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Abstract

Automatic question generation (QG) aims to
generate a set of questions for a given pas-
sage, and can be viewed as a dual task of
question answering (QA). However, most cur-
rent methods of QG tend to generate ques-
tion by question independently, mainly based
on specific extracted answer spans. In this
paper, we propose to consecutively generate
questions over a whole passage, with a com-
prehensive consideration of the aspects includ-
ing accuracy, diversity, informativeness, and
coverage. First we exam four key elements
in QG, i.e., question, answer, rationale, and
context history, and propose a novel multi-
task framework with one main task generat-
ing a question-answer pair, and four auxiliary
tasks generating other elements alternately, im-
proving model performance from all aspects
through both joint training and reranking. Fur-
ther, to learn the connection between questions
and fully exploit the important information in
every sentence, we propose a new consecutive
generation strategy, which dynamically selects
the rationales and searches for the best ques-
tion series globally. Extensive experiments on
different datasets show that our method can
improve question generation significantly and
benefit multiple related NLP tasks.

1 Introduction

Question Generation (QG) is an important and
promising task in natural language generation
(NLG). It has long served as an effective way
to construct and enlarge the dataset of question
answering (QA) (Duan et al., 2017; Dong et al.,
2019). Besides, as more extensive research comes
into this area, the applications of synthetic ques-
tions have expanded from mere data augmenta-
tion to building tutoring or dialogue systems (Lind-
berg et al., 2013; Bordes and Weston, 2017), self-
assessing the ability of language models (Sun
et al., 2019), and checking the faithfulness of an
abstract summary (Durmus et al., 2020), etc.

Today is Jessica’s 80th birthday. Her daughter
Mela and Mela’s husband Josh is coming over
to the birthday party...

Q1: Who is coming over? —simple

Al: Mela and Mela’s husband Josh. —extractive
Q2: Who is Josh? —lack of coverage

A2: Mela’s husband. —lack diversity

Q3: Who has a birthday party? —not connected
A3: Mela. —QA inconsistent

Table 1: A problematic question generation on a pas-
sage using two-step inconsecutive method based on ex-
tractive answers.

Traditionally, syntax-based methods such as se-
mantic parsing are commonly adopted to synthe-
size questions (Berant et al., 2013; Khullar et al.,
2018). Recently, with the development of deep
learning, transformer-based pre-trained language
models (Vaswani et al., 2017; Devlin et al., 2019)
have been widely used to generate questions. Most
of these QG researches mainly focus on generat-
ing questions independently (Sun et al., 2018; Ren-
nie et al., 2020), and rely on the ground-truth or
extracted answers to generate the corresponding
questions (Wang et al., 2019; Jia et al., 2020), as
shown in Table 1. However, in real scenarios such
as daily conversations or reading comprehension,
we usually raise several questions consecutively
to understand the whole story. In such cases, cur-
rent methods are inadequate and cannot learn the
connections between multiple questions, leading
to shortage of coverage and diversity. In addition,
current pre-extracted non-free-form answers may
result in simple questions, and the two-step gener-
ation is inclined to QA-inconsistency.

To solve these problems, we propose to generate
consecutive question-answer pairs over a whole
passage. We first adopt a Seq2Seq model to gener-
ate a question-answer pair in one step. To improve
the questions from the aspects of accuracy, diver-



sity, and informativeness, we further comprehen-
sively exam four key elements in QG, i.e., ques-
tion, answer, rationale', and context historyz, and
introduce four corresponding auxiliary tasks to as-
sist the generation. These tasks also follow the
Seq2Seq pattern and synthesize different elements
respectively. In training, the five tasks are trained
jointly in one model to help it from different views.
During inference, the main task generates several
question-answer candidates and the auxiliary tasks
use their losses to rerank them. This is the mul-
titask joint reranking framework, which helps en-
hance each question-answer pair all-roundly.

After this, to generate consecutively and cover
most of the information in one passage, we let
each question depend on previous ones, and em-
ploy each sentence of the passage to be a poten-
tial rationale. To exploit the information in each
sentence as much as possible, we sample the ratio-
nales following a proposed probability formula to
guide the question generation. We also develop the
beam-search method to sentence-level, which al-
ways keeps several results dynamically and seeks
for the final best output. The rationale sampling
and new beam-search compose our dynamic ratio-
nale search strategy, which helps our model gener-
ate questions for a whole passage.

Our main contributions are three-fold:

* We propose to consecutively generate
question-answer pairs for a whole passage,
where questions are mutually connected and
can fully cover the content of the passage.

* We introduce the multitask joint reranking
framework to improve the quality of ques-
tions from four aspects, and the dynamic ra-
tionale search strategy to exploit the ratio-
nales and search for the best result globally.

* We conduct abundant experiments on vari-
ous tasks and manually evaluate our strategy.
Particularly, we promote the performance on
multiple QA scenes and prove the expansibil-
ity of our model on different NLP tasks.

2 Related Work

Question generation is a promising task which
is well-studied by a lot of researchers (Heilman
!The sentence based on which a question is generated.

The coverage of all previous rationales, representing the
information of current question series.

and Smith, 2010; Du et al., 2017; Du and Cardie,
2018). Since the appearance of various pre-trained
language models (Radford and Narasimhan, 2018;
Devlin et al., 2019; Lewis et al., 2020), QG has
been a crucial support for data augmentation of
QA tasks (Liu et al., 2020; Kannan et al., 2021).
Specifically, Zhou et al. (2019) and Ma et al.
(2020) employ the multitask structure to gener-
ate coherent and fluent questions. Sachan and
Xing (2018) and Rennie et al. (2020) adopt self-
training strategy to jointly learn to ask and an-
swer questions. Krishna and Iyyer (2019) propose
a pipelined system to ask different level of ques-
tions from general to specific. Sultan et al. (2020)
analyze the importance of diversity in QG and
the effect of nucleus sampling (Holtzman et al.,
2020). Alberti et al. (2019) use roundtrip con-
sistency to filter out inconsistent results, like our
reranking strategy. Durmus et al. (2020) and Wang
et al. (2020) check the faithfulness of summaries
through answering generated questions. Simi-
lar with us, Pan et al. (2021) generate question-
answer pairs, but convert them for fact verifica-
tion. Inspired by Yuan et al. (2021), we use the
losses of auxiliary tasks to evaluate the candidates.
However, most previous methods generate ques-
tions depending on extracted answers and cannot
consecutively synthesize a series of high-quality
question-answer pairs to cover an entire passage.

3 Method

Here we introduce the consecutive question gener-
ation, which synthesize a series of connected ques-
tions to totally cover the information of a passage.
To achieve this, we propose our strategy with two
main components, multitask joint reranking and
dynamic rationale search. We jointly train a BART
(Lewis et al., 2020) model on five different gen-
eration tasks. During inference, in each generat-
ing step, the main task produces several question-
answer candidates and four auxiliary tasks use
their losses to rerank them. From the view of the
whole synthesizing procedure on a passage, ev-
ery step we sample the next rationale following
a dynamic probability formula, and keep a few
question-answer flows like the beam-search.

3.1 Multitask Joint Reranking Framework
Multitask Joint Training

In our training data, there are several elements in
one instance, which are the story, question, answer,



S: Once upon a time in Greece, there lived a young man called Narcissus. He lived in a small
village on the sea and was famous in the land because he was quite handsome. ...

()1: What was the name of the young man?

Ajq: Narcissus.

R;1: Once upon a time in Greece, there lived a young man called Narcissus.

(Q2: Where did he live?

As: Small village on sea.

Ry: He lived in a small village on the sea and was famous in the land because he was quite handsome.

(23: Was he famous in the land?

Asz: Yes.

R3: He lived in a small village on the sea and was famous in the land because he was quite handsome.

Q4: Why? Ay: Because he was quite handsome.

R4: He lived in a small village on the sea and was famous in the land because he was quite handsome.
Task Input Output

a 1A Qp 1A, 1 < sep > answer this: Q, < sep > S A,

q Q1A Qpn 1A, 1 < sep> questionit: A, < sep> S5 Qn

main Q1A Q1 A, 1 < sep > posepair : R, <sep> 5 QnA,

r Q1A Qn 1A, 1 <sep> findrationale : QA< sep > 5 R,

h Q1A QnA, < sep > generate history < sep > UL, Ri

Table 2: An example of data composition of our multitask generation framework, as well as the input and output
in the n*” generation step. We use "(J" to represent coverage. In this example, the output of task h is R; when

n=1,andis Ry + Ry whenn > 2.

and rationale. The rationales are the relevant parts
in the stories where we can find the answers, and
they are all whole sentences in our tasks. To raise
connected questions consecutively, every question
after the first one depends on the question-answer
history, so we define the context of each ques-
tion as the story plus previous question-answer
pairs. In detail, we use the following symbols.
S : story, @ : question, A : answer, R :
rationale, C : previous QA pairs + S.

In traditional methods, to obtain a Q we must
use an A as the preliminary, otherwise we have to
first extract an answer from the passage. However,
we think the extractive answer is too simple and
it is indirect to get a question in two steps. This
may also lead to inconsistency and ambiguity of
the question-answer pairs. Thus, in our strategy,
we input the context and rationale to a model and
output the question and answer directly. This is
the main task of our model. Using the n** turn as
an example: task main : C,, + Ry, — Qn + A,.

To guarantee that the generated question and an-
swer are accurate, we make sure that given the
question we can get the answer and given the an-
swer we can get the question. This leads to two
of our four auxiliary tasks: task a : C,, + Q, —
Ay task q: Cp + A — Qn.

Here task a follows traditional QA form. We
don’t input the rationale in task g because previous

QA pairs are included in the context, so if A,, is an
accurate candidate answer, the model should rec-
ognize the connection between the answer and the
previous QA pairs, and restore the question easily.
Moreover, although we input the rationale in
task main, it doesn’t necessarily imply that the
question-answer pair is derived from it. So we in-
troduce task r to verify that the model indeed uses
the information in input rationale to get the ques-
tion and answer. task r : Cp, + Qp + An — Ry,
Task r helps produce QA pairs asked from the
corresponding rationale, and then increase the fac-
tual diversity of a QA series, which means more
segments of the story will be precisely referred to.
Finally, to generate an informative and useful
question, which means the knowledge it asks for
doesn’t overlap with previous questions, we con-
sider that the more new information included in
the question-answer pairs, the better. We intro-
duce the history of the context as the coverage of
all previous rationales, which represents the total
information till current QA turn. Therewith, we
present task h, which uses QA pairs to restore the
history. task h : Z?:l(QZ + Az> — U?:l R;.
We use "[J" to represent coverage. Since we
don’t input the context, the model has to generate
the history completely based on QA pairs. There-
fore, if a QA pair carries more new information, it
will be easier for it to restore the history compared
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Figure 1: An overview of our multitask joint reranking
framework, when generating the n'" turn of a series of
questions. We generate 4 candidates. j € {1,2,3,4}.

with a QA pair with a lot of repetitive information.

Besides, we add some separate tokens < sep >
in the input sequences and adopt five hand-made
prompts (Liu et al., 2021). Table 2 shows an exam-
ple of our data structure. We randomly shuffle the
five kinds of instances into one dataset and use a
BART model to jointly train the five tasks together.
Given the Seq2Seq model parameterized by 6, in-
put sequence « with n tokens = {z1,--- ,x,} and
label y with m tokens = {y1,- -, ym }, the gener-
ation probability and loss are as follows:

pylz,0) = [ [ p(y:ly<=, 2, 0) (D
z=1

1 m
loss(y|z,0) = —— > logp(y:|y<:,,0) (2)
z=1

Reranking

During the inference stage, through the main task
we can obtain many candidate question-answer
pairs using a decoding strategy like nucleus sam-
pling (Holtzman et al., 2020). To select the result

with the best quality, we rank the candidates using
the losses of task a,q,r, and h. The correspond-
ing question and answer of the auxiliary tasks are
those which are generated from task main. Specif-
ically, we multiply the four losses together as the
final criteria, or reranking loss, as Equation 3,
where the subscripts ¢ refer to different tasks.

losSyank(ylz,0) = H

ie{a7q’/r7h}

loss(yi|x;,0) (3)

We consider the candidate with the lowest
reranking loss as the one who excels in accuracy,
diversity, and informativeness generally. This is
inspired by the idea of evaluating generated text
as text generation (Yuan et al., 2021). Through
this strategy we also unify the form of our main
task and four auxiliary tasks and manage to jointly
train them in one model. Figure 1 shows the struc-
ture of our multitask joint reranking framework.

3.2 Dynamic Rationale Search
Rationale Sampling

The aforementioned framework is useful for gener-
ating one question-answer pair. Still, how to effec-
tively generate consecutive questions on a passage
remains unsettled. By default, we can set every ra-
tionale to the next sentence of previous one. How-
ever, one rationale does not necessarily correspond
to only one question, because a long informative
sentence may be suitable for more QA pairs.
Hence, we propose the rationale sampling strat-
egy, which introduces a probability that the ratio-
nale remains in the same sentence as the previous
one, as Figure 2 shows. We use the length of each
rationale on behalf of its information. Also, we
make the probability depend on the max turn num-
ber and give it a default value. Therefore, we pro-
pose the distribution as follows, where rp means
the remaining probability; « means the ratio be-
tween the current rationale length and the story
length; b is the selected upper bound of rp; d is
the value of z when rp reaches the upper bound; ¢
is the set maximum turns number; and y is the de-
fault remaining probability when x equals to 1/t.

b, d<z<1

=Pt 7 l/t( x—1/t), 1/t<z<d
w
M+1/t(w—1/t). 0<z<1/t
4)
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Figure 2: An example of rationale sampling strategy, in
which there is a probability of rp that the rationale of
QA1 1s sentence,, and 1 — rp it is sentence,41.

We can see that rp is piecewise-linear and
passes (0,0), (1/t, ) and (d,b), which ensures
the longer a rationale is, the more likely it is asked
multiple times. By adjusting the parameters we
can control the average QA numbers in a passage.
Ifweletb=0.75, d =0.25, t =20, = 0.15.

3, 0<x<0.25
rp = (5)
0.75. 025 <zx<1

This is the setting we adopt after tuned, and we
manage to generate about 15 turns per story, which
is nearly 30% more than without the strategy.

Sentence-Level Beam-Search

Although rationale sampling can help catch more
information and improves the flexibility, it brings
about more uncertainty. When consecutively gen-
erating mutually dependent QA pairs, every turn
from the first to the last is equally important, so it
is also crucial to ensure the quality of whole series.

Naturally, inspired by traditional beam-search
(token-level), we propose the sentence-level beam-
search. As Figure 3 shows, besides reranking the
candidates in each turn, we also keep several possi-
ble flows, and instead of generating a token in each
search step, we generate a QA pair. We adopt the
reranking loss of each QA pair to take the place
of the generation probability of each token in tra-
ditional beam-search. Every timestep we maintain
several candidates with the lowest product of all
previous reranking losses, which means

L(QlAl : "QnAn|w79)

= H lOSSTankj (6)
=1

where L is the loss of the new beam-search, and
multitask reranking plays an important role again.

4 [Experiments

4.1 Experimental Setup

We employ CoQA (Reddy et al., 2019) training
set as our training data. The questions are con-

Tt~ QA3 Y QA TN QAss
_ - QA1 QA4 - QAzs
O
\@ ---- QA5 /“ - == QAszs
Y QAes \ QA16 Z--- QA \@
CQAIT N QAxr Y QAsy

Figure 3: An overview of the dynamic sentence-level
beam-search strategy. In this example each step the
model generates 4 question-answer candidates and the
sentence-level beam size is 2.

versational, and thus, every question after the first
is dependent on the conversation history. The an-
swers are free-form text with their corresponding
rationales in the story. We expand the rationales to
whole sentences and remove the questions with an
unknown answer. Finally, we get 7199 stories and
each story has 15 turns of question-answer pair on
average. After jointly training a BART model
on CoQA, we test its question generation ability
using two main tasks, data augmentation for QA
and document-level NLI.

Implementation Details

We use beam-search with beam size 4 to generate
answers for QA. Following Sultan et al. (2020),
we use nucleus sampling with top-k(k=50) and
top-p(p=0.95) to generate question-answer pairs.
We averagely return 4 candidates each step and
set sentence-level beam size to 4 in sentence-level
beam-search. The models we use are all base size.

We use PyTorch to implement our models. We
acquire the BART model pre-trained by Face-
book® on the Transformers library (Wolf et al.,
2020). The hyperparameters after tuned and other
training details are shown in Table 3. We use 1
NVIDIA GeForce RTX 3090 GPU for training and
inference. It costs about 10 hours per epoch to
jointly train five tasks together.

Metrics

Most natural language generation tasks adopt
BLEU score (Papineni et al., 2002) or ROUGE
score (Lin, 2004) as important metrics. However,
both Sultan et al. (2020) and Schlichtkrull and

‘https://huggingface.co/facebook/
bart-base



Batch size| Learning rate| Epochs |Grad norm
64 | le-5 | 16 | 10
Dropout |Weight decay |Optimizer| Warm up
0.1 | 0.1 | AdamW | 0.1

Table 3: Implementation details.

Cheng (2020) suggest that standard QG evalua-
tion metrics such as BLEU, are inversely corre-
lated with diversity. Thus, inspired by (Yuan et al.,
2021), we also use the losses to measure the per-
formance, and adopt BLEU only to check the an-
swers. In QA tasks, we additionally employ the
Fl4, score (lexical overlap) as the CoQA leader-
board does. In document-level NLI, we mean-
while use the F1,,; score (harmonic mean of the
precision and recall on the classification task).

4.2 Experiments of Training

Firstly, we evaluate the losses of five tasks on
CoQA dev set after training. We also calculate the
F14, scores using task a. Table 4 shows the results
of models with different training settings. We can
see that joint training improves the performance
on four out of five tasks, suggesting that different
tasks benefit each other effectively. Prompts also
improve the QA ability and lead to decreases of
losses on three out of five tasks.

Metric Ours w/o Prompts w/o Joint
Lossa 0.767 0.771 0.777
Lossq 1.364 1.370 1.377
Lossm 1.372 1.378 1.388
Losst  0.062 0.058 0.068
Lossh  2.554 2.543 2.536
Fl,a  80.60 80.07 78.54

Table 4: Losses and F1,, scores on CoQA dev set using
different training method.

4.3 Experiments to Augment QA Data

Data augmentation is one common way to employ
generated questions and verify QG models. To
augment QA dataset D, we (1) use 6 to synthesize
QA pairs D’ on the training set of D; (2) train an-
other BART model 6’ on D’ or D + D’ to answer
questions; (3) test 6 on the dev set of D.

Results on CoQA

First we test our strategy to augment CoQA
dataset. The setting Origin means the model ¢’ is

trained on original CoQA training set, and Synth
means it is trained with synthetic QA pairs. There
are also two synthesizing conditions, relay and
auto. Relay means the previous QA pairs of every
synthetic instance are from CoQA training set, and
auto means they are the QA pairs generated in pre-
vious steps. In other words, in relay the model in-
herits the QA flow from authentic CoQA’s context,
and in auto the model automatically synthesizes
the whole series. Additionally, we merge original
training set with synthetic data to create the merg-
ing setting (D+D’). We don’t implement dynamic
rationale search in relay.

Model Bleu Loss F1,
Origin

Baseline* - - 79.80
Bart 38.52 0.777 78.54
Synth

Bart relay 35.11/45.24 5.477/0.781 75.90/81.79
Bart auto  24.88/38.26 5.674/0.768 65.05/80.52

+RS 31.75/45.07 5.253/0.762 72.25/81.78
+SBS 31.75/47.85 5.461/0.762 72.21/81.88

rerank by

a 26.11/42.01 5.652/0.810 68.84/81.37

q 35.70/42.71 5.341/0.769 73.53/81.31

r 33.02/41.85 5.437/0.776 71.73/81.08

h 27.97/41.22 5.509/0.794 70.47/81.28

w/o rerank 34.24/41.32 5.348/0.755 72.78/81.16

Table 5: Results on CoQA dev set of different models.
Baseline is the result on CoQA in-domain test set of
an extractive BERT-base model by Tsinghua University
CoAl Lab. In Synth, results without and with merging
are separated by "/". Below are five ablation experi-
ments of auxiliary tasks with Bart auto+RS+SBS. RS:
rationale sampling. SBS: sentence-level beam-search.

Table 5 shows the results. We can see from
bart relay that the generated data indeed help an-
swer questions, improving the F1,4, scores by 3.25
points. In auto generation, both rational sampling
and sentence-level beam-search improve the per-
formance and result in higher F1,, scores, and fi-
nally it outperforms relay generation by 0.09 F1,,
scores. We also conduct other five experiments
where synthesized questions are reranked by dif-
ferent tasks. It is not hard to see that the multitask
reranking strategy measure the results effectively,
leading to 0.72 higher F1,, scores.

*https://stanfordnlp.github.io/coga/
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Results on SQuAD

To check the ability to generate questions on out-
of-domain passages, we augment SQuAD (Ra-
jpurkar et al., 2018) dataset using our model
trained on CoQA. We select the instances with-
out unknown answers and with a story longer than
128 words. Since the questions in SQuAD are
mutually independent, there are no previous QA
pairs. However, the questions in the dataset are
well-organized, so we manually add previous QAs
to check their effects and align with CoQA.

Model Bleu Loss F1,,
Origin

Baseline® - - 83.06
Bart 65.52 0.675 84.26
+preQA 68.67 0.625 85.32
Synth

Ours 36.92/64.37 4.579/0.636 62.57/84.35

+preQA 41.60/67.57 4.654/0.651 67.41/85.61

Table 6: Results on SQuAD dev set of different models.
Baseline is the result on SQuAD test set of an extrac-
tive BERT-base model by Google Al. In Synth, results
without and with merging are separated by "/".

Table 6 shows the results. We can see that the
QA series indeed enhances question answering. It
also indicates that even if our model is trained on
another dataset, its synthesized questions still help
a QA model gain 0.09 and 0.29 more F1,, points
on SQuAD, with and without previous QA pairs.
It shows that our consecutive questions performs
well when transferring to a different dataset, too.

Results with more unlabeled Data

To truly reveal the ability of our model, we em-
ploy it to synthesize more questions on a large
number of unlabeled passages. We randomly col-
lect 10000 Wikipedia passages whose numbers of
words are from 100 to 500. Then we use our model
trained on CoQA to generate questions on them,
with full strategies, resulting in about 0.15 million
QA pairs. We use the Wikipedia questions as data
augmentation, too, to evaluate their quality.

Tabel 7 shows the results. In both CoQA and
SQuAD datasets, with more Wikipedia questions,
we manage to further improve Fly, by 0.25 and
0.19 scores. Our model can augment the QA train-
ing sets with large-scale unlabeled data.

Shttps://rajpurkar.github.io/
SQuAD-explorer/

Data Bleu Loss F1,,
CoQQA

Ours 31.75/47.85 5.461/0.762 72.21/81.88
+Wiki  33.06/47.34 5.433/0.763 72.73/82.13
SQuAD

Ours 41.60/67.57 4.654/0.651 67.41/85.61
+Wiki  50.48/65.61 4.017/0.604 74.98/85.80

Table 7: Results with more Wikipedia Data. Results
without and with merging are separated by "/".

4.4 Experiments to Cover a Passage

To prove that our generated questions can really
cover most information in an entire passage, we
adopt our model on document-level NLI (DocNLI)
(Yin et al., 2021) task. Models are required to
predict the relation (entailment or not) between a
premise and a hypothesis. Traditionally, a model
predicts the relation in a sequence classification
way. However, given our ability to synthesize con-
secutive questions to explore a story, we propose
a novel zero-shot method to predict the relation
based on question generating and answering, us-
ing our model f trained on CoQA. In detail, we
(1) use @ to synthesize a series of () and A on the
hypothesis; (2) use € to answer () on the premise,
obtaining A’; (3) check the overlap (F1,,) between
A and A’. The more same answers in A and A’, the
more chance the relation is entailment.

We select the instances whose premise and hy-
pothesis are 200 to 1000 words from all train, dev,
and test set of DocNLI, to be our evaluation set. It
is a total of 1677 instances, and we averagely gen-
erate 15 turns of QA each instance with rationale
sampling. We calculate F1,, per instance and use
60 points of F1,, as the boundary of entailment.

Model Loss F1,, F1,;;
Baseline © - - 46.18
Finetune - - 48.56
Ours 2.375/3.348 66.07/51.21 49.88
-SBS 2.631/3.612 65.93/51.01 49.85
-RS 3.217/4.149 63.04/49.68 47.91

Table 8: Results of DocNLI task. Baseline is the
result on DocNLI dev set of an officially fine-tuned
Longformer-base. Finetune is a BERT-base model fine-
tuned on about 0.8 million other DocNLI instances dif-
ferent from our selected data. When using our zero-
shot method, QA results of entailment and not entail-
ment are separated by "/".
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Tabel 8 shows the results. Impressively, with-
out fine-tuning, our model using Fly, as the cri-
terion surpasses the fine-tuned BERT model by
1.32 points of Fl1,,;; score. Also, we can see
clearly that rational sampling and sentence-level
beam-search improve the result significantly by
1.97 Fl,,; scores and enlarge the discrimination
between entailment and not entailment greatly. It
suggests that our consecutive generation strategy
really produces question-answer pairs with high
coverage of a story, which can involve most of the
information in one passage.

4.5 Analyses

Accuracy and Diversity

Here we conduct two human evaluations, to prove
that our strategy improves question-answer accu-
racy and rationale dependency (factual diversity),
which are the effects of tasks a, ¢ and task ». We
randomly collect 10% stories from CoQA dev set
and use different methods to generate question-
answer pairs. We then manually measure whether
every question is correctly asked and answered
and whether the question-answer pair is derived
from their corresponding rationale.

Model Acc of QA pair Acc of rationale

Ours 93.58 96.15
-SBS 90.83 91.67
-Rerank 86.58 91.67

Table 9: Human evaluations of accuracy of QA and ra-
tionale.

Table 9 clearly shows that multitask reranking
strategy and sentence-level beam-search increase
the accuracy of QA by 7.00 % and rationale by
4.48 %. Thus, we can say that our strategy, espe-
cially tasks a, ¢ and task r, help our model gen-
erate questions more correctly and locate the ra-
tionale more precisely, leading to higher QA accu-
racy and factual diversity in a series of questions.

Informativeness

To evaluate the ability to utilize information in a
rationale, we present the repeat-pose experiment.
It is adapted from relay setting, and requires the
model to pose another question based on the same
rationale and same context as the original question.
In other words, the model has to "squeeze" more
information from the same rationale, so the key

Yin et al. (2021)

is whether task A can rank the informativeness of
each candidate precisely.

Model Bleu Loss F1,,
Bart relay w/o rerank  41.99 0.758 81.28
Bart repeat w/o rerank 43.67 0.757 81.37
Bart repeat w/ rerank  43.00 0.748 81.69

Table 10: Results of repeat-pose experiment. Synthetic
data are merged with the original training set.

Table 10 shows the results, which indicates
that repeat-pose indeed brings more information.
Moreover, the reranking strategy further improves
the F1,, scores by 0.32 points, demonstrating that
task h indeed helps select the more informative
question-answer pairs.

One-Step generation or Two-Step

As argued in the introduction, two-step generation
is inclined to inferior quality. To verify that, we
trained two sets of models in augmenting CoQA
with relay and auto+RS settings, without rerank-
ing, rationale sampling, or sentence-level beam-
search. The two-step model first generates an an-
swer given the rationale and context, and then gen-
erates a question based on the answer. Table 11
shows that directly one-step generation truly gains
better results than separately two-step generation.

Model Bleu Loss F1,,
One-step 40.99/43.53 0.788/0.806 81.40/81.09
Two-step 41.86/42.66 0.821/0.808 80.93/80.88

Table 11: Results of augmenting CoQA dataset without
reranking and sentence-level beam search strategy. Re-
sults of relay or auto+RS setting are separated by "/".

5 Conclusion

In this paper, we propose to generate consecutive
question-answer pairs to improve the quality of
questions and explore the information in a passage.
By joint training and reranking with four auxiliary
tasks, we help a model generate questions more
accurately, diversely, and informatively. During
consecutive generation, we sample the rationales
dynamically and search for the best results glob-
ally, helping the questions cover a story more en-
tirely. With extensive experiments, we prove that
our model is able to generate high-quality ques-
tions for various NLP tasks and has the power to
exploit large-scale unlabeled data.
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