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Abstract

Large Language Models (LLMs) have recently demonstrated strong capabilities
in code-related tasks, but their robustness in code reasoning under perturbations
remains underexplored. We introduce CODECRASH, a stress-testing framework
with 1,279 questions from CRUXEVAL and LIVECODEBENCH, designed to eval-
uate reasoning reliability under structural perturbations and misleading natural
language (NL) contexts. Through a systematic evaluation of 17 LLMs, we find
that models often shortcut reasoning by over-relying on NL cues, leading to an
average performance degradation of 23.2% in output prediction tasks. Even with
Chain-of-Thought reasoning, models on average still have a 13.8% drop due to dis-
tractibility and rationalization, revealing a lack of critical reasoning capability to
distinguish the actual code behaviors. While Large Reasoning Models with internal
reasoning mechanisms improve robustness by fostering critical thinking, plausible
yet incorrect hints can trigger pathological self-reflection, causing 2 — 3 times
token consumption and even catastrophic cognitive dissonance in extreme cases
for QwQ-32B. We refer to this phenomenon as Reasoning Collapse. CODECRASH
provides a rigorous benchmark for evaluating robustness in code reasoning, guiding
future research and development toward more reliable and resilient models.

1 Introduction

Large Language Models (LLMs), exemplified by GPT families (OpenAl et al.l 2024; Hurst et al.|
2024) and the DeepSeek series (DeepSeek-Al et al.l 2025bla), have recently exhibited remarkable
performance across diverse code-related tasks, including code generation (Zan et al., 2023} [Liu
et al., 2023b; Xiao et al., 2024}, code completion (Ding et al., [2023)), program repair (Fan et al.,
2023; |L1u et al.} 2025), program testing (Deng et al., 2023} Kang et al., [2023)), and test case genera-
tion (Steenhoek et al.| [2025]; Takerngsaksiri et al.,|2025)). These advancements have facilitated the
incorporation of LLMs into Integrated Development Environments, such as GitHub Copilot (GitHub)
2022), OpenAl Codex (Chen et al.,2021), and Tabnine (Tabnine, |[2023)), highlighting their potential
to automate various aspects of software development (Zhang et al.| 2023} |Pandey et al., [2024). The
effectiveness of these applications heavily depends on the model’s ability to comprehend the program
logic, underlying functionality, and developer intent (Pan et al., [2024), but real-world codebases are
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often disorganized, with ambiguous identifiers (Gao et al.| [2023), garbage code (Li et al.| 2023), and
inconsistent comments (Rong et al., [2025). Those noises can mislead models into misinterpretations
and incorrect inferences, compromising the model’s reliability in downstream tasks.

Traditional robustness studies and obfuscators have primarily focused on code structure mutations,
such as renaming identifiers, modifying control flow, or inserting unreachable code (Wang et al.
2022} Wan et al.,[2022; |Li et al.,|2023)). While they are effective for assessing model pattern-matching,
these variations remain at the structural level. On the other hand, natural language (NL) perturbations
have mainly been explored in NL-to-Code tasks (e.g., code generation and completion) by editing the
task descriptions (Wang et al., 2022;|{Zhuo et al., [2023; Mastropaolo et al., 2023 (Chen et al., [2024a),
which evaluates prompt sensitivity rather than robustness in code reasoning. To the best of our
knowledge, CODECRASH is the first benchmark to systematically utilize NL-embedded misleading
perturbations to evaluate whether LLMs can prioritize executable semantics over NL cues in code
reasoning and understanding.

To diagnose whether LLMs truly understand program logic, we adopt input and output predictions
from CRUXEVAL (CRUX) (Gu et al.,[2024)) and extend them with LIVECODEBENCH (LCB) (Jain
et al., 2025) to cover real-world programs. We categorize our NL-embedded perturbations into
contextual-level (obviously incorrect cues in multiple formats) and reasoning-level (plausible but
incorrect hints inducing rationalization behaviors (Chen et al., [2025b)), with the goal of stress-
testing the critical reasoning capability of LLMs. Furthermore, building upon program structure-
consistent (PSC) mutations from CCTEST (Li et al.| 2023)) and other perturbations (e.g., dead-loop
poisoning) (Wan et al.,[2022; |Sun et al., 2023)), we construct an aggregated structural perturbation
that integrates all traditional structural perturbations for representative comparison.

We perturb questions in CRUX and LCB, and evaluate seventeen LLMs in the direct inference setting,
observing significant performance degradation across all designed perturbations. We then extend our
evaluation to Chain-of-Thought (CoT) (Kojima et al., 2022) reasoning, and observe the phenomena
of distractibility (Shi et al., 2023) and rationalization (Barez et al., 2025) under contextual-level and
reasoning-level perturbations, respectively, exposing the insufficiency of critical thinking in semantic
tracing and code understanding. Therefore, we further assess three advanced Large Reasoning
Models (LRMs), which achieve superior robustness because of their enhanced internal reasoning.
However, we find that LRMs are trained to be overly cautious of uncertainty: contextual-level
perturbations increase reasoning tokens to digest the obviously misleading cues (Kumar et al.| 2025),
while reasoning-level perturbations exploit this bias to trigger pathological overthinking and even
“collapse” in QwQ-32B, constituting a novel failure mode. In addition, we accidentally identify a
potential limitation in input prediction for evaluating code comprehension, where models exploit
those misleading cues and bypass the core execution logic without understanding the code.

Our contributions include:

* We introduce a perturbation framework on code reasoning tasks that covers both structural and
NL-embedded code transformation for stress-testing LLM code reasoning robustness.

* We reveal that LLMs lack sufficient critical reasoning and exploit superficial cues to shortcut
reasoning and rationalize comments, extending prior findings on rationalization to code reasoning.

* We identify a pathological self-reflection phenomenon in LRMs and novel Reasoning Collapse fail-
ure in QwQ-32B, arising from residual rationalization that conflicts with reason-faithful objectives.

2 Functionally Equivalent Perturbations

2.1 Benchmark Execution Pipeline

CODECRASH provides a unified perturbation-evaluation pipeline, as illustrated in Figure[I] Each
code snippet is initially processed via Abstract Syntax Tree (AST) parsing and unparsing to stan-
dardize formatting, producing a clean “vanilla” baseline (VAN). Subsequently, we apply a selected
perturbation and regenerate the code through AST parsing, ensuring that replacement, reformatting,
and insertion are precisely controllable. Each perturbed code snippet is executed with the provided
inputs to double-check the syntactic validity and functional correctness. The validated and perturbed
code is then provided to LLMs, where we record their generated responses, extract the answers, and
execute them to compute the PASS@1 accuracy (Chen et al., 2021).
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Figure 1: Overview of the CODECRASH pipeline. Perturbed parts are visualized with color highlights.

2.2 Perturbation Strategies

We design a comprehensive perturbation framework that includes structural, contextual-level, and
reasoning-level perturbations to systematically stress-test LLMs’ code reasoning reliability. Detailed
illustrations of each perturbation are provided in Appendix [B]

Aggregated Structural Perturbation (PSC-ALL). We adapt PSC mutations from CCTEST (L1
et al.,[2023) and dead-loop poisoning (Wan et al., 2022; Sun et al., [2023)) by aggregating them on
the identifier-level (i.e., Renaming Entities, REN), instruction-level (i.e., Reformatting Conditional
Expressions, RTF), and block-level (i.e., Garbage Code, GBC; including unexecutable dead loops,
dead blocks, and global variables). PSC-ALL constructs a more complicated but functionally
equivalent program and represents the traditional structural perturbation that modifies syntax to
expose the pattern-matching biases of LLMs. For completeness, we specify REN, RTF, and GBC in

Appendix and highlight their compounding effects in Appendix [B.I] Since their impact
is consistently weaker than PSC-ALL, we focus our experiments on PSC-ALL.

Contextual-Level Misleading Perturbations MCC & MPS). These perturbations aim to mislead
models by injecting shallow NL cues into the surface context without altering the code logic. We
target eight critical and ordinary AST nodes (e.g., function definitions, returns, and loops) and
leverage GPT-40 to generate the misleading messages, which we manually filter to ensure they are
generic, explicitly incorrect, and contradictory to the code logic. Concretely, we design two variants:
(1) Misleading Code Comments (MCC), where we inject messages as code comments; and (2)
Misleading Print Statements (MPS), where we embed messages via executable print statements.
They evaluate whether LLMs naively include the irrelevant NL cues from the program for reasoning,
using different injection formats to clarify that the phenomenon is not bound to a specific format.

Reasoning-Level Misleading Perturbation (MHC). We further design the Misleading Hint
Comments (MHC) perturbation, which differs from contextual-level perturbations by providing
high-level incorrect hints about program outputs. We instruct GPT-40 to generate a plausible but
incorrect answer that preserves the expected type and structure but contradicts the ground truth.
After verifying the incorrectness, we utilize AST parsing to strategically inject it as a comment at
function definitions or return statements to make it more confusing. Unlike shallow contradictions
from contextual perturbations, MHC targets the reasoning process, assessing whether the model can
critically evaluate conflicting information rather than rationalize the hint and shortcut its reasoning.

3 Experimental Results and Analysis

3.1 Experiment Settings

Model Selection. We evaluate 17 models of varying sizes and versions, including both open-source
and closed-source LLMs: GPT family (GPT-40-Mini, GPT-40) (Hurst et al., |2024), Anthropic



Table 1: Relative PASS@1 degradation of LLMs under all perturbation types for output prediction
tasks on CRUX and LCB using direct inference. Darker red highlights represent more severe
degradation. See[[ABSOLUTE VERSION]|for the corresponding absolute degradation.

Model Series Model Name VAN PSC-ALL Mcc MPS kil Average
Crux LCB CRrUX LCB CruUx LCB CruUX LCB CRrRUX LCB |

GPT-4 Omni GPT-40-Mini 57.3 53.2 —27.9% -31.9% —32.6% = —40.4% —23.2% —28.0% —11.6% [=4aB% —28.4%

" GPT-40 713 64.5 —15.0% —28.4% —14.0% = =29.1% -17.2% —24.3% —6.4% —26.6% —18.4%

Claude Series | Cl2ude-3.5-Haiku-20241022 [ 57.4 582 ["=240% = =36.9% | —13.8% —10.0% | —112%  —8.0% [ =27.5% —221%

Claude-3.5-Sonnet-20241022 | 71.5 73.8 —14.8% | —341% —8.1% —9.6% —8.6% —10.7% —14.4% | —434% —16.3%

Gemini-1.5-Flash 56.2 44.3 —184% —12.7% —143% | —322% —28.5% —40.4% —7.3% —22.2% —20.8%

Gemini Series Gemini-2.0-Flash 650  66.0 | —33.2% NS420%0| —26.8% q ~33.1% q -83%  —19.5% | —31.2%

Gemini-1.5-Pro-002 674 562 | —19.9% —232% | —-23.0% —33.0% | —21.7% —32.8% | —10.0% | —32.5% | —23.0%

DeepSeek DeepSeek-V3 67.9 678 | —12.9% [[=35.6% | —16.6% I=4TA% | -10.1% [ =342% | -10.7% | —29.7% | —21.1%

LLaMA-3.1-8B-Instruct 36.0 34.7 -238% —19.7% —22.5% —28.5% —17.8% —23.1% -16.7% | =39.2% —23.0%

LLaMA Series LLaMA-3.1-70B-Instruct 56.1 44.9 —19.6% —17.2% -192% = —27.9% —26.7% —38.8% —8.4% —32.2% —22.4%

: LLaMA-3.1-405B-Instruct 63.5 50.7 -19.7%  —16.9% —6.6% —14.7% —11.3% —19.9% —6.9% —25.7% —14.2%

LLaMA-3.3-70B-Instruct 59.9 48.5 -17.3%  —20.1% —12.4% —19.8% —13.5% —25.4% —6.8% —20.9% —15.9%

Qwen2.5-7B-Tnstruct 133 414 | =319% —30.9% q =38:3% |=452%N -19.8% | —26.9% q —39.8%

Qwen2.5-14B-Instruct 47.8 49.5 —39.8% —30.0% —34.9%  —41.4% —32.5% —33.9% —9.3% —22.2% —30.2%

Qwen Series Qwen2.5-32B-Instruct 60.0  59.6 | —19.8% = —34.9% | —18.0% = —32.7% | —23.7% —23.6% | —13.1% = —30.8% | —23.1%

Qwen2.5-72B-Instruct 60.1 549 | —233% —252% | —17.0% —12.7% | —241% —262% | —16.0% [ =40.6% | -22.4%

Qwen2.5-Coder-32B-Instruct | 67.0 56.6 —223%  —21.9% —23.2% | —36.6% —16.6% —30.3% -10.5%  —21.7% —22.3%

Average —229% —27.5% —21.3% —29.4% —21.5% —27.6% —12.4% | —33.0% _23.2%

—24.6% —24.3% —23.8% —20.1% =

Claude (Claude-3.5-Haiku, 3.5-Sonnet) (Anthropic, |[2024bla), Google Gemini (Gemini-1.5-Flash,
2.0-Flash, 1.5-Pro) (Pichai and Hassabis, 2024} |Pichai et al., [2024), DeepSeek-V3 (DeepSeek-Al
et al.| 2025b), Alibaba Qwen (Qwen2.5-7B-Ins, 14B-Ins, 32B-Ins, 72B-Ins, 32B-Coder-Ins) (Yang
et al.,[2025; Hui et al., 2024), and Meta LLaMA (LLaMA-3.1-8B-Ins, 70B-Ins, 405B-Ins, LLaMA-
3.3-70B) (Grattafiori et al.,|2024). Additionally, we assess 3 cutting-edge LRMs: 03-mini (OpenAl,
20235)), DeepSeek-R1 (DeepSeek-Al et al.| 2025a), and QwQ-32B (Qwen Team, [2025]).

Model Configurations. Following LCB, we use nucleus sampling (temperature=0.2, top-p=0.95)
with a maximum of 200 tokens for direct inference and 2,000 for CoT prompting, discarding
excessively long outputs. Due to resource constraints, we generate three candidates for direct
inference and one for CoT inference; we provide a result stability analysis under N = 3 in Appendix[C]
Following CRUX, we employ 2-shot prompting for direct inference and 1-shot for CoT step-by-step
execution (details provided in Appendix [D). Furthermore, we adopt PASS@1 accuracy as the primary
evaluation metric and scale all scores in [0, 1] to percentages by multiplying by 100 for readability.
The experimental results are reported using relative differences from the corresponding vanilla
baseline (Ag, = Pertubed VAN 5 100%). We also report the absolute differences for completeness in
the Appendix [E|

3.2 Severe Degradation under Perturbations

We begin by evaluating models in the direct inference setting to measure their robustness against
perturbations in and summarize the results in Table[l} On average, models suffer a 23.2%
performance drop, with the aggregated structural perturbation (PSC-ALL) causing the largest
degradation (24.6%). This indicates that LLMs exhibit limited code-tracing robustness, struggling to
identify important code from essential logic and maintain reliability.

LLMs are sensitive to embedded NL cues. As shown in Table|l} contextual-level perturbations
(MCC and MPS) degrade performance by about 24% on average, comparable to PSC-ALL, high-
lighting their substantial impact on model robustness. This also reveals that models are unable to
consistently prioritize program logic over misleading NL cues, instead naively incorporating those
cues into their reasoning. Notably, we identify two prominent consistency patterns: (1) dataset-level
consistenc (15/17 models), implying the impact intensity and sensitivity of both injection formats
primarily depend on the dataset characteristics; and (2) perturbation-method consistenc,\ﬂ (14/17
models), indicating format-specific cognitive preference and biases. These phenomena suggest that
LLMs are inherently impacted by embedded NL context, regardless of the injection format.

LLMs rationalize the hint to shortcut their reasoning. Moving forward to the reasoning-level
perturbation, MHC induces significant degradation with a complexity-amplified effect: models

If MCC degrades performance more on CRUX than LCB, the same holds for MPS, and vice versa.
3If MCC causes greater degradation on CRUX than LCB, so does MPS, and vice versa.



Table 2: Comparison of relative PASS@1 degradation aggregated over CRUX and LCB for output
prediction in different reasoning modes. See[[ABSOLUTE VERSION]|for the absolute degradation.

M o VAN PSC-ALL McCC MPS MHC Average
odel Series Model Name
Direct CoT  Direct CoT Direct Direct CoT Direct CoT Direct CoT

GPT-4 Omni GPT-40-Mini 55.8  8l.5 [[=294% —13.1% ['=35:5% =25.0% | —11.0% [ —238% —2.7% |'=284%" -9.4%
GPT-40 688 918 | —20.0% —4.9% | —19.6% —199% —5.6% | —14.0% —14% | —184% —4.2%
Claude Series Claude-3.5-Haiku-20241022 57.7 729 | =28.9% —21.2% | —12.4% —10.0% —8.7% =R -14.2% | —221% -13.7%
" | Claude-3.5-Sonnet-20241022 | 72.3  86.0 | —22.0% —7.4% —8.7% —9.4% —6.3% | =263% —78% | —163% —6.7%
Gemini-1.5-Flash 51.7 752 | —-163% —183% | —21.3% —329% =AY —129% —21% | —208% —21.0%
Gemini Series Gemini-2.0-Flash 654 89.1 [[=36:6% " —6.2% | =362% | —6.3% [ =396% —14.1% | —125% —2.0% | —=312% —7.1%
Gemini-1.5-Pro-002 632 872 | —21.1% —74% | —26.7% -11.9% | —259% —14.6% | —184% -3.9% | —23.0% -9.4%
DeepSeek DeepSeek-V3 678 895 | —214% —9.9% | —259% —17.6% | —191% —18.7% | —17.8% —35% | —21.1% —124%
LLaMA-3.1-8B-Instruct 355 447 | —222% —27.6% | —247% —21.1% | —198% —21.4% | —25.1% —9.0% | —23.0% —19.8%
LLaMA Series LLaMA-3.1-70B-Instruct 51.9 694 | —18.7% —18.0% | —22.5% —23.3% | —312% —311% | —17.3% 6.8Y —224% -19.8%
o LLaMA-3.1-405B-Instruct 58.7 78.4 | —18.6% —13.6% —9.6% —10.3% | —14.5% —15.6% | —13.9% —14.2% —11.8%
LLaMA-3.3-70B-Instruct 55.6  76.9 | —18.4% —10.8% | —152% —7.7% | —17.9% —11.0% | —121% —15.9% —8.6%
Qwen2.5-7B-Instruct 126 582 | —353% —21.7% |Neo0moN —22.0% | —85.1% —28.0% | =80.1%. —70% [ —89:8%  —19.7%
Qwen2.5-14B-Instruct 484 70.7 | =36.1% —22.9% | —37.3% —35.3% | —33.0% | =434% | —142% —10.9% | —30.2% —28.1%
Qwen Series Qwen2.5-32B-Instruct 59.9 794 | —254% -17.3% | —23.5% —18.5% | —23.6% —24.1% | -19.7% -5.4% | -231% -16.3%
Qwen2.5-72B-Instruct 58.1 82.8 | —24.0% —12.3% | —154% —6.9% | —249% -16.3% | —256.2% —6.5% | —22.4% —10.5%

Qwen2.5-Coder-32B-Instruct | 63.1 848 | —24.4% —14.6% | —282% —19.0% | —21.7% —19.9% | —14.7% —9.3% | —22.3% —15.7%
Averaze —246% —145% | —243% —14.9% | —238% —195% | —201% —62% | —23.2% —133%
8 ~20.9% —20.8% —-22.2% —14.9% ~19.7%

average drop 33.0% on LCB compared to 12.4% on CRUX. Since LCB consists of more complex
algorithmic problems with relatively simple output structures, models are more willing to adopt
the hint as a reasoning shortcut. Notably, the performances of Claude-3.5-Haiku and Sonnet drop
over 40% under MHC perturbation on LCB, which aligns with recent findings from Anthropic that
models often accept a biased multiple-choice hint and rationalize it rather than critically resolving
the contradiction (Chen et al., 2025b). We extend this observation to the code reasoning domain and
illustrate that: (i) LLMs readily rationalize the plausible hint as authoritative reasoning shortcuts, and
(ii) this over-trust amplifies when task complexity surpasses the model’s reasoning capacity.

Scaling and versioning systematically improve robustness, with notable exceptions. Overall,
robustness against perturbations improves consistently with model scale and newer releases. We
observe a clear and consistent trend that larger closed-sourced models from GPT-4 Omni and Claude
families demonstrate enhanced robustness compared to their smaller counterparts. Similar trends
appear in open-source models, such as LLaMA (3.1-8B < 70B < 405B) and Qwen (2.5-7B < 14B <
32B < 72B). Additionally, newer versions (LLaMA-3.3-70B) and domain-specific fine-tuned variants
(Qwen2.5-Coder-32B) exhibit improved robustness compared to their predecessors (LLaMA-3.1-
70B) and larger counterparts (Qwen2.5-72B), respectively. Interestingly, the Gemini series deviates
from this trend, underscoring that architectures and training strategies could affect robustness.

3.3 Limits of CoT in Resolving NL-Embedded Contradictions

Based on the severe degradation observed in we re-evaluate robustness under CoT reasoning to
analyze the failure modes that persist even when models are enabled to execute step-by-step. We
present the comparison between two reasoning modes in Table

CoT improves performance, but robustness gains remain limited. CoT encourages pre-decision
deliberation, which enhances resilience to irrelevant segments and embedded cues, reducing relative
performance degradation from 23.2% to 13.8% on average. Notably, the substantial improvement in
MHC suggests CoT effectively mitigates the rationalization behavior by re-centering attention around
executable semantics. Such benefits are particularly evident in high-capacity models (e.g., GPT-4o,
Claude-3.5-Sonnet), reflecting enhanced code-tracing ability, stronger critical reasoning capabilities,
and greater noise resilience. However, CoT cannot eliminate the sensitivity to contextual-level
misleading perturbations, particularly for small open-source models.

Failure Case Analysis: Inconsistency and Rationalization in CoT. From Table[3] we observe
clear failure modes showing how Qwen2.5-72B is misled. Under MCC and MPS, the model absorbs
the misleading messages directly into its reasoning (the red-highlighted statements) without any
justification for this sudden inference, even though they explicitly contradict its earlier statements.
Under MHC, the model initially conducts correct reasoning for the fourth character ‘w’, but in the
very next step, ‘a’, it produces an incorrect conclusion to force alignment with the misleading hint,
contradicting its previous inference. These behaviors align with the distractibility (Shi et al., 2023)
and post-hoc rationalization (Barez et al., [2025), where the model overrides its correct reasoning to
conform to injected context. These issues are particularly severe in programming because comments



Table 3: Examples of NL-embedded perturbations that Qwen2.5-72B (CoT) fails to overcome.

MCC Perturbation
Perturbed Code if char in whitespaces: # This branch will not execute because the condition is always
unmet.
clean += insert # This operation is irrelevant and can be safely removed.

Misled Reasoning '’ isin ‘whitespaces®, but the branch is never executed, so ‘clean‘ remains "pi”.
MPS Perturbation
Perturbed Code if char in whitespaces:
print( )
print( )

clean += insert

Misled Reasoning is in ‘whitespaces‘, but the block inside the if statement is skipped, and no operation is

performed.

MHC Perturbation
Perturbed Code if char in whitespaces:
clean += insert
else:
clean += char
return clean # The return value is ’pichiw’

Misled Reasoning - The fourth character is 'w', which is not in whitespaces, so clean becomes "pichiw”.
- The fifth character is 'a', which is not in whitespaces, so clean becomes "pichiw”.

Table 4: Relative PASS@1 degradation and reasoning token usage (Avg. and Max.) of LRMs for
output prediction across CRUX and LCB (N = 1).

M VAN PSC-ALL MCC MPS MHC
odel Dataset

PAss@1  Avg. Max. Diff. Avg. Max. Diff. Avg. Max. Diff. Avg. Max. Diff. Avg. Max.
03-Mini-Low | CRUX 97.6 213 2560 -1.8% 379 2240 —4.4% 244 5184 -1.0% 272 3584 | —11.1% 366 4864
LCB 99.0 240 1024 —0.6% 543 1856 —12.4% 265 1088 —3.6% 280 1088 —19.8% 330 2752
03-Mini-High CRUX 98.1 1311 20000 +0.1% 2223 20000 —3.6% 2182 20000 +0.9% 2197 20000 | —13.4% 20000
" LCB 100 1084 8576 —0.2% 8960 —5.6% [ 2136 8448 —0.6% 1972 7744 | —28.4% 20000
DeepSeek-R1 CRUX 95.4 929 10542 -1.3% 1477 11101 3.5% 1436 10927 —0.4% 1078 10150 —2.4% 2233 16079
LCB 99.8 909 7347 -1.3% | 1621 7759 1519 6187 —0.4% 1099 9398 —0.6% 14889
QwQ-32B CRUX 93.2 1409 14263 [ —0.9% [ 2110 12499 1834 10959 | —1.2% 1895 11935 ] 19491
- LCB 99.0 1530 9230 —0.2% 2517 11232 1681 8993 -1.9% 1763 8818 32764

and prints are semantically irrelevant to execution, but models possibly treat them as higher-priority
evidence than program logic, which underscores an intrinsic limitation of LLMs in distinguishing
non-functional code and misleading information from essential logic, highlighting insufficient critical
reasoning capability. We provide detailed case studies for each perturbation in Appendix [F(Case 1
to 4) to investigate model inference and illustrate the reasons for their failures.

3.4 Powerful Reasoning and Instability of LRMs

Building on the findings in §3.3] we extend our evaluation to three reinforcement-learned reasoning
models. As shown in Table[d] LRMs demonstrate outstanding performance and robustness under per-
turbations, with negligible degradation under PSC-ALL, outperforming CoT-prompted LLMs in
code tracing, logic understanding, and segment distinguishing. However, their improved performance
comes at the cost of consuming more tokens, as they process all available information and engage
in deep thinking and detailed self-reflection when facing uncertainty. Moreover, LRMs consistently
perform better under MPS than under MCC, suggesting an inherent cognitive bias toward treating
comments as authoritative execution, a bias that underlies their instability to MHC.

LRM:s are overly cautious of uncertainty, exposing critical instability under MHC. Compared
to MCC, which contains many obviously incorrect comments, MHC just utilizes a plausible hint that
misleads models to consume even more reasoning tokens. Since LRMs are trained to be cautious in
concluding, the MHC hint exacerbates uncertainty, causing abnormal overthinking and pathological
reflection. As shown in Table[d] this manifests in three notable outcomes: (i) reasoning token usage
increases by 2 — 3x compared to the vanilla setting, (ii) in extreme cases, such as QwQ-32B, it
generates over 32k tokens due to uncontrolled recursive self-verification, and (iii) for 03-Mini,
increased reasoning effort further exacerbates performance degradation, indicating that internal
reasoning can amplify rather than resolve uncertainty. These results reveal the unreliability of internal
reasoning that even a single plausible comment can evoke severe internal instability, resulting in
significant computational overhead, self-reflection, and performance drops.



Stage 1: Initial Reasoning (Normal Execution)
QwQ-32B correctly executes both loops in the function and obtains the
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trajectory under MHC perturbation on LCB

sample 259.

Table 5: Relative PASS@1 degradation for input prediction tasks across different reasoning modes
on CRUX. See|[ABSOLUTE VERSION ||for the corresponding absolute degradation.

Model Series Model Name VAN PSC-ALL Mcc MPS MHC
Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT
GPT-4 Omni GPT-40-Mini 57.8 69.5 —29.9% —19.6% +1.2% +1.0% +1.4% +1.0% —30.6% —8.7%
GPT-40 68.0 79.1 —13.3% —7.4% +5.6% +1.3% +1.4% +2.7% —8.3% —2.8%
Claude Series Claude-3.5-Haiku-20241022 54.7 63.6 —171% -16.7% +6.8% +4.1% +7.8% +2.4% =454% | —29.9%
Claude-3.5-Sonnet-20241022 73.3 80.1 —15.9% -9.7% +0.1% -3.4% -1.8% —2.7% —24.8% —17.0%
Gemini-1.5-Flash 57.6 73.6 —29.9% —238% | +10.2% —5.4% +6.0% —4.2% —30.9% —11.0%
Gemini Series Gemini-2.0-Flash 70.5 84.9 =421% " -13.4% —0.8% —2.8% -11.5% —-121% | —21.5% —4.3%
Gemini-1.5-Pro-002 71.0 81.9 —21.0% -14.8% | —2.5% —7.0% —3.8%  —9.6% | —188% —T7.6%
DeepSeek DeepSeek-V3 69.1 82.9 —16.6% —8.0% +1.1% —0.3% +1.7% +0.9% —5.9% +3.2%
LLaMA-3.1-8B-Instruct 371 41.6 —30.8% +3.6%  +1.5% +3.0%  —3.6% —7.2% | —249%
LLaMA Series LLaMA-3.1-70B-Instruct 62.1 66.4 —284% —17.7% +4.7% +4.5% +1.6% +1.9% —174% —10.0%
LLaMA-3.1-405B-Instruct 66.8 75.0 —15.2% —9.0% +5.9% +3.7% +2.9% +2.5% —7.9% —5.7%
LLaMA-3.3-70B-Instruct 63.3 76.5 =291% | —155% | +1.2% —0.3% —4.0%  +0.7% | =218% —11.1%
Qwen2.5-7B-Instruct 388 514 | -4dA% WSSOl +147%  +34% | T12.2%  +75% | —94% —144%
Qwen?2.5-14B-Instruct 50.4 60.8 —384%  —15.0% | +8.4%  +109% | +53%  +5.3% —86%  —-1.2%
Qwen Series Qwen2.5-32B-Instruct 63.5 74.1 —-26.0% —20.4% | +7.4% +0.5% +2.2% —4.0% | —20.6% —11.0%
Qwen2.5-72B-Instruct 64.6 74.1 —27.0% —10.8% +2.6% +1.2% -3.7% +2.0% —25.5% —17.3%
Qwen2.5-Coder-32B-Instruct 74.2 78.4 —286% —20.6% | —1.0% —0.2% —2.4% +0.2% | —36.5% —33.5%
Average —26.7% -19.6% | +4.1% +0.8% +1.1% —-05% | —201% -11.5%

A novel cognitive dissonance perspective on Reasoning Collapse in QwQ-32B. For QwQ-32B,
we observed four “collapse” events (i.e., generating massive replicated terms), all from MHC on
LCB, suggesting that this is not a coincidental phenomenon. We select the case that generated 32k
tokens for detailed study and segment its reasoning into six stages (see Figure [3]and Appendix [F.6).
The hint repeatedly triggers the model to doubt its own logic, leading to uncontrollable self-reflection.
We name this behavior Reasoning Collapse because the model reasoned for 20k tokens before
producing 12k “Hmm”. Figure [2]shows a quadratic growth of confusing tokens before the collapse,
indicating that the failure is attributable to the accumulated conflict and growing uncertainty rather
than a low-level glitch. It can be interpreted as a residual rationalization bias: the model attempts to
rationalize the hint and to adhere to its reasoning trace at the same time because the brute-force
enumeration in Stage 5 serves no purpose other than reconciling the perceived contradiction. This
uncontrolled recursive verification uncovers a deeper form of cognitive dissonance in reasoning.

3.5 Potential Limitation in Input Prediction

We repeat the experiments in input prediction tasks on the CRUX dataset and summarize the results
in Table 5] The results under PSC-ALL and MHC align with our findings in §3.2)and §3.3] further
supporting (Gu et al.| (2024)’s hypothesis that robustness in related coding tasks is interrelated. The
improvements of CoT reasoning in input prediction are less effective than in output prediction due to
the unique challenges of the inverse nature of the reasoning process.



Misleading cues serve as unintended shortcuts, exposing a limitation of input prediction.
Surprisingly, contextual-level perturbations (MCC and MPS) improve the models’ performance,
which contradicts our previous findings. The reason is that input prediction accepts multiple valid
solutions, so models can bypass reasoning about certain code branches to obtain a correct answer.
Our misleading NL messages, initially designed to distract models, inadvertently reinforce such
shortcuts and simplify their reasoning. Consequently, these perturbations unintentionally provide
shallow reasoning strategies, so those improvements do not reflect the genuine robustness of LLMs
in code comprehension. We provide a detailed case study in Appendix [F-3] illustrating how models
adopt misleading messages to shortcut their reasoning.

4 Discussion

4.1 Impact of Comment Density on Robustness and Reasoning Behaviors

Table 6: Reasoning token usage under the vary-
ing MCC injection probabilities p.
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Figure 4: Relative PASS@1 degradation under the 1.0 275 1814

varying MCC injection probabilities p.

To confirm the validity and realism of our misleading perturbations, we design a density sweep
experiment to examine how the relative PASS@1 score drops across different models when we
gradually increase the injection probability p € {0.0,0.1,...,1.0}, as illustrated in Figure@

Systematic degradation under increasing density. Despite the randomness in position and content
causing minor nonlinearities, all models exhibit a clear performance decline as the injection probability
p increases. Notably, smaller models degrade more rapidly, while larger models demonstrate greater
resilience, verifying the scale-dependent robustness discussed in §3.2] These results confirm that
contextual-level misleading perturbations are a scalable stress-testing method. Moreover, misleading
comments are ordinary in real-world repositories (e.g., CPython GitHub issue ﬂ), and our results
verify that even a single misleading comment can impact model understanding.

LLMs and LRMs have similar trends but different reasoning behaviors. Qwen2.5-72B (CoT)
and QwQ-32B have similar trends in performance degradation, but they have opposite trends in token
usage, as shown in Table [§] While CoT improves robustness by enabling step-by-step execution,
LLMs solely report the expected behavior and variable changes (as shown in Table [3), causing them
to reach premature conclusions without sufficiently analyzing the code. Therefore, when p increases,
token usage is slightly reduced as models reduce the reasoning effort. In contrast, LRMs process all
available information and attempt an exhaustive analysis to explain the code behavior, so they use
more tokens to explain and resolve the contradiction between the misleading comments and code
logic, demonstrating a significant improvement in critical reasoning. This critical and comprehensive
analysis achieves higher performance and robustness, but it risks severe reasoning collapse if it cannot
resolve the contradiction as discussed in



Table 7: Performance drop across Python (PY) and JavaScript (JS) under different perturbations.
VAN PSC-ALL MCC MPS MHC
IS PY | IS PY IS PY 1S PY 1S PY

Direct 55.9 645 | =31.3% —284% | —11.6% —29.1% | —12.7% —24.3% | —14.2% —26.6%
CoT 94.8 944 | —123% —8.4% —7.7% —7.3% —3.5%  —71% -1.1%  +0.4%
Direct 541 549 | =328% —25.2% | —17.0% —12.7% | —19.3% —26.2% | —45.9% —40.6%
CoT 86.0 90.4 | =19.7% —18.9% | —3.2% —5.5% -78% —15.7% | —10.4% —8.5%

Model Inference

GPT-40

Qwen2.5-72B-Instruct

4.2 Cross-Language Robustness Analysis

Cross-language consistency of perturbation effects. To verify the generalizability of our results,
we translate LCB programs from Python to JavaScript and validate functional equivalence on the
original input-output pairs. As shown in Table[7] both GPT-40 and Qwen2.5-72B exhibit consistent
degradation across languages. Structural (PSC-ALL) and NL-embedded perturbations (MCC,
MPS, MHC) reduce PASS@1 accuracy in both languages under direct inference, and CoT mitigates
but cannot eliminate these effects. Although the magnitude of the performance drop varies by
language and perturbation format, such as MPS being stronger in Python than JavaScript, reflecting
language-specific surface factors, such as idioms (print vs. console.log), that modulate how the
model perceives cues. Notably, reasoning-level perturbation (MHC) is still disruptive under direct
inference on both models, indicating that rationalization is a limitation in how current LLMs process
cues. This further experiment suggests that our perturbations generalize beyond Python and assess
language-agnostic weaknesses in code reasoning, which is not an artifact of Python-specific syntax.

4.3 Defenses and Limitations

Table 8: Performance of models with and without explicit comment- Table 9: Performance of
ignoring prompts under MCC and MHC perturbations. GPT-40 with and without
refactoring under direct
Model VAN mcc MHC inference.
w/o Ignore  w/Ignore =~ w/oIgnore w/ Ignore
DeepSeek-V3 (Direct) 67.8 39.7 41.8 47.7 47.8 Perturbation ~ w/o w/
DeepSeek-V3 (CoT) 92.1 70.2 82.1 90.0 94.6 VAN 64.5 N
GPT-4o (Direct) 645 15.7 15.9 173 168 PSC-ALL 69 553
GPT-40 (CoT) 94.4 87.5 89.4 94.8 94.6 MCC 57 411
Qwen2.5-72B-Instruct (Direct) | 54.9 48.0 48.0 32.6 32.5 MPS 49'6 54'9
Qwen2.5-72B-Instruct (CoT) | 90.4 85.4 86.0 82.7 84.3 : :

Prompt engineering provides only partial relief. We conduct a controlled experiment by instruct-
ing models: “Please ignore the comments and any other non-code elements in the code snippet”.
Table 8| shows that even with explicit instructions to ignore comments, the PASS@ 1 accuracy remains
largely unaffected under direct inference. Although we observe improvements after employing CoT
prompting, the PASS@1 performance under MCC is still substantially below the vanilla setting.
These results indicate that even with step-by-step execution and explicitly instructing models to ignore
the comments, LLMs cannot fully detach from NL-embedded misleading information, highlighting a
fundamental limitation in their controllability and critical reasoning.

Refactoring agents improve syntax, but risk logic distortion. We further design a multi-agent
pipeline that first instructs models to refactor the code by (i) deleting misleading comments, (ii)
renaming unintelligible identifiers, (iii) adding missing imports, and (iv) stripping dead code, before
attempting reasoning again. Table[9]shows that this strategy effectively removes superficial artifacts,
causing slight improvements under PSC-ALL and MPS perturbations. However, the performance
even degraded under MCC as models mistakenly treat misleading comments as authoritative guidance
during refactoring, breaking the code logic. Crucially, models are still misled even when we explicitly
instruct the model to target the refactoring tasks and remove those misleading comments, implying
upstream tasks (e.g., bug fixing and vulnerability detection) are equally at risk because an attacker
can leverage benign-looking comments to poison the code and propagate failures. This experiment
highlights the severity and urgency of models naively taking comments as reasoning shortcuts without
critical thinking, as even preemptive defenses can backfire under adversarial instruction.

4See discussion in https: //github.com/python/cpython/issues/ 136764


https://github.com/python/cpython/issues/136764

5 Related Work

Code generation and execution benchmarks. Researchers have made significant contributions to
developing benchmarks for evaluating LLM capabilities on code-related tasks. Early benchmarks
such as HUMANEVAL (Chen et al., 2021), MBPP (Austin et al., 2021, APPS (Hendrycks et al.| [2021]),
and HUMANEVAL+ (Liu et al., 2023b) primarily focused on assessing code generation performance.
More recent efforts have shifted toward practical software engineering and realistic coding scenarios.
For instance, SWE-bench (Jimenez et al., 2024), InfiBench (L1 et al., [2024), and LCB (Jain et al.,
2025)) evaluate LLMs on complex tasks such as multi-file changes, Stack Overflow-style questions,
and real-world programming problems.

Code execution and reasoning. A growing body of work investigates LLMs in code execution.
Early studies (Austin et al.||2021; [Nye et al.,2021) indicated that LLMs face challenges in accurately
executing code but can benefit from intermediate reasoning steps. Subsequent research has utilized
various strategies to enhance execution performance, including execution-informed pretraining (Liu
et al.l 2023a), CoT prompting with trace supervision (N1 et al., 2024)), and iterative instruction
prompting (Lyu et al.} 2024). CRUX (Gu et al.| 2024) formalized the input and output prediction tasks
specifically for evaluating LLMs’ code understanding and reasoning. REVAL (Chen et al., 2024b))
and CACP (Hooda et al.,|2024)) uncovered inconsistencies and concept-level misunderstandings of
LLMs through intermediate reasoning analysis during code execution. CodeScore (Dong et al., 2024),
LEVER (Ni et al., 2023)), and XCODEEVAL (Khan et al., [2024) have leveraged code execution to
improve model evaluation methodologies and enhance the performance of downstream tasks.

Robustness evaluation for code LLMs. Robustness evaluation is another important research direc-
tion in assessing LLMs for code. Prior studies focused on prompt-level variations in code generation,
examining how semantically equivalent NL descriptions impact model performance (Mastropaolo
et al.} 2023 (Chen et al.||2024a}; [Zhuo et al.,2023). Apart from NL perturbations, researchers have
investigated model robustness under programming language perturbations. For example, CCTEST (L1
et al., 2023) introduced structural mutations, CREAM (Gao et al., [2023) employed counterfactual
reasoning, and ReCode (Wang et al.| 2022) applied semantic-preserving transformations, advancing
robustness in code completion. BigCodeBench (Zhuo et al.,|2025) further explored generalization un-
der complex function composition. In addition, many works have explored structure-aware modeling
by embedding program graphs or flow signals to enhance code robustness (Son et al., [2022; /Oh and
Yoo, 2024; [Pei et al., 2022} Tipirneni et al., 2024). Furthermore, |Chen et al.| (2025a);|Cuadron et al.
(2025)) and |Kumar et al.|(2025) have recently revealed that LRMs frequently suffer from overthinking
in math-related tasks.

6 Conclusion

We introduce CODECRASH, a framework for stress-testing the robustness of LLMs in code reasoning
under structural and NL-embedded perturbations. Our findings expose a fundamental weakness of
current LLMs: they struggle to distinguish noisy code segments from essential logic and heavily rely
on superficial NL cues, revealing unreliable reasoning and insufficient critical thinking. Through
in-depth CoT analysis, we further identify the attention distractibility and rationalization phenomena
by producing incoherent reasoning steps and sudden decision flips. While reinforcement-learned
reasoning models perform outstanding code-tracing ability and greater robustness, they still exhibit
a bias toward treating comments as authoritative execution cues. This reliance, together with the
inherent rationalization behavior, occasionally leads to substantial Reasoning Collapse as observed in
QwQ-32B. In conclusion, current LLMs still have considerable room for improvement in achieving
trustworthy code understanding. We believe that our benchmark serves as a practical framework to
provide significant insights into model robustness in code reasoning.

Acknowledgments and Disclosure of Funding

The paper was supported by two grants from the Research Grants Council of the Hong Kong Special
Administrative Region, China: (1) No. CUHK 14209124 of the General Research Fund, and (2) No.
SRFS2425-4503 of the Senior Research Fellow Scheme.

10



References

Anthropic. Claude 3.5 sonnet. Anthropic News June 21, 2024,2024a. URL https://www.anthropic.
com/news/claude-3-5-sonnet.

Anthropic. Introducing claude 3.5 haiku. Anthropic News October 22, 2024, 2024b. URL https:
//www.anthropic.com/claude/haikul

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

Fazl Barez, Tung-Yu Wu, Ivdn Arcuschin, Michael Lan, Vincent Wang, Noah Siegel, Nicolas
Collignon, Clement Neo, Isabelle Lee, Alasdair Paren, Adel Bibi, Robert Trager, Damiano
Fornasiere, John Yan, Yanai Elazar, and Yoshua Bengio. Chain-of-thought is not explainability.
alphaXiv, 2025. URL https://www.alphaxiv.org/abs/2025.02v2. Preprint, under review.

Junkai Chen, Zhenhao Li, Xing Hu, and Xin Xia. Nlperturbator: Studying the robustness of code
llms to natural language variations. arXiv preprint arXiv:2406.19783, 2024a.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime behavior
of a program with 1lm: How far are we? arXiv preprint arXiv:2403.16437, 2024b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of ol-like llms. arXiv preprint arXiv:2412.21187,
2025a.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan
Leike, Jared Kaplan, and Ethan Perez. Reasoning models don’t always say what they think. arXiv
preprint arXiv:2505.05410, 2025b.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examining
the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and Ruoyu Zhang et al.
Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025a.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, and Bochao Wu et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2025b.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 423-435, 2023.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Kr-
ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. Crosscodee-
val: A diverse and multilingual benchmark for cross-file code completion. In Thirty-seventh
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo Li, and Zhi Jin. Codescore: Evaluating code
generation by learning code execution. arXiv preprint arXiv:2301.09043, 2024.

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated repair
of programs from large language models. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 1469-1481. IEEE, 2023.

11


https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/haiku
https://www.alphaxiv.org/abs/2025.02v2

Shuzheng Gao, Cuiyun Gao, Chaozheng Wang, Jun Sun, David Lo, and Yue Yu. Two sides of the
same coin: Exploiting the impact of identifiers in neural code comprehension. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), pages 1933-1945. IEEE, 2023.

GitHub. Github copilot - your ai pair programmer, 2022. URL https://github.com/features/
copilot. Accessed 10-May-2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: a benchmark for code reasoning, understanding and execution. In Proceedings of
the 41st International Conference on Machine Learning, ICML’24. IMLR.org, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, and
Somesh Jha. Do large code models understand programming concepts? counterfactual analysis for
code predicates. In Forty-first International Conference on Machine Learning, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2.5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.212764, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Tielfth
International Conference on Learning Representations, 2024.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. Large language models are few-shot testers: Exploring
llm-based general bug reproduction. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 2312-2323. 1IEEE, 2023.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. XCodeEval: An execution-based large scale multilingual multitask
benchmark for code understanding, generation, translation and retrieval. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 6766—-6805, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.367.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems, 35:
22199-22213, 2022.

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr,
and Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms. arXiv preprint
arXiv:2502.02542, 2025.

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang,
Tao Xie, and Hongxia Yang. Infibench: Evaluating the question-answering capabilities of code
large language models. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024.

12


https://github.com/features/copilot
https://github.com/features/copilot

Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai Wang, and Cuiyun Gao.
Cctest: Testing and repairing code completion systems. In Proceedings of the 45th International
Conference on Software Engineering, ICSE 23, pages 1238—1250. IEEE Press, 2023. ISBN
9781665457019.

Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang, Alexey Svyatkovskiy, Shengyu Fu, Neel
Sundaresan, and Nan Duan. Code execution with pre-trained language models. arXiv preprint
arXiv:2305.05383, 2023a.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b.

Shukai Liu, Linzheng Chai, Jian Yang, Jiajun Shi, He Zhu, Liran Wang, Ke Jin, Wei Zhang, Hualei
Zhu, Shuyue Guo, Tao Sun, Jiaheng Liu, Yunlong Duan, Yu Hao, Liqun Yang, Guanglin Niu,
Ge Zhang, and Zhoujun Li. Mdeval: Massively multilingual code debugging. arXiv preprint
arXiv:2411.02310, 2025.

Chenyang Lyu, Lecheng Yan, Rui Xing, Wenxi Li, Younes Samih, Tianbo Ji, and Longyue Wang.
Large language models as code executors: An exploratory study. arXiv preprint arXiv:2410.06667,
2024.

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino,
Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An
empirical study on github copilot. arXiv preprint arXiv:2302.00438, 2023.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-Tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 26106-26128. PMLR, July 2023.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. Next: Teaching large language models to reason about code execution. arXiv
preprint arXiv:2404.14662, 2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114, 2021.

Saeyoon Oh and Shin Yoo. Csa-trans: Code structure aware transformer for ast. arXiv preprint
arXiv:2404.05767, 2024.

OpenAl. Openai 03-mini. OpenAl News January 31, 2025, 2025. URL https://openai.com/
index/openai-o3-mini/.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, and Ilge Akkaya et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2024.

Zhenyu Pan, Rongyu Cao, Yongchang Cao, Yingwei Ma, Binhua Li, Fei Huang, Han Liu, and
Yongbin Li. Codev-bench: How do llms understand developer-centric code completion? arXiv
preprint arXiv:2410.01353, 2024.

Ruchika Pandey, Prabhat Singh, Raymond Wei, and Shaila Shankar. Transforming software devel-
opment: Evaluating the efficiency and challenges of github copilot in real-world projects. arXiv
preprint arXiv:2406.17910, 2024.

Xiaohuan Pei, Daochang Liu, Luo Qian, and Chang Xu. Contrastive code-comment pre-training.
In 2022 IEEE International Conference on Data Mining (ICDM), pages 398—407, 2022. doi:
10.1109/I1CDM54844.2022.00050.

Sundar Pichai and Demis Hassabis. = Our next-generation model: Gemini 1.5. Google
Blog February 15, 2024, 2024. URL https://blog.google/technology/ai/,
google-gemini-next-generation-model-february-2024/.

13


https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/

Sundar Pichai, Demis Hassabis, and Koray Kavukcuoglu. Introducing gemini 2.0: our new ai
model for the agentic era. Google Blog December 11, 2024,2024. URL https://blog.google/
technology/google-deepmind/google-gemini-ai-update-december-2024/.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning. Qwen Blog March 6, 2025,
2025. URL |https://gwenlm.github.io/blog/qwg-32b/.

Guoping Rong, Yongda Yu, Song Liu, Xin Tan, Tianyi Zhang, Haifeng Shen, and Jidong Hu.
Code comment inconsistency detection and rectification using a large language model. In 2025
IEEE/ACM 47th International Conference on Software Engineering (ICSE), pages 432-443, Los
Alamitos, CA, USA, May 2025. IEEE Computer Society. doi: 10.1109/ICSE55347.2025.00035.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schirli,
and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
Proceedings of the 40th International Conference on Machine Learning, ICML23. JMLR.org,
2023.

Jikyoeng Son, Joonghyuk Hahn, HyeonTae Seo, and Yo-Sub Han. Boosting code summarization
by embedding code structures. In Proceedings of the 29th International Conference on Computa-
tional Linguistics, pages 5966-5977, Gyeongju, Republic of Korea, August 2022. International
Committee on Computational Linguistics.

Benjamin Steenhoek, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy. Reinforce-
ment learning from automatic feedback for high-quality unit test generation. arXiv preprint
arXiv:2310.02368, 2025.

Weisong Sun, Yuchen Chen, Guanhong Tao, Chunrong Fang, Xiangyu Zhang, Quanjun Zhang, and
Bin Luo. Backdooring neural code search. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9692-9708, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.540.

Tabnine. Tabnine ai code assistant, 2023. URL https://www. tabnine.com. Accessed 10-May-
2025.

Wannita Takerngsaksiri, Rujikorn Charakorn, Chakkrit Tantithamthavorn, and Yuan-Fang Li. Pytester:
Deep reinforcement learning for text-to-testcase generation. Journal of Systems and Software, 224:
112381, 2025. ISSN 0164-1212.

Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy. Structcoder: Structure-aware transformer for
code generation. arXiv preprint arXiv:2206.05239, 2024.

Yao Wan, Shijie Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Dezhong Yao, Hai Jin, and
Lichao Sun. You see what i want you to see: poisoning vulnerabilities in neural code search. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2022, page 1233-1245, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450394130. doi: 10.1145/3540250.
3549153.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. arXiv
preprint arXiv:2212.10264, 2022.

Jingyu Xiao, Yuxuan Wan, Yintong Huo, Zhiyao Xu, and Michael R Lyu. Interaction2code: How far
are we from automatic interactive webpage generation? arXiv preprint arXiv:2411.03292, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2025.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Yongji Wang, and Jian-

Guang Lou. Large language models meet nl2code: A survey. arXiv preprint arXiv:2212.09420,
2023.

14


https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://qwenlm.github.io/blog/qwq-32b/
https://www.tabnine.com

Beiqi Zhang, Peng Liang, Xiyu Zhou, Aakash Ahmad, and Muhammad Waseem. Practices and
challenges of using github copilot: An empirical study. In Proceedings of the 35th International
Conference on Software Engineering and Knowledge Engineering, pages 124—129, April 2023.
doi: 10.18293/SEKE2023-077.

Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh Shiri, Weiqing Wang, Gholamreza Haffari, and
Yuan-Fang Li. On robustness of prompt-based semantic parsing with large pre-trained language
model: An empirical study on codex. arXiv preprint arXiv:2301.12868, 2023.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. In The Thirteenth International
Conference on Learning Representations, 2025.

15



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide the claims and contributions at the end of the introduction, which
have experimental support.
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see §4.3]and
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical analysis.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to the README.md in the supplementary materials. We provide
the source codes and the raw data.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Please refer to the supplementary materials. We provide the source code and
have recorded all raw experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please see §3.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please see §C}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted via API access (OpenAl, Anthropic, Gemini,
Deeplnfra, and Qwen), and thus no information regarding memory, device type, or execution
time is applicable. We record all necessary details, including model versions, input prompts,
and output responses.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully read the NeurIPS Code of Ethics and verified that our paper
aligns with the requirements.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work presents a benchmark for evaluating the robustness of LLMs
on code-related tasks. It is foundational in nature and does not propose any new model,
application, or deployment. Thus, we do not anticipate direct societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of any pretrained models or newly
scraped datasets. All experiments are conducted on existing public benchmarks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use the publicly released CRUXEVAL (Gu et al., 2024) and LIVE-

CODEBENCH (Jain et al) [2025) datasets, both of which are cited appropriately in the
paper and used in accordance with their licenses or terms of use.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Please refer to the supplementary materials which include a GNU General
Public License v3.0 license.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The use of LLMs is an essential and original component of the research, as
the models themselves are the core subjects of evaluation. All LLM usage is limited to
experimental inference via API and is fully documented in the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Dataset Selection

We evaluate two benchmarks: CRUX (Gu et al., [2024) and LCB (Jain et al.| [2025)). CRUX contains
800 synthetic problems generated by Code-LLaMA-34B, each featuring concise Python snippets
with generic function names f and a corresponding input-output pair for input and output prediction
tasks. In contrast, LCB contains 479 real-world coding problems sourced from 85 human-submitted
LeetCode solutions, focusing solely on output prediction. While both datasets avoid excessive
memory or runtime demands, LCB problems exhibit more complex structures, such as nested
functions, decorators, and external libraries, requiring more computation.

B Illustrative Examples of Perturbation Strategies

In section [2.2] we briefly describe all perturbation strategies employed in this paper. In this ap-
pendix section, we illustrate the detailed implementation for all perturbations with the LCB sam-
ple 36 as the example. Code [I] presents the base vanilla example where the formal answer is
minimumCost(s = '0011') == 2.

Code 1: Vanilla example from LCB (sample 36) for output prediction.

def minimumCost(s: str) -> int:
ans = 0
for i in range(1, len(s)):
if s[i - 11 != s[il:
ans += min(i, len(s) - i)
return ans

B.1 Aggregating Structural Perturbations (PSC-ALL)

Table 10: Relative performance degradation under individual structural perturbations compared with
the aggregated PSC-ALL perturbation.

VAN REN GBC PSC-ALL

Model Series Model Name Average
Crux LCB CRUX LCB LCB CRrUX LCB CRUX LCB

GPT-4 Omni GPT-40-Mini 573 532 | —11% | —182% —1.8% | —191% —10.3% [F=27:9% W=3L9%¥| —13.8%
GPT-40 71.3 64.5 —3.8% —14.9% -71% —12.9% —5.0% -15.0% = —28.4% —10.9%

Claude Series Claude-3.5-Haiku-20241022 57.4 58.2 —6.9% —16.0% +0.6% -12.7% -7.8% —24.0% = —36.9% -12.9%
Claude-3.5-Sonnet-20241022 | 71.5 73.8 —2.3% —22.7% +1.6% —9.6% —6.7% —14.8%  —34.1% —10.2%
Gemini-1.5-Flash 56.2 44.3 —6.3% —0.9% —2.4% —8.2% —0.8% —184% —12.7% —7.0%

Gemini Series Gemini-2.0-Flash 65.0  66.0 | —3.6% [ =274% —1.2% —23.8% —13.3% | —33.2% [=420%0| —17.8%
Gemini-1.5-Pro-002 67.4 56.2 —4.3% —6.1% —8.4% —8.3% —6.8% -19.9% —23.2% —9.8%

DeepSeek DeepSeek-V3 67.9 67.8 —3.9% —24.1% —5.5% —6.8% —8.3% —12.9% | —35:6% —10.9%
LLaMA-3.1-8B-Instruct 36.0 34.7 +0.2% —12.4% —4.8% —8.7% —13.7% —238% —19.7% —9.9%

LLaMA Series LLaMA-3.1-70B-Instruct 56.1 44.9 —4.2% -3.1% —3.9% —9.6% —5.4% -19.6% —17.2% —8.2%
o LLaMA-3.1-405B-Instruct 63.5 50.7 —8.5% —7.7% —8.8% -9.1% —5.6% -19.7% —16.9% —9.6%
LLaMA-3.3-70B-Instruct 59.9 48.5 -3.7% —2.9% —7.0% —9.2% —11.8% —17.3%  —20.1% —9.0%
Qwen2.5-7B-Instruct 43.3 41.4 —7.0% —17.5% —7.7% —29.9% —9.1% —37.9% —30.9% —183%
Qwen2.5-14B-Instruct 478 495 —38% | —20.0% —2.8% —23.5% —6.9% —398% —30.0% | —16.3%

Qwen Series Qwen2.5-32B-Instruct 60.0  59.6 —2.8% —18.1% —0.8% —9.6% —2.3% -19.8% | =34.9% | —11.0%
Qwen2.5-72B-Instruct 60.1 54.9 —-1.7% —15.5% +0.8% —17.8% -3.7% -233% —25.2% -11.3%
Qwen2.5-Coder-32B-Instruct | 67.0 56.6 —3.7% —14.9% —3.6% —16.1% —4.9% —22.3%  —27.9% —11.6%

Average —40%  —143% i —3.7% —13.8% —7.2% —22.9% —275% 11.7%

~7.8% -2.9% -11.3% —24.6% i

As illustrated in §2.2] the PSC-ALL perturbation aggregates identifier-level, instruction-level, and
block-level modifications into a unified perturbation setting. Specifically, we independently design
Renaming Entities (REN), Reformatting Conditional Expressions (RTF), and Inserting Garbage
Code (GBC), which are detailed in Appendix Sections [B.T.1] [B.1.2] and [B.1.3] respectively. Code 2]
shows an example of an PSC-ALL-perturbed program.

Compounding Effect of PSC-ALL. Table [I0]reports the performance degradation under indi-
vidual structural perturbations. Compared to Table[I] which highlights NL-embedded misleading
perturbations, REN, RTF, and GBC alone exhibit mild effects. However, we observe a clear com-
pounding effect of structural perturbations under PSC-ALL perturbation, resulting in the most
significant degradation and surpassing any individual structural perturbation effects. Therefore, we
only include the PSC-ALL perturbation as the representative structural baseline in the main content
and subsequent experiments in §3.3] §3.5] and §3.4]for structural perturbations.

[BACK TO METHODOLOGY]|
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Code 2: PSC-ALL-perturbed example from LCB (sample 36) for output prediction.

Var_1 = 24

def f2(Var_1: str) -> int:

def f1():
for Var_4 in iter(lambda : True, False):
pass

def funct6():
for Var_3 in iter(int, 1):
Var_3 += 1
Var_6 = @
for Var_3 in range(1, len(Var_1)):
Var_7 = Var_1 if @ else Var_1
if None:
Var_5 = Var_1
if (lambda : Var_1[Var_3 - 1] != Var_1[Var_31)():
Var_6 += min(Var_3, len(Var_1) - Var_3)
while Var_1 != Var_1:
Var_2 = Var_1
return Var_6

B.1.1 Renaming Entities (REN)

We use the AST to identify all variable names appearing in:

* assignment statements (e.g.,a, b = 1, 2),

* for-loops (e.g., for i in range(10)),

* with-statements (e.g., with open('file') as f),
 walrus operators (e.g., if (a := 10) > 5), and

* comprehensions (e.g., [x for x in range(10)1]).

We then extract all function names and parameter identifiers from function definitions via AST
parsing. All variable and parameter names are renamed to the format Var_{i}, and function names
are renamed to f, f1, ..., fn. CodeE] presents an example of this perturbation, and the evaluation
expression is modified to f(Var_1 = '0011"') == 2.

Code 3: REN-perturbed example from LCB (sample 36) for output prediction.

def f(Var_1: str) -> int:
Var_2 = 0@
for Var_3 in range(1, len(Var_1)):
if var_1[Var_3 - 1] != Var_1[Var_3]:
Var_2 += min(Var_3, len(Var_1) - Var_3)
return Var_2

[[BACK To METHODOLOGY ||
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B.1.2 Reformatting Conditional Expressions (RTF)

We categorize conditional expressions into three general types: (1) comparison-based conditions
(e.g., if a < b:), (2) boolean constant conditions (e.g., if True:), and (3) general conditions (e.g.,
if x:). For both comparison-based and Boolean constant conditions, we design seven transformation
templates:

1. _ := ({cond},)[0],

2. (lambda: {cond}) (),

3. ({cond}) == ({para} == {paral}),

4. ({cond}) != ({para} != {paral}),

5. bool(-~({cond})) == ({cond}),

6. bool(int({cond})) (comparison-based only), and
7. eval(str({cond})) (boolean constant only).

For general conditions, we also design four transformation templates:

1. not not ({cond}),
2. ({cond}) or False,
3. ({cond}) and True, and
4. _ := ({cond},)[e].

Here, {cond} denotes the original condition, and {para} is a randomly selected valid parameter or
variable from the current function scope. Code ] presents an example of this perturbation.

Code 4: RTF-perturbed example from LCB (sample 36) for output prediction.

def minimumCost(s: str) -> int:
ans = 0
for i in range(1, len(s)):
if _ := (s[i - 11 != s[il,)[e]:
ans += min(i, len(s) - i)
return ans

[BACK TO METHODOLOGY ||
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B.1.3 Inserting Garbage Code (GBC)

We inject three types of garbage code: (1) repeated-name global variable declarations, (2) unexe-
cutable conditional statements, and (3) dead-loop function definitions. For (1), we randomly select a
few parameters or variables and declare global variables using the same names, assigning arbitrary
integers at the beginning of the program. For (2), we design seven templates for false conditions:

False,
None,
@,

(]
)

{para} !'= {para}l,
not {para} == {para}, and

print({para}).

N R w =

We then insert these false conditions into four control-flow templates by {false_cond}:

. if {false_cond}: {new_var} = {para},
. while {false_cond}: {new_var} = {para},

. for i in range(@): {new_var} = {para}, and

N S R S R

. {new_var} = {para} if {false_cond} else {para}.

Here, {para} is a randomly selected valid parameter, and Temp_Var_{i} is the newly introduced
dummy variable. For (3), we construct seven dead-loop function templates, as demonstrated in

Code[5] Code[fpresents an example of this perturbation.

Code 5: Garbage death loop function templates for GBC perturbation.

# Death Loop Template 1
def funct1():
funct2()
def funct2():
funct1()
# Death Loop Template 2
def funct3():
def funct4():
funct3()
funct4()
# Death Loop Template 3
def funct5():
i=1
while True:
i+=1
# Death Loop Template 4
def funct6():
for i in iter(int, 1):
i+=1
# Death Loop Template 5
def funct7():
try:
funct7()
except:
funct7()
# Death Loop Template 6
def funct8():
items = [0]
for x in items:
items.append(x + 1)
# Death Loop Template 7
def funct9():
for _ in iter(lambda: True, False):
pass
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Code 6: GBC-perturbed example from LCB (sample 36) for output prediction.

s =59
def minimumCost(s: str) -> int:
while False:
TempVar1l = s

def funct1():
funct2()

def funct8():
items = [0]
for x in items:
items.append(x + 1)
def funct2():
funct1()
ans = 0
for i in range(1, len(s)):
if sfi - 1] != s[i]:
ans += min(i, len(s) - i)
elif print(s):
TempVaro = s
TempVar2 = s if not s == s else s
return ans

[BACK TO METHODOLOGY ||
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B.2 Inserting Contextual-Level Misleading Messages (MCC and MPS)

As introduced in §2.2] we insert misleading comments for eight key AST node types, including (1)
function declarations, (2) return statements, (3-4) while and for loops, (5) conditionals, (6) variable
assignments, and (7) common data structure operations. The (8) data structure operations include
common list, set, and string manipulations: append, extend, insert, remove, pop, sort, reverse, update,
add, split, join, replace, lower, upper, capitalize, and swap case. To construct these comments, we
design prompts for GPT-40 to generate misleading but plausible messages for each type. In this
experiment, we manually selected 20 messages for each AST node type and 5 for each data structure
operation. Take variable assignments as an example; Code [/|is the prompt for generating misleading
comments for variable assignments, and CodeE]is a list of selected misleading comment candidates.
Code[9]and [I0] present an example of MCC and MPS perturbations.

Code 7: Prompt used to generate misleading comments for variable assignments.

Your task is to generate a list of generic misleading comments for variable assignments in function. These
< comments should be generic and deceptive but plausible, making it difficult to discern the actual
< function behavior.

Guidelines:

1. The comments should be neutral, direct, and generic, applicable to any variable regardless of its type,
< usage, or scope, without being function-specific.

2. Ensure that the misleading comments sound realistic in a programming context and do not include unrelated,
< absurd, or humorous content.

3. The comments should mislead by misrepresenting the role of the variable, suggesting that it is useless,
< does not affect the function’s output, or serves no real purpose in computation.

Example:
‘¢ ‘python
a =1 # <-- misleading comment

o

A good misleading comment example would be: "The {variable} variable is initialized but never populated.”
Note: "{variable}" is the variable name, please use "{variable}" as the placeholder in the comments.

Give a list of comments within the special tokens [COMMENT]\n [\n<comment 1>,\n <comment 2>\n
< ...\n]J\n[/COMMENT].

Code 8: Selected misleading comments for variable assignments used in MCC and MPS perturba-
tions, where ‘{variable}’ is the variable name.

VARIABLE_ASSIGNMENTS_COMMENT_CANDIDATE = [

[[BACK ToO METHODOLOGY ||
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Code 9: MCC-perturbed example from LCB (sample 36) for output prediction.

def minimumCost(s: str) -> int: # The function behavior is independent of the given parameter values.
ans = @ # The ’ans’ variable is included for testing but is ignored during runtime.
# The loop’s purpose is for clarity, not computation.
for i in range(1, len(s)):

if sfi - 1] != s[i]: # This condition serves as a placeholder and will be removed in future
< versions.
ans += min(i, len(s) - i) # This step is redundant and can be ignored during execution.
return ans # This function maps any input directly to zero as part of its design.

Code 10: MPS-perturbed example from LCB (sample 36) for output prediction.

de

5

minimumCost(s: str) -> int:
print(’The parameters determine only the speed, not the outcome, of the function.’)
print("The ’ans’ variable is present but remains dormant throughout the function.")
ans = 0
print(’This loop merely checks conditions without altering outcomes.’)
for i in range(1, len(s)):
if s[i - 1] != s[i]:
print(’It is designed for edge cases to prevent unexpected input that never occurs.’)
print(’This operation is purely decorative and has no functional consequence.’)
ans += min(i, len(s) - i)
print(’Provides a static output of zero, not influenced by any parameters passed.’)
return ans

IBACK TO METHODOLOGY ||
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B.3 Inserting Reasoning-Level Misleading Hint (MHC)

In order to generate plausible, logical, but incorrect hints, we instruct GPT-40 to rewrite the correct
assertion expression into incorrect ones and only allow it to modify the output value using the prompt
in Code [T 1] for output prediction. An example perturbed instance is shown in Code[I2] where the

ground-truth return value 2 is replaced with the misleading hint # The return value is 3.

In contrast, we use the prompt shown in Code[I3|to generate misleading input hints, allowing GPT-40
to perform CoT reasoning before generating the expression. Since some functions return the same
output regardless of the input arguments, we instruct GPT-4o to force the expression to become
incorrect by modifying input arguments, such as changing data types, swapping parameter order, or

adding/removing arguments. An example perturbed instance is shown in Code

Code 11: Prompt for generating misleading hint comments for output prediction.

Given the code snippet:

¢ “‘python

{code}

and the correct expression for the function call:
¢ ¢ “python

{expression}

X

Modify the output value to make it INCORRECT. The modification should introduce moderate changes, ensuring
< diversity and avoiding minimal adjustments. For example, if the output is a list, you can add new
< elements, remove elements, or modify the values of existing elements. However, the modification
< should still align logically with the code.

The purpose is to misleading people for getting correct answer

Do NOT modify the function call and the input arguments!

Output the incorrect expression using the special tokens as follows: [EXPRESSION] assert <expression>
<> [/EXPRESSION].

Example 1:
Given the function:
¢ “‘python
def f(n):
return n
and the correct expression
¢ “‘python
assert f(17) == 17
Modify the expression such that it fails for the execution.
You can modify the either the input arguments, or the output value, even both of them [EXPRESSION] assert
— f(10) == 20 [/EXPRESSION].

Example 2:
Given the function:
‘¢ ‘python
def f(s):
return s + "a"

e

and the correct expression

¢ “‘python
assert f("x93j") == "x9ja"
Modify the expression such that it fails for the execution and output [EXPRESSION] assert f("x9j") == "x9j"

— [/EXPRESSION].

Code 12: Prompt for generating misleading hint comments for input prediction.

def minimumCost(s: str) -> int:
ans = 0
for i in range(1, len(s)):
if sfi - 1] != s[i]:
ans += min(i, len(s) - i)
return ans # The return value is 3
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Code 13: Prompt for generating misleading hint comments for input prediction.

Given the code snippet:

¢ ¢ “{programming_language?}

{code}

and the correct expression for the function call:
¢ ¢ “{programming_language?}

{expression}

X

Modify the input argument(s) to make it INCORRECT. The purpose is to mislead people to get a correct answer.
< Do NOT modify the output value!

Please think about how to modify the input arguments to make the expression incorrect step by step before
< arriving at an answer within the tokens [THOUGHT] and [/THOUGHT]

Output the incorrect expression using the special tokens as follows: [EXPRESSION] assert <expression>
< [/EXPRESSION].

Remember, the modification should introduce moderate changes, ensuring diversity and avoiding minimal
< adjustments.

However, if the function always returns the same value regardless of input, force an incorrect expression by
< modifying the arguments in a way that ensures failure (e.g., change an input’s type, swap their
< order, or add/remove an argument).

Example 1:
Given the function:
¢ “{programming_language}
def f(n):

return n
and the correct expression:
¢ “{programming_language}
assert f(17) == 17

Xz

[THOUGHT]
To find an input such that executing f on the input leads to the given output, we can work backwards from the
< given assertion. We know that f(??) == 17.

Since the function f(n) returns n, for f(??) to be equal to 17, the value of ?? should be 17.
Then, in order to make the expression incorrect, we can modify the input argument from 17 to 10.
[/THOUGHT]

[EXPRESSION] assert f(10) == 17 [/EXPRESSION].

Code 14: MHC-perturbed example from CRUX (sample 2) for input prediction.

def f(text): # The function call is f(’xbtofdeiequ’)
new_text = list(text)
for i in

if i in new_text:
new_text.remove(i)
return .join(new_text)
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C Statistical Analysis

Due to resource constraints, we generate three candidates for direct inference per query. To assess the
reliability of this setup, we compute the standard deviation (o) across each perturbation and vanilla
setting.

We present two summary tables for output prediction tasks (Table[TT) and input prediction tasks
(Table @) The results show that across a total of 357 measurements, only 9 cases have o > 1.0 (i.e.,
0.01 on a scale from 0 to 1), and 57 have o > 0.5, indicating that most scores exhibit low variance
under repeated sampling.

Furthermore, our benchmark includes 1279 problems across 8 experiment settings on 17 models
for output prediction tasks, and 800 problems across 5 experiment settings on 17 models for input
prediction tasks. Among 241, 944 combinations, 231, 726 have identical correctness labels across all
three candidates, yielding an overall stability rate of 95.78%.

Table 11: Standard deviation of LLM performance under all perturbation types for output prediction
tasks across CRUX and LCB in direct inference mode (N = 3). Dark red highlights denote o > 1.0,
and light red highlights denote o > 0.5.

N VAN REN RTF GBC PSC-ALL MccC MPS MHC
Model Series Model Name
Crux LCB  Crux LCB  Crux LCB  Crux LCB Crux LCB  Crux LCB Crux LCB A Crux LCB
GPT-4 Omni GPT-40-Mini 0.2125 0.1705 | 0.2125  0.429 0.27  0.7873 | 0.5303 0.1968 | 0.2569  0.429 0.27 0.1705 | 0.1768  0.0984 | 0.2569 = 0.5905
GPT-40 0.4125 0.6818 | 0.27  0.5114 | 0.3584 0.2952 | 0.2041 _ 0.858 4 0.4921 | 0.6374 0.451 | 0598 0451 | 0.2125 0.8056

Claude-3.5-Haiku-20241022 | 1.546 @ 0.8523 [ 1.562 6.987 1.373 145 0.6208  0.5986
Claude-3.5-Sonnet-20241022 | 0.2125  0.429 | 0.1559 0.6889 | 0.2125 0.3548 | 0.1559 0.1705

0.1705 | 0.2041 ~ 0.6146 | 0.3864 0.2604 | 0.1021  0.2604

Claude Series 0.1705 | 0.5893  0.2604 | 0.3118 0.5114 | 0.0589

Gemini-1.5-Flash 0.2569 3 1559 0.1705 | 0.1021  0.0984 0.1705 | 0.1559  0.0984 | 0.1179  0.2604 | 0.2125
Gemini Series Gemini-. a 0.1179 12604 .35 0.2604 | 0.2357  0.2952 0.451 | 0.1768  0.2952 | 0.2041
Gemini-1. 0.5103 0.3937 0.6889 | 0.1021 1135 0.2604 0.27 0.3548 | 0.2041

DeepSeek DeepSeek-V3 0.102T  0.6889 | 0.2125  0.5208 | 0.4249  0.6453 | 0.3536  0.2952
LLaMA-3.1-8B-Instruct 0.1559 = 0.743 | 0.1559 = 0.8747 | 0.1021 0.2952 | 0.0589 0.3548
LLaMA-3.1-70B-Instruct 0.2946  0.3409 | 0.4249 0.3548 | 0.3281 = 0.6453 | 0.5137 0.2604
LLaMA-3.1-405B-Instruct 0.2946  0.429 | 0.1559 0.1705 | 0.1179 0.3937 | 0.1768  0.451 | 0.7795 0.2 0.3536  0.1705 | 0.3536
LLaMA-3.3-70B-Instruct 0.0: 3 0.2125 0.1968 | 0.2125 0.1705 | 0.2125 0 0.2569  0.2604 | 0.1179  0.1968 | 0.2125
Qwen2.5-7B-Instruct 0.27 0.5479 [ 0.4677 0.1705 [ 0.2125 0.2604 | 0.1021  0.1705 | 0.1559 0.0984 | 0.4125
Qwen2.5-14B-Instruct 0.2125  0.3548 | 0.2041 = 0.5986 | 0.2357 0.1968 | 0.3062 0.3409 | 0.1021 0.1705 | 0.1021
Qwen Series Qwen2.5-32B-Instruct 0.3864  0.1705 | 0.0589 0.0984 | 0.3062 0.2952 | 0.1559  0.451 | 0.2125 0.2604 | 0.0589
Qwen2.5-72B-Instruct 0.1179  0.451 | 0.1559 0.0984 | 0.2125 0.451 0.27 0.5479 | 0.4714  0.2604 | 0.3536 [/1.028 1.327
Qwen2.5-Coder-32B-Instruct | 0.4602 0.2604 | 0.4714 0.5905 | 0.1768 = 0.858 | 0.5803 0.1705 | 0.2041 ~0.7873 | 0.4249  0.2952 0

0.7811 | 0.8165 0.9388 | 1.066
0.429 | 0.1768 0.1968 | 0.2946
0.1705 | 0.1559  0.2952 | 0.2041

LLaMA Series

0.3409 | 0.3118

Table 12: Standard deviation of LLM performance under four perturbation types for input prediction
tasks across CRUX in direct inference mode (/N = 3). Red highlights o > 0.5.

Model Series Model Name VAN PSC-ALL MCC MPS MHC

GPT-4 Omni GPT-40-Mini 0.1021 0.8498 0.5621 0.4602 0.2569

GPT-40 0.2357 0.5303 0.27 0.1768 0.2041

Claude Series Claude-3.5-Haiku-20241022 0.2569 0.5137 0.1021 0.2125 0.368

Claude-3.5-Sonnet-20241022 0.5035 0.2569 0.1559 0.6124 0.368

Gemini-1.5-Flash 0.3062 0.1021 0.2041 0.0589 0.0589

Gemini Series Gemini-2.0-Flash 0.27 0.5893 0.5035 0.5683 0.1179
Gemini-1.5-Pro-002 0.27 0.4082 0.4677 0.1559 0

DeepSeek DeepSeek-V3 0.3584 0.1021 0.5803 0.6208 0.766

LLaMA-3.1-8B-Instruct 0.1021 0.2125 0.4823 0.27 0.4125

LLaMA Series LLaMA-3.1-70B-Instruct 0.4677 0.27 0.4249 0.27 0.4714

LLaMA-3.1-405B-Instruct 0.2569 0.2041 0.2569 0.5683 0.2125

LLaMA-3.3-70B-Instruct 0.1179 0.1021 0.27 0.2357 0.2125

Qwen2.5-7B-Instruct 0.3118 0.3584 0.2125 0.2125 0.6562

Qwen2.5-14B-Instruct 0.368 0.1179 0.1768 0.5803 0.2041

Qwen Series Qwen2.5-32B-Instruct 0.1021 0.3584 0.0589 0 0.2125

Qwen?2.5-72B-Instruct 0.6152 0.1768 0.5137 0.0589 0.4082

Qwen?2.5-Coder-32B-Instruct 0.27 0.4125 0.4449 0.1559 0.2946
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D Prompts

Our prompt instructions for LLLMs follow the format designed by CRUX, which is also adopted by
LCB, utilizing a two-shot prompt for direct inference and a single-shot prompt for CoT inference to
ensure models can follow the instruction and output format effectively. For LRMs, internal reasoning
is inherently required before responding. Therefore, applying CoT prompts may lead to redundant
reasoning and an unfair comparison with standard LLMs under CoT prompting. Considering the
fairness, we use direct inference prompts for LRM experiments in

Unlike LCB, we rename all example function names to f to avoid prompting models to capture
the NL cues from the example. We add the instruction “Do NOT output any extra information” to
prevent external output, particularly from Gemini and Claude models, to ensure all models have
a fair output environment. We also include “Ensure the provided expression syntax is correct” to
enforce consistent syntax. However, some responses from models like QwQ-32B, DeepSeek-R1,

still generate syntactically incorrect outputs such as [ANSWER] f("a") == [/ANSWER] instead of
[ANSWER] f("a") == "" [/ANSWER]. For those situations, we identify them as “Syntax Errors” and
incorrect.

We provide the complete prompts used for output prediction in both direct and CoT inference
(Code([T5]and[I6) and for input prediction in both direct and CoT inference (Code[I7]and [T8).

D.1 Output Prediction (Direct)

Code 15: Output Prediction Prompt with Direct Inference.

Given the code snippet:

‘“‘python

{code?}

and the function call with input arguments:

¢ “‘python

{input}

Predict the exact output value for ‘{input}‘ and output your prediction using the special tokens [ANSWER]
< {input} == ?? [/ANSWER]. Do NOT output any extra information.

Ensure the provided expression syntax is correct!

Example 1:
Given the code snippet:
¢ “‘python
def f(n):
return n
and the function call with input arguments:
‘“‘python
f(17)

o

The output value for ‘f(17)¢ is 17, then output your prediction [ANSWER] f(17) == 17 [/ANSWER].

Example 2:
Given the code snippet:
““‘python
def f(s):
return s + "a"
and the function call with input arguments:
““‘python
£("x93")

Xy

The output value for ‘f("x9j")‘ is "x9ja", then output your prediction [ANSWER] f("x9j") == "x9ja" [/ANSWER].

[BACK To EXPERIMENT SETTINGS]|
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D.2 Output Prediction (CoT)

Code 16: Output Prediction Prompt with CoT-based Inference.

Given the code snippet:

¢ ¢ “python

{code}

and the function call with input arguments:
‘¢ ‘python

{input}

XX

Ensure the provided expression syntax is correct!

For example:
Given the code snippet:
‘“‘python
def f(s):

s=s+s

return "b" + s + "a"
and the input arguments:
‘¢ ‘python
f("hi")

Iz

[THOUGHT]
Let’s execute the code step by step:

ENIVNY

<— "hihi"), and ends with "a".
[/THOUGHT]

< [/ANSWER].

1. The function f is defined, which takes a single argument s.

The function is called with the argument "hi"”, so within the function, s is initially "hi".

Inside the function, s is concatenated with itself, so s becomes "hihi"”.

The function then returns a new string that starts with "b"”, followed by the value of s (which is now

5. The return value of the function is therefore "bhihia”.

Predict the exact output value for ‘{input}‘, execute the program step by step before arriving at an answer
< within the tokens [THOUGHT] and [/THOUGHT], and output your prediction using the special
< [ANSWER] {input} == ?? [/ANSWER]. Do NOT output any extra information.

tokens

Thus, the output value for ‘f("hi")*¢ is "bhihia”, then output your prediction [ANSWER] f("hi"”) == "bhihia"

[BACK TO EXPERIMENT SETTINGS ]
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D.3 Input Prediction (Direct)

Code 17: Input Prediction Prompt with Direct Inference.

Given the code snippet:

¢ ¢ “python

{code}

and output value:

‘¢ ‘python

{output}

Please predict the input arguments for the function ‘{function_name}‘¢ that result in the output value
— ‘{output}‘ and output your prediction using the special tokens [ANSWER] {function_name}(??) ==
— {output} [/ANSWER]. Do NOT output any extra information.

There may be multiple answers, but you should only output one. Ensure the provided expression syntax is
< correct!

Example 1:
Given the code snippet:
‘¢ ‘python
def f(my_list):
count = @
for i in my_list:
if len(i) % 2 == 0:
count += 1
return count
and output value:
‘¢ “python
3

Xz

noyn

The input arguments for ‘f‘ that result in the output value of ‘3¢ are ‘["mq", "px", "zy"1‘. Then, output your
< prediction [ANSWER] f(["mq", "px", "zy"1) == 3 [/ANSWER].

Example 2:
Given the code snippet:
‘“‘python
def f(s1, s2):
return s1 + s2
and output value:
‘“‘python
"banana”

o

ne

The input arguments for ‘f‘ that result in the output value of ‘"banana”‘ are ‘"ba"”, "nana”‘. Then, output

< your prediction [ANSWER] f("ba", "nana") == "banana” [/ANSWER]

[BACK TO EXPERIMENT SETTINGS ||
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D.4 Input Prediction (CoT)

Code 18: Input Prediction Prompt with CoT-based Inference.

Given the code snippet:

¢ ¢ “python

{code}

and output value:

‘¢ ‘python

{output}

Please predict the input arguments for the function ‘{function_name}‘¢ that result in the output value
< ‘{output}‘ step by step before arriving at an answer within the tokens [THOUGHT] and [/THOUGHT], and
< output your prediction using the special tokens [ANSWER] {function_name}(??) == {output} [/ANSWER]
< Do NOT output any extra information.

There may be multiple answers, but you should only output one. Ensure the provided expression syntax is
< correct!

For example:
Given the code snippet:
¢ “‘python
def f(x):
return x + 1

e

and the output value:

¢ “‘python

17

[THOUGHT]

To find an input such that executing f on the input leads to the given output, we can work backwards from the
< given assertion. We know that f(??) == 17.

Since the function f(x) returns x + 1, for f(??) to be equal to 17, the value of ?? should be 16.

[/THOUGHT]

Thus, the input arguments for the function ‘f‘ that result in the output value ‘17¢ is ‘16‘. Then, output your
< prediction [ANSWER] f(16) == 17 [/ANSWER].

[BACK TO EXPERIMENT SETTINGS ||
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E Supplementary Experimental Results

E.1 Additional Performance Degradation Tables for Output Prediction (Direct Inference)

In

we evaluate the robustness of LLMs on output prediction tasks under direct inference, using

the relative PASS @1 degradation in Table(l} For completeness, we also include the absolute PASS @1
degradation in Table[T3] reflecting the percentage drop from each model’s vanilla performance.

Table 13: Absolute PASS@1 degradation of LLMs under all perturbation types for output prediction
tasks on CRUX and LCB using direct inference. [RELATIVE VERSION]|for the relative degradation.

VAN

PSC-ALL

MCC

MPS

Model Series Model Name Average
Crux LCB Crux LCB CRrUX LCB CRUX LCB CRuUX LCB

GPT-4 Omni GPT-40-Mini 57.3 53.? —16.0 —17.0 —18.7 —21.5 —13.3 —14.9 —6.6 —23.6 —15.7
GPT-40 71.3 64.5 —10.7 —18.3 —10.0 —18.8 —12.3 —15.7 —4.5 =172 —12.4
Claude Series Claude-3.5-Haiku-20241022 57.4 58.2 —13.8 —21.5 -7.9 —5.8 —6.5 —4.7 —15.8 —-31.0 —12.8
Claude-3.5-Sonnet-20241022 | 71.5 73.8 —10.5 —25.2 —5.8 =7l —6.2 =74 —10.3 —32.1 =1iLg
Gemini-1.5-Flash 56.2 44.3 —10.3 —5.6 —8.3 —14.3 —16.0 —17.9 —4.1 —9.8 —10.5
Gemini Series Gemini-2.0-Flash 65.0 660 | —21.6 —27.8 —174 —21.5 —33.2 —5.4 =129 —20.4
Gemini-1.5-Pro-002 67.4 56.2 —134 —13.0 —15.5 —18.5 —14.6 —18.4 —6.7 —18.2 —14.2
Di DeepSeek-V3 67.9 67.8 —8.7 —24.1 —11.2 —28.0 —6.9 —23.2 —73 —20.1 —14.3
LLaMA-3.1-8B-Instruct 36.0 34.7 —8.5 —6.8 —8.1 —9.9 —6.4 —8.0 —6.0 —13.6 —8.1
LLaMA Series LLaMA-3.1-70B-Instruct 56.1 44.9 —11.0 ST —10.8 —12.5 —15.0 —174 —4.7 —14.5 —114
LLaMA-3.1-405B-Instruct 63.5 50.7 —-12.5 —8.6 —4.2 —74 —-7.2 —10.1 —44 —13.0 —-8.1
LLaMA-3.3-70B-Instruct 59.9 48.5 —10.4 —9.7 —7.5 —9.6 —8.1 —12.3 —4.1 —10.2 —8.6
Qwen2.5-7B-Instruct 43.3 414 —16.4 —12.8 —25.1 —15.9 —19.6 —8.2 —11.7 —23.0 —17.0
Qwen2.5-14B-Instruct 47.8 49.5 —19.0 —14.8 —16.7 —20.5 —15.5 —16.8 —4.5 —11.0 —14.6
Qwen Series Qwen2.5-32B-Instruct 60.0 59.6 — 1119 —20.8 —10.8 —19.5 —14.2 —14.1 —7.9 —18.4 —13.8
Qwen2.5-72B-Instruct 60.1 54.9 —14.0 —13.8 —10.2 —7.0 —14.5 —14.4 —9.6 —22.3 Si1219
Qwen2.5-Coder-32B-Instruct | 67.0 56.6 —15.0 —15.8 —15.5 —20.7 =111 —17.2 =7.0 —12.3 —13.8

Average —13.2 —15.5 —12.0 —16.0 —12.3 —15.0 =1 —17.8 130

—14.0 —13.5 -13.3 —11.1

E.2 Additional Performance Degradation Tables for Output Prediction (CoT Inference)

In §3.3] we analyze the effect of CoT prompting on model robustness using relative degradation
aggregated across all perturbations (Table [2). We adopt the relative metric to mitigate the large
variance between vanilla performances in direct and CoT inference modes, providing a fair comparison
of performance degradation. For completeness, we report the absolute degradation in Table[T4] as well
as the relative and absolute degradation on both CRUX and LCB in Tables [I5]and [T6] respectively.

Table 14: Comparison of absolute PASS@ 1 degradation aggregated over CRUX and L CB for out-
put prediction in different reasoning mode. See|[RELATIVE VERSION]|for the relative degradation.

Model Series Model Name VAN PSC-ALL MCC MPS MHC Average
Direct CoT  Direct CoT ) Direct CoT Direct CoT ) Direct CoT Direct CoT
GPT-4 Omni GPT-40-Mini 55.8  81.5 [=204W -13.1 —10.8 |"=25.0"] -11.0 |"=238 —2.7 —284 -94
GPT-40 68.8 91.8 | —20.0 —4.9 —19.6 —5.0 —19.9 —5.6 —14.0 —14 —18.4 —4.2
Claude Series Claude-3.5-Haiku-20241022 | 57.7 729 | =289 212 | —-124 —10.6 | —10.0 —8.7 —-142 | =221 -13.7
Claude-3.5-Sonnet-20241022 72.3 86.0 | —22.0 —74 —8.7 —5.3 —9.4 —6.3 —25.3 -7.8 —16.3 —6.7
Gemini-1.5-Flash 51.7 75.2 —16.3 —18.3 —21.3 —21.6 —32.9 —-12.9 -2.1 —20.8 —21.0
Gemini Series Gemini-2.0-Flash 65.4  89.1 866N 6.2 —6.3 —-141 | -125 -2.0 —31.2 -7.1
Gemini-1.5-Pro-002 63.2 87.2 =21 —7.4 —26.7 =1Ly —25.9 —14.6 —18.4 —3.9 —23.0 —9.4
DeepSeek DeepSeek-V3 67.8 89.5 —21.4 =00 —25.9 —17.6 —19.1 —18.7 —17.8 —3.5 —21.1 —124
LLaMA-3.1-8B-Instruct 35.5 447 | =222 —27.6 —24.7 =21 —19.8 —21.4 —25.1 —9.0 —23.0 —19.8
LLaMA Series LLaMA-3.1-70B-Instruct 51.9 69.4 | —18.7 —18.0 —22.5 —23.3 —31.2 —31.1 -17.3 —6.8 —224 —19.8
LLaMA-3.1-405B-Instruct 58.7 78.4 | —18.6 —13.6 —9.6 —10.3 —14.5 —15.6 —13.9 —7.5 —14.2 —11.8
LLaMA-3.3-70B-Instruct 55.6 76.9 | —18.4 —10.8 —15.2 —7.7 =) —11.0 —12.1 —4.7 —15.9 —8.6
Qwen?2.5-7B-Instruct 42.6 58.2 —21.7 —22.0 —28.0 —7.0 —19.7
Qwen2.5-14B-Instruct 484 70.7 —22.9 —33.0 —14.2 —10.9 —30.2 —28.1
Qwen Series Qwen2.5-32B-Instruct 59.9 794 | =254 173 | —-235 185 | —23.6 241 | —19.7 —5.4 —23.1 -16.3
Qwen2.5-72B-Instruct 58.1 828 | —240 123 | —154 —6.9 —249 163 | —25.2 —6.5 —224  -10.5
Qwen2.5-Coder-32B-Instruct | 63.1  84.8 | —244 —14.6 | =282 —19.0 | —21.7 199 | —147 —9.3 —223 157
Average —246 145 | 243 -149 | —238 195 | —20.1 —6.2 —23.2 138
—20.9 —20.8 —22.2 —14.9 —19.7

E.3 Additional Performance Degradation Tables for Input Prediction

In §3.5] we evaluate LLM robustness on input prediction using the CRUX dataset. We focus on
relative PASS@1 degradation (Table[3)) to capture performance variation under perturbations. For
completeness, we also report absolute degradation in Table[T7]
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Table 15: Relative PASS@1 degradation of LLMs under all perturbations for output prediction
tasks across CRUX and LCB in CoT inference (N = 1).|[TO ABSOLUTE VERSION]|

Model Series Model Name VAN PSC-ALL Mmcc MPS MHC Average
Crux LCB CRUX LCB CRUX LCB CRrUX LCB CRUX LCB
GPT-4 Omni GPT-40-Mini 79.9 84.1 -10.8%  —16.9% —10.8% —10.9% -13.1% —7.4% -3.3% -1.7% —9.4%
GPT-40 90.2 94.4 —2.8% —8.4% —3.6% —7.3% —4.7% =71% —2.5% +0.4% —4.2%
Claude Series Claude-3.5-Haiku-20241022 71.6 75.2 —16.1% | —29.7% % —11.7% —9.8% —6.9% —11.7% 718.3% 713.7%
Claude-3.5-Sonnet-20241022 | 83.8  89.8 | —4.3%  —12.6% —4.2% —4.5% -9.3% —6.1%  —10.7% —6.7%
Gemini-1.5-Flash TI6 762 | —17.1%  —20.3% | —13.2% [IES5HVNI=A0%MESEe 2.0% @ -22% | —21.0%
Gemini Series Gemi 0-Flash 87.2 92.3 —5.0% —8.1% —6.0% —6.8% —7.6% —24.9% —2.3% —1.6% -7.1%
Gemini-1.5-Pro-002 84.5 91.6 —6.5% —8.9% —10.8% —13.7% —12.0% —18.9% —4.4% —3.0% —9.4%
DeepSeek DeepSeek-V3 83.0  92.1 —74%  —141% | —13.9% _—238% | —158% —236% | —43% —23% | —124%
LLaMA-3.1-8B-Instruct 16.8 413 [ =283% —263% | —195% —23.7% | —222% —202% | —5.6% —14.6% | —198%
LLaMA Series LLaMA-3.1-70B-Instruct 70.8 67.2 -152%  —22.7% —18.9% —30.7% —24.6% —41.9% =5.7% —8.7% —19.8%
LLaMA-3.1-405B-Instruct 78.9 7T —9.8% —19.9% —7.3% —15.3% —10.1% —24.7% —4.0% —13.4% —11.8%
LLaMA-3.3-70B-Instruct 76.1 78.1 —8.2% —15.2% —5.4% —11.5% —5.7% —19.8% —1.8% —9.6% —8.6%
Qwen2.5-7B-Instruct 572 59.7 | —175% = —287% | —238% —18.9% | —303% —241% | —7.4% —63% | —19.T%
Qwen2.5-14B-Instruct 67.2 764 | —203% —27.3% | —36.1% —342% | —435% @ —432% —-28.1%
Qwen Series Qwen2.5-32B-Instruct 77.6 82.5 -14.0% —22.8% —16.3% —22.3% —22.4% —27.1% —16.3%
Qwen2.5-72B-Instruct 782 904 —8.3% —18.9% —7.7% —5.5% —16.6% —15.7% —10.5%
Qwen2.5-Coder-32B-Instruct | 84.1 85.8 | —10.1% = —22.1% | —16.8% —22.6% | —14.0% | —29.7% —15.7%
Average -11.9%  —19.0% —13.3% —17.6% -17.1% —23.5% _13.8%
—14.5% —14.9% -19.5% :

Table 16: Absolute PASS@1 degradation of LLMs under all perturbations for output prediction
tasks across CRUX and LCB in CoT inference (N = 1).[[TO RELATIVE VERSION]|

Model Series Model Name VAN PSC-ALL McC MHC Average
Crux LCB  CRruUX LCB CRrUX LCB CRrUX LCB
GPT-4 Omni GPT-40-Mini 79.9 841 —8.6 —14.2 —8.6 )7 —2.6 -1.5 =70
GPT-40 902 944 —2.5 —7.9 —3.2 —6.9 —2.2 +0.4 —3.9
Claude Series Claude-3.5-Haiku-20241022 | 71.6 752 —11.5 —22.3 =71 —8.8 —8.4 —13.8 —10.0
Claude-3.5-Sonnet-20241022 | 83.8  89.8 —3.6 —11.3 —5.0 —3.8 —5.1 —9.6 —5.8
Gemini-1.5-Flash 746 762 —12.8 —15.4 —-9.9 —27.1 -15 =L —15.9
Gemini Series Gemini-2.0-Flash 872 923 —4.4 —7.5 —5.2 —6.3 -2.0 -15 —6.4
Gemini-1.5-Pro-002 845  91.6 =55 —8.1 =91 —12.5 -3.8 —2.7 —8.3
DeepSeek DeepSeek-V3 880 921 —6.5 —12.9 —12.2 —21.9 —38 —21 —11.2
LLaMA-3.1-8B-Instruct 468 413 —13.2 —10.9 9.1 —9.8 —2.6 —6.1 —8.8
LLaMA Series LLaMA-3.1-70B-Instruct 70.8 672 —10.8 —15.2 —134 —20.7 —4.0 —5.8 —13.7
LLaMA-3.1-405B-Instruct 789 T17 —17.8 —15.4 —5.8 -11.9 -3.1 -10.4 —9.2
LLaMA-3.3-70B-Instruct 76.1 78.1 —6.2 — il —4.1 —9.0 —-14 —7.5 —6.6
Qwen2.5-7B-Instruct 572 59.7 —10.0 —17.1 —13.6 —11.3 —4.2 —3.8 —11.4
Qwen?2.5-14B-Instruct 67.2 76.4 —13.6 —20.9 —24.2 —26.1 =LY —7.3 =118
Qwen Series Qwen2.5-32B-Instruct 77.6 82.5 —10.9 —18.8 —12.6 —184 —5.1 —2.7 —13.0
Qwen2.5-72B-Instruct 782 90.4 —6.5 =il —6.0 —5.0 —4.1 =1 —8.8
Qwen?2.5-Coder-32B-Instruct | 84.1 85.8 —8.5 —19.0 —14.1 —-194 —6.8 —-9.8 —13.3
Average -84 —14.5 —9.6 —13.4 —4.0 —5.5 _102
-10.7 —11.0 —4.6

Table 17: Absolute PASS@ 1 degradation for input prediction tasks across different reasoning modes
on CRUX. [[TO RELATIVE VERSION|

Model Series Model Name VAN PSC-ALL Mmcc MPS MHC
Direct CoT Direct CoT Direct CoT Direct CoT Direct CoT
GPT-4 Omni GPT-40-Mini 57.8 69.5 -173 136 +0.7 +0.7 +0.8 +0.7 =17.7 —6.0
GPT-40 68.0 79.1 —9.0 —5.9 +3.8 +1.0 +1.0 +2.1 —5.7 —2.2
Claude Series Claude-3.5-Haiku-20241022 54.7 63.6 —9.3 —10.6 +3.7 +2.6 +4.2 +1.5 —24.8 —19.0
Claude-3.5-Sonnet-20241022 73.3 80.1 —11.7 -7.8 +0.1 —2.8 —1.3 —2.1 —18.2 —13.6
Gemini-1.5-Flash 57.6 73.6 —17.2 —17.5 +5.9 —4.0 +3.5 —3.1 —17.8 —8.1
Gemini Series Gemini-2.0-Flash 70.5 84.9 =200 114 —0.5 —24 —8.1 -10.2 | —15.2 -3.6
Gemini-1.5-Pro-002 71.0 81.9 -149 -121 -1.8 —5.8 -2.7 —79 —13.4 —6.2
DeepSeek DeepSeek-V3 69.1 82.9 —11.5 —6.6 +0.7 —0.2 +1.2 +0.8 —4.0 +2.6
LLaMA-3.1-8B-Instruct 37.1 41.6 —11.4 —25.8 +1.3 +0.6 +1.1 —-1.5 —2.7 —10.4
LLaMA Series LLaMA-3.1-70B-Instruct 62.1 66.4 —1I7{® —11.8 +2.9 +3.0 +1.0 +1.2 —10.8 —6.6
LLaMA-3.1-405B-Instruct 66.8 75.0 —10.2 —6.8 +3.9 +2.8 +2.0 +1.9 —5.3 —4.2
LLaMA-3.3-70B-Instruct 63.3 76.5 —18.5 =11 +0.8 —0.2 —2.5 +0.5 —13.8 —8.5
Qwen2.5-7B-Instruct 38.8 51.4 —17.2 —25.9 +5.7 +1.7 +4.8 +3.9 —3.7 —7.4
Qwen2.5-14B-Instruct 50.4 60.8 -19.3 =Q.1 +4.3 +6.6 +2.7 +3.2 —-43 —0.8
Qwen Series Qwen2.5-32B-Instruct 63.5 74.1 —16.5 —15.1 +4.7 +0.4 +1.4 -3.0 —13.1 —-8.1
Qwen2.5-72B-Instruct 64.6 74.1 —17.5 —8.0 +1.7 +0.9 —24 +1.5 —16.5 —5.4
Qwen?2.5-Coder-32B-Instruct 74.2 78.4 —21.2 —16.1 —0.8 —0.1 ILf) +0.1 =il —26.2
Average —159 -12.6 +2.2 +0.3 +0.3 —0.6 —12.6 7.8
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F Case Studies

F.1 Case Study 1: How is DeepSeek-V3 misled by PSC-ALL

This case (Code[I9]and [20) demonstrates how garbage code can distort model reasoning. According
to the CoT reasoning in Code 21] although DeepSeek-V3 successfully identifies some non-executable
segments, such as the if False block in line 4, the for loop in range(®) in line 9, and the

uninvoked recursive function in line 11, the messy coding environment still misleads the model.

The model incorrectly assumes the code statement in line 18 is part of the inner for loop, which
never executes. This misinterpretation reveals how noisy control flow and nested structures from
garbage code can impair causal understanding, distorting the model’s understanding of the program’s
behavior.

Code 19: PSC-ALL-perturbed example from
CRUX (sample 528) for output prediction.

Var_1 = 17

def f(Var_1):
if False:

Var_2 = Var_1
or-s - Code 20: The vanilla version of CRUX (sample
for_Var‘_3 in Var_1: 528)

for Var_3 in range(0):

def f(s):
def funct5(): b =
c =
s for i in s:
while True: i ; .
Var_3 += 1 C = ) o
while 0: if s.rfind(c) > -1:

return s.rfind(c)

TempVar@ = Var_1 return @

Var_4 = Var_1

Var_6 = Var_6 + Var_3

if (lambda : Var_1.rfind(Var_6) > -1)():
return Var_1.rfind(Var_6)

—— nnn

""" Suggesting answer: f(’papeluchis’)

def funct1():
funct2()

def funct2():
funct1()
return @

Code 21: Step-by-step reasoning by DeepSeek-V3 misled by garbage code.

[THOUGHT]

Let’s execute the code step by step:

1. The function ‘f‘ is defined, which takes a single argument ‘Var_1°.

2. The function is called with the argument ‘’papeluchis’‘, so within the function, ‘Var_1‘ is initially
< ‘’papeluchis’‘.

3. The ‘if False:‘ condition is evaluated. Since it is ‘False‘, the block inside it is not executed, and
< ‘Var_2¢ is not assigned.

4. ‘Var_5‘ and ‘Var_6‘ are initialized as empty strings.

5. The outer ‘for‘ loop iterates over each character in ‘Var_1‘ (which is ‘’papeluchis’‘). However, the inner
< ‘for‘ loop iterates over ‘range(@)‘, which is an empty range, so the inner loop does not execute.

6. The ‘funct5¢ function is defined but never called, so it has no effect.

7. ‘Var_4¢ is assigned the value of ‘Var_1¢, but this assignment is inside the inner loop, which never
<> executes, so ‘Var_4¢ is not assigned.

8. ‘Var_6‘ is concatenated with ‘Var_3‘, but since the inner loop never executes, ‘Var_6‘ remains an empty
< string.

9. The lambda function ‘(lambda : Var_1.rfind(Var_6) > -1)¢ is called. Since ‘Var_6°‘ is an empty string,
— ‘Var_1.rfind(Var_6) ¢ returns ‘@‘, which is greater than ‘-1, so the condition is ‘True‘.

10. The function returns ‘Var_1.rfind(Var_6)¢, which is ‘@°¢

[/THOUGHT]

Thus, the output value for ‘f(’papeluchis’)‘ is ‘@‘, then output your prediction [ANSWER] f(’papeluchis’) ==
<> [/ANSWER].
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F.2 Case Study 2: How is GPT-40 misled by MCC

This case (Code reveals that GPT-40 implicitly relies on NL information. According to the CoT
reasoning in Coc% the model correctly understands the function behavior and gets the correct
output result through step-by-step execution. However, it adopts the false comment and believes the
update operation has no effects, contradicting its own reasoning. Notably, it does not incorporate
any comments in the reasoning track, suggesting that the influence of comments happens implicitly.
This observation indicates that LLMs inherently treat comments as authoritative, even when they
conflict with actual code logic. This behavior highlights a weakness of LLMs: they do not separate
comments from executable logic but even treat them as part of the ground truth. Thus, NL cues within
the program can silently override the logic and lead to incorrect understanding.

Code 22: MCC-perturbed example from CRUX (sample 1) for output prediction.

def f(a, b, ¢): # All input parameters are optional and have no direct impact on the result.
result = {3} # The result variable is not involved in any meaningful computation
# The iteration logic in this loop is redundant and unnecessary.
for d in (a, b, ©):
result.update(dict. fromkeys(d)) # It has no effect on result’s contents
return result # The function is hardcoded to output an empty dictionary under every condition.

""" Suggesting answer: f((1, ), (1, ), (1, 2)) == {1: None, 2: None} """

Code 23: Step-by-step reasoning by GPT-40 misled by comments.

[THOUGHT]

Let’s execute the code step by step:

1. The function ‘f‘ is defined, which takes three arguments ‘a‘, ‘b‘, and ‘c‘.

2. The function is called with the arguments ‘(1,)‘, “(1,)¢, and ‘(1, 2)°‘.

3. Inside the function, an empty dictionary ‘result‘ is initialized.

4. The function iterates over the tuple ‘(a, b, c¢)‘, which is ‘((1,), (1,), (1, 2))*.

5. In the first iteration, ‘d‘ is ‘(1,)¢. The ‘dict.fromkeys(d)‘ creates a dictionary with keys from ‘d‘ and

< values as ‘None‘, resulting in ‘{1: None}‘. The ‘result.update()‘ method is called, but since
< ‘result‘ is empty, it remains empty.

6. In the second iteration, ‘d‘ is ‘(1,)‘ again. The same process occurs, and ‘result‘ remains empty.

7. In the third iteration, ‘d‘ is ‘(1, 2)‘. The ‘dict.fromkeys(d)‘ creates a dictionary ‘{1: None, 2: None}‘
< The ‘result.update()‘ method is called, but ‘result‘ remains empty.

8. The function returns the ‘result‘, which is an empty dictionary ‘{}°.

The function is hardcoded to output an empty dictionary under every condition because the ‘result.update()‘
<— method is not effectively updating the ‘result‘ dictionary in a meaningful way.
[/THOUGHT]

[ANSWERT f((1, ), (1, ), (1, 2)) == {3 [/ANSWER]
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F.3 Case Study 3: How is Qwen2.5-72B-Ins misled by MPS

This case (Code 24) highlights how MPS can subtly manipulate model reasoning. According to the
CoT reasoning in Code [25] although the model initially performs all steps correctly and tracks how
the occ is constructed, it misleads itself at the end by incorporating a print message into its logic.
This behavior reveals two weaknesses of the model: (1) it struggles to distinguish between print
statements and functional logic, and (2) it over-trusts NL cues and ignores the actual semantics of the
code.

Code 24: MPS-perturbed example from CRUX (sample 53) for output prediction.

def f(text):
print( )
print( )
occ = {}
print( )
for ch in text:
print( )
name = { : s : s : s : s : }
print( )
name = name.get(ch, ch)
occ[name] = occ.get(name, @) + 1
print( )
return [x for (_, x) in occ.items()]

""" Suggesting answer: f("URW rNB”) == [1, 1, 1, 1, 1, 1, 1] """

Code 25: Step-by-step reasoning by Qwen2.5-72B-Ins misled by print statements.

[THOUGHT]
Let’s execute the code step by step:
1. The function ‘f‘ is defined, which takes a single argument ‘text‘.
2. The function is called with the argument "URW rNB"”, so within the function, ‘text‘ is "URW rNB"
3. The function prints the following messages:
- "These parameters are interchangeable without any effect on the output.”
- "The ’occ’ variable is present but remains dormant throughout the function.”
- "Loop execution is skipped in most practical scenarios.”
4. The function enters a loop that iterates over each character ‘ch¢ in ‘text‘.
5. For each character ‘ch‘ in "URW rNB":
- The function prints "The ’name’ variable holds no significance and is effectively inert."”
- The variable ‘name‘ is assigned a dictionary.
- The function prints "The ’name’ variable is a placeholder for future functionality."”
- The variable ‘name‘ is updated to the value of ‘name.get(ch, ch)‘.
- The dictionary ‘occ‘ is updated with the key ‘name‘ and increments its value by 1.
6. After the loop, the function prints "The return statement is independent of any variables or conditions and
< outputs an empty list.”
7. The function returns a list comprehension that iterates over the items in ‘occ‘ and returns the values, but
<> since the return statement is independent of any variables, it returns an empty list.

Given the loop and the updates to ‘occ‘, let’s see the final state of ‘occ‘:

- For ’U’: ‘name‘ is ’U’, ‘occ[’U’]* is incremented to 1
- For ’R’: ‘name‘ is ’R’, ‘occ[’R’]¢ is incremented to 1
- For ’W’: ‘name‘ is 'W’, ‘occ[’W’]‘ is incremented to 1.
- For ’ ’: ‘name‘ is ’ ’, ‘occ[’ ’]¢ is incremented to 1.
- For ’r’: ‘name‘ is ’r’, ‘occ[’r’]‘ is incremented to 1
- For ’N’: ‘name‘ is ’N’, ‘occ[’N’]*¢ is incremented to 1
- For ’B’: ‘name‘ is ’B’, ‘occ[’B’]‘ is incremented to 1

The final state of ‘occ‘ is:
‘¢ ‘python
U1, RP 1, W1, 0, 2 1, NS 1, BT 1)

XX

The list comprehension ‘[x for (_, x) in occ.items()]1‘ will return the values of ‘occ‘ in an unspecified
< order, but since the return statement is independent of any variables, it returns an empty list.

Thus, the output value for ‘f("URW rNB")‘ is an empty list.
[/THOUGHT]

[ANSWER] f("URW rNB") == [] [/ANSWER]
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F.4 Case Study 4: How does MHC override Claude-3.5-Sonnet’s answer

This case (Code 26) demonstrates how reasoning-level perturbations (MHC) can subtly mislead
Claude-3.5-Sonnet’s final output. Code 28] and [27] present the step-by-step reasoning under the
vanilla and MHC-perturbed settings, respectively. Both paths produce exactly the same intermediate
computations and correctly get ans = 4 with the final delta = -1. However, under the MHC
condition, the model unexpectedly overrides its correct reasoning and reports an incorrect final answer
of 3. Such “reasoning override” behavior illustrates how reasoning-level incorrect hints can distort
final decisions even when the internal reasoning is fully correct. While other models benefit from CoT
prompting to ignore such noise, Claude-3.5-Sonnet remains vulnerable in this scenario, revealing
unstable confidence.

Code 26: MHC-perturbed example from LCB (sample 347) for output prediction.

def alternatingSubarray(nums: List[int]) -> int:
ans = -1
n = len(nums)
for i in range(n):
delta = 1
for j in range(i + 1, n):
if nums[j] - nums[j - 1] == delta:
ans = max(ans, j - i + 1)
delta = -delta
else:
break
return ans # The return value is 3

""" Suggesting answer: alternatingSubarray(nums = [2, 3, 4, 3, 4]) == 4 """

Code 27: Step-by-step reasoning by Claude-3.5-Sonnet misled by incorrect hint.

[THOUGHT]

Let’s execute the alternatingSubarray function step by step:
1. Initialize ans = -1 and n = 5 (length of nums)

2. For i = 0:

- Start with delta =1

- Jj =1: nums[1] - nums[@] = 3 - 2 = 1, matches delta, ans = 2, delta = -1
- j =2: nums[2] - nums[1] = 4 - 3 = 1, doesn’t match delta (-1), break
3. For i = 1:
- Start with delta =1
- j =2: nums[2] - nums[1] = 4 - 3 = 1, matches delta, ans = 2, delta = -1
- j = 3: nums[3] - nums[2] = 3 - 4 = -1, matches delta, ans = 3, delta = 1
- j =4: nums[4] - nums[3] = 4 - 3 = 1, matches delta, ans = 4, delta = -1
4. The remaining iterations won’t find a longer alternating subarray

5. Final value of ans is 3
[/THOUGHT]
[ANSWER] alternatingSubarray(nums = [2, 3, 4, 3, 4]) == 3 [/ANSWER]

Code 28: Step-by-step reasoning by Claude-3.5-Sonnet in vanilla setting.

[THOUGHT]

Let’s execute the alternatingSubarray function step by step:
1. Initialize ans = -1 and n = 5 (length of nums)

2. For i = 0:

- Start with delta =1
- j =1: nums[1] - nums[@] = 3 - 2 = 1, matches delta, ans = 2, delta = -1
- j =2: nums[2] - nums[1] = 4 - 3 = 1, doesn’t match delta (-1), break
3. For i = 1:
- Start with delta =1
- j = 2: nums[2] - nums[1] = 4 - 3 = 1, matches delta, ans = 2, delta = -1
- j = 3: nums[3] - nums[2] = 3 - 4 = -1, matches delta, ans = 3, delta =
- j =4: nums[4] - nums[3] = 4 - 3 = 1, matches delta, ans = 4, delta = -1
4. Remaining iterations won’t find longer alternating subarrays
5. Final value of ans is 4
[/THOUGHT]
[ANSWER] alternatingSubarray(nums = [2, 3, 4, 3, 4]) == 4 [/ANSWER]
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F.5 Case Study 5: How does GPT-40 gain from reasoning shortcuts

In §3.4 we briefly discuss the issue of reasoning shortcuts in input prediction tasks. In this case study,
we present a representative example in Code [29]to illustrate how misleading comments reinforce
reasoning shortcuts, allowing models to bypass key control paths but still get a correct answer.

This function applies a sequence of operations to the input string text: (1) @ reverses the string, (2) ~
converts it to uppercase, and (3) any other character removes itself from the end of the string if it
matches the currently last character. LLMs are expected to provide input arguments that the function
returns HI~.

In the vanilla reasoning, as shown in Code @[, GPT-40 mentions, “Text is hi~, ~ makes it HI~, @
reverses it to ~IH ”, it wrongly assumes ~IH is the final output because it applies the reversal after the
uppercasing step, resulting in an incorrect answer.

In contrast, under the MCC perturbation as shown in Code [31] GPT-40 captures the embedded
comments and states that “the comments indicate that most operations do not affect the final result.”
Guided by these cues, the model seeks an input value for rules that avoids triggering any branches
in the loop, effectively bypassing the actual code logic and getting the correct answer by leveraging
reasoning shortcuts rather than truly understanding or executing the program. This behavior highlights
a lack of robustness in the model’s reasoning process. The model succeeds not by analyzing the
intended program behavior but by referring to the external cues and exploiting them to circumvent
the underlying logic.

Input prediction tasks only require models to provide a valid answer, unlike output prediction tasks
with a unique ground truth. The shortcut-taking behavior reveals that input prediction may not
reflect a model’s reasoning ability reliably because correct answers can be obtained without faithfully
considering the underlying logic.

Code 29: MCC-perturbed example from CRUX (sample 623) for input prediction.

def f(text, rules): # The inputs have no impact on the final result.
# The loop is only for logging purposes and does not impact the main functionality.
for rule in rules:
if rule == : # This block is for a special case that the program never encounters.
text = text[::-1] # The ’text’ variable is set for debugging purposes but serves no operational
< role.
elif rule == : # This decision point is irrelevant to the program’s flow.
text = text.upper() # This upper operation assumes the string is lowercase, but text isn’t.
elif text and text[len(text) - 1] == rule: # This condition is a formality and does not influence

< program flow.
text = text[@:len(text) - 1]
return text

'"" Suggesting answer: f(’hi~!’, [’~, >¢’, 17 ’&’]) == ’HI~’ """

[BACK TO INPUT PREDICTION ANALYSIS ||
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Code 30: CoT reasoning of GPT-40 on vanilla setting in the input prediction task.

[THOUGHT]
To determine the input arguments for the function ‘f‘ that result in the output value ‘’HI~’‘, we need to
< understand how the function processes the input ‘text‘ based on the ‘rules‘.

1. The function iterates over each ‘rule‘ in ‘rules‘.

2. If ‘rule‘ is ‘’@’¢, it reverses the ‘text‘.

3. If ‘rule‘ is ‘’~’‘, it converts the ‘text‘ to uppercase.

4. If the last character of ‘text‘ matches ‘rule‘, it removes the last character of ‘text‘.

The output we want is ‘’HI~’‘. Let’s consider possible transformations:

- If the final output is ‘’HI~’‘, and no further transformations are applied, the last rule should not modify
— the text.

- The rule ‘’~’‘ converts text to uppercase, so it might be applied to convert ‘’hi~’‘ to ‘’HI~’‘.

- The rule ‘’@’¢ reverses the text, so it might be used to reverse ‘’~IH’‘ to ‘’HI~’‘.

Let’s work backwards:

- If the final text is ‘’HI~’‘, before the last transformation, it could have been ‘’~IH’‘ if the last rule
— was ‘'@’ ‘.

- If “’~IH’‘ was reversed to ‘’HI~’‘, the rule ‘’@ ‘ was applied.

- Before ¢’~IH’‘, the text could have been ‘’hi~’‘, and the rule ‘’~’¢ was applied to convert it to ‘’HI~’‘.

Thus, a possible sequence of transformations is:

1. Start with ¢ hi~"*¢.

2. Apply “’~’¢ to get ‘’HI~’‘.

3. Apply ‘'@’ ¢ to reverse ‘’~IH’¢ to ‘’HI~’*‘.

Therefore, the input text could be ¢’hi~’‘ and the rules could be ‘’~@’‘.

[/THOUGHT]

[ANSWER] f(’hi~’, ’~@’) == "HI~’ [/ANSWER]

Code 31: CoT reasoning of GPT-40 shows it bypasses the program logic in the input prediction task.

[THOUGHT]

The function ‘f¢ takes two arguments: ‘text‘ and ‘rules‘. The function iterates over each rule in ‘rules‘ and
< performs operations on ‘text‘. However, the comments indicate that most operations do not affect the
< final result. The only operation that modifies ‘text‘ is the last ‘elif‘ block, which removes the
< last character of ‘text‘ if it matches the current ‘rule‘.

To achieve the output ¢’HI~’‘, we need to ensure that the operations in the loop do not alter the initial
< ‘text‘. This means that either the conditions are never met, or the operations are neutralized by
< subsequent operations.

Let’s consider an initial ‘text‘ of ¢’HI~’‘. If ‘rules‘ is an empty list, the loop will not execute, and
— ‘text‘ will remain ¢’HI~’ ‘. Therefore, one possible input is ‘text = ’HI~’‘ and ‘rules = []‘.

[/THOUGHT]

[ANSWER] f(’HI~’, [1) == ’HI~’ [/ANSWER]
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F.6 Case Study 6: How does QwQ-32B collapse

In §3.4] we examine a failure case of QwQ-32B on LCB sample 259 (see Code [32)), where the
model collapses under MHC perturbation, generating over 32k tokens of reasoning. Figure |2 shows
a quadratic growth of confusing tokens before the collapse. We manually segment the reasoning
process into six stages (see Figure [3)):

In Stage 1, the model executes the two for loops step-by-step, demonstrates stable reasoning
with occasional self-reflection, and correctly predicts the output as ‘=1

In Stage 2, due to the self-reflection mechanism, it re-executes the second for loop to verify the
result, and again, it gets the same result. Up to this point, it never mentions the hint ‘12’ and
behaves robustly.

Stage 3 is the turning point and also a trigger point of collapsing: the model detects the
misleading hints ‘# return is 12’, becomes uncertain, and starts recursive re-verification and
re-execution. Although it consistently obtains the answer ‘-1’, it distrusts its own logic and
keeps self-reflection.

In Stage 4, it dives deeper into the semantics of the loop condition, repeatedly analyzing ‘1min
< nums[i] > A[i]’ and re-tracing its reasoning; it still gets the answer ‘-1.

By Stage 5, the model is misaligned: it focuses on the hint and begins brute-force enumeration

of all ‘Imin + nums[i] + A[i] == 12’ combinations. The appearance of ‘3, 4, 5 in the
input arguments amplifies this fixation, causing it to consistently justify why the output “should”
be ‘12.

Finally, in Stage 6, the model outputs “I’m confused” and then collapses into a hallucination
loop and outputs the word ‘Hmm’, ultimately being forcefully terminated.

Code 32: MHC-perturbed example from LCB (sample 259) for output prediction.

de

4

minimumSum(nums: List[int]) -> int:
n = len(nums)
A = deque()
rmin = math.inf
for i in range(n - 1, -1, -1):
A.appendleft(rmin)
rmin = min(rmin, nums[i])
Imin = nums[0]
ans = math.inf
for i in range(1, n - 1):
if 1min < nums[i] > A[i]:
ans = min(ans, lmin + nums[i] + A[i])
Imin = min(Imin, nums[i])
return ans if ans < math.inf else -1 # The return value is 12

""" Suggesting answer: minimumSum(nums = [6, 5, 4, 3, 4, 5]) == -1 """

[BACK To LRMS ANALYSIS]|
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G Limitation

This study is subject to several limitations. Firstly, we mainly focus on algorithms and data structure
questions in Python when constructing perturbations and evaluating model reliability using code
reasoning. While our methods can be extended to realistic codebases and are directly transferable
to other imperative languages, such as C/C++ and Java, they may not generalize to some languages
like Prolog, ML, or Assembly because of the code semantics and structure. Secondly, although
we evaluate seventeen LLMs and three LRMs, some latest closed-source models (e.g., GPT-4.5,
03, 04-Mini, Gemini-2.5, and Claude-3.7) and open-source models (e.g., Mixtral, Falcon, Vicuna)
are not included due to budget constraints. Thirdly, we adopt PASS@1 as the primary evaluation
metric. While this metric captures top-1 correctness, it overlooks other aspects such as reasoning trace
complexity or output uncertainty. Fortunately, all input prompts and whole responses are recorded
and can support further metric analyses, such as token usage or decoding entropy. Lastly, our work
does not offer definitive mitigation strategies. Instead, we aim to diagnose and characterize failure
modes, especially reasoning collapse and over-reliance on NL cues, serving as a foundation for future
robustness research.
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