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1 Introduction

The market capitalization of publicly traded cryp-
tocurrencies is currently above $230 billion (Bo-
vaird, 2017). Bitcoin, the most valuable cryptocur-
rency, serves primarily as a digital store of value
(Van Alstyne, 2014), and its price predictabil-
ity has been well-studied (Hegazy and Mumford,
2016). However, Ethereum has the second-highest
market capitalization and supports much more
functionality than Bitcoin. While its price pre-
dictability is sparsely covered in published litera-
ture, the technology’s additional functionality may
cause Ether’s price predictability to differ signifi-
cantly from that of Bitcoin. These characteristics
are outlined in the following subsection; the un-
derlying details of Bitcoin (Nakamoto, 2008) and
Ethereum (Buterin, 2013) are elided, as they are
described in depth in the cited papers.

1.1 Price Predictability of Asset Classes

The financial concept of volatility, which is the
standard deviation of price returns, represents a
measure of predictability. For example, the price
of an asset with zero volatility can be predicted
with 100% accuracy, even as the price changes
over time.

Analysis of price data from Coinbase (2017)
shows that between August 30", 2015 and Octo-
ber 19, 2017, Bitcoin had a monthly volatility of
21.73%. Over that same time span, Ethereum had
a monthly volatility of 77.91%. For comparison,
the S&P 500 has a historical monthly volatility
of about 14%, suggesting that the price of Ether
is significantly less predictable than that of either
Bitcoin or common stock.

This difference persists after accounting for the
fact that Ethereum was created in 2015; analyz-
ing Ether prices in 2017, for example, yields a
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monthly volatility of 89.15%. And unitwise, more
Ether than Bitcoin is traded each month, so low
Ether trading volumes are not the cause of this
volatility either.

A logical explanation for the high volatility of
Ether, relative to Bitcoin and common stock, is
that Ether is transferred or traded in a way in
which Bitcoin and stock are not. More specifi-
cally, Ethereum has contract accounts which can
cause Ether to be transferred between accounts
in an unpredictable manner. (While Bitcoin and
common stock are also traded by algorithms, the
distinction is that anyone - even someone writing
a hello world program - can instantiate a contract
account on Ethereum. Meanwhile, algorithmically
trading Bitcoin or stock requires more technical
sophistication.)

In recognition of Ether’s high volatility, this
project aims to predict the directionality of Ether
price changes. In other words, this project will
aim to apply machine learning techniques to an-
swer the question, “Will Ether increase in price
tomorrow?”

We are pursuing our project in conjunction with
CS 221. Some of our dataset loading and cleaning
code is shared; one of our logistic regression clas-
sifiers is shared and then used as input to a port-
folio management strategy for Ethereum, which is
our problem statement for CS 221.

2 Related Work

The algorithms detailed in §4 draw inspiration
from prior work on predicting Bitcoin prices.

2.1 Predicting Price Changes in Bitcoin

Previous work on predicting the directionality of
Bitcoin prices has shown that significant signal ex-
ists in the price of the cryptocurrency. Hegazy
and Mumford (2016) compute an exponentially-
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Figure 1: Ether Price History

smoothed Bitcoin price every eight minutes; using
the first five left derivatives of this price as features
in a decision-tree based algorithm, they predict the
direction of the next change in Bitcoin price with
57.11% accuracy.

Their results substantiate earlier research done
by Madan, Saluja, and Zhao (2014), who found
that by using the Bitcoin price sampled every 10
minutes as the primary feature for a random-forest
model, they could predict the direction of the next
change in Bitcoin price with 57.4% accuracy.

An alternative model was used by Sebastian,
Katabarwa, and Li (2014), who use the Bitcoin
price sampled every minute as the primary fea-
ture for a forward-feed neural network. Their re-
sults suggest that this system predicts future Bit-
coin price directionality with 60% accuracy.

3 Datasets

The primary dataset consists of the price of Ether
sampled at approximately one-hour intervals be-
tween August 30, 2015 and December 2, 2017
(Etherchain, 2017). This dataset is plotted in Fig-
ure 1, and summary statistics for this dataset are
listed in Figure 2.

| Sample Size 19757
Minimum 0.41
1st Quartile 7.81
Median 11.7
3rd Quartile 88.56
Maximum 507.94
Mean 79.4737
Standard Deviation | 122.95

Figure 2: Statistics of Ether Prices

3.1 Dataset Truncation

The variance of the dataset is large, relative to its
mean, and so we initially attempted to reduce vari-
ance by truncating the dataset to only include data
points occurring after February 26", 2017. This
date was chosen based on the analysis of Bovaird
(2017), which suggested that the recent Ether price
increases were institutionally-driven.

On February 27", 2017, the New York Times
had reported the forming of the Enterprise
Ethereum Alliance, a consortium of 30+ signif-
icant institutions that agreed to collaborate on
Ethereum development (Popper, 2017). This date
marks a natural inflection point in Ethereum’s
price history, which seemed to support Bovaird’s
hypothesis, and roughly indicates when large insti-
tutions increased their interest in Ethereum (since
if there was no such interest, the institutions would
not have announced the consortium’s formation.)

Sample Size 6667 |
Mean 220.0679
Standard Deviation 122.14

Figure 3: Statistics of Ether Prices (Truncated)

However, truncating the dataset in this way did
not significantly change results. The variance of
the truncated dataset is unchanged (although it it
smaller relative to the mean) and the accuracy of
prediction models presented in later sections did
not change in any significant way. All this analysis
was done after final results were established, how-
ever, as moving from the truncated dataset back
to the full dataset can cause information from the
test set for the truncated dataset to leak into the
development set for the full dataset. As such, only
results obtained on the truncated dataset are de-
scribed in this paper.

3.2 Data Splitting

Following standard practice, the full dataset is split
into portions of 80%, 10%, and 10%, which rep-
resent the training set, the development (or valida-
tion) set, and the test set. The splits are done by
time, such that the earliest data point in the test set
is in the future relative to the latest data point in
the development set.

Hyperparameters are tuned by training on the
training set and testing on the development set. Fi-
nal results are obtained by training on the training



and development sets and testing on the test set.!

3.3 Feature Selection

Features were generated by grouping the original
data points, which contained Ether prices, into se-
ries of six points, such that each point was sepa-
rated from its neighbors by one hour. (The original
dataset included gaps between some points, such
that not every point was separated by an hour from
its neighbors. As these gaps were rare and widely
spaced, the grouping mechanism ensured the pro-
duced features were valid by simply disregarding
points which were too close to one of these gaps.)

More precisely, an input to the classifiers is
(Pt—5,Pt—4,Pt—3, Pi—2, Pi—1,Pt), Where t is the
time, and p; is the price at time ¢. The state con-
sists of the price at time ¢ along with the 5 previous
time points, for a total of 6 time points. The target
prediction is the sign of p;11 — p¢, an element of
{+1,-1}.

The length of each feature vector was chosen
to be 6 because these vectors were also used as in-
put for a Markov Decision Process-based model in
an associated project. For completion, alternative-
length features were generated and tested using the
process described above, and notable results are
included in §5. Other types of features were also
tested, including the price change between time
points and the sign of the price change between
time points, as well as normalized and standard
versions of all the features already described.

4 Methods

Multiple models were assessed on the task of pre-
dicting the directionality of change in Ether price.
Most of these models used 6 price points as the
input feature and were based on binomial clas-
sification algorithms, including Logistic Regres-
sion, Support Vector Machine, Random Forest and
Naive Bayes. Other models were based on regres-
sion algorithms, such as the autoregressive inte-
grated moving average (ARIMA). Models based
on a recurrent neural network (RNN) and a Neural
Network (NN) were also implemented and tested.

All of the models were assessed on how well
they performed on the task, and these results are
given in §5. The impetus for trying such a large

'In the milestone version of this paper, an uncaught error
caused the models to train on both the training and develop-
ment sets before being tested on the development set. This
error, which exaggerated model accuracy, was caught during
cross-validation; our results have been amended.

number of models was to analyze how the assump-
tions underlying each of the respective models
could affect the models’ performance. The meth-
ods underlying these models and their assump-
tions are briefly summarized below. Our imple-
mentations made use of Scikit-Learn (Pedregosa
etal., 2011).

4.1 Logistic Regression

Logistic regression is a binary classification model
which makes very few assumptions about the
dataset. Its hypothesis function has the form
1
T
ho(z) = g(6" ) = 1te Tz

where x is the input and 6 the parameter that
must be learned. This model also employs ¢5-
regularization to minimize overfitting.

4.2 Naive Bayes

Naive Bayes is a binary classification model which
makes a strong assumption about the conditional
independence of the input features. Specifically, it
assumes that the input features (i.e., the groups of
6 price points) are conditionally independent given
the label (i.e., a positive price change [+1] or a
negative price change [-1]). The classifier is

Q:argmaxP HP x| y)

where n is the number of features, x is the input,
and y is the class label. We use Gaussian Naive
Bayes, where the feature likelihood is given by

Xr; — 2
P ) = e (- )

and assumed to be  Gaussian, with
Wh_1,1,0-1,01 computed with maximum
likelihood estimation.

4.3 Support Vector Machine

Like logistic regression, the support vector ma-
chine algorithm yields a binary classification
model while making very few assumptions about
the dataset. The classifier is obtained by optimiz-
ing:

min waH
¥,w,b
s.t. y(z)(w x(i)—i—b)Zl, 1=1,...,m

where z is the input and w, b are parameters that
must be learned. Predictions are made by analyz-
ing the value of w’z + b.



4.4 Random Forest

Random forests is a modification of bagging that
builds a large collection of de-correlated trees, and
then averages them. The essential idea in bag-
ging is to average many noisy but approximately
unbiased models, and hence reduce the variance.
When used for classification, a random forest ob-
tains a class vote from each tree, and then classifies
using majority vote. Random forests approximate
the expectation

frp = EgT(z;0) = lim f(2)5

B—oo

with an average over B realizations of 6.

4.5 Auto Regressive Integrated Moving
Average (ARIMA)

ARIMA is a model used for time series analysis
and forecasting. The model is used on time series
data which will be transformed into a stationary
time series; the predictions are a linear regression
upon features including time differences and mov-
ing averages. The implementation used is from
the Statsmodels package (Seabold and Perktold,
2010). In ARIMA, the data is differenced; that is,
the price features are transformed to the difference
between prices. Let L be the lag operator, then the
ARIMA equations are

(1 _ Z akLk> (1- L)X, = (1 — ZﬁkL’“)et
k=1

and p,d, q are hyper-parameters over which we
optimized. At each time ¢, we train a model using
the price history to predict the price at time ¢ and
use the sign of the change in price as a prediction.

4.6 Recurrent Neural Network (RNN)

Recurrent neural networks have been used to pre-
dict time series data. We used a two-layer RNN
with a fully connected layer with softmax activa-
tion. The RNN layers consist of Gated Recurrent
Unit (GRU) cells. We also used Long short-term
memory (LSTM) cells. We tried different numbers
of units for the layers, training times, and batch
sizes. We have implemented the neural networks
with both Keras (Chollet et al., 2015) and Tensor-
Flow (Abadi et al., 2015) directly.

5 Results

The ratio of positive to negative price changes in
the dataset is almost 1:1; as such, the models are

Method \ Accuracy
Logistic Regression 53.40 %
Logistic Regression [Binary] 56.94 %
Naive Bayes 51.78 %
Support Vector Machines 51.29 %
Support Vector Machines [Change] | 52.59 %
Support Vector Machines [Binary] 55.99 %
Random Forest 50.81 %
ARIMA 61.17 %
Recurrent Neural Network 52.43 %
Neural Network 52.18 %

Figure 4: Ether Price Change Predictor Accuracies

evaluated based on their prediction accuracy. (If
the dataset had a something like a 80%/20% split
between positive and negative price changes, how-
ever, then F} score would have been used as a met-
ric instead of accuracy.)

The test set prediction accuracies of the best
models are reported in Figure 4. The features input
to the model are indicated in brackets. An absence
of brackets means that the input features were
the 6 price points previously mentioned, while
[Change] means that the features were the pre-
vious real-number changes in price and [Binary]
means that the features were the previous sign
changes in price. (For reference, a naive model
which takes no input and always predicts the price
will increase yields a baseline accuracy of 55.8%.)

We interrogated the dataset with TSNE, LDA,
and PCA to discover that the classes are not qual-
itatively well-separated by any of those methods.
Figure 5 shows the PCA representation with two
principal components; the classes have much over-
lap, indicating that the classification task may be
challenging.
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Figure 5: PCA with Two Principal Components



5.1 Best Performance

The ARIMA algorithm had the best performance.
The price of Ether is not stationary; like many
cryptocurrencies, it is volatile and also trending
upward or trending downward. In this case, the
prices are trending downward, and the integrative
part of the algorithm which converts the features
into differences accounts for the trend and allows
the rest of the model to learn on stationary fea-
tures. Additionally, the ARIMA model is trained
every time step with all observed data. Hence,
when it is making a prediction, it has all history
before the predicted time. This data is to the ad-
vantage of the performance. The confusion matrix
in Figure 6 indicates that the model has learned
to predict both increasing and decreasing prices
rather than more accurately predicting one class
over another.

Increase | Decrease
Increase 29 19
Decrease 21 34

Figure 6: A confusion matrix for the ARIMA
model. The row indicates the predicted change in
Ether price, while the column indicates the actual
change.

5.2 Other Models

The other models tested are not designed specif-
ically to work with time-series data, unlike the
ARIMA-based model. As such, it is unsurpris-
ing that those algorithms underperform relative to
ARIMA.

However, even after attempting to account for
the time-series aspect of the data, the binomial
classifiers still underperform. For example, a rea-
sonable assumption could be made that the distri-
bution of price differences does not change over
time. (i.e., even as the price of Ethereum might
vary, the distribution describing the magnitude of
the price changes between iterations would stay
constant.) This assumption guided our idea to use
price changes (and the sign of the price change)
as input features into a SVM-based model, but the
model underperformed the ARIMA-based model
all the same, even when the data was standardized
and/or normalized.

The logical conclusion is that when working
with time-series data, a model which is explicitly
designed for such an input is likely to yield bet-

ter results than a model which is not, even when
the time-series data is massaged into a form that
should be time-invariant.

Of course, the assumptions that each model
makes are important as well. The Naive Bayes-
based model barely outperforms a coin flip; this
underperformance is most likely due to the fact
that our data is quite far away from being normally
distributed.

While the logistic regression-based model’s as-
sumptions were not violated, it is only able to clas-
sify accurately if a separable hyperplane exists.
The poor accuracy yielded by this model suggests
that the data is not well-separable, a result which
is backed up by the poor performance of the SVM-
based models. (This is also most-likely due to its
time-series nature.)

As for the random forest-based classifier, a rea-
sonable explanation for its underperformance is
the continuous nature of our dataset. Combined
with the fact that it is time series data, with price
features that may not necessarily repeat, it is infea-
sible for the algorithm to explore the entire feature
space.

Similarly, the neural-network based models
may also have not ran for enough iterations to fa-
cilitate convergence to the global minima of their
objective functions. More training time and per-
haps a more structured dataset might be necessary
to ensure convergence.

6 Conclusion

The task of classifying price sign change is non-
trivial, as demonstrated by the lack of obvious
class separation. While all methods achieved
above 50% accuracy, the best performance was
achieved by the Auto Regressive Integrated Mov-
ing Average (ARIMA) model, which is attributed
to its features and suitability to time-series data.
Other methods fell short due to lack of data, as-
sumptions made by the models about the data, and
non-convergence of the models. We are encour-
aged by the results thus far and will continue to
study the dynamics of cryptocurrency markets as
the field grows.



7 Contributions

Mila has contributed to: code to clean and divide
the data, code to extract features, code for logistic
regression, SVM, Naive Bayes, RNN, code to vi-
sualize features and results including PCA, TSNE,
LDA, code for ARIMA, the proposal, milestone,
and final written reports, and the poster.

Matthew has contributed to: code to clean and
divide the data; all the code for our baseline and
oracle experiments; code for generating statistics
for Ether and other asset classes; debugging the
exaggerated model accuracy issue; the poster de-
sign; the proposal, milestone, and final written re-
ports.

Neha has contributed to:code for implementa-
tion of Naive Bayes, Support Vector Machine,
Random Forest classifiers, code for Neural Net-
work training and its hyper-parameter tuning, time
series analysis for stationarity and auto-correlation
in R; the proposal, milestone and the final written
reports.
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