n(x)(1 + o(1)) if m ≫ n
1

1+2γ ( 2+α
1+α ) (in fact these

are implied even at the smaller bound n
1

1+2γ ).

Proof of Theorem 3.5. The proof follows from Proposition 3.2 combined with the two groups of
expressions (7)-(9) and (18)-(20).
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Proof of Theorem 3.6. The coverage equals
Pf0(f0(x) ∈ Cδm) = Pf0(|νm(x)− f0(x)| ≤ z1−δσm(x)) = Pf0(|Vm| ≤ z1−δ),

for Vm ∼ N
(
bm(x)
σm(x) ,

t2m(x)
σ2
m(x)

)
. Now, since m ≫ n

1
1+2γ ( 2+α

1+α ) we have bm(x) = bn(x)(1 + o(1)),

t2m(x) = t2n(x)(1 + o(1)) and σ2
m(x) = σ2

n(x)(1 + o(1)) and thus,
lim
n→∞

Pf0 (|Vm| ≤ z1−δ) = lim
n→∞

Pf0 (|Vn| ≤ z1−δ) = lim
n→∞

Pf0
(
f0(x) ∈ Cδn

)
.

Lemma A.6. The Kullback-Leibler divergence between the SGPR Q∗ and the full posterior satisfies

2KL(Q∗||Π(·|Y )) = yT

 1

σ2

n∑
j=m+1

µj
µj + σ2

vjv
T
j

y +

n∑
j=m+1

log
σ2

σ2 + µj
+

1

σ2

n∑
j=m+1

µj .

Suppose further that f0 ∈ Cα, α ∈ (0, 1], and consider the fixed design setting with the rescaled
Brown motion prior of regularity γ ∈ (0, 1]. If m≫ n

1
1+2γ , then

Ef0KL(Q
∗||Π(·|Y )) ≍ n

2
1+2γm−1 + n

3+2γ
1+2γm−1−2α.

In particular, if n
1

1+2γ ≪ m≪ n
2

1+2γ then Ef0KL(Q
∗||Π(·|Y )) → ∞.

Proof. We have from [31]

KL(Q||Π(·|Y )) =
1

2

(
yT
(
Q−1
n −K−1

n

)
y
)
+ log

|Qn|
|Kn|

+
1

σ2
tr(Kn −Qn),

where Kn = Knn + σ2I , Qn = Qnn + σ2I , Knn =
∑n
j=1 µjvjv

T
j and Qnn =

∑m
j=1 µjvjv

T
j .

We thus have

Q−1
n −K−1

n =

n∑
j=m+1

(
1

σ2
− 1

σ2 + µj

)
vjv

T
j =

1

σ2

n∑
j=m+1

µj
σ2 + µj

vjv
T
j ,

|Qn|
|Kn| =

∏n
j=m+1

σ2

σ2+µj
, and tr(Kn−Qn) =

∑n
j=m+1 µj , giving the results. We now consider the

three terms given in the first part of the lemma. Defining M :=
∑n
j=m+1

µj

µj+σ2vjv
T
j , we have

Ef0

yT
 1

σ2

n∑
j=m+1

µj
µj + σ2

vjv
T
j

y

 =
1

σ2
Ef0

[
(f0 + ε)TM(f0 + ε)

]
=

1

σ2
fT0 M f0 +

1

σ2
Ef0

[
εTMε

]
.

Recalling from the proof of Lemma A.3 that |vTj f0| ≲
√
nj−α, we can control

1

σ2
fT0 M f0 =

1

σ2

n∑
j=m+1

µj
µj + σ2

(vTj f0)
2 ≲

1

σ2

n∑
j=m+1

nµjj
−2α ≍ n

3+2γ
1+2γm−1−2α.

Next, we have

Ef0 [ε
TMε] = Ef0tr(ε

TMε) = Ef0tr(MεεT ) = tr(MEf0 [εε
T ]) = tr(M) ≍ n

2
1+2γm−1.

For the second term in the first part of the lemma,
n∑

j=m+1

log
σ2

σ2 + µj
= −

n∑
j=m+1

log
(
1 +

µj
σ2

)
= −

n∑
j=m+1

(
µj
σ2

+O

(
µ2
j

σ4

))

= − 1

σ2

n∑
j=m+1

µj −O

 n∑
j=m+1

µ2
j

σ4


= − 1

σ2
n

2
1+2γ /m−O(n

4
1+2γm−3).

Hence, adding these expressions to the third term in the first part of the lemma yields

Ef0KL(Q||Π(·|Y )) ≍ n
2

1+2γm−1 + n
3+2γ
1+2γm−1−2α −O(n

4
1+2γm−3).

The last term is of strictly smaller order than the first two if m≫ n
1

1+2γ .
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B Additional numerical simulations

We provide here additional simulations to those in Section 5, investigating further the minimal
number of inducing variables needed for good pointwise UQ and the sensitivity of the results to
misspecification of the noise distribution. To illustrate the pointwise approach to UQ using full
posterior inference and SGPRs, one can refer to Figure 1 in the paper.

Threshold for the number of inducing variables. We showed in Sections 3 and 5 that for m ≫
n

1
1+2γ ( 2+α

1+α ) inducing variables, the SGPR behaves similarly to the true posterior for pointwise
inference. When α = γ, the threshold for minimax convergence rates for estimation in L2 is the
smaller bound m≫ n

1
1+2α [22]. We next investigate how the SGPR behaves near this threshold.

Return to the fixed (Xi = i/(n + 1/2)) and uniform random (Xi ∼iid U [0, 1]) design settings on
[0, 1] and consider the same Gaussian processes as before: rescaled Brownian motion, Matérn and
rescaled square exponential. We consider three different values of m given by m∗

− = n
1

1+2γ / log n,
m∗

+ = n
1

1+2γ · log n, so that these values of m are just below and above the threshold n
1

1+2γ ,
respectively, and the full posterior casem = n. We consider the 1−Hölder function f0(x) = |x−1/2|
and 2−Hölder function f0(x) = sign(x− 1/2)|x− 1/2|2.

Coverage Length RMSE NLPD
GP m∗

− m∗
+ n m∗

− m∗
+ n m∗

− m∗
+ n m∗

− m∗
+ n

Fixed Design: n = 1000, (α, γ) = (1, 0.5)
rBM 1.00 0.98 0.98 0.52 0.42 0.42 0.06 0.09 0.09 -0.85 -0.89 -0.89
Matérn 1.00 0.98 0.98 0.69 0.50 0.50 0.07 0.11 0.11 -0.59 -0.70 -0.70
SE 1.00 0.93 0.93 2.73 0.66 0.66 0.08 0.18 0.18 0.74 -0.28 -0.28

Fixed Design: n = 1000, (α, γ) = (2, 1.5)
rBM 0.98 0.98 0.98 0.18 0.17 0.17 0.04 0.04 0.04 -1.72 -1.74 -1.74
Matérn 1.00 0.95 0.95 0.56 0.22 0.22 0.04 0.05 0.05 -0.82 -1.51 -1.51
SE 1.00 0.91 0.91 2.29 0.31 0.31 0.05 0.09 0.09 0.56 -0.99 -0.99

Random Design: n = 500, (α, γ) = (1, 0.5)
rBM 1.00 0.97 0.97 0.59 0.50 0.50 0.08 0.10 0.10 -0.70 -0.75 -0.75
Matérn 1.00 0.96 0.96 0.87 0.59 0.59 0.07 0.12 0.12 -0.38 -0.58 -0.58
SE 1.00 0.94 0.94 2.70 0.77 0.77 0.10 0.21 0.21 0.73 -0.13 -0.13

Random Design: n = 500, (α, γ) = (2, 1.5)
rBM 0.98 0.95 0.95 0.23 0.23 0.23 0.05 0.05 0.05 -1.49 -1.49 -1.49
Matérn 1.00 0.96 0.96 0.57 0.29 0.29 0.05 0.07 0.07 -0.79 -1.19 -1.19
SE 1.00 0.95 0.95 2.10 0.39 0.39 0.05 0.10 0.10 0.47 -0.86 -0.86

Table 3: Comparison of SGPR and full posterior for 90% pointwise credible intervals for different
values of (n, α, γ) in dimension d = 1. The column headers describe how many inducing variables
were used, with m∗

− := n
1

1+2γ / log(n) and m∗
+ := n

1
1+2γ · log(n) and the full posterior represented

by n. The hypothesised bound n
1

1+2γ equals 32, 6, 22 and 5 in the four different regimes (top-to-
bottom).

The results of our experiments for different values of (n, α, γ) are given in Table 3; we note here
that we exclude estimates of the standard error in this Table due to space constraints, but they are
comparable to those presented in Table 1 in the main text. In all cases, one can see that the coverage,
length and RMSE are practically indistinguishable between the cases m = m∗

+ and the full posterior
m = n, suggesting that the choice of m≫ n

1
1+2γ inducing variables is sufficient to achieve the same

performance as the full posterior for pointwise inference. Furthermore, for fixed design, we again see
the Brownian motion with both choices m = m∗

+ and m = n achieves the expected coverage of 0.98
predicted by our theory.

Conversely, for m = m∗
− inducing variables, the coverage and credible interval length was larger in

almost all cases, sometimes significantly so. This suggests that below this threshold, the SGPR is
no longer a good approximation for the true posterior, matching the findings in [22, 23] for L2-type
inference. On the other hand, the RMSE is usually reduced, indicating that additional smoothing
helps the sparse posterior mean for estimation, which is not surprising since in our simulation choices
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the prior undersmooths the truth. The main message is that taking fewer inducing points than this
threshold leads to a significant increase in the credible interval width, making the UQ less informative
and overly conservative. It is interesting that this threshold shows so clearly, since m∗

− and m∗
+ differ

only by a subpolynomial factor.

The same story holds for random design, with some additional fluctuations due to this additional
source of randomness. We recall that for fixed design, the credible intervals have deterministic length,
whereas for random design these are also now random.

It would be interesting to extend our theoretical results to the threshold n
1

1+2γ as suggested by these
simulations. However, the mismatch between pointwise loss and the L2-distance induced by the
likelihood makes using standard tools from Bayesian nonparametrics difficult, see [15] for further
discussion.

Multidimensional setting. Consider again d = 10 dimensional covariates with the Matérn kernel
of smoothness 1/2, and the corresponding threshold n

d
d+2γ needed for the minimax contraction rate

in L2 [22]. We take uniform random design Xi ∼iid U([−1/2, 1/2]d), true function f0(x) = ∥x∥α
for α = 0.9 and investigate the pointwise 90%−credible intervals at the point x0 = (0, . . . , 0). We
now take three values of m given by m∗

d− = n
d

d+2γ / log n, m∗
d+ = n

d
d+2γ · log n and m = n. The

results are presented in Table 4. Indeed, one sees that the variational posterior performs identically to
the full posterior once at least m∗

d+ = nd/(d+2γ) · log n≫ n
d

d+2γ inducing variables have been used,
while m∗

d− inducing variables do not seem to be enough to get the same performance.

Coverage Length RMSE NLPD
m∗
d− m∗

d+ n m∗
d− m∗

d+ n m∗
d− m∗

d+ n m∗
d− m∗

d+ n
0.93 1.00 1.00 2.59 2.40 2.40 0.91 0.73 0.73 1.35 1.10 1.10

Table 4: Comparison of SGPR and full posterior with Matérn prior for 90% pointwise credible
intervals for (d, α, γ) = (10, 0.9, 0.5). The column headers describe how many inducing variables
were used with m∗

d− = n
d

d+2γ / log(n) and m∗
d+ = n

d
d+2γ · log(n) and the full posterior represented

by n. Here, n
d

d+2γ = 284.

Misspecified noise. We now take the same fixed design setting as in Section 3 of the main paper,
but sample Yi = f0(Xi) + εi, where εi are independent standard Laplace random variables. Based
on Table 5, the results are much the same as in the well-specified case, so that the credible sets
demonstrate some robustness to noise misspecification. Note that while the coverage remains broadly
similar, the credible intervals are slightly wider and have larger RMSE reflecting the larger noise.

Smoothness Coverage Length RMSE NLPD
GP α γ SGPR GP SGPR GP SGPR GP SGPR GP
rBM 1 0.5 0.98 0.98 0.49 0.49 0.11 0.11 -0.71 (0.15) -0.71 (0.15)
Matérn 1 0.5 0.98 0.98 0.58 0.58 0.12 0.12 -0.58 (0.17) -0.58 (0.17)
rBM 0.5 0.5 0.69 0.69 0.49 0.49 0.22 0.22 0.11 (0.32) 0.11 (0.32)
Matérn 0.5 0.5 0.88 0.88 0.58 0.58 0.20 0.20 -0.17 (0.20) -0.17 (0.20)

Table 5: Misspecified noise. SGPR summary statistics for 90% pointwise credible intervals for
different values of (α, γ) with regular fixed design on [0, 1] with n = 1000 and Laplace noise. The
SGPR uses m∗ = n

1
1+2γ

2+α
1+α inducing variables, which is 126 and 316 in the two regimes.

B.1 Definitions of simulation statistics

For completeness, we define here the statistics reported in the simulation sections based on M
Monte-Carlo samples. For Y (j)

i = f0(Xi) + ε
(j)
i , i = 1, . . . , n and j = 1, . . . ,M , let C(j)

m (x0)

denote the credible interval for f(x0), f̄
(j)
m (x0) and σ(j)

m (x0)
2 the posterior mean and variance from

the SGPR with m inducing variables computed from the jth realisation of the data. We then consider
the Monte-Carlo estimates of the coverage, credible interval length, root-mean square error (RMSE)
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and negative log-predictive density (NLPD) given by

Ĉov =
1

M

M∑
j=1

1{f0(x0) ∈ C(j)
m (x0)}, R̂MSE =

√√√√ 1

M

M∑
j=1

(f̄
(j)
m (x0)− f0(x0))2,

L̂en =
1

M

M∑
j=1

Length
(
C(j)
m (x0)

)
, N̂LPD = − 1

M

M∑
j=1

logN
(
f0(x0)|f (j)m (x0), σ

(j)
m (x0)

2
)
,

respectively, where N
(
f0(x0)|f (j)m (x0), σ

(j)
m (x0)

2
)

denotes the density of the Gaussian distribution

with mean f (j)m (x0) and variance σ(j)
m (x0)

2 evaluated at the point f0(x0).
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