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Abstract

Deep neural networks have long been criticized for being black-box. To unveil
the inner workings of modern neural architectures, a recent work [45] proposed an
information-theoretic objective function called Sparse Rate Reduction (SRR) and
interpreted its unrolled optimization as a Transformer-like model called Coding
Rate Reduction Transformer (CRATE). However, the focus of the study was
primarily on the basic implementation, and whether this objective is optimized in
practice and its causal relationship to generalization remain elusive. Going beyond
this study, we derive different implementations by analyzing layer-wise behaviors
of CRATE, both theoretically and empirically. To reveal the predictive power
of SRR on generalization, we collect a set of model variants induced by varied
implementations and hyperparameters and evaluate SRR as a complexity measure
based on its correlation with generalization. Surprisingly, we find out that SRR has
a positive correlation coefficient and outperforms other baseline measures, such as
path-norm and sharpness-based ones. Furthermore, we show that generalization
can be improved using SRR as regularization on benchmark image classification
datasets. We hope this paper can shed light on leveraging SRR to design principled
models and study their generalization ability.

1 Introduction

Transformers [39, 11] have become the de facto choice of neural architecture nowadays and find great
success in applications across language, vision, speech, and other scientific fields. The self-attention
module in Transformers utilize global interactions to capture long-range dependency. However, the
mechanisms and learning process of self-attention and other components in Transformers remain
open problems, calling for more research to interpret and understand their properties.

One approach to interpreting the attention module involves experimental observation of the attention
module to gain insights into their behaviors. For instance, DINO [7] provides a means to observe and
analyze attention maps w.r.t class tokens in Vision Transformer (ViT), shedding light on their emerging
interpretability from self-supervised learning. Another line of work focuses on interpreting or building
attention module and even Transformer-like models from a mathematical perspective. Works in this
vein have attempted to establish connections between Transformers and a reverse-engineered energy
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function [43, 17], associative memory such as modern Hopfield network [35, 37, 26, 4] and sparse
distributed memory [5], or programming languages [41, 22], to name a few.

Recently, the study of algorithm unrolling has emerged as a promising technique to bridge the gap
between iterative optimization and neural architecture. A work by Yu et al. [45] considers the
objective of representation learning as optimizing the Sparse Rate Reduction (SRR), a function that
promotes maximum information gain described by the coding rate function [24, 46] and induces
sparsity. In particular, they show that a Multi-head Subspace Self-Attention (MSSA) operator with
skip connection and an Iterative Shrinkage-Thresholding Algorithms (ISTA) operator can be derived
under some assumptions by unrolling minimization of the coding rate of representations in incoherent
subspaces, i.e., compression and sparse coding, i.e., sparsification, respectively. By stacking these
operations into layers, they build a Transformer-like model CRATE in which every layer should have
the completely interpretable compress-then-sparsify behavior. However, although motivated by an
information-theoretic and principled objective, it is still unexplored whether the core component
MSSA operator with skip connection indeed implements the idea of compression in practice and how
information propagates in the forward pass. On the other hand, SRR as the objective of representation
learning is still an empirical formulation. Its causal relationship to generalization remains elusive.

In this paper, we conduct an in-depth investigation of this Transformer-like model and take steps to
address these limitations. Our contributions are summarized as follows:

• In Section 4, we highlight the derivation artifacts through analysis of the key component MSSA
operator and explore implementation variants of CRATE by inspecting the layer-wise behaviors.
We show that the gradient approximation of the compression term will yield a counterproductive
effect, performing decompression of token representations instead.

• In Section 5, we uncover the correlation between the learning objective SRR and generalization
in unrolled models. By training models with varied hyperparameters, we show that SRR as a
complexity measure has a positive correlation coefficient and outperforms other baselines.

• In Section 6, we demonstrate the effectiveness of SRR as a regularization technique for improved
performance on benchmark datasets. Specifically, we show that the classification accuracy of
unrolled models on CIFAR-10/100 can be consistently improved using a simple and efficient
implementation of regularization.

2 Related Work

2.1 Interpreting Transformers

Research on interpreting Transformers [39, 11] has surged recently. Despite its achievements,
the mechanisms and learning of attention layers remain enigmatic. One approach to interpreting
Transformers is to experimentally observe the inner representations or output of key components like
self-attention. This includes analysis by projecting parameters of Transformers to embedding space
[10], inspecting the representations with another language model [14], visualizing attention map
[7, 8, 44], etc. Several works opt for “mechanistic interpretability” [12, 28, 40] aiming to reverse-
engineer the representations learned by Transformers that have “grokked” or mastered complex
modular arithmetic task [34] and other synthetic tasks [23, 47]. Another line of work focuses more
on theoretical understanding and building connections to other concepts. These papers utilize tools
such as Bayesian inference [1], convex optimization [36] to analyze attention in Transformers. There
have also been attempts to interpret a Transformer as an energy function optimizer [43, 17], connect
attention to memory [35, 37, 26, 4, 5] or interacting particle systems [13] or transform into human-
readable programs [41, 22], to name just a few. Our work focuses on the empirical investigation of a
Transformer-like model, CRATE [45], recently introduced from pure mathematical derivation.

2.2 Algorithm Unrolling

Algorithm unrolling [27] has emerged as a promising technique for designing interpretable and
efficient deep learning architectures. This approach establishes a direct connection between iterative
algorithms and neural architecture, with each iteration of the algorithm corresponding to one layer
of the architecture. Previous works have employed this technique to design popular networks in a
forward-constructed manner. For instance, the seminal work [15] proposed to unroll the Iterative
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Shrinkage-Thresholding Algorithm for sparse coding into layers of linear operation followed by
ReLU non-linearity. Other works have tried to find a representation objective function to unroll into
convolutional neural network [33, 6], graph neural network [42], and Transformers [43, 17]. We will
follow this iteration-layer correspondence to conduct layer-wise analysis.

3 Revisiting Sparse Rate Reduction

Let Z = [z1, . . . ,zN ] ∈ Rd×N denote N samples, where each column zi ∈ Rd represents tokens in
Transformers. U = [U1, . . . ,UK ] ∈ Rd×Kp denote a set of incoherent basis spanning K subspaces,
wherein columns of U i ∈ Rd×p represent basis in i-th low-dimensional subspace (p < d). We follow
the configuration that d = Kp as in standard ViT [11].

Previously, Yu et al. [46] propose that the compactness of representations Z ∈ Rd×N can be measured
by a coding rate function: R(Z)

.
= 1

2 log det(I + d
Nϵ2Z

TZ). A more recent study [45] contends
that the objective of representation learning is to transform and compress samples from an unknown
distribution to a mixture of low-dimensional Gaussian distributions supported on incoherent bases.
This objective boils down to the maximization of Sparse Rate Reduction (SRR):

max
Z∈Rd×N

R(Z)−Rc(Z;U)− λ∥Z∥0, (1)

where ∥ · ∥0 means ℓ0 norm and Rc(Z;U)
.
=

∑K
k=1 R(UT

kZ) measures the compactness of repre-
sentations in the low-dimensional subspaces. One layer of a network, formulated as a mapping fw(·)
parameterized by w, can be interpreted as applying one step of gradient-based methods to the objective
in (1). In practice, Yu et al. [45] use alternating minimization to break down the optimization into two
steps: compression, i.e. minZ Rc(Z;U) and Sparsification, i.e. minZ λ∥Z∥0 −R(Z). Specifically,
given representation Zℓ−1 at (ℓ− 1)-th layer, Zℓ can be obtained by two-step optimization:

Y ℓ = Zℓ−1 − α∇Rc(Zℓ−1;U ℓ) ≈ Zℓ−1 + αγ2 MSSA(Zℓ−1;U ℓ), (2)

Zℓ = ReLU
(
Y ℓ + β(Dℓ)T (Y ℓ −DℓY ℓ)− βλ1

)
, (3)

where α, β > 0 are step sizes, Dℓ ∈ Rd×d is assumed as a complete dictionary, scalar γ .
= p

Nϵ2 and

MSSA(Z;U) =

K∑
k=1

UkU
T
kZ softmax((UT

kZ)T (UT
kZ))

= [U1, . . . ,UK ]

 UT
1 Z softmax((UT

1 Z)T (UT
1 Z))

...
UT

KZ softmax((UT
KZ)T (UT

KZ))

 (4)

The operator MSSA(·;U) in (4), called the Multi-head Subspace Self-Attention (MSSA) operator,
takes the form of self-attention in standard Transformers [39, 11], with tied query, key and value
matrix, i.e., UT

k while the output matrix being its transpose, i.e. Uk. Instead of strictly following
this formulation, they further replace [U1, . . . ,UK ] ∈ Rd×Kp in the MSSA operator with an
additional learnable parameter W ∈ Rd×Kp. To distinguish them, we name the model with
implementation (4) CRATE-C(onceptual). By incrementally optimizing (1) with alternating
minimization, a Transformer-like model with layered structures can be naturally constructed. With
input Z0, e.g. tokenized images in ViT, an L-layer model iteratively optimizes the input and yields
the final representations ZL. Parameters {U ℓ}Lℓ=1 and {Dℓ}Lℓ=1 can be learned through end-to-end
training [15].

4 Is Sparse Rate Reduction Optimized in Transformer-like Models?

While the white-box Transformer-like model proposed in [45] is derived by unrolling optimization
upon a pre-defined objective function, whether the optimization is implemented by the model in the
forward pass is still unclear. In this section, we first review the main derivations at the core of building
CRATE, i.e. unrolling optimization minZ Rc(Z;U) into MSSA operator with skip connection as
in (2), and identify the pitfalls in implementing the minimization. We then provide variant models
based on different implementations and empirically show their layer-wise behaviors.
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Figure 1: In a simplified attention-only experiment, MSSA operator with skip connection actually
implements an ascent method on Rc(Z;U), opposed to its design purpose (left). This is due to an
artifact in approximation with its second-order term. (right)

4.1 Pitfalls in Deriving CRATE-C

We first show that the second-order Taylor expansion of the coding rate of representations Z projected
onto subspaces can be expressed as:

Rc(Z;U) =

K∑
k=1

N∑
i=1

1

2
log λk

i ≥
K∑

k=1

N∑
i=1

1

2

(
λk
i − 1− (λk

i − 1)2

2

)

=

K∑
k=1

γ

2
∥UT

kZ∥2F︸ ︷︷ ︸
First-order term

−γ2

4
∥(UT

kZ)TUT
kZ∥2F︸ ︷︷ ︸

Second-order term

 ,

(5)

where λk
i ≥ 1, i ∈ [N ] are the eigenvalues of I + γ(UT

kZ)TUT
kZ. Following the derivation and

implementation from Appendix A.2 in [45], the MSSA operator with skip connection is constructed
by performing an approximation of gradient descent on Rc(Z;U):

Z − α∇ZR
c(Z;U) = Z − αγ

K∑
k=1

UkU
T
kZ

(
I + γ(UT

kZ)T (UT
kZ)

)−1

(6)

≈ Z − α

γ

K∑
k=1

UkU
T
kZ︸ ︷︷ ︸

∇of first-order term

−γ2
K∑

k=1

UkU
T
kZ(UT

kZ)T (UT
kZ)︸ ︷︷ ︸

∇of second-order term

 (7)

≈ Z + αγ2
K∑

k=1

UkU
T
kZ softmax((UT

kZ)T (UT
kZ)). (8)

It can be seen that this update step takes the gradient of a lower bound of Rc(Z;U) and discards the
first-order term. With a proper step size, the coding rate on the same subspaces is expected to decrease
after one iteration. However, we will show that this is not the actual case via a toy experiment.

We consider a simplified setting where L layers of update (8) are conducted with parameters {U ℓ}Lℓ=1

initialized as orthonormal matrices. We initialize a random variable Z0 from a Gaussian distribution
and measure the coding rate before and after each layer. We set N = 196, L = 12, d = 384, K = 6,
α = 1, and a proper ϵ2 such that γ = 1. As shown in Figure 1a, Rc(Zℓ;U ℓ) is always greater
than Rc(Zℓ−1;U ℓ) and Rc(Zℓ;U ℓ) is increasing in general as the layer goes deeper. This means
the update (8) that resembles the standard self-attention with skip connection does not essentially
implement a descent method on Rc. The crux lies in the approximation of Rc’s gradient.

When taking the gradient of Rc to construct the MSSA operator, omitting its first-order term will
produce a counterproductive effect. As shown on the left-hand side of the inequality in (5), Rc can be
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expressed as the sum of logarithms of eigenvalues. We expect the eigenvalues to decrease to minimize
the value of Rc. Figure 1b illustrates different approximations of the logarithm function. If we omit
the first-order term of its Taylor expansion and only perform descent methods on its second-order
term (corresponding to − (λk

i −1)2

2 ), the eigenvalues will go up leading to an increase in the value of
Rc. Therefore, one step of update (8) secretly maximizes Rc, contrary to the purpose of its design.
More figures detailing this issue are in Appendix A.

4.2 Producing CRATE Variants

In the previous subsection, we show the problems arising from gradient approximation when unrolling
minZ Rc(Z;U) into MSSA operator with shortcut. We will, in the subsection, introduce two variants
of CRATE induced by the conceptual and implementation gaps. These variants can be considered as
the alternative instantiations of the optimization-induced architectures but in a more self-contained
way. They also serve as representative samples for our subsequent investigations of SRR.

One variant of CRATE, motivated by the theoretical gap between CRATE-C and the SRR principle,
could naturally emerge when the sign before the MSSA operator in (8) is changed. Similar to previous
analysis via eigenvalues, this update of representations in fact implements one step of ascent methods
on the second-order term of Rc, therefore minimizing the eigenvalues and consequently Rc. This
variant is designed to counter the pitfalls in CRATE-C, enabling a more faithful reduction in Rc and
thereby enhancing alignment with the SRR principle. We term the Transformer-like model with this
implementation CRATE-N(egative):

Z − αγ2
K∑

k=1

UkU
T
kZ softmax((UT

kZ)T (UT
kZ)). (9)

The other variant we would like to introduce is motivated by the misalignment between CRATE
and CRATE-C. Although replacing the output matrix [U1, . . . ,UK ] with learnable parameters
W in CRATE empirically boosts performance, it also contaminates the framework and sacrifices
the mathematical interpretability. Does this modification really matter? Can we preserve model
performance while maintaining framework integrity? It turns out that a simple transpose operation of
the output matrix could greatly close the empirical gap to CRATE, without more parameters. Other
manipulations and discussions can be found in Appendix B. We refer to the model with this simple
manipulation CRATE-T(ranspose):

Z + αγ2 [U1, . . . ,UK ]
T

 UT
1 Z softmax((UT

1 Z)T (UT
1 Z))

...
UT

KZ softmax((UT
KZ)T (UT

KZ))

 . (10)

4.3 Behaviors of Sparse Rate Reduction

The Transformer-like model CRATE is built by sequentially stacking the layer that comprises
two modules in (2) and (3) (or different implementations). Although each module is designed to
implement one-step optimization of different objectives, it is unclear whether the architecture design
achieves the optimization as a whole. On the other hand, there is also a need to determine whether
the model parameters learned through end-to-end training actually lead to improved optimization.

To investigate how sparse rate reduction evolves in the forward pass and during training, we train
CRATE and its variants on CIFAR-10/100 datasets and evaluate the sparse rate reduction measure
λ∥Zℓ∥0 + Rc(Zℓ;U ℓ) − R(Zℓ) at different layers and epochs on the training set. λ is chosen as
0.1 and detailed experiment settings can be found in Section 6.1. Figure 2 and Figure 3 show the
behaviors of sparse rate reduction of CRATE along with its variants CRATE-C, CRATE-N, and
CRATE-T under Tiny configurations in [45]. When the models are randomly initialized, the sparse
rate reduction measure almost monotonically decreases in the first 9 layers and then rises in the
subsequent layers. This partly confirms the layer-wise optimization of the objective SRR and its
alignment with forward architecture design, although in Section 4.1 we demonstrate that Rc(Z;U)
will monotonically go up in the absence of operation (3). We conjecture that the ReLU non-linearity
may also play an important role in optimizing the compression term Rc(Z;U) in the forward pass.
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(b) Sparse rate reduction measure of CRATE-N (9)
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(c) Sparse rate reduction measure of CRATE-T (10)
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(d) Sparse rate reduction measure of CRATE

Figure 2: Sparse rate reduction measure λ∥Z∥0 + Rc(Z;U) − R(Z) of CRATE and its variants
evaluated at different layers and epochs on CIFAR-10.

Another surprising finding is that as the learning process proceeds, the sparse rate reduction measure
at each layer will increase monotonically across all models, with a rare exception in the last few
layers of CRATE-C.

These phenomena give us implications for understanding Transformer-like models: the representations
of initialized models converge fast in the first few layers and hover around the local minimum of
the objective landscape; however, the useful information in representations may be discarded due to
over-compression and the learning of parameters gradually increases sparse rate reduction measure to
counteract this effect for improved task-specific representations.

To summarize, our finding is that sparse rate reduction measure is incrementally optimized in a
realistic setting at initialization. This aligns well with its design purpose from a macro perspective.
With varied implementations, the result still holds even when the compression-inspired operator
MSSA diverges from its goal from a micro perspective. We postulate that ReLU non-linearity in (3)
could also promote compression and leave their interaction for future work.

5 Whether Sparse Rate Reduction Benefits Generalization?

So far, we have partially confirmed the validity of different implementations of Transformer-like
models by inspecting the layer-wise optimization of SRR. But whether this objective is important
or principled for these architectures to generalize is still an unaddressed problem. In this section,
we want to explore the predictive power of SRR and its causal relationship to the generalization of
CRATE.

5.1 Sparse Rate Reduction as a Complexity Measure

An important tool to study the generalization of deep networks is complexity measure. A complexity
measure that can properly reflect the generalization needs to have the following property: lower
complexity should indicate a smaller generalization gap. Complexity measures can be either theoreti-
cally motivated, such as PAC-Bayes [25, 29], VC-dimension [38], norm-based bounds [32, 3, 30] or
empirically motivated, such as sharpness [20] and path-norm [31]. We choose to adapt SRR into a
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(a) Sparse rate reduction measure of CRATE-C (8)
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(b) Sparse rate reduction measure of CRATE-N (9)
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(c) Sparse rate reduction measure of CRATE-T (10)
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Figure 3: Sparse rate reduction measure λ∥Z∥0 + Rc(Z;U) − R(Z) of CRATE and its variants
evaluated at different layers and epochs on CIFAR-100.

complexity measure that belongs to the latter category:

µSRR(w;Z) =
1

L

L∑
ℓ=1

µℓ
SRR(w

ℓ;Zℓ) =
1

L

L∑
ℓ=1

(
λ∥Zℓ∥0 +Rc(Zℓ;U ℓ)−R(Zℓ)

)
, (11)

where Zℓ denotes the output at layer ℓ and wℓ contains the parameters including U ℓ and Dℓ.

5.2 Correlation with Generalization

An effective measure of complexity should bound the generalization gap, defined as the difference
between validation loss and training loss when the latter reaches a threshold, i.e., Lval −Ltrain, with
high probability. However, for those measures that do not provably bound this gap, as is the case with
SRR measure (11), we need to evaluate its correlation with the generalization gap to understand its
causal relationship to generalization.

Collecting Trained Models To evaluate the complexity measure and generalization across models,
we consider changing the hyperparameters and collect a set of models trained to meet a specific
stopping criterion. Here, we also consider the model type containing different variants of CRATE
as a hyperparameter to investigate its influence on generalization. Formally, let Θi denote a type of
hyperparameter with |Θi| different choices, and define θ

.
= (θ1, θ2, . . . , θn) ∈ Θ1 × · · · × Θn as

an instantiation from n types of hyperparameters. By varying choices across hyperparameter space,
we can produce |Θ1| × · · · × |Θn| models. In our experiment, we consider n = 5 hyperparameters,
including batch size, initial learning rate, width, dropout, and model type. Each contains 2 choices
except that the model type contains 4 implementations we discussed before. We successfully train a
total of 64 models on CIFAR-10 dataset, when cross-entropy loss reaches 0.01 following the stopping
criterion in [18]. Experimental details and choices of hyperparameters can be found in Appendix C.

Evaluation Criterion A common method for measuring correlation is by utilizing Kendall’s rank
correlation coefficient [19, 18], which ranges from -1 to 1. Generally, the closer the coefficient is
to one, the stronger the causal relationship and the greater the predictive power a measure can offer
for generalization. Zero value usually means independent relationships. For a given complexity
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Table 1: Correlation of complexity measures with generalization gap (width d = 384).
Complexity measures Batch size Learning rate Dropout Model type Overall τ Ψ

ℓ2-norm 0.200 -0.333 -0.333 -0.429 -0.363 -0.224
ℓ2-norm-init 0.200 -0.200 -0.333 -0.286 -0.290 -0.158
# params 0.000 0.000 0.000 -0.572 -0.351 -0.143
1/margin -0.067 0.467 0.467 0.238 0.415 0.276

sum-of-spec 0.200 -0.333 -0.467 -0.381 -0.290 -0.245
prod-of-spec 0.200 -0.333 -0.467 -0.476 -0.338 -0.269

sum-of-spec/margin 0.333 -0.333 -0.467 -0.048 -0.230 -0.129
prod-of-spec/margin 0.333 -0.333 -0.467 -0.143 -0.260 -0.152

fro/spec -0.200 0.333 0.467 -0.476 0.019 0.031
spec-init-main 0.333 -0.333 -0.467 -0.190 -0.273 -0.164
spec-orig-main 0.200 -0.333 -0.467 -0.095 -0.252 -0.174

sum-of-fro 0.200 -0.333 -0.333 -0.381 -0.325 -0.212
prod-of-fro 0.200 -0.333 -0.333 -0.429 -0.372 -0.224

sum-of-fro/margin 0.333 -0.200 -0.467 -0.048 -0.217 -0.095
prod-of-fro/margin 0.333 -0.200 -0.467 -0.143 -0.247 -0.119

fro-distance 0.200 -0.200 -0.333 -0.286 -0.290 -0.155
spec-distance 0.200 -0.200 -0.333 -0.286 -0.290 -0.155
param-norm 0.200 -0.333 -0.333 -0.429 -0.363 -0.224
path-norm 0.333 -0.600 -0.467 -0.286 -0.191 -0.255

pac-bayes-init 0.200 0.200 -0.600 0.238 0.015 -0.009
pac-bayes-orig -0.200 0.333 0.467 0.381 0.333 0.245

1/σ pac-bayes-flatness -0.267 0.333 0.333 0.455 0.333 0.213
SRR -0.067 0.467 0.333 0.714 0.445 0.362

measure, we can construct a set of samples T containing the measure µ(θ) and generalization gap
g(θ) evaluated at different combinations of hyperparameters θ and calculated Kendall’s coefficient
on this set:

T ≜ ∪θ∈Θ1×···×Θn{(µ(θ), g(θ))}, (12)

τ(T ) ≜
1

|T |(|T | − 1)

∑
(µ1,g1)∈T

∑
(µ2,g2)∈T \(µ1,g1)

sign (µ1 − µ2) sign (g1 − g2) . (13)

Experimental Results. In our experiment, we find that the correlation of various measures with the
generation can be reflected with more prominence under a selected width. Accordingly, we present
the results in terms of Kendall’s coefficient τ in Table 1 and scatter plot of SRR measure in Figure 4
when the width d is chosen as 384. The results when d = 768 is deferred to Appendix D. The
granulated coefficient Ψ is also reported (see [18] for a detailed definition).
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Figure 4: A scatter plot illustrating the value
of SRR measure and generalization gap across
CRATE and variants with network width d = 384.

We confirm the findings from prior works that
some norm-based measures, such as sum/prod
of spectral/Frobenius norm of parameters neg-
atively correlate with generalization, even on
Transformer-like models. An interesting find-
ing is that path-norm also negatively correlates
with generalization, which partly contradicts the
previous conclusion. This implies that regular-
ization on path-norm, e.g. Path-SGD [31], may
not be applicable for improved generalization
on Transformer-like models. Among the mea-
sures we investigated, the inverse of margin and
sharpness-based PAC-Bayes flatness show posi-
tive and strong correlations. This result justifies
the common belief that larger margin or flat-
ter loss landscape leads to better generalization
across the investigated Transformer-like models.
Compared to baselines, the SRR measure in (11)
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achieves the highest overall coefficient and, particularly in the model type axis, outperforms the rest.
This motivates the use of SRR as regularization in the loss function to improve generalization.

6 Sparse Rate Reduction as Regularization

Since SRR measure enjoys a strong correlation to the generalization of Transformer-like models,
we would like to investigate its potential as the direct regularization to the standard training loss. In
particular, we add the SRR measure in (11) by a regularization factor η to the cross-entropy loss:

min
w

Lce(w) + λ · 1
L

L∑
ℓ=1

µℓ
SRR(w

ℓ;Zℓ
StopGrad), (14)

where λ > 0 is the regularization coefficient and Zℓ
StopGrad = fwℓ(StopGrad(Zℓ−1)). The operator

StopGrad here, implemented as “Tensor.detach()” in PyTorch, prevents gradient propagation from
the output Zℓ to the previous layers. This allows parameters wℓ at each layer to be updated without
interfering with each other, giving more precise optimization of SRR in separate layers.

6.1 Experiment Settings

Model Configurations We follow the configuration of CRATE-Tiny in [45] in this experiment.
Specifically, we set the depth L = 12, width d = 384, number of subspaces K = 6, step size
α = 1, and scaling factor γ = 1. We also include LayerNorm before each operation in (2)(3) for
better trainability and learnable positional encoding. A trainable [CLS] token is prepended to the
representations for computing cross-entropy loss and classification.

Datasets and Optimization We use CIFAR-10 and CIFAR-100 datasets for training and evaluation.
In practice, we adopt Adam [21] optimizer and initialize learning rate as 1 × 10−4 with cosine
decay. All models are trained for 200 epochs with batch size as 128. Note that we only use the basic
data augmentations: random resize and cropping, horizontal flipping, and RandAugment [9] (with
the number transformations n = 2 and magnitude m = 14). We do not use other techniques for
state-of-the-art performance but to demonstrate the effectiveness of SRR as regularization. We tune
the factor η via a grid search over {0.0001, 0.001, 0.01, 0.1, 1} and find that 0.001 works best. All
experiments are conducted on NVIDIA GeForce RTX 3090.

Table 2: Top-1 accuracy for CRATE and its variants trained with or without SRR regularization on
CIFAR-10/100 from scratch (width d = 384).

Models CIFAR-10 CIFAR-100

cross-entropy + SRR regularization (L=12) cross-entropy + SRR regularization (L=12)

CRATE-C 76.87 77.61 43.40 44.53
CRATE-N 81.52 81.91 55.11 55.62
CRATE-T 85.49 85.52 60.59 60.69
CRATE 86.67 86.79 62.40 62.52

6.2 Efficient Implementation

Regularizing the training loss with sparse rate reduction measure (11) needs to compute R(Z) and
Rc(Z;U) for every layer. However, this is highly inefficient as it involves high-dimensional matrix
multiplication, and it lacks flexibility in controlling parameters. To alleviate this issue, we implement
efficient regularization as per layer regularization or random layer regularization: select a pre-defined
layer or a random layer with uniform probability during training. In practice, we find that the
former works better. Table 2 provides the results of CRATE and its variants trained from scratch on
CIFAR-10/100. SRR regularization is sufficient to improve the performance by simply leveraging the
last layer. We also provide a comparison of efficient implementations in Appendix E

9



7 Conclusion

To further research in interpreting neural architecture, we provide an in-depth investigation of a
recent mathematically driven Transformer-like model, CRATE. Although designed with a principled
objective, we identify an artifact in its forward construction and show that the simplest implementation
can have the opposite effect in realizing its designed goal. We then provide implementation variants
and investigate their layer-wise behaviors in optimizing SRR. An interesting finding is that alternative
models exhibit similar behaviors, validating the use of SRR in designing Transformer-like models.
Furthermore, we demonstrate its positive correlation to generalization and effectiveness over baselines.
Driven by this connection, we show a simple way to use SRR as regularization to improve performance
on CIFAR-10/100 datasets. Future direction may include applying layer-wise training and connecting
SRR to the Forward-Forward algorithm [16], or exploring the impact of depth in the unrolled models.

Limitations

This study has several limitations. Firstly, the conclusion that the SRR measure can be a strong
indicator of generalization is limited to the CRATE family. Generalizing this conclusion to standard
Transformers would be non-trivial, as the SRR measure is not properly defined when the query-
key-value matrices have independent learnable parameters instead of shared ones. Secondly, the
performance of a more faithful implementation (CRATE-N) falls behind the one with a simple
manipulation (CRATE-T). This calls for a rigorous inspection of each component’s functionality
in the framework. Lastly, while we confirm the positive correlation to generalization, our analysis
is limited in scale. Consequently, drawing definitive conclusions regarding whether SRR can be a
principle or necessitates further engineering to push the model’s limit is challenging. A Better and
more systematic way is needed to determine whether SRR is principled for designing the Transformer-
like models and quantify this relationship in an appropriate task, perhaps beyond classification.
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A Complete Demonstrations of the Pitfalls

To give a clearer picture of how approximations affect the optimization of Rc, we provide the
complete results with different update rules under the same simplified settings in the main text:

(a) Gradient descent on Rc.
(b) Gradient descent on the second-order Taylor expansion of Rc.
(c) Gradient descent on the first-order term of the Taylor expansion of Rc (w/o second-order

term).
(d) Gradient descent on the second-order term of the Taylor expansion of Rc (w/o first-order

term).
(e) Further adding softmax function upon (d).

The results in Figure 5 correspond to the above experiments. Gradient descent on Rc did make it
decrease across layers. Conversely, applying gradient descent on its second-order Taylor expansion
resulted in an increase, indicating a potentially flawed approximation. Isolating gradient descent to the
second-order term led to a rise in Rc, as opposed to the design purpose. Furthermore, incorporating
the softmax function, a real-world operation examined in the main text, did not alter this conclusion.
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Figure 5: (a) Original gradient update, i.e, (6) (b) update from second-order Taylor expansion, i.e., (7)
(c) update from removing the second-order term from (7) (d) update from removing the first-order
term from (7) (e) update from further adding softmax, i.e., (8)

B Different Manipulations to the Output Matrix

As mentioned in Section 3, CRATE replaces the output matrix U = [U1, . . . ,UK ] in the MSSA
operator with learnable W (which is different from U ). We then raise the following question on
the manipulation of the output matrix: if we are free to adjust the output matrix while sacrificing
interpretability, can we find more alternatives that can outperform CRATE-C or even CRATE? In
practice, we have experimented with setting this matrix to an identity or fixed randomly initialized
matrix, but only to discover that transpose performs best (Table 3). Therefore, CRATE-T is a feasible
choice without introducing new parameters, which can be utilized to better understand the SRR
principle and its connection to the performance.

We want to clarify that the analysis here intends to compare the variants with CRATE-C, not
CRATE, because CRATE introduces learnable parameters that are less interpretable. We believe
there are at least some interesting conclusions from the comparison: 1) CRATE-N achieves better
performance by following the SRR principle more faithfully, shedding light on the connection of
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Table 3: Top-1 accuracy for CRATE and its variants trained on CIFAR-10 from scratch (width
d = 384).

Models CRATE-C CRATE-N CRATE-T CRATE CRATE-Fix CRATE-Identity

# Params 3.94M 3.94M 3.94M 5.71M 3.94M 3.94M
Accuracy 76.87 81.52 85.49 86.67 80.73 83.18

SRR to generalization; 2) We need to explore more design choices (e.g., CRATE-T, which may
deviate from directly optimizing the SRR but still exhibit a similar architecture) to gain a complete
understanding of the SRR principle for model performance (this motivates our Section 5).

C Experimental Details of Collecting Trained Models

Our experimental details to generate a family of trained models largely follow the previous work
[18]. Models with heavy data augmentations tend to generalize better than those without them.
It is therefore crucial to isolate the influence of data augmentations from the change of other
hyperparameters. We choose to remove data augmentations during training to ensure that most
models can be trained to meet the stopping criterion. We include Layer Normalization [2] before
each operator during training, but also remove it when evaluating the complexity measures.

In this experiment, we vary across 5 sets of hyperparameters, i.e., batch size, initial learning rate,
width, dropout probability, and model type. We present the choices of these hyperparameters in
Table 4. Adam [21] is used as the default optimizer. Model depth is kept as L = 12 and number of
subspaces K = 6. Dropout is applied after adding positional encoding, softmax function, and output
projection in MSSA operator.

Table 4: Choices of hyperparameters.
Hyperparameters Choices

batch size {64, 128}
initial learning rate {2× 10−5, 1× 10−4}

width {384, 768}
dropout {0.0, 0.1}

model type {CRATE-C,CRATE-N,CRATE-T,CRATE}

D Correlation of Complexity Measures when width d = 768

Table 5 and Figure 6 give results on correlation to generalization when width d = 768. We see that
SRR is slightly better than other baseline measures in terms of overall τ . In the axes of dropout and
model type, however, it underperforms PAC-Bayes flatness measure. This implies that width could
have a considerable influence on studying SRR as a complexity measure. We leave it for future work.

E Comparisons of Efficient Implementations

Table 6 compares different efficient implementations of SRR regularization. We find that randomly
choosing layers to regularize generally worsens the performance. While regularizing shallower
layers may bring more performance gain, leveraging the last layer already suffices to outperform the
cross-entropy baseline. Specifying which layer to regularize could be expensive, especially when the
model size grows. We opt for the last layer, which should be reasonable if depth scales. Our results
indicate that this intuitive choice can already give consistent performance gains in different settings.
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Table 5: Correlation of complexity measures with generalization gap (width d = 768).
Batch size Learning rate Dropout Model type Overall τ Ψ

ℓ2-norm 0.000 -0.375 -0.625 -0.250 -0.310 -0.313
ℓ2-norm-init 0.000 -0.375 -0.625 -0.208 -0.274 -0.302
# params 0.000 0.000 0.000 -0.295 -0.188 -0.074
1/margin -0.125 0.375 0.625 -0.208 0.173 0.167

sum-of-spec 0.000 -0.375 -0.625 -0.375 -0.310 -0.344
prod-of-spec 0.000 -0.375 -0.625 -0.417 -0.339 -0.354

sum-of-spec/margin 0.000 -0.375 -0.625 -0.458 -0.319 -0.365
prod-of-spec/margin 0.000 -0.375 -0.625 -0.417 -0.327 -0.354

fro/spec 0.000 0.375 0.500 -0.083 0.242 0.239
spec-init-main 0.000 -0.375 -0.625 -0.417 -0.331 -0.354
spec-orig-main 0.000 -0.375 -0.625 -0.417 -0.331 -0.354

sum-of-fro 0.000 -0.375 -0.625 -0.333 -0.306 -0.333
prod-of-fro 0.000 -0.375 -0.625 -0.250 -0.278 -0.313

sum-of-fro/margin -0.125 -0.375 -0.500 -0.167 -0.286 -0.292
prod-of-fro/margin -0.125 -0.375 -0.500 -0.125 -0.238 -0.281

fro-distance 0.000 -0.375 -0.625 -0.208 -0.274 -0.302
spec-distance 0.000 -0.375 -0.625 -0.417 -0.322 -0.354
param-norm 0.000 -0.375 -0.625 -0.250 -0.310 -0.316
path-norm -0.250 -0.625 0.125 -0.500 -0.415 -0.313

pac-bayes-init 0.000 -0.375 -0.625 0.250 -0.214 -0.188
pac-bayes-orig 0.000 0.375 0.625 0.167 0.315 0.292

1/σ pac-bayes-flatness 0.000 0.375 0.688 0.573 0.337 0.409
SRR 0.125 0.500 0.250 0.375 0.407 0.313
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Figure 6: A scatter plot illustrating the value of SRR measure and generalization gap across CRATE
and variants with network width d = 768.
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Table 6: Top-1 accuracy for CRATE and its variants trained with efficient implementations of SRR
regularization on CIFAR-10 from scratch (width d = 384).

Training methods CIFAR-10

CRATE-C CRATE-N CRATE-T CRATE

cross-entropy 76.87 81.52 85.49 86.67
+ Layer 2 reg 77.75 82.41 85.84 87.03
+ Layer 4 reg 77.95 81.57 85.46 87.03
+ Layer 6 reg 77.48 80.83 85.22 87.02
+ Layer 8 reg 77.04 81.29 85.12 86.64
+ Layer 10 reg 77.44 81.19 85.68 86.67
+ Layer 12 reg 77.61 81.91 85.52 86.79
+ Random layer reg 75.19 79.66 84.27 85.36
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We list our contributions in the introduction derived from the main sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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implications would be.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper is mostly about empirical evaluation and therefore does not provide
novel theories.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We faithfully describe our experimental details in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our paper builds heavily on previous works which are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the detailed are stated in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to lack of time, we do not include error bars in our experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use Nvidia 3090 GPU for all the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly follow the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We believe this work makes preliminary efforts towards understanding a
potentially principled way of designing Transformer-like models. But there are still gaps
and limitations on the implementations of sparse rate reduction as a guide to model design.
The conclusion of our paper is still not definitive enough to make strong societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: We have properly cited the most relevant papers which we build our code on.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no such assets introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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