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Abstract

Automatic question generation (QG) aims to001
generate a set of questions for a given pas-002
sage, and can be viewed as a dual task of003
question answering (QA). However, most cur-004
rent methods of QG tend to generate ques-005
tion by question independently, mainly based006
on specific extracted answer spans. In this007
paper, we propose to consecutively generate008
questions over a whole passage, with a com-009
prehensive consideration of the aspects includ-010
ing accuracy, diversity, informativeness, and011
coverage. First we exam four key elements012
in QG, i.e., question, answer, rationale, and013
context history, and propose a novel multi-014
task framework with one main task generat-015
ing a question-answer pair, and four auxiliary016
tasks generating other elements alternately, im-017
proving model performance from all aspects018
through both joint training and reranking. Fur-019
ther, to learn the connection between questions020
and fully exploit the important information in021
every sentence, we propose a new consecutive022
generation strategy, which dynamically selects023
the rationales and searches for the best ques-024
tion series globally. Extensive experiments on025
different datasets show that our method can026
improve question generation significantly and027
benefit multiple related NLP tasks.028

1 Introduction029

Question Generation (QG) is an important and030

promising task in natural language generation031

(NLG). It has long served as an effective way032

to construct and enlarge the dataset of question033

answering (QA) (Duan et al., 2017; Dong et al.,034

2019). Besides, as more extensive research comes035

into this area, the applications of synthetic ques-036

tions have expanded from mere data augmenta-037

tion to building tutoring or dialogue systems (Lind-038

berg et al., 2013; Bordes and Weston, 2017), self-039

assessing the ability of language models (Sun040

et al., 2019), and checking the faithfulness of an041

abstract summary (Durmus et al., 2020), etc.042

Today is Jessica’s 80th birthday. Her daughter
Mela and Mela’s husband Josh is coming over
to the birthday party...
Q1: Who is coming over? –simple
A1: Mela and Mela’s husband Josh. –extractive
Q2: Who is Josh? –lack of coverage
A2: Mela’s husband. –lack diversity
Q3: Who has a birthday party? –not connected
A3: Mela. –QA inconsistent

Table 1: A problematic question generation on a pas-
sage using two-step inconsecutive method based on ex-
tractive answers.

Traditionally, syntax-based methods such as se- 043

mantic parsing are commonly adopted to synthe- 044

size questions (Berant et al., 2013; Khullar et al., 045

2018). Recently, with the development of deep 046

learning, transformer-based pre-trained language 047

models (Vaswani et al., 2017; Devlin et al., 2019) 048

have been widely used to generate questions. Most 049

of these QG researches mainly focus on generat- 050

ing questions independently (Sun et al., 2018; Ren- 051

nie et al., 2020), and rely on the ground-truth or 052

extracted answers to generate the corresponding 053

questions (Wang et al., 2019; Jia et al., 2020), as 054

shown in Table 1. However, in real scenarios such 055

as daily conversations or reading comprehension, 056

we usually raise several questions consecutively 057

to understand the whole story. In such cases, cur- 058

rent methods are inadequate and cannot learn the 059

connections between multiple questions, leading 060

to shortage of coverage and diversity. In addition, 061

current pre-extracted non-free-form answers may 062

result in simple questions, and the two-step gener- 063

ation is inclined to QA-inconsistency. 064

To solve these problems, we propose to generate 065

consecutive question-answer pairs over a whole 066

passage. We first adopt a Seq2Seq model to gener- 067

ate a question-answer pair in one step. To improve 068

the questions from the aspects of accuracy, diver- 069
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sity, and informativeness, we further comprehen-070

sively exam four key elements in QG, i.e., ques-071

tion, answer, rationale1, and context history2, and072

introduce four corresponding auxiliary tasks to as-073

sist the generation. These tasks also follow the074

Seq2Seq pattern and synthesize different elements075

respectively. In training, the five tasks are trained076

jointly in one model to help it from different views.077

During inference, the main task generates several078

question-answer candidates and the auxiliary tasks079

use their losses to rerank them. This is the mul-080

titask joint reranking framework, which helps en-081

hance each question-answer pair all-roundly.082

After this, to generate consecutively and cover083

most of the information in one passage, we let084

each question depend on previous ones, and em-085

ploy each sentence of the passage to be a poten-086

tial rationale. To exploit the information in each087

sentence as much as possible, we sample the ratio-088

nales following a proposed probability formula to089

guide the question generation. We also develop the090

beam-search method to sentence-level, which al-091

ways keeps several results dynamically and seeks092

for the final best output. The rationale sampling093

and new beam-search compose our dynamic ratio-094

nale search strategy, which helps our model gener-095

ate questions for a whole passage.096

Our main contributions are three-fold:097

• We propose to consecutively generate098

question-answer pairs for a whole passage,099

where questions are mutually connected and100

can fully cover the content of the passage.101

• We introduce the multitask joint reranking102

framework to improve the quality of ques-103

tions from four aspects, and the dynamic ra-104

tionale search strategy to exploit the ratio-105

nales and search for the best result globally.106

• We conduct abundant experiments on vari-107

ous tasks and manually evaluate our strategy.108

Particularly, we promote the performance on109

multiple QA scenes and prove the expansibil-110

ity of our model on different NLP tasks.111

2 Related Work112

Question generation is a promising task which113

is well-studied by a lot of researchers (Heilman114

1The sentence based on which a question is generated.
2The coverage of all previous rationales, representing the

information of current question series.

and Smith, 2010; Du et al., 2017; Du and Cardie, 115

2018). Since the appearance of various pre-trained 116

language models (Radford and Narasimhan, 2018; 117

Devlin et al., 2019; Lewis et al., 2020), QG has 118

been a crucial support for data augmentation of 119

QA tasks (Liu et al., 2020; Kannan et al., 2021). 120

Specifically, Zhou et al. (2019) and Ma et al. 121

(2020) employ the multitask structure to gener- 122

ate coherent and fluent questions. Sachan and 123

Xing (2018) and Rennie et al. (2020) adopt self- 124

training strategy to jointly learn to ask and an- 125

swer questions. Krishna and Iyyer (2019) propose 126

a pipelined system to ask different level of ques- 127

tions from general to specific. Sultan et al. (2020) 128

analyze the importance of diversity in QG and 129

the effect of nucleus sampling (Holtzman et al., 130

2020). Alberti et al. (2019) use roundtrip con- 131

sistency to filter out inconsistent results, like our 132

reranking strategy. Durmus et al. (2020) and Wang 133

et al. (2020) check the faithfulness of summaries 134

through answering generated questions. Simi- 135

lar with us, Pan et al. (2021) generate question- 136

answer pairs, but convert them for fact verifica- 137

tion. Inspired by Yuan et al. (2021), we use the 138

losses of auxiliary tasks to evaluate the candidates. 139

However, most previous methods generate ques- 140

tions depending on extracted answers and cannot 141

consecutively synthesize a series of high-quality 142

question-answer pairs to cover an entire passage. 143

3 Method 144

Here we introduce the consecutive question gener- 145

ation, which synthesize a series of connected ques- 146

tions to totally cover the information of a passage. 147

To achieve this, we propose our strategy with two 148

main components, multitask joint reranking and 149

dynamic rationale search. We jointly train a BART 150

(Lewis et al., 2020) model on five different gen- 151

eration tasks. During inference, in each generat- 152

ing step, the main task produces several question- 153

answer candidates and four auxiliary tasks use 154

their losses to rerank them. From the view of the 155

whole synthesizing procedure on a passage, ev- 156

ery step we sample the next rationale following 157

a dynamic probability formula, and keep a few 158

question-answer flows like the beam-search. 159

3.1 Multitask Joint Reranking Framework 160

Multitask Joint Training 161

In our training data, there are several elements in 162

one instance, which are the story, question, answer, 163
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S: Once upon a time in Greece, there lived a young man called Narcissus. He lived in a small
village on the sea and was famous in the land because he was quite handsome. ...

Q1: What was the name of the young man? A1: Narcissus.
R1: Once upon a time in Greece, there lived a young man called Narcissus.
Q2: Where did he live? A2: Small village on sea.
R2: He lived in a small village on the sea and was famous in the land because he was quite handsome.
Q3: Was he famous in the land? A3: Yes.
R3: He lived in a small village on the sea and was famous in the land because he was quite handsome.
Q4: Why? A4: Because he was quite handsome.
R4: He lived in a small village on the sea and was famous in the land because he was quite handsome.

Task Input Output

a Q1A1 · · ·Qn−1An−1 < sep > answer this : Qn < sep > S An

q Q1A1 · · ·Qn−1An−1 < sep > question it : An < sep > S Qn

main Q1A1 · · ·Qn−1An−1 < sep > pose pair : Rn < sep > S QnAn

r Q1A1 · · ·Qn−1An−1 < sep > find rationale : QnAn< sep > S Rn

h Q1A1 · · · QnAn < sep > generate history < sep >
∪n

i=1Ri

Table 2: An example of data composition of our multitask generation framework, as well as the input and output
in the nth generation step. We use "

∪
" to represent coverage. In this example, the output of task h is R1 when

n = 1, and is R1 +R2 when n ≥ 2.

and rationale. The rationales are the relevant parts164

in the stories where we can find the answers, and165

they are all whole sentences in our tasks. To raise166

connected questions consecutively, every question167

after the first one depends on the question-answer168

history, so we define the context of each ques-169

tion as the story plus previous question-answer170

pairs. In detail, we use the following symbols.171

S : story, Q : question, A : answer, R :172

rationale, C : previous QA pairs+ S.173

In traditional methods, to obtain a Q we must174

use an A as the preliminary, otherwise we have to175

first extract an answer from the passage. However,176

we think the extractive answer is too simple and177

it is indirect to get a question in two steps. This178

may also lead to inconsistency and ambiguity of179

the question-answer pairs. Thus, in our strategy,180

we input the context and rationale to a model and181

output the question and answer directly. This is182

the main task of our model. Using the nth turn as183

an example: task main : Cn +Rn → Qn +An.184

To guarantee that the generated question and an-185

swer are accurate, we make sure that given the186

question we can get the answer and given the an-187

swer we can get the question. This leads to two188

of our four auxiliary tasks: task a : Cn + Qn →189

An. task q : Cn +An → Qn.190

Here task a follows traditional QA form. We191

don’t input the rationale in task q because previous192

QA pairs are included in the context, so if An is an 193

accurate candidate answer, the model should rec- 194

ognize the connection between the answer and the 195

previous QA pairs, and restore the question easily. 196

Moreover, although we input the rationale in 197

task main, it doesn’t necessarily imply that the 198

question-answer pair is derived from it. So we in- 199

troduce task r to verify that the model indeed uses 200

the information in input rationale to get the ques- 201

tion and answer. task r : Cn +Qn +An → Rn. 202

Task r helps produce QA pairs asked from the 203

corresponding rationale, and then increase the fac- 204

tual diversity of a QA series, which means more 205

segments of the story will be precisely referred to. 206

Finally, to generate an informative and useful 207

question, which means the knowledge it asks for 208

doesn’t overlap with previous questions, we con- 209

sider that the more new information included in 210

the question-answer pairs, the better. We intro- 211

duce the history of the context as the coverage of 212

all previous rationales, which represents the total 213

information till current QA turn. Therewith, we 214

present task h, which uses QA pairs to restore the 215

history. task h :
∑n

i=1(Qi +Ai) →
∪n

i=1Ri. 216

We use "
∪

" to represent coverage. Since we 217

don’t input the context, the model has to generate 218

the history completely based on QA pairs. There- 219

fore, if a QA pair carries more new information, it 220

will be easier for it to restore the history compared 221
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Figure 1: An overview of our multitask joint reranking
framework, when generating the nth turn of a series of
questions. We generate 4 candidates. j ∈ {1, 2, 3, 4}.

with a QA pair with a lot of repetitive information.222

Besides, we add some separate tokens < sep >223

in the input sequences and adopt five hand-made224

prompts (Liu et al., 2021). Table 2 shows an exam-225

ple of our data structure. We randomly shuffle the226

five kinds of instances into one dataset and use a227

BART model to jointly train the five tasks together.228

Given the Seq2Seq model parameterized by θ, in-229

put sequence x with n tokens = {x1, · · · , xn} and230

label y with m tokens = {y1, · · · , ym}, the gener-231

ation probability and loss are as follows:232

p(y|x, θ) =
m∏
z=1

p(yz|y<z,x, θ) (1)233

234

loss(y|x, θ) = − 1

m

m∑
z=1

log p(yz|y<z,x, θ) (2)235

Reranking236

During the inference stage, through the main task237

we can obtain many candidate question-answer238

pairs using a decoding strategy like nucleus sam-239

pling (Holtzman et al., 2020). To select the result240

with the best quality, we rank the candidates using 241

the losses of task a,q,r, and h. The correspond- 242

ing question and answer of the auxiliary tasks are 243

those which are generated from task main. Specif- 244

ically, we multiply the four losses together as the 245

final criteria, or reranking loss, as Equation 3, 246

where the subscripts i refer to different tasks. 247

lossrank(y|x, θ) =
∏

i∈{a,q,r,h}

loss(yi|xi, θ) (3) 248

We consider the candidate with the lowest 249

reranking loss as the one who excels in accuracy, 250

diversity, and informativeness generally. This is 251

inspired by the idea of evaluating generated text 252

as text generation (Yuan et al., 2021). Through 253

this strategy we also unify the form of our main 254

task and four auxiliary tasks and manage to jointly 255

train them in one model. Figure 1 shows the struc- 256

ture of our multitask joint reranking framework. 257

3.2 Dynamic Rationale Search 258

Rationale Sampling 259

The aforementioned framework is useful for gener- 260

ating one question-answer pair. Still, how to effec- 261

tively generate consecutive questions on a passage 262

remains unsettled. By default, we can set every ra- 263

tionale to the next sentence of previous one. How- 264

ever, one rationale does not necessarily correspond 265

to only one question, because a long informative 266

sentence may be suitable for more QA pairs. 267

Hence, we propose the rationale sampling strat- 268

egy, which introduces a probability that the ratio- 269

nale remains in the same sentence as the previous 270

one, as Figure 2 shows. We use the length of each 271

rationale on behalf of its information. Also, we 272

make the probability depend on the max turn num- 273

ber and give it a default value. Therefore, we pro- 274

pose the distribution as follows, where rp means 275

the remaining probability; x means the ratio be- 276

tween the current rationale length and the story 277

length; b is the selected upper bound of rp; d is 278

the value of x when rp reaches the upper bound; t 279

is the set maximum turns number; and µ is the de- 280

fault remaining probability when x equals to 1/t. 281

rp =


b, d ≤ x ≤ 1

µ+
b− µ

d− 1/t
(x− 1/t), 1/t ≤ x < d

µ+
µ

1/t
(x− 1/t). 0 ≤ x < 1/t

(4) 282
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sentencen sentencen+1sentencen−1· · ·

QAmQAm−1QAm−2 QAm+1· · ·
rp 1− rp

Figure 2: An example of rationale sampling strategy, in
which there is a probability of rp that the rationale of
QAm+1 is sentencen, and 1− rp it is sentencen+1.

We can see that rp is piecewise-linear and283

passes (0, 0), (1/t, µ) and (d, b), which ensures284

the longer a rationale is, the more likely it is asked285

multiple times. By adjusting the parameters we286

can control the average QA numbers in a passage.287

If we let b = 0.75, d = 0.25, t = 20, µ = 0.15.288

rp =

{
3x, 0 ≤ x ≤ 0.25

0.75. 0.25 < x ≤ 1
(5)289

This is the setting we adopt after tuned, and we290

manage to generate about 15 turns per story, which291

is nearly 30% more than without the strategy.292

Sentence-Level Beam-Search293

Although rationale sampling can help catch more294

information and improves the flexibility, it brings295

about more uncertainty. When consecutively gen-296

erating mutually dependent QA pairs, every turn297

from the first to the last is equally important, so it298

is also crucial to ensure the quality of whole series.299

Naturally, inspired by traditional beam-search300

(token-level), we propose the sentence-level beam-301

search. As Figure 3 shows, besides reranking the302

candidates in each turn, we also keep several possi-303

ble flows, and instead of generating a token in each304

search step, we generate a QA pair. We adopt the305

reranking loss of each QA pair to take the place306

of the generation probability of each token in tra-307

ditional beam-search. Every timestep we maintain308

several candidates with the lowest product of all309

previous reranking losses, which means310

L(Q1A1 · · ·QnAn|x, θ) =
n∏

j=1

lossrankj (6)311

where L is the loss of the new beam-search, and312

multitask reranking plays an important role again.313

4 Experiments314

4.1 Experimental Setup315

We employ CoQA (Reddy et al., 2019) training316

set as our training data. The questions are con-317

S

QA00

QA01

QA02

QA03

QA10

QA11

QA12

QA13

QA14

QA15

QA16

QA17

QA20

QA21

QA22

QA23

QA24

QA25

QA26

QA27

QA30

QA31

QA32

QA33

QA34

QA35

QA36

QA37

Figure 3: An overview of the dynamic sentence-level
beam-search strategy. In this example each step the
model generates 4 question-answer candidates and the
sentence-level beam size is 2.

versational, and thus, every question after the first 318

is dependent on the conversation history. The an- 319

swers are free-form text with their corresponding 320

rationales in the story. We expand the rationales to 321

whole sentences and remove the questions with an 322

unknown answer. Finally, we get 7199 stories and 323

each story has 15 turns of question-answer pair on 324

average. After jointly training a BART model θ 325

on CoQA, we test its question generation ability 326

using two main tasks, data augmentation for QA 327

and document-level NLI. 328

Implementation Details 329

We use beam-search with beam size 4 to generate 330

answers for QA. Following Sultan et al. (2020), 331

we use nucleus sampling with top-k(k=50) and 332

top-p(p=0.95) to generate question-answer pairs. 333

We averagely return 4 candidates each step and 334

set sentence-level beam size to 4 in sentence-level 335

beam-search. The models we use are all base size. 336

We use PyTorch to implement our models. We 337

acquire the BART model pre-trained by Face- 338

book3 on the Transformers library (Wolf et al., 339

2020). The hyperparameters after tuned and other 340

training details are shown in Table 3. We use 1 341

NVIDIA GeForce RTX 3090 GPU for training and 342

inference. It costs about 10 hours per epoch to 343

jointly train five tasks together. 344

Metrics 345

Most natural language generation tasks adopt 346

BLEU score (Papineni et al., 2002) or ROUGE 347

score (Lin, 2004) as important metrics. However, 348

both Sultan et al. (2020) and Schlichtkrull and 349

3https://huggingface.co/facebook/
bart-base
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Batch size Learning rate Epochs Grad norm
64 1e-5 16 1.0

Dropout Weight decay Optimizer Warm up
0.1 0.1 AdamW 0.1

Table 3: Implementation details.

Cheng (2020) suggest that standard QG evalua-350

tion metrics such as BLEU, are inversely corre-351

lated with diversity. Thus, inspired by (Yuan et al.,352

2021), we also use the losses to measure the per-353

formance, and adopt BLEU only to check the an-354

swers. In QA tasks, we additionally employ the355

F1qa score (lexical overlap) as the CoQA leader-356

board does. In document-level NLI, we mean-357

while use the F1nli score (harmonic mean of the358

precision and recall on the classification task).359

4.2 Experiments of Training360

Firstly, we evaluate the losses of five tasks on361

CoQA dev set after training. We also calculate the362

F1qa scores using task a. Table 4 shows the results363

of models with different training settings. We can364

see that joint training improves the performance365

on four out of five tasks, suggesting that different366

tasks benefit each other effectively. Prompts also367

improve the QA ability and lead to decreases of368

losses on three out of five tasks.369

Metric Ours w/o Prompts w/o Joint
Loss a 0.767 0.771 0.777
Loss q 1.364 1.370 1.377
Loss m 1.372 1.378 1.388
Loss r 0.062 0.058 0.068
Loss h 2.554 2.543 2.536

F1qa a 80.60 80.07 78.54

Table 4: Losses and F1qa scores on CoQA dev set using
different training method.

4.3 Experiments to Augment QA Data370

Data augmentation is one common way to employ371

generated questions and verify QG models. To372

augment QA dataset D, we (1) use θ to synthesize373

QA pairs D′ on the training set of D; (2) train an-374

other BART model θ′ on D′ or D +D′ to answer375

questions; (3) test θ′ on the dev set of D.376

Results on CoQA377

First we test our strategy to augment CoQA378

dataset. The setting Origin means the model θ′ is379

trained on original CoQA training set, and Synth 380

means it is trained with synthetic QA pairs. There 381

are also two synthesizing conditions, relay and 382

auto. Relay means the previous QA pairs of every 383

synthetic instance are from CoQA training set, and 384

auto means they are the QA pairs generated in pre- 385

vious steps. In other words, in relay the model in- 386

herits the QA flow from authentic CoQA’s context, 387

and in auto the model automatically synthesizes 388

the whole series. Additionally, we merge original 389

training set with synthetic data to create the merg- 390

ing setting (D+D′). We don’t implement dynamic 391

rationale search in relay.

Model Bleu Loss F1qa
Origin
Baseline4 - - 79.80
Bart 38.52 0.777 78.54
Synth
Bart relay 35.11/45.24 5.477/0.781 75.90/81.79
Bart auto 24.88/38.26 5.674/0.768 65.05/80.52
+RS 31.75/45.07 5.253/0.762 72.25/81.78
+SBS 31.75/47.85 5.461/0.762 72.21/81.88

rerank by
a 26.11/42.01 5.652/0.810 68.84/81.37
q 35.70/42.71 5.341/0.769 73.53/81.31
r 33.02/41.85 5.437/0.776 71.73/81.08
h 27.97/41.22 5.509/0.794 70.47/81.28
w/o rerank 34.24/41.32 5.348/0.755 72.78/81.16

Table 5: Results on CoQA dev set of different models.
Baseline is the result on CoQA in-domain test set of
an extractive BERT-base model by Tsinghua University
CoAI Lab. In Synth, results without and with merging
are separated by "/". Below are five ablation experi-
ments of auxiliary tasks with Bart auto+RS+SBS. RS:
rationale sampling. SBS: sentence-level beam-search.

392
Table 5 shows the results. We can see from 393

bart relay that the generated data indeed help an- 394

swer questions, improving the F1qa scores by 3.25 395

points. In auto generation, both rational sampling 396

and sentence-level beam-search improve the per- 397

formance and result in higher F1qa scores, and fi- 398

nally it outperforms relay generation by 0.09 F1qa 399

scores. We also conduct other five experiments 400

where synthesized questions are reranked by dif- 401

ferent tasks. It is not hard to see that the multitask 402

reranking strategy measure the results effectively, 403

leading to 0.72 higher F1qa scores. 404

4https://stanfordnlp.github.io/coqa/
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Results on SQuAD405

To check the ability to generate questions on out-406

of-domain passages, we augment SQuAD (Ra-407

jpurkar et al., 2018) dataset using our model408

trained on CoQA. We select the instances with-409

out unknown answers and with a story longer than410

128 words. Since the questions in SQuAD are411

mutually independent, there are no previous QA412

pairs. However, the questions in the dataset are413

well-organized, so we manually add previous QAs414

to check their effects and align with CoQA.

Model Bleu Loss F1qa
Origin
Baseline5 - - 83.06
Bart 65.52 0.675 84.26
+preQA 68.67 0.625 85.32
Synth
Ours 36.92/64.37 4.579/0.636 62.57/84.35
+preQA 41.60/67.57 4.654/0.651 67.41/85.61

Table 6: Results on SQuAD dev set of different models.
Baseline is the result on SQuAD test set of an extrac-
tive BERT-base model by Google AI. In Synth, results
without and with merging are separated by "/".

415
Table 6 shows the results. We can see that the416

QA series indeed enhances question answering. It417

also indicates that even if our model is trained on418

another dataset, its synthesized questions still help419

a QA model gain 0.09 and 0.29 more F1qa points420

on SQuAD, with and without previous QA pairs.421

It shows that our consecutive questions performs422

well when transferring to a different dataset, too.423

Results with more unlabeled Data424

To truly reveal the ability of our model, we em-425

ploy it to synthesize more questions on a large426

number of unlabeled passages. We randomly col-427

lect 10000 Wikipedia passages whose numbers of428

words are from 100 to 500. Then we use our model429

trained on CoQA to generate questions on them,430

with full strategies, resulting in about 0.15 million431

QA pairs. We use the Wikipedia questions as data432

augmentation, too, to evaluate their quality.433

Tabel 7 shows the results. In both CoQA and434

SQuAD datasets, with more Wikipedia questions,435

we manage to further improve F1qa by 0.25 and436

0.19 scores. Our model can augment the QA train-437

ing sets with large-scale unlabeled data.438

5https://rajpurkar.github.io/
SQuAD-explorer/

Data Bleu Loss F1qa
CoQA
Ours 31.75/47.85 5.461/0.762 72.21/81.88
+Wiki 33.06/47.34 5.433/0.763 72.73/82.13
SQuAD
Ours 41.60/67.57 4.654/0.651 67.41/85.61
+Wiki 50.48/65.61 4.017/0.604 74.98/85.80

Table 7: Results with more Wikipedia Data. Results
without and with merging are separated by "/".

4.4 Experiments to Cover a Passage 439

To prove that our generated questions can really 440

cover most information in an entire passage, we 441

adopt our model on document-level NLI (DocNLI) 442

(Yin et al., 2021) task. Models are required to 443

predict the relation (entailment or not) between a 444

premise and a hypothesis. Traditionally, a model 445

predicts the relation in a sequence classification 446

way. However, given our ability to synthesize con- 447

secutive questions to explore a story, we propose 448

a novel zero-shot method to predict the relation 449

based on question generating and answering, us- 450

ing our model θ trained on CoQA. In detail, we 451

(1) use θ to synthesize a series of Q and A on the 452

hypothesis; (2) use θ to answer Q on the premise, 453

obtaining A′; (3) check the overlap (F1qa) between 454

A and A′. The more same answers in A and A′, the 455

more chance the relation is entailment. 456

We select the instances whose premise and hy- 457

pothesis are 200 to 1000 words from all train, dev, 458

and test set of DocNLI, to be our evaluation set. It 459

is a total of 1677 instances, and we averagely gen- 460

erate 15 turns of QA each instance with rationale 461

sampling. We calculate F1qa per instance and use 462

60 points of F1qa as the boundary of entailment. 463

Model Loss F1qa F1nli
Baseline 6 - - 46.18
Finetune - - 48.56
Ours 2.375/3.348 66.07/51.21 49.88
-SBS 2.631/3.612 65.93/51.01 49.85
-RS 3.217/4.149 63.04/49.68 47.91

Table 8: Results of DocNLI task. Baseline is the
result on DocNLI dev set of an officially fine-tuned
Longformer-base. Finetune is a BERT-base model fine-
tuned on about 0.8 million other DocNLI instances dif-
ferent from our selected data. When using our zero-
shot method, QA results of entailment and not entail-
ment are separated by "/".
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Tabel 8 shows the results. Impressively, with-464

out fine-tuning, our model using F1qa as the cri-465

terion surpasses the fine-tuned BERT model by466

1.32 points of F1nli score. Also, we can see467

clearly that rational sampling and sentence-level468

beam-search improve the result significantly by469

1.97 F1nli scores and enlarge the discrimination470

between entailment and not entailment greatly. It471

suggests that our consecutive generation strategy472

really produces question-answer pairs with high473

coverage of a story, which can involve most of the474

information in one passage.475

4.5 Analyses476

Accuracy and Diversity477

Here we conduct two human evaluations, to prove478

that our strategy improves question-answer accu-479

racy and rationale dependency (factual diversity),480

which are the effects of tasks a, q and task r. We481

randomly collect 10% stories from CoQA dev set482

and use different methods to generate question-483

answer pairs. We then manually measure whether484

every question is correctly asked and answered485

and whether the question-answer pair is derived486

from their corresponding rationale.

Model Acc of QA pair Acc of rationale
Ours 93.58 96.15
-SBS 90.83 91.67
-Rerank 86.58 91.67

Table 9: Human evaluations of accuracy of QA and ra-
tionale.

487
Table 9 clearly shows that multitask reranking488

strategy and sentence-level beam-search increase489

the accuracy of QA by 7.00 % and rationale by490

4.48 %. Thus, we can say that our strategy, espe-491

cially tasks a, q and task r, help our model gen-492

erate questions more correctly and locate the ra-493

tionale more precisely, leading to higher QA accu-494

racy and factual diversity in a series of questions.495

Informativeness496

To evaluate the ability to utilize information in a497

rationale, we present the repeat-pose experiment.498

It is adapted from relay setting, and requires the499

model to pose another question based on the same500

rationale and same context as the original question.501

In other words, the model has to "squeeze" more502

information from the same rationale, so the key503

6Yin et al. (2021)

is whether task h can rank the informativeness of 504

each candidate precisely.

Model Bleu Loss F1qa
Bart relay w/o rerank 41.99 0.758 81.28
Bart repeat w/o rerank 43.67 0.757 81.37
Bart repeat w/ rerank 43.00 0.748 81.69

Table 10: Results of repeat-pose experiment. Synthetic
data are merged with the original training set.

505
Table 10 shows the results, which indicates 506

that repeat-pose indeed brings more information. 507

Moreover, the reranking strategy further improves 508

the F1qa scores by 0.32 points, demonstrating that 509

task h indeed helps select the more informative 510

question-answer pairs. 511

One-Step generation or Two-Step 512

As argued in the introduction, two-step generation 513

is inclined to inferior quality. To verify that, we 514

trained two sets of models in augmenting CoQA 515

with relay and auto+RS settings, without rerank- 516

ing, rationale sampling, or sentence-level beam- 517

search. The two-step model first generates an an- 518

swer given the rationale and context, and then gen- 519

erates a question based on the answer. Table 11 520

shows that directly one-step generation truly gains 521

better results than separately two-step generation.

Model Bleu Loss F1qa
One-step 40.99/43.53 0.788/0.806 81.40/81.09
Two-step 41.86/42.66 0.821/0.808 80.93/80.88

Table 11: Results of augmenting CoQA dataset without
reranking and sentence-level beam search strategy. Re-
sults of relay or auto+RS setting are separated by "/".

522

5 Conclusion 523

In this paper, we propose to generate consecutive 524

question-answer pairs to improve the quality of 525

questions and explore the information in a passage. 526

By joint training and reranking with four auxiliary 527

tasks, we help a model generate questions more 528

accurately, diversely, and informatively. During 529

consecutive generation, we sample the rationales 530

dynamically and search for the best results glob- 531

ally, helping the questions cover a story more en- 532

tirely. With extensive experiments, we prove that 533

our model is able to generate high-quality ques- 534

tions for various NLP tasks and has the power to 535

exploit large-scale unlabeled data. 536
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