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Abstract

Who is the US President? The answer changes001
depending on when the question is asked.002
While large language models (LLMs) are evalu-003
ated on various reasoning tasks, they often miss004
a crucial dimension: time. In real-world scenar-005
ios, the correctness of answers is frequently tied006
to temporal context. To address this gap, we007
present a novel framework and dataset spanning008
over 8,000 events from 2018 to 2024, annotated009
with day-level granularity and sourced glob-010
ally across domains such as politics, science,011
and business. Our TimeShift evaluation method012
systematically probes LLMs for temporal rea-013
soning, revealing that base models often out-014
perform instruction-tuned and synthetic-trained015
counterparts on time-sensitive recall. Addition-016
ally, we find that even large-scale models ex-017
hibit brittleness in handling paraphrased facts,018
highlighting unresolved challenges in temporal019
consistency. By identifying these limitations,020
our work provides a significant step toward ad-021
vancing time-aware language models capable022
of adapting to the dynamic nature of real-world023
knowledge.024

1 Introduction025

Large language models (LLMs) have revolution-026

ized natural language understanding, reasoning,027

and factual recall, becoming foundational tools028

for applications such as chat bots (Brown et al.,029

2020; OpenAI et al., 2024; Touvron et al., 2023),030

search engines (Thakur et al., 2021), and auto-031

mated fact-checkers (Petroni et al., 2019; Roberts032

et al., 2020). However, their ability to handle time-033

sensitive facts—a critical component of real-world034

knowledge—remains under-explored. In many sce-035

narios, the correctness of an answer depends not036

only on the question but also on when it is asked.037

For example, “Who is the US President on Novem-038

ber 9, 2020, versus January 21, 2021?” requires039

reasoning tied to specific dates, a capability that040

current benchmarks often overlook.041

Figure 1: Temporal log probabilities of sentences pre-
dicting the U.S. president (Joe Biden or Donald Trump)
using Llama 3.2 3B, showing a clear shift in predictions
aligned with their terms. As the model’s training data
cuts off at the end of 2023, predictions beyond this point
reflect extrapolated trends.

Time awareness is crucial for dynamic tasks such 042

as real-time fact-checking, knowledge base mainte- 043

nance, and temporal question answering. While 044

LLMs excel at static factual recall and general 045

reasoning, their performance on time-dependent 046

queries remains an open challenge. To address this, 047

our approach systematically probes models for tem- 048

poral reasoning by measuring the log probabilities 049

of time-sensitive sentences across different tempo- 050

ral contexts. For example, we evaluate whether the 051

log probabilities of sentences like “Donald Trump 052

is the US president” and “Joe Biden is the US pres- 053

ident” shift appropriately as leadership changes 054

over time. As illustrated in Figure 1, our approach 055

captures these temporal dynamics, with models 056

like Llama 3.1 8B (Dubey et al., 2024) showing 057

partial success in adjusting predictions based on 058

temporal prefixes. This highlights the importance 059

of fine-grained temporal evaluation, which current 060

benchmarks fail to capture comprehensively. 061

To address this gap, we introduce a novel dataset 062

and evaluation framework designed to rigorously 063

test daily temporal awareness in LLMs. Our dataset 064

spans over 8,000 events from 2018 to 2024, anno- 065
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tated with day-level granularity and sourced glob-066

ally across diverse domains such as politics, sci-067

ence, and business. Each event is paired with para-068

phrases to evaluate robustness in fact recall when069

phrasing varies. Using our TimeShift evaluation070

method, we systematically probe models by gener-071

ating temporal variations to assess their ability to072

reason across time and paraphrased contexts.073

Table 1 highlights examples from our dataset,074

showcasing the diversity of events and annotations.075

This fine-grained, systematic approach allows us to076

uncover limitations in temporal reasoning across077

model families, including instruction-tuned models078

and synthetic-trained architectures.079

Our contributions are summarized as follows:080

• We introduce a comprehensive dataset with081

over 8,000 events spanning seven years, an-082

notated with day-level granularity and paired083

with paraphrases, enabling robust evaluation084

of time-sensitive fact recall.085

• We propose TimeShift, a novel evaluation086

framework that systematically probes models’087

temporal reasoning capabilities, uncovering088

key limitations in handling time-dependent089

queries.090

• We provide a detailed evaluation of over a091

dozen state-of-the-art open-source LLMs, re-092

vealing that base models often outperform093

instruction-tuned and synthetic-trained mod-094

els. Surprisingly, even large models exhibit095

brittleness when paraphrased facts are tested.096

• All data, code, and evaluation tools are open-097

sourced to encourage further research into098

temporal reasoning in LLMs.099

By addressing a critical gap in current bench-100

marks, this work lays the groundwork for advanc-101

ing time-aware LLMs capable of reasoning about102

the dynamic nature of real-world knowledge.103

2 Related Work104

Several datasets have been introduced to evaluate105

the temporal reasoning capabilities of LLMs. The106

TempReason dataset (Tan et al., 2023) and TRAM107

benchmark (Wang and Zhao, 2024) both focus on108

assessing LLMs’ understanding of event order, du-109

ration, and frequency. However, these benchmarks110

primarily target broader temporal reasoning tasks111

rather than specific factual recall at finer time reso- 112

lutions, such as determining the exact month when 113

an event occurred. 114

An alternative approach involves modifying the 115

self-attention mechanism (Vaswani et al., 2023) 116

to incorporate temporal information (Rosin and 117

Radinsky, 2022), improving performance on se- 118

mantic change detection tasks (Schlechtweg et al., 119

2020; Hamilton et al., 2018). However, these adap- 120

tations have not been evaluated for their ability to 121

recall specific temporal facts. 122

In addition, the TempLAMA dataset (Dhingra 123

et al., 2022) probes LLMs on facts associated with 124

specific years but does not extend to the month or 125

day-level precision required for many real-world 126

applications. Similarly, the Test of Time bench- 127

mark (Fatemi et al., 2024) explores event relation- 128

ships over time but lacks the focus on precise, time- 129

bound factual recall. 130

3 Dataset 131

Our dataset is designed to assess LLMs’ tempo- 132

ral awareness, specifically their ability to recall 133

facts tied to specific dates. It comprises over 8,000 134

significant events from 2018 to 2024 across pol- 135

itics, business, science, art, and crime, ensuring 136

geographical and cultural diversity. As an English- 137

language dataset, geographically the highest event 138

concentration is in the United Stated (3,700+), fol- 139

lowed by global (≈ 950) and UK (≈ 330) as illus- 140

trated in Figure 2. 141

Events are evenly distributed across months and 142

days, though seasonal variations exist (e.g., in- 143

creased reporting in summer, slight weekend de- 144

cline). Each event is concisely represented by a 145

headline of no more than 30 words, ensuring clar- 146

ity and brevity, and is sourced from reputable and 147

authoritative outlets (Section 3.1) to ensure accu- 148

racy and credibility. 149

Figure 2: World map showing the amount of news per
country, US is in the first place with over 3,700 events
across the 7 years.
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Original Sentence Paraphrase 1 ... ... ... Year Month Day Category

Rolling Stone magazine
co-founder Jann Wenner...

Jann Wenner, co-founder
of...

... ... ... 2023 9 16 Entertainment & Arts

Meta launches Threads -
Instagram’s new...

Meta introduces Threads,
a new app.."

... ... ... 2023 7 5 Science & Technology

Table 1: Examples from our dataset containing over 8,000 events with precise timestamps and paraphrases. For
clarity, we display only a subset of paraphrases, omitting some metadata (country, source URLs) from this table.

3.1 Data Collection and Structure150

The dataset was constructed by employing a custom151

web-scraping pipeline that extracted headlines from152

major global news outlets (e.g., BBC (BBC News,153

2023), Reuters (Reuters, 2023), The New York154

Times (nyt, 2023)), academic journals (e.g., Nature155

(Nature Editorial Board, 2022)), and government156

publications (e.g., official government websites,157

United Nations reports (United Nations, 2022)).158

To ensure accuracy, automated filtering mecha-159

nisms cross-referenced timestamps and removed160

duplicates, while heuristic-based checks discarded161

ambiguous events lacking clear temporal markers.162

Events with conflicting date information across163

sources were excluded to maintain consistency.164

Each event in the dataset is annotated with its165

exact day, month, and year and is accompanied166

by four paraphrased versions. These paraphrases167

were generated through a combination of text trans-168

formation models and cross-source comparisons,169

ensuring variation in expression while preserving170

factual accuracy and similar length distribution171

(Appendix A.1). This variation is essential for eval-172

uating the robustness of LLMs in factual recall173

when events are expressed differently. The dataset174

is specifically designed to assess whether models175

can recognize events despite rewording. Table 1176

provides an example of the dataset structure.177

To categorize events, metadata tags were ex-178

tracted during the scraping. If not available, we179

used a lightweight LLM-based classifier trained on180

labeled event data to infer these attributes.181

By employing rigorous filtering, multi-source182

validation, and LLM-assisted classification, our183

dataset provides a high-fidelity benchmark for eval-184

uating LLMs’ ability to recall time-sensitive facts185

with precision.186

3.2 Category and Temporal Distribution187

The dataset spans a diverse range of categories, as188

illustrated in Figure 3. On average, each day in-189

cludes approximately three events, with some sea-190

sonal variations—such as a slight increase during191

Figure 3: Distribution of events across categories, show-
ing the highest concentration in Politics & Government
and Crime & Law categories.

Figure 4: Even distribution of events across years,
months, and days, ensuring balanced temporal coverage
for evaluation.

summer months and a decline on weekends. The 192

temporal distribution across years, months, and 193

days is shown in Figure 4, ensuring a balanced rep- 194

resentation that prevents any specific period from 195

disproportionately affecting the results. 196
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Prefix Format Year Acc. Month Acc. Day Acc. Final Acc.

It is {day} {month}, {year}. {event} 31.5% 4.9% 0.4% 12.3%
It is {month} {day}, {year}. {event} 31.5% 4.9% 0.2% 12.2%
It is {year} {month}, {day}. {event} 31.5% 2.5% 0.2% 11.4%
It is {year} {month}, {day} and {event} 31.5% 2.5% 0.0% 11.3%
{day}.{month}.{year}, {event} 29.6% 3.4% 0.2% 11.1%
On {month} {day}, {year}, {event} 26.9% 4.4% 0.5% 10.6%
On {day}/{month}/{year}, {event} 26.9% 4.4% 0.1% 10.5%
{year}-{month}-{day}: {event} 26.7% 3.2% 0.0% 10.0%

Table 2: Comparison of selected date-prefix formats based on accuracy in predicting time-sensitive facts. We tested
a wide range of prefixes and report the best-performing ones.

3.3 Public Availability197

The dataset, along with the evaluation framework,198

is publicly available on HuggingFace and GitHub,199

providing the research community with an accessi-200

ble resource to further explore time-sensitive fact201

recall in LLMs.1202

4 Experiments203

The core hypothesis driving our dataset is that an204

LLM should assign the highest probability to the205

sentence describing an event with the correct tem-206

poral prefix—specifically, the day, month, and year207

in which the event occurred. This hypothesis un-208

derpins the evaluation setup, where the model is209

tested on its ability to select the correct temporal210

context from a range of possibilities.211

For example, consider the sentence: "It is April212

13, 2022. Rolling Stone magazine co-founder Jann213

Wenner..." Here, the temporal prefix ("It is April214

13, 2022.") explicitly situates the event within a215

specific timeframe, providing a clear basis for the216

model’s probabilistic assessment. This specific217

prefix was selected based on additional experiments218

in Section 4.1, where it best aligned predictions219

with temporal context.220

4.1 Prefix selection221

Selecting the optimal prefix for evaluating tem-222

poral awareness in LLMs is crucial, as phrasing223

affects how models interpret time-sensitive queries.224

To identify the best-performing prefix, we tested225

various prefix formulations on 10% of the dataset226

using Llama-3.2 1B, Llama-3.2 3B, and Gemma-2227

2B. These models, spanning different parameter228

sizes and architectures, provided a representative229

assessment of prefix impact on the performance.230

We explored variations in word order (e.g., year-231

first, day-first), separators (e.g., commas, dashes,232

1https://huggingface.co/datasets/

slashes), and explicit prepositions (e.g., “On date” 233

vs. “It is date”). 234

From this extensive search, Table 2 reports the 235

best-performing prefixes. The highest final ac- 236

curacy of 12.3% was achieved with “It is {day} 237

{month}, {year}. {event}”, making it the opti- 238

mal choice for probing LLMs’ temporal recall. 239

Notably, prefixes starting with the year (e.g., “It 240

is year month, day and event”) reduced accu- 241

racy, suggesting models overemphasized the year 242

while struggling with finer details. Similarly, 243

while numerical date formats using separators 244

(e.g., ”day.month.year, event” or ”year-month- 245

day: event”) performed reasonably, they exhibited 246

slightly lower day-level accuracy. Based on these 247

findings, we adopt the top-performing prefix across 248

all subsequent experiments to ensure reliable and 249

consistent temporal evaluation of LLMs. 250

4.2 TimeShift Algorithm 251

Figure 5: Schema of the TimeShift algorithm. Nodes rep-
resent sentences for which probabilities are computed
with varying temporal prefixes (in blue). The sentence
with the highest probability is selected as the prediction.
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The TimeShift algorithm evaluates a model’s abil-252

ity to correctly predict the time of occurrence of an253

event. Given an event e, our goal is to predict its254

correct date, structured as:255

• y∗(e)— the true year of the event,256

• m∗(e)— the true month of the event,257

• d∗(e)— the true day of the event.258

The model generates probability distributions,259

specifically representing the likelihood of the entire260

sentence, including the temporal prefix. To ensure261

numerical stability, we compute the sum of the262

logarithms of these probabilities for each time unit:263

• pY (y ∣ e) — probability of the event occur-264

ring in year y,265

• pM(m ∣ e, ŷ)— probability of the event oc-266

curring in month m, given the predicted year267

ŷ,268

• pD(d ∣ e, ŷ, m̂) — probability of the event269

occurring on day d, given the predicted year270

ŷ and month m̂.271

Instead of evaluating all possible (year, month,272

day) combinations, we apply a sequential filtering273

approach as described in Algorithm 1 and Schema274

5 improving efficiency while preserving accuracy.275

Algorithm 1 TimeShift
1: Input: Event e
2: Output: Predicted date (ŷ, m̂, d̂)
3: Step 1: Predict Year
4: ŷ ← argmax

y
pY (y ∣ e)

5: if ŷ ≠ y∗(e) then
6: Stop (Incorrect Year)
7: end if
8: Step 2: Predict Month (If Year is Correct)
9: m̂← argmax

m
pM(m ∣ e, ŷ)

10: if m̂ ≠m∗(e) then
11: Stop (Incorrect Month)
12: end if
13: Step 3: Predict Day (If Month is Correct)
14: d̂← argmax

d
pD(d ∣ e, ŷ, m̂)

15: if d̂ ≠ d∗(e) then
16: Stop (Incorrect Day)
17: end if
18: Return (ŷ, m̂, d̂)

4.3 Stability Measurement Algorithm 276

The Stability Measurement algorithm evaluates the 277

robustness of a model’s predictions under minor 278

input variations. Instead of measuring absolute 279

accuracy, it quantifies whether the model maintains 280

consistent predictions when an event description is 281

paraphrased. 282

Given an event e, the dataset provides: 283

• Original sentence: e (news event). 284

• Paraphrased sentences: e′1, e
′

2, e
′

3, e
′

4 (four 285

paraphrases of e). 286

• True label: y∗(e) (ground-truth year, month, 287

or day). 288

Given these inputs, the model produces: 289

• Prediction for the original sentence: ŷ(e). 290

• Predictions for the paraphrased sentences: 291

ŷ(e′i) for i ∈ {1,2,3,4}. 292

We define the following probability metric: 293

Stability Probability: The probability that the 294

model predicts the same correct result for a para- 295

phrased event, given that it was correct for the orig- 296

inal event: 297

S = P (ŷ(e′i) = y
∗
(e) ∣ ŷ(e) = y∗(e)) 298

Here, S quantifies the stability of predictions 299

under paraphrasing. A high S indicates that the 300

model is robust to rewording, whereas a low S 301

suggests that the model is sensitive to variations in 302

input phrasing. 303

4.4 Why Use Log Probabilities Instead of 304

Direct QA? 305

A natural alternative would be to directly prompt 306

the model with an open-ended question, such as 307

"When did this event occur?", and compare the 308

generated response to the ground truth. However, 309

model responses in a free-form QA setting are in- 310

herently non-deterministic—even at temperature 311

zero, variations in rounding, tokenization, and par- 312

allelization can lead to inconsistencies. This makes 313

direct QA evaluation difficult to reproduce. 314

Log probabilities offer a structured, reproducible 315

alternative by ranking all possible dates for an event 316

in a probabilistic framework. While one could at- 317

tempt to rank QA-based responses (e.g., via likeli- 318

hoods or multiple-choice scoring), such approaches 319
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introduce additional challenges, such as inconsis-320

tent specificity (e.g., "early 2023" vs. "January321

5, 2023") and reliance on post-processing heuris-322

tics. Our method avoids these pitfalls by ensuring323

a consistent evaluation framework across models.324

4.5 Metrics325

We evaluate models using two key metrics:326

• Accuracy: Accuracy is evaluated at multiple327

temporal granularities:328

– Yearly Accuracy: The probability that329

the model correctly predicts the year of330

an event.331

– Monthly Accuracy: Computed only for332

instances where the year is correctly pre-333

dicted. Since it is conditioned on a cor-334

rect yearly prediction, its sample size is335

smaller.336

– Daily Accuracy: Assessed only when337

both the year and month predictions are338

correct.339

– Approximate Daily Accuracy: Similar340

to daily accuracy but allowing for a ±1-341

day margin of error.342

– Total Daily Accuracy: The overall prob-343

ability of correctly predicting an event’s344

exact date, computed as the product of345

yearly, monthly, and daily accuracies.346

• Stability: Stability measures the model’s ro-347

bustness to input paraphrasing, evaluating348

its consistency in predicting the correct date349

across reworded event descriptions. Stability350

is computed at the following levels:351

– Yearly Stability: The probability that352

the model predicts the correct year for353

a paraphrased event, given that it was354

correctly predicted for the original event.355

– Monthly Stability: Evaluated only for356

instances where the model correctly pre-357

dicts the year.358

– Daily Stability: Assessed when both the359

year and month predictions are correct.360

– Approximate Daily Stability: Similar361

to daily stability but allowing for a ±1-362

day margin of error.363

5 Results 364

Our experiments reveal several clear trends in LLM 365

performance on the time-sensitive fact recall task. 366

We evaluated base and instruction-tuned variants, 367

with parameter sizes ranging from 1B to 72B. Accu- 368

racy results are presented in Table 3, while stability 369

results are detailed in Table 4. 370

5.1 Instruction-Tuned Models Underperform 371

Across all model families, instruction-tuned vari- 372

ants underperform compared to base models on this 373

task. For instance, Gemma-27B achieves 55.16% 374

Yearly accuracy but drops to 44.11% after instruc- 375

tion tuning. Similarly, Llama-3.1 8B outperforms 376

its instruction-tuned counterpart, achieving 38.17% 377

versus 33.05%. 378

We hypothesize that the broad generalization 379

achieved during instruction tuning dilutes time- 380

specific factual recall, prioritizing task flexibility 381

over detailed temporal knowledge. 382

5.2 Impact of Model Size on Performance 383

Model size exhibits a strong correlation with per- 384

formance on our time-awareness benchmark, with 385

larger models consistently outperforming smaller 386

ones across all metrics. However, Qwen-2.5 72B 387

deviates from this trend, underperforming relative 388

to its parameter count. For instance, Gemma-2 389

27B Base achieves a Yearly accuracy of 55.16%, 390

surpassing Gemma-2 9B (45.45%) and Gemma- 391

2 2B (35.24%). This pattern aligns with broader 392

findings that larger models more effectively cap- 393

ture nuanced information, including temporal de- 394

pendencies. Qwen-2.5’s weaker performance may 395

stem from differences in training data quality, sub- 396

optimal fine-tuning, or a focus on multilingual gen- 397

eralization over precise factual retrieval. 398

5.3 Underperformance of Synthetic-Training 399

Models 400

Despite excelling in reasoning and generation, 401

synthetic-trained models like the Phi family strug- 402

gle with temporal recall. Phi-3-mini 3.8B achieves 403

only 26.00% Yearly accuracy, while the larger Phi- 404

4 14B reaches 34.26%. Notably, the 1B parameter 405

Llama-3.2 nearly matches Phi-4 with 33.35%, sug- 406

gesting that increased parameter size alone cannot 407

offset the limitations of synthetic data. This high- 408

lights a key weakness: synthetic datasets, though 409

effective for general knowledge, often lack the real- 410
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Models Yearly Acc Monthly Acc Daily Acc Daily Acc Approx Daily Total

Qwen-2.5 1.5B 22.07% 11.98% 3.30% 10.38% 0.09%
Qwen-2.5 1.5B 23.48% 11.74% 3.62% 13.57% 0.10%
Llama-3.2 1B 25.89% 11.61% 4.15% 5.81% 0.12%
Phi-3.5-mini 3.8B 27.57% 14.16% 3.83% 9.90% 0.15%
Phi-3-mini 3.8B 26.00% 15.16% 4.11% 10.76% 0.16%
Gemma-2 2B 29.65% 14.34% 4.99% 13.20% 0.21%
Qwen-2.5 7B 29.94% 14.45% 5.48% 12.68% 0.24%
Phi-4 14B 34.26% 18.70% 3.89% 10.70% 0.25%
Qwen-2.5 7B 32.28% 14.87% 5.45% 13.51% 0.26%
Llama-3.2 1B 33.35% 13.57% 6.06% 11.57% 0.27%
Llama-3.2 3B 32.81% 17.75% 4.71% 14.56% 0.27%
Gemma-2 2B 35.24% 17.13% 5.58% 11.36% 0.34%
Llama-3.2 3B 40.86% 20.75% 4.12% 11.18% 0.35%
Gemma-2 9B 40.11% 23.25% 4.68% 13.37% 0.44%
Gemma-2 9B 45.45% 24.28% 6.55% 15.82% 0.72%
Llama-3.1 8B 46.92% 27.66% 5.67% 12.30% 0.74%
Llama-3.1 8B 48.47% 27.42% 5.72% 12.10% 0.76%
Mistral-Nemo 12B 50.62% 31.70% 7.38% 14.69% 1.18%
Gemma-2 27B 44.11% 35.98% 7.78% 17.75% 1.23%
Qwen-2.5 72B 46.35% 32.66% 10.63% 21.66% 1.61%
Qwen-2.5 72B 48.47% 38.15% 11.19% 22.59% 2.07%
Gemma-2 27B 55.16% 42.09% 8.97% 18.58% 2.08%

Table 3: Performance of large language models on the time-awareness benchmark. The table reports accuracy
metrics at different granularities: yearly, monthly, daily, and an approximate daily measure that allows for a ±1-day
error margin. The daily total accuracy reflects the model’s likelihood of correctly assigning an event to its exact day,
as further detailed in Section 4.5. The results highlight the performance gap between instruction-tuned models (rows
highlighted in blue) and their non-tuned counterparts, as well as the general accuracy improvement with increasing
model size—except for Qwen-2.5 72B, which underperforms relative to smaller models. Gemma-2 27B achieves
the highest overall accuracy.

Models Yearly stability Monthly stability Daily stability Daily stability Approx

Qwen-2.5 1.5B 11.14% 0.93% 0.02% 0.02%
Phi-3-mini 3.8B 12.31% 1.11% 0.02% 0.02%
Qwen-2.5 1.5B 13.16% 0.84% 0.03% 0.03%
Phi-3.5-mini 3.8B 14.72% 1.38% 0.03% 0.04%
Llama-3.2 1B 16.34% 0.98% 0.03% 0.03%
Qwen-2.5 7B 17.99% 2.02% 0.07% 0.07%
Gemma-2 2B 18.75% 1.91% 0.07% 0.09%
Gemma-2 2B 20.31% 2.33% 0.07% 0.07%
Llama-3.2 1B 20.42% 1.95% 0.06% 0.07%
Phi-4 14B 20.92% 2.81% 0.07% 0.09%
Qwen-2.5 7B 22.34% 3.40% 0.07% 0.09%
Llama-3.2 3B 22.60% 2.26% 0.04% 0.05%
Llama-3.2 3B 25.77% 3.72% 0.07% 0.07%
Gemma-2 9B 32.31% 9.02% 2.50% 2.78%
Llama-3.1 8B 33.05% 9.12% 2.61% 2.52%
Qwen-2.5 72B 33.52% 9.12% 2.00% 2.00%
Qwen-2.5 72B 35.05% 9.29% 2.33% 2.37%
Gemma-2 27B 36.39% 9.02% 2.12% 2.52%
Mistral-Nemo 12B 37.16% 9.31% 2.72% 2.75%
Llama-3.1 8B 38.17% 10.33% 2.69% 2.72%
Gemma-2 9B 38.19% 10.67% 2.47% 2.91%
Gemma-2 27B 39.39% 11.02% 3.12% 3.12%

Table 4: Model stability analysis. Again, the instruct-tuned models are highlighted in blue. The table illustrates
a general trend of increasing stability as the number of parameters grows. It also highlights the challenges of
prompting the model for finer-grained time horizons—rephrasing a sentence while expecting the model to predict
the exact same year, month, and day as in the original phrasing proves to be particularly difficult.

world temporal grounding needed for accurate re-411

call of time-sensitive facts.412
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5.4 Performance over the years413

Nearly all models evaluated in this study were414

trained on datasets with a cut-off date of December415

2023, as is explicitly stated for the Llama model416

family. For other models, which were released in417

the first half of 2024 but do not specify a precise418

cut-off date, it is reasonable to assume their training419

data extends to early 2024. This temporal bound-420

ary is clearly reflected in their performance, with a421

marked decline in accuracy for more recent facts,422

as illustrated in Figure 6. Interestingly, all models423

perform worse on recent events and better on older424

ones, likely due to the higher availability, stability,425

and reinforcement of past information in training426

data, whereas newer events are less represented and427

may undergo evolving interpretations.428

Figure 6: Averaged performance of all models across
years, showing a clear drop in performance as the cut-
off date approaches.

5.5 Stability Across Paraphrases429

Our stability evaluation highlights a significant430

susceptibility of models to variations in phras-431

ing. Even the best-performing model in our study,432

Gemma-2 27B Base, correctly predicted the year433

in only 39.39% of paraphrased cases, despite ac-434

curately classifying the original event. Smaller435

and instruction-tuned models, such as Llama-3.2436

1B Base (20.42%) and Qwen-2.5 1.5B Instruct437

(11.14%), exhibited even greater sensitivity, fre-438

quently altering their predictions in response to439

minor rewording. This trend becomes even more440

pronounced as temporal granularity increases, with441

accuracy dropping to single-digit percentages for442

the best models in Daily stability assessments.443

These findings reinforce a well-documented is-444

sue in LLMs: prompt sensitivity (Zhuo et al., 2024;445

Sclar et al., 2024; Zhan et al., 2024). Larger mod- 446

els tend to demonstrate greater stability than their 447

smaller counterparts, but even they struggle with 448

consistency when faced with slight linguistic vari- 449

ations, emphasizing the ongoing challenge of ro- 450

bustness in factual recall. 451

6 Conclusion 452

In this paper, we introduced a novel dataset and 453

evaluation benchmark specifically designed to as- 454

sess LLMs’ ability to handle time-sensitive facts, 455

addressing a critical gap in existing evaluation 456

methods that primarily focus on static factual re- 457

call. Our dataset, comprising over 8,000 events 458

spanning from 2018 to 2024, provides a structured 459

framework for testing models’ temporal awareness 460

by evaluating their ability to correctly associate 461

events with their respective time periods. 462

Beyond assessing temporal accuracy, our dataset 463

also enables the evaluation of model stability, of- 464

fering insights into their robustness against varia- 465

tions in prompt phrasing. This aspect is crucial for 466

understanding how reliably a model can maintain 467

consistency in its predictions. 468

Our findings indicate that larger models consis- 469

tently outperform smaller ones in time-sensitive 470

tasks, reinforcing the role of scale in factual re- 471

call. However, instruction-tuned models, despite 472

their strengths in general-purpose reasoning, strug- 473

gle with temporal reasoning. Additionally, models 474

trained primarily on synthetic data, such as those in 475

the Phi family, demonstrate notable limitations in 476

real-world temporal understanding. Furthermore, 477

our analysis highlights the significant impact of 478

prompt formulation on model behavior, revealing 479

how slight variations in wording can lead to differ- 480

ent predictions. 481

Time awareness is essential for real-world ap- 482

plications such as virtual assistants, fact-checking, 483

and temporal question-answering. By publicly re- 484

leasing our dataset and evaluation framework, we 485

aim to support further research in this area and 486

encourage the community to extend this work. 487

Limitations 488

While our benchmark provides a rigorous evalua- 489

tion of time-sensitive factual recall, it has certain 490

limitations. First, the dataset is exclusively in En- 491

glish, which may limit its applicability to multilin- 492

gual LLMs. Future work should extend the dataset 493

to include non-English events, enabling broader 494

8



linguistic coverage. Second, our evaluation frame-495

work focuses on open-source models, as log prob-496

ability access is required to perform a structured497

ranking of temporal claims. This constraint pre-498

vents us from directly assessing closed-source mod-499

els, such as GPT-4 or Claude, unless they provide500

likelihood scores. Third, while our dataset covers501

diverse event categories and global sources, there502

remains an overrepresentation of Western events,503

particularly from the United States and the United504

Kingdom, due to the nature of English-language505

reporting. Expanding the dataset with multilingual506

and regionally balanced sources could mitigate this507

bias.508

References509

2023. The new york times. Accessed: 2024-08-16.510

BBC News. 2023. Bbc news. Accessed: 2024-08-16.511

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie512
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind513
Neelakantan, Pranav Shyam, Girish Sastry, Amanda514
Askell, Sandhini Agarwal, Ariel Herbert-Voss,515
Gretchen Krueger, Tom Henighan, Rewon Child,516
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,517
Clemens Winter, Christopher Hesse, Mark Chen,518
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin519
Chess, Jack Clark, Christopher Berner, Sam Mc-520
Candlish, Alec Radford, Ilya Sutskever, and Dario521
Amodei. 2020. Language models are few-shot learn-522
ers. Preprint, arXiv:2005.14165.523

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin524
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and525
William W. Cohen. 2022. Time-aware language526
models as temporal knowledge bases. Transactions527
of the Association for Computational Linguistics,528
10:257–273.529

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,530
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,531
Akhil Mathur, Alan Schelten, Amy Yang, Angela532
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,533
Archi Mitra, Archie Sravankumar, Artem Korenev,534
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien535
Rodriguez, Austen Gregerson, Ava Spataru, Bap-536
tiste Roziere, Bethany Biron, Binh Tang, Bobbie537
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe538
Bi, Chris Marra, Chris McConnell, Christian Keller,539
Christophe Touret, Chunyang Wu, Corinne Wong,540
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-541
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,542
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,543
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,544
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,545
Emily Dinan, Eric Michael Smith, Filip Radenovic,546
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-547
gia Lewis Anderson, Graeme Nail, Gregoire Mi-548
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,549

Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan 550
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan 551
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan 552
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, 553
Jeet Shah, Jelmer van der Linde, Jennifer Billock, 554
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, 555
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, 556
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph 557
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, 558
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate 559
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, 560
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen- 561
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau- 562
rens van der Maaten, Lawrence Chen, Liang Tan, Liz 563
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, 564
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, 565
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, 566
Manohar Paluri, Marcin Kardas, Mathew Oldham, 567
Mathieu Rita, Maya Pavlova, Melanie Kambadur, 568
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona 569
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash- 570
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier 571
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan 572
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra- 573
jjwal Bhargava, Pratik Dubal, Praveen Krishnan, 574
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao 575
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon 576
Calderer, Ricardo Silveira Cabral, Robert Stojnic, 577
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro- 578
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly, 579
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar 580
Hosseini, Sahana Chennabasappa, Sanjay Singh, 581
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, 582
Shaoliang Nie, Sharan Narang, Sharath Raparthy, 583
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun 584
Zhang, Simon Vandenhende, Soumya Batra, Spencer 585
Whitman, Sten Sootla, Stephane Collot, Suchin Gu- 586
rurangan, Sydney Borodinsky, Tamar Herman, Tara 587
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas 588
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong 589
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor 590
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent 591
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro- 592
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit- 593
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao- 594
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei 595
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine 596
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue 597
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng 598
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, 599
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam 600
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva 601
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen- 602
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein, 603
Amanda Kallet, Amit Sangani, Anam Yunus, An- 604
drei Lupu, Andres Alvarado, Andrew Caples, An- 605
drew Gu, Andrew Ho, Andrew Poulton, Andrew 606
Ryan, Ankit Ramchandani, Annie Franco, Apara- 607
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, 608
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz- 609
dan, Beau James, Ben Maurer, Benjamin Leonhardi, 610
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi 611
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han- 612
cock, Bram Wasti, Brandon Spence, Brani Stojkovic, 613

9

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459


Brian Gamido, Britt Montalvo, Carl Parker, Carly614
Burton, Catalina Mejia, Changhan Wang, Changkyu615
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,616
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-617
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,618
Danny Wyatt, David Adkins, David Xu, Davide Tes-619
tuggine, Delia David, Devi Parikh, Diana Liskovich,620
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-621
land, Edward Dowling, Eissa Jamil, Elaine Mont-622
gomery, Eleonora Presani, Emily Hahn, Emily Wood,623
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan624
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat625
Ozgenel, Francesco Caggioni, Francisco Guzmán,626
Frank Kanayet, Frank Seide, Gabriela Medina Flo-627
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,628
Gil Halpern, Govind Thattai, Grant Herman, Grigory629
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,630
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-631
wen Zha, Haroun Habeeb, Harrison Rudolph, He-632
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim633
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena634
Veliche, Itai Gat, Jake Weissman, James Geboski,635
James Kohli, Japhet Asher, Jean-Baptiste Gaya,636
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,637
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,638
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,639
Jon Shepard, Jonathan McPhie, Jonathan Torres,640
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou641
U, Karan Saxena, Karthik Prasad, Kartikay Khan-642
delwal, Katayoun Zand, Kathy Matosich, Kaushik643
Veeraraghavan, Kelly Michelena, Keqian Li, Kun644
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,645
Lailin Chen, Lakshya Garg, Lavender A, Leandro646
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng647
Yu, Liron Moshkovich, Luca Wehrstedt, Madian648
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-649
poukelli, Martynas Mankus, Matan Hasson, Matthew650
Lennie, Matthias Reso, Maxim Groshev, Maxim651
Naumov, Maya Lathi, Meghan Keneally, Michael L.652
Seltzer, Michal Valko, Michelle Restrepo, Mihir653
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike654
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-655
moso, Mo Metanat, Mohammad Rastegari, Mun-656
ish Bansal, Nandhini Santhanam, Natascha Parks,657
Natasha White, Navyata Bawa, Nayan Singhal, Nick658
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,659
Ning Dong, Ning Zhang, Norman Cheng, Oleg660
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem661
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-662
van Balaji, Pedro Rittner, Philip Bontrager, Pierre663
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-664
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,665
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,666
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah667
Hogan, Robin Battey, Rocky Wang, Rohan Mah-668
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,669
Samyak Datta, Sara Chugh, Sara Hunt, Sargun670
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,671
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-672
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,673
Shengxin Cindy Zha, Shiva Shankar, Shuqiang674
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-675
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie676
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,677

Sudarshan Govindaprasad, Sumit Gupta, Sungmin 678
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, 679
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara 680
Best, Thilo Kohler, Thomas Robinson, Tianhe Li, 681
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook 682
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria 683
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal 684
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru, 685
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, 686
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will 687
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao- 688
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo 689
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, 690
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, 691
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach 692
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, 693
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3 694
herd of models. Preprint, arXiv:2407.21783. 695

Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, 696
Karishma Malkan, Jinyeong Yim, John Palowitch, 697
Sungyong Seo, Jonathan Halcrow, and Bryan Perozzi. 698
2024. Test of time: A benchmark for evaluating llms 699
on temporal reasoning. Preprint, arXiv:2406.09170. 700

William L. Hamilton, Jure Leskovec, and Dan Ju- 701
rafsky. 2018. Diachronic word embeddings re- 702
veal statistical laws of semantic change. Preprint, 703
arXiv:1605.09096. 704

Nature Editorial Board. 2022. Nature journal. Nature. 705

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 706
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 707
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 708
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 709
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 710
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir- 711
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, 712
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 713
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 714
man, Tim Brooks, Miles Brundage, Kevin Button, 715
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 716
Carey, Chelsea Carlson, Rory Carmichael, Brooke 717
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 718
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 719
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 720
Dave Cummings, Jeremiah Currier, Yunxing Dai, 721
Cory Decareaux, Thomas Degry, Noah Deutsch, 722
Damien Deville, Arka Dhar, David Dohan, Steve 723
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 724
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 725
Simón Posada Fishman, Juston Forte, Isabella Ful- 726
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 727
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 728
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 729
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 730
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 731
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 732
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 733
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 734
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 735
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 736
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 737
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 738

10

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.09170
https://arxiv.org/abs/2406.09170
https://arxiv.org/abs/2406.09170
https://arxiv.org/abs/1605.09096
https://arxiv.org/abs/1605.09096
https://arxiv.org/abs/1605.09096
https://doi.org/10.1038/s41592-022-01721-x


mali, Ingmar Kanitscheider, Nitish Shirish Keskar,739
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,740
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-741
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,742
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-743
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal744
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan745
Leike, Jade Leung, Daniel Levy, Chak Ming Li,746
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz747
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,748
Anna Makanju, Kim Malfacini, Sam Manning, Todor749
Markov, Yaniv Markovski, Bianca Martin, Katie750
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer751
McKinney, Christine McLeavey, Paul McMillan,752
Jake McNeil, David Medina, Aalok Mehta, Jacob753
Menick, Luke Metz, Andrey Mishchenko, Pamela754
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel755
Mossing, Tong Mu, Mira Murati, Oleg Murk, David756
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,757
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,758
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex759
Paino, Joe Palermo, Ashley Pantuliano, Giambat-760
tista Parascandolo, Joel Parish, Emy Parparita, Alex761
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-762
man, Filipe de Avila Belbute Peres, Michael Petrov,763
Henrique Ponde de Oliveira Pinto, Michael, Poko-764
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-765
ell, Alethea Power, Boris Power, Elizabeth Proehl,766
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,767
Cameron Raymond, Francis Real, Kendra Rimbach,768
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-769
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,770
Girish Sastry, Heather Schmidt, David Schnurr, John771
Schulman, Daniel Selsam, Kyla Sheppard, Toki772
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav773
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,774
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin775
Sokolowsky, Yang Song, Natalie Staudacher, Fe-776
lipe Petroski Such, Natalie Summers, Ilya Sutskever,777
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,778
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,779
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-780
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,781
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,782
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,783
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-784
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,785
Clemens Winter, Samuel Wolrich, Hannah Wong,786
Lauren Workman, Sherwin Wu, Jeff Wu, Michael787
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-788
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong789
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao790
Zheng, Juntang Zhuang, William Zhuk, and Bar-791
ret Zoph. 2024. Gpt-4 technical report. Preprint,792
arXiv:2303.08774.793

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-794
ton Bakhtin, Yuxiang Wu, Alexander H. Miller, and795
Sebastian Riedel. 2019. Language models as knowl-796
edge bases? Preprint, arXiv:1909.01066.797

Reuters. 2023. Key economic and business events of798
2023. Accessed: 2024-08-16.799

Adam Roberts, Colin Raffel, and Noam Shazeer.800

2020. How much knowledge can you pack into 801
the parameters of a language model? Preprint, 802
arXiv:2002.08910. 803

Guy D. Rosin and Kira Radinsky. 2022. Temporal at- 804
tention for language models. In Findings of the Asso- 805
ciation for Computational Linguistics: NAACL 2022, 806
pages 1498–1508, Seattle, United States. Association 807
for Computational Linguistics. 808

Dominik Schlechtweg, Barbara McGillivray, Simon 809
Hengchen, Haim Dubossarsky, and Nina Tahmasebi. 810
2020. SemEval-2020 task 1: Unsupervised lexical 811
semantic change detection. In Proceedings of the 812
Fourteenth Workshop on Semantic Evaluation, pages 813
1–23, Barcelona (online). International Committee 814
for Computational Linguistics. 815

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane 816
Suhr. 2024. Quantifying language models’ sensitiv- 817
ity to spurious features in prompt design or: How i 818
learned to start worrying about prompt formatting. 819
Preprint, arXiv:2310.11324. 820

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. 2023. 821
Towards benchmarking and improving the tempo- 822
ral reasoning capability of large language models. 823
Preprint, arXiv:2306.08952. 824

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 825
hishek Srivastava, and Iryna Gurevych. 2021. Beir: 826
A heterogenous benchmark for zero-shot evalua- 827
tion of information retrieval models. Preprint, 828
arXiv:2104.08663. 829

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 830
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 831
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 832
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 833
Grave, and Guillaume Lample. 2023. Llama: Open 834
and efficient foundation language models. Preprint, 835
arXiv:2302.13971. 836

United Nations. 2022. United nations annual report 837
2022. https://www.un.org/en/annualreport. 838
Accessed: 2024-08-16. 839

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 840
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 841
Kaiser, and Illia Polosukhin. 2023. Attention is all 842
you need. Preprint, arXiv:1706.03762. 843

Yuqing Wang and Yun Zhao. 2024. Tram: Benchmark- 844
ing temporal reasoning for large language models. 845
Preprint, arXiv:2310.00835. 846

Pengwei Zhan, Zhen Xu, Qian Tan, Jie Song, and 847
Ru Xie. 2024. Unveiling the lexical sensitivity of 848
llms: Combinatorial optimization for prompt en- 849
hancement. Preprint, arXiv:2405.20701. 850

Jingming Zhuo, Songyang Zhang, Xinyu Fang, 851
Haodong Duan, Dahua Lin, and Kai Chen. 2024. 852
ProSA: Assessing and understanding the prompt sen- 853
sitivity of LLMs. In Findings of the Association 854
for Computational Linguistics: EMNLP 2024, pages 855
1950–1976, Miami, Florida, USA. Association for 856
Computational Linguistics. 857

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/2002.08910
https://arxiv.org/abs/2002.08910
https://arxiv.org/abs/2002.08910
https://doi.org/10.18653/v1/2022.findings-naacl.112
https://doi.org/10.18653/v1/2022.findings-naacl.112
https://doi.org/10.18653/v1/2022.findings-naacl.112
https://doi.org/10.18653/v1/2020.semeval-1.1
https://doi.org/10.18653/v1/2020.semeval-1.1
https://doi.org/10.18653/v1/2020.semeval-1.1
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2306.08952
https://arxiv.org/abs/2306.08952
https://arxiv.org/abs/2306.08952
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://www.un.org/en/annualreport
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2310.00835
https://arxiv.org/abs/2310.00835
https://arxiv.org/abs/2310.00835
https://arxiv.org/abs/2405.20701
https://arxiv.org/abs/2405.20701
https://arxiv.org/abs/2405.20701
https://arxiv.org/abs/2405.20701
https://arxiv.org/abs/2405.20701
https://doi.org/10.18653/v1/2024.findings-emnlp.108
https://doi.org/10.18653/v1/2024.findings-emnlp.108
https://doi.org/10.18653/v1/2024.findings-emnlp.108


A Appendix858

In this section, we provide additional details on859

dataset properties, evaluation distributions, and ex-860

perimental results. These supplementary figures861

further illustrate key aspects of our dataset’s struc-862

ture and the robustness of our evaluation frame-863

work.864

A.1 Paraphrase Length Distribution865

To ensure fair evaluation, we maintain similar866

length distributions between original event descrip-867

tions and their paraphrased variants. As shown in868

Figure 7, the paraphrased sentences closely follow869

the length distribution of the original events. This870

minimizes potential biases where longer or shorter871

phrasings could disproportionately affect model872

performance.873

Figure 7: Comparison of sentence length distributions
between original event descriptions and their para-
phrased counterparts. The alignment of distributions
ensures that paraphrases do not introduce systematic
biases in model evaluation.

A.2 Accuracy Across Event Categories874

To assess whether certain event categories are eas-875

ier for models to predict, we analyze accuracy dis-876

tributions across different domains. As depicted in877

Figure 8, the model performance remains relatively878

stable across categories such as politics, science,879

and entertainment. This suggests that the temporal880

reasoning task is not inherently skewed toward spe-881

cific domains, reinforcing the general applicability882

of our benchmark.883

A.3 Accuracy Across Geographical Regions884

Similarly, we analyze model performance across885

different continents to ensure that temporal rea-886

soning is not biased toward specific geographic887

regions. Figure 9 shows that accuracy is relatively888

Figure 8: Accuracy distribution across different event
categories. The relatively uniform performance indi-
cates that no single category disproportionately influ-
ences model accuracy, confirming the dataset’s balanced
composition.

consistent across continents, further supporting the 889

robustness of our evaluation framework. While 890

English-language news sources naturally introduce 891

an overrepresentation of Western events (e.g., USA 892

and UK), our dataset remains diverse enough to 893

challenge models across a wide range of global 894

events. 895

Figure 9: Accuracy distribution across continents. The
balanced accuracy levels suggest that the dataset pro-
vides a fair temporal reasoning challenge across diverse
geographic regions, despite the English-language focus.

A.4 Additional Insights and Future Work 896

Overall, the even accuracy distribution across event 897

categories and geographic regions reinforces the 898

robustness of our dataset. The alignment of para- 899

phrased sentence lengths with original event de- 900

scriptions ensures that variations in sentence struc- 901

ture do not introduce unintended evaluation biases. 902
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Future work could extend the dataset by incorpo-903

rating multilingual event sources, enabling evalua-904

tion across different linguistic and cultural contexts.905

Additionally, refining the event selection pipeline906

to ensure better coverage of underrepresented re-907

gions could further enhance the dataset’s utility.908
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