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ABSTRACT

We present a distributed approach for constrained Multi Agent Reinforcement
Learning (MARL) which combines learning of policies with augmented state and
distributed coordination of dual variables through consensus. Our method addresses
a specific class of problems in which the agents have separable dynamics and local
observations, but need to collectively satisfy constraints on global resources. The
main technical contribution of the paper consists of the integration of constrained
single agent RL (with state augmentation) in a multi-agent environment, through
a distributed consensus over the Lagrange multipliers. This enables independent
training of policies while maintaining coordination during execution. Unlike other
centralized training with decentralized execution (CTDE) approaches that scale
sub optimally with the number of agents, our method achieves a linear scaling
both in training and execution by exploiting the separable structure of the problem.
Each agent trains an augmented policy with local estimates of the global dual
variables, and then coordinates through neighbor to neighbor communication on
an undirected graph to reach consensus on constraint satisfaction. We show that,
under mild connectivity assumptions, the agents obtain a bounded consensus error,
ensuring a collective near-optimal behaviour. Experiments on demand response in
smart grids show that our consensus mechanism is critical for feasibility: without it,
the agents postpone demand indefinitely despite meeting consumption constraints.

1 INTRODUCTION

In recent years, reinforcement learning (RL) has achieved significant success in solving diverse and
complex decision-making tasks (Brown & Sandholm, 2019; Orr & Dutta, 2023; Silver et al., 2017).
Many of these successes involve multiple agents and can be characterized as multi-agent RL (MARL).
Generally, MARL addresses a sequential problem where a set of autonomous agents make decisions
and interact in a shared environment to maximize a reward. However, MARL problems can quickly
become intractable as the number of agents increases, since the number of possible interactions and
the space of possible states can grow exponentially in the number of agents. Moreover, as all agents
navigate and learn simultaneously, the environment may become non-stationary, invalidating many
of the single-agent RL assumptions. In realistic scenarios, conflicting objectives often need to be
balanced to achieve satisfactory solutions. This issue is exacerbated when increasing the number of
autonomous agents, whose specific goals are not commonly aligned. Finding optimal strategies in
multi-agent systems (MAS) usually require at least some level of coordination and communication.

Our work addresses distributed systems where agents have separable dynamics but must coordinate
to satisfy global operational constraints. While this assumption is restrictive compared to general
MARL with coupled dynamics, it enables linear scaling in both training and execution, making our
approach practical for hundreds or thousands of agents. The setting remains genuinely multi-agent as
agents must coordinate through consensus to satisfy global constraints. This structure naturally arises
in infrastructure management (e.g., building thermostats, EV chargers) where local controllers make
independent decisions but must respect system-wide limits (e.g., power grid capacity). When agents
share the same MDP, we only need to train one policy for all agents, significantly reducing complexity.
The multi-agent coordination occurs through consensus on a dual variable during execution. Our
Constrained MARL (CMARL) framework has each agent maximize a primary reward while adhering
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to a global average constraint on a secondary reward, with the constraint acting as the coupling
mechanism.

Agents communicate only with immediate neighbors in the network, reflecting realistic constraints
where global broadcast is infeasible. Through local communication, agents share dual variables to
achieve consensus dynamically. Communication is essential to ensure that agents, while operating
independently, coordinate to satisfy the global constraint. We develop a novel CMARL algorithm
and validate it on smart grid management (Dileep, 2020), optimizing energy distribution while
satisfying operational constraints. Our experiments demonstrate scalability across different network
configurations with varying complexity and agent heterogeneity. The key contributions are:

1. A distributed CMARL algorithm ensuring consensus and constraint satisfaction over ex-
tended periods.

2. Scalable policy training through problem factorization based on state distributions.

3. Experimental validation on smart grid economic dispatch problems.

2 RELATED WORK

Constrained Reinforcement Learning. Our work builds upon CRL using Lagrangian multipliers
(Altman, 2021; Borkar, 2005) and state-augmentation (Calvo-Fullana et al., 2023). We distinguish
between safe RL that ensures per-step constraint satisfaction (Achiam & Amodei, 2019; Achiam
et al., 2017; Chow et al., 2019), including recent safe MARL methods (Lu et al., 2021; Zhang
et al., 2024), and average constraint satisfaction (ours) (Liang et al., 2018; Paternain et al., 2022).
While safe RL is crucial for safety-critical applications, average satisfaction is more appropriate for
resource management where temporary violations are acceptable if long-term consumption stays
within bounds.

Cooperative MARL Methods like QMIX (Rashid et al., 2018), MADDPG (Lowe et al., 2017), and
CTDE (Kraemer & Banerjee, 2016) scale poorly due to exponential growth in joint state-action spaces.
Our approach trains policies independently, coordinating only through dual variable consensus.

Constrained MARL. Centralized Lagrangian approaches (Ding et al., 2023) are powerful but
challenging to extend to CMARL (Agorio et al., 2024; Chen et al., 2024). Our approach combines
single-agent training with distributed consensus, inheriting single-agent scalability while addressing
global constraints.

Decentralized MARL. Recent work includes decentralized actor-critic (Chen et al., 2024) and
multi-agent PPO (Mai et al., 2024) for demand response, but these lack explicit constraint handling.
Independent learning like IPPO (Yu et al., 2022) scales well but ignores collective constraints. Our
method adds primal-dual consensus for constraint satisfaction.

Decentralized Constrained MARL. Lu et al. (2021) propose Safe Dec-PG for distributed CMDPs
where safety constraints involve all agents’ joint actions, requiring peer-to-peer communication to
coordinate. Zhang et al. (2024) develop Scal-MAPPO-L using local policy optimization with k-hop
policies to handle global coupling from safety constraints, though they acknowledge exponential
state-action space growth as a limitation. Importantly, both methods focus on "safety constraints"
requiring per-step satisfaction, appropriate for safety-critical applications but unnecessarily restrictive
for resource management where average satisfaction suffices. In contrast, we target average constraint
satisfaction rather than per-step safety, and assume separable dynamics to achieve linear scaling.
We also incorporate state-augmentation as in Calvo-Fullana et al. (2023) for immediate constraint
response. This makes our method suitable for large-scale infrastructure management where coupling
occurs through resource constraints rather than state interactions.

3 PROBLEM FORMULATION

Typically, CMARL is studied using the Markov Games framework (Littman, 1994), an extension
of game theory to environments where the dynamics can be modeled using a Markov Decision
Process (MDP). Markov games model interactions among multiple agents whose decisions influence
a shared environment. In our distributed constrained setting, the Markov game is defined by the tuple
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⟨N, {Si}Ni=1, {Ai}Ni=1, {P i}Ni=1, {ri0}Ni=1, {ri1}Ni=1⟩, where N is the number of agents, Si ⊂ Rm

and Ai ⊂ Rd are compact sets denoting the states and actions of agent i, with S := S1 × · · · × SN

and A := A1 × · · · × AN denoting the sets of joint states and actions. The joint state transition
probability is given by P : S × A → ∆(S), with each individual agent’s transition given by
P i : Si × Ai → ∆(Si), where ∆(S) is the probability simplex on S. We further denote by
ri0 : Si×Ai → R the reward function for the main objective of agent i, and by ri1 : Si×Ai → R the
reward function for the secondary objective subject to a constraint, with global counterparts defined
as r0 : S ×A → R and r1 : S ×A → R. At time t, given a joint state st = (s1t , . . . , s

N
t ) and action

at = (a1t , . . . , a
N
t ), the system transitions to a new state st+1 = (s1t+1, . . . , s

N
t+1) with probability

P (st+1|st, at). The Markov property ensures that the system dynamics only depend on the last state
and action, i.e. P (st+1|s0, a0, . . . , st, at) = P (st+1|st, at). We consider a scenario with conflicting
rewards, with r0 acting as the main objective and r1 as the secondary objective. Specifically, we aim
to maximize the long-term average rewards for r0(st, at), while ensuring that the long-term average
rewards for r1(st, at) exceeds a given threshold c.1 This constrained optimization problem can be
expressed as

maximize
π

lim
T→∞

1

T
Es,a∼π

[
T∑

t=0

r0(st, at)

]
(1a)

subject to lim
T→∞

1

T
Es,a∼π

[
T∑

t=0

r1(st, at)

]
≥ c. (1b)

This is a multi-agent centralized problem, which is often impractical due to its poor scalability. Specif-
ically, we are interested in problems that can be decomposed into distributed problems. Formally, we
consider scenarios satisfying the following assumptions.

Assumption 3.1 (Independent policies). Each agent i selects an action taking into account only its
own local state. Namely, π(at|st) =

∏N
n=1 π

n(ant |snt ).

Assumption 3.2 (Separable dynamics). The actions of one agent do not affect the states of others.
That is, state transitions are given by P (st+1|st, at) =

∏N
i=1 P

i(sit+1|sit, ait).

Assumption 3.3 (Summable rewards). The global reward can be decomposed as the sum of individual
rewards, i.e. r0(st, at) =

∑N
n=1 r

n
0 (s

i
t, a

i
t) and r1(st, at) =

∑N
n=1 r

n
1 (s

i
t, a

i
t).

Remark 3.4 (Scope and Limitations). Assumptions 3.1-3.3 significantly restrict the class of problems
we address. Under these assumptions, agents do not influence each other’s states or rewards directly,
which excludes many classical MARL scenarios like multi-robot coordination or competitive games.
However, these assumptions are satisfied in important real-world domains:

• Smart Grid Management: Buildings independently control their energy consumption but
share grid capacity constraints

• Distributed Computing: Processes independently execute but share memory/bandwidth
limits

• Traffic Flow Control: Vehicles follow independent routes but collectively impact road
utilization

For problems with coupled dynamics, methods like those of Lu et al. (2021) and Zhang et al. (2024)
are more appropriate, albeit at higher computational cost.

The first assumption allows each agent to operate based solely on local information, the second
assumption ensures that the interactions of the agents are structured in a non-interfering manner, and
the the third assumption ensures that global objectives can be achieved through local decisions. This

1For simplicity, we restrict ourselves to the single constraint case, though the results generalize to multiple
constraints.
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set of assumptions allows for the problem to be rewritten in the following form:

max
π1,...,πN

N∑
i=1

lim
T→∞

1

T
Esi,ai∼πi

[
T∑

t=0

ri0(s
i
t, a

i
t)

]
(2a)

s. t.

N∑
i=1

lim
T→∞

1

T
Esi,ai∼πi

[
T∑

t=0

ri1(s
i
t, a

i
t)

]
≥ c. (2b)

By defining value functions as the long-term average of each reward,

V i
j (π

i) ≜ lim
T→∞

1

T
Esi,ai∼πi

[
T∑

t=0

rij(s
i
t, a

i
t)

]
, (3)

we can then rewrite the maximization problem in (2) in the following more concise manner:

maximize
π1,...,πN

N∑
i=1

V i
0 (π

i) subject to

N∑
i=1

V i
1 (π

i) ≥ c. (4)

The resulting formulation now exhibits a certain degree of separability across agents, with each
agent maximizing its own policy with respect to its individual value function, while still being
coupled to the other agents through the global constraint. While the separable structure might
suggest independent single-agent solutions would suffice, the global constraint in (4) creates a critical
coordination challenge: without communication, agents cannot determine appropriate individual
contributions to satisfy the collective constraint. This necessitates our consensus mechanism to
coordinate the dual variables that encode constraint violation feedback.

4 METHODOLOGY

We begin by formulating the Lagrangian of the optimization problem in (4). This involves introducing
Lagrange multipliers to transform the constrained optimization problem into a form where the
constraints are incorporated into the objective function as penalty terms. Namely,

L(π, λ) =
N∑
i=1

V i
0 (π

i) + λ

(
N∑
i=1

V i
1 (π

i)− c

)
=

N∑
i=1

(
V i
0 (π

i) + λ
(
V i
1 (π

i)− c

N

))
, (5)

where λ ∈ R+ is the Lagrange multiplier (dual variable) for the inequality constraint. We rewrite the
Lagrangian as individual agent components to maintain distributed formulation. The dual problem
becomes

minimize
λ

[
N∑
i=1

max
πi

(
V i
0 (π

i) + λ
(
V i
1 (π

i)− c

N

))]
(6)

where summation and maximization are exchanged due to Assumptions 3.1 and 3.2. This decompo-
sition enables independent local optimization while satisfying the global constraint. The problem
exhibits strong duality (Paternain et al., 2019), so the optimal solution of (4) equals the saddle-point
of (6).
Remark 4.1 (Comparison with Standard Primal-Dual Methods). Standard distributed primal-dual
methods (Yarmoshik et al., 2024; Wang et al., 2024) require strongly convex objectives or extensive
message passing. Our approach differs by: (i) using state augmentation from single-agent CRL
(Calvo-Fullana et al., 2023) for non-convex policy optimization, and (ii) requiring only single-scalar
neighbor communication. Integrating standard consensus (Xiao & Boyd, 2003) with state-augmented
RL policies enables our scalability.

4.1 OFFLINE INDEPENDENT TRAINING

The primal step of (6) (policy learning) is distributable. For given λ, the problem decomposes across
agents. Defining weighted reward riλ(s

i
t, a

i
t) ≜ ri0(s

i
t, a

i
t) + λri1(s

i
t, a

i
t), the maximization becomes

{πi
⋆(λ)} = argmax

π1,...,πN

N∑
i=1

lim
T→∞

1

T
Esi,ai∼πi

[
T∑

t=0

riλ(s
i
t, a

i
t)

]
. (7)
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Each agent’s primal step follows standard unconstrained RL. However, standard dual methods can
fail to produce feasible policies for CRL (Calvo-Fullana et al., 2023). We thus learn state-augmented
policies πi(λ) in augmented space Si × R+ that maximize (5), instead of ordinary policies in Si.
Agents independently train these policies using any standard RL method. The trained policies handle
any constraint level c when coupled with our dual update mechanism.

4.2 ONLINE DUAL CONSENSUS

Determining λ remains challenging since gradient descent on (5) couples all agents. Consider agents
communicating over undirected graph G = (V,E), where V are vertices (agents) and E ⊂ N ×N
are edges. The neighborhood N i = {j ∈ V | (i, j) ∈ E} contains nodes directly connected to i. We
rewrite (6) in distributed dual consensus form:

minimize
λ1,...,λN

N∑
i=1

max
πi

(
V i
0 (π

i) + λi
(
V i
1 (π

i)− c

N

))
(8a)

subject to λi =
1

|Ni|
∑
n∈N i

λn, i = 1, . . . , N. (8b)

The solution to (8) equals that of (6). Each agent holds local copy λi, with neighborhood constraints
ensuring consensus. Using optimal policies from (7), we obtain

minimize
λ1,...,λN

N∑
i=1

[
V i
0

(
πi
⋆(λ

i)
)
+ λi

(
V i
1

(
πi
⋆(λ

i)
)
− c

N

)]
(9a)

subject to λi =
1

|Ni|
∑
n∈N i

λn, i = 1, . . . , N. (9b)

4.3 PRIMAL-CONSENSUS UPDATE

To solve (9), each agent i maintains λi and iteratively (i) performs local gradient updates for constraint
satisfaction and (ii) averages with neighbors’ variables. With gradient step size α > 0 and consensus
step size ϵ > 0, agent i updates:

λi
k+1 = λi

k − α∇λi

[
V i
0

(
πi
⋆(λ

i
k)
)
+ λi

k

(
V i
1

(
πi
⋆(λ

i
k)
)
− c

N

)]
− ϵ

(
λi
k − λ

i

k

)
, (10)

where λ
i

k =
∑

n∈Ni
λn
k/|Ni| is the neighbor average. The first term performs local gradient descent;

the second enforces consensus. These corrections drive all λi to converge, matching the solution of
(6).
Remark 4.2 (Relation to Centralized Dual). As agents optimize local λi while enforcing neighbor
consensus, {λi} converges to the same value as the global λ in (6). Thus, (10) provides fully
distributed solution without centralized coordination.

5 ALGORITHM

Each agent i optimizes its local policy by maximizing the Lagrangian given its current copy of the
dual variable λi. To ensure that the policy appropriately accounts for constraint satisfaction, we
augment each agent’s state space with the local multiplier λi. This augmentation yields a policy
πi
⋆(s

i
t, λ

i
t) that views λi as part of the state, so that standard reinforcement-learning (RL) algorithms

can be used to learn this policy.2

If we have an optimal policy for a given set of multipliers π⋆(s, λ), and we continuously update these
multipliers (via 10), then the state-action trajectories generated by each agent satisfy the constraints
in (2) (Calvo-Fullana et al., 2023, Theorem 1). Combining these ideas, we summarize the execution
in Algorithm 1.

2In practice, many RL methods—e.g., policy gradient, value-based methods—can be adapted to handle such
an augmented state.
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Theorem 5.1. Suppose the local value functions satisfy∥∥∥V i
1

(
πi
⋆(λ

i
k)
)
− 1

N

N∑
j=1

V j
1

(
πj
⋆(λ

j
k)
)∥∥∥ ≤ σ, (11)

and let wi = |N i|/
∑N

j=1 |N j |. Under mild conditions on the connectivity and step sizes, the
execution of Algorithm 1 results in a bounded consensus error:

lim
k→∞

∥∥∥λk+1 −
N∑
i=1

wi λi
k

∥∥∥ ≤ ρL

1− ρL
ασ, (12)

where ρ and L relate to the graph’s spectral properties and the number of communication steps per
iteration (or partial consensus steps).

Theorem 5.1 thus guarantees that all λi stay close to each other, ensuring the distributed solution
remains near the centralized optimum (and that the global constraints are met) even as policies are
updated locally. The proof of the theorem appears in Appendix B.1.

This result highlights the relationship between the number of consensus iterations, L , and the overall
consensus error in the execution of Algorithm 1. The bound in Theorem 5.1 decreases as L increases,
indicating that additional consensus steps reduce the discrepancy among agents’ multipliers. In
practice, a small ρ (which occurs in well connected graphs) accelerates convergence, allowing L
to remain small. For many real-world network structures, a single consensus iteration (L = 1) per
gradient step is sufficient to ensure that the discrepancy in λi remains below an acceptable threshold,
minimizing communication overhead while maintaining effective coordination.

For every fixed multiplier λ, the policy π⋆(λ) is defined as a maximizer of the inner problem
maxπ L(π, λ). By Danskin’s theorem, the gradient of this maximized objective with respect to λ
depends only on the partial derivative of L, evaluated at the maximizer. Hence, in the multiplier
update (Lines 6–8 of Algorithm 1) we treat π⋆ as constant without loss of correctness. This argument
is standard in Lagrangian-based constrained RL (see, e.g., Calvo-Fullana et al., 2023)

Algorithm 1 Distributed multiplier update with Separated Consensus and Gradient Steps

1: Input: Trained policies πi
⋆(λ), learning rates α, ϵ, requirement c, number of consensus steps L

2: Output: Trajectories satisfying the constraints
3: Initialize: Dual variables λi

0 = 0, µi
0 = 0 for i = 1, . . . , N

4: for k = 0, 1, . . . ,K − 1 do
5: Gradient Descent Step:
6: λi

k+ 1
2

=
[
λi
k − α

(
c
N − V i

1,k

)]
+

7: Initialize Consensus Variable:
8: λi

ℓ=0 = λi
k+ 1

2

9: for ℓ = 0, . . . ,L − 1 do
10: Consensus Update:
11: λi

ℓ+1 = λi
ℓ − ϵ

(
λi
ℓ − 1

|Ni|
∑

j∈Ni
λj
ℓ

)
12: end for
13: Update for Next Iteration:
14: λi

k+1 = λi
ℓ=L

15: end for

In practice, we perform only one consensus iteration per time step (L = 1).

6 USE CASE: SMART GRID MANAGEMENT

We apply our method to Demand Response (DR) in a district of buildings with solar energy and
battery storage. Our goal is to minimize energy costs for each building while avoiding critical grid
peaks through energy storage and load shifting. Each building’s agent observes the current demand,

6
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Agent 0

Agent 1

Agent 2

Agent 3

(a) Circular connections, one agent
with double demand

Agent 0

Agent 1

Agent 2

Agent 3

(b) Linear connections, one agent
with double demand

Agent 0
Agent 1

Agent 2

Agent 3

Agent 4

Agent 5
Agent 6

(c) Two clusters, two agents with
double demand

Figure 1: Different communication networks and agent demands.

battery charge, and grid price, then decides how to allocate energy between grid and battery sources.
The local objective is defined as ri0(s

i
t, a

i
t) = −egrid(s

i
t, a

i
t) pt, where egrid(s

i
t, a

i
t) is the building’s

grid consumption and pt is the energy price at time t. By maximizing ri0, agents minimize their grid
electricity spending while respecting global consumption constraints.

The secondary reward ri1(s
i
t, a

i
t) = egrid(s

i
t, a

i
t) with constraint

∑N
i=1 V

i
1 (π

i) ≤ c ensures that
average total grid usage stays below threshold c (a percentage of peak demand), maintaining grid
stability. Agents can postpone unmet demand for later, and batteries charge automatically from solar
generation. To ensure all demand is eventually met, we add a local constraint with reward

ri2(s
i
t, a

i
t) = dit − egrid(s

i
t, a

i
t)− ebat(s

i
t, a

i
t), (13)

where dit is the demand of agent i at time t and ebat(s
i
t, a

i
t) is the battery-delivered energy. Let V i

2 (π
i)

be the corresponding value function, defined as in (3). We then impose the local constraint

V i
2 (π

i) = 0,

which ensures that, in expectation, all of agent i’s demand is met over the long run. Since the
constraint is local, it only affects the optimization problem of agent i. The training of the policy
is performed following the state augmented procedure described in Section 4.1 and the updates of
the global constraint and the consensus multipliers are performed as shown in Algorithm 1. For the
handling of the local constraint we just add another term to the Lagrangian which only needs the
addition of the following update

νik+1 = νik − η
(
dik − egrid(s

i
k, a

i
k)− ebat(s

i
k, a

i
k)
)
, (14)

with step size η. Energy prices, demand, and solar generation data come from City Learn (Vazquez-
Canteli et al., 2020; Vázquez-Canteli et al., 2019).

7 EXPERIMENTAL RESULTS

We test our method3 on the network configurations in Figure 1, which vary in connectivity and
demand diversity. Less-connected networks challenge consensus, while heterogeneous demands
create problems that require coordination to solve. We focus on the configuration in Figure 1c: two
weakly connected groups where one agent in each has double the demand of others. Using PPO,
we train just two policies—one for normal demand, one for double demand—demonstrating the
efficiency of single-agent training with multi-agent execution. Individual Lagrange multipliers (λi)
enable coordination during execution, with consensus being critical for linking training to execution
and ensuring constraint satisfaction. Training uses 10,000 episodes of 80 timesteps each (about 3
days of demand), with multipliers sampled from λ ∈ [0, 15] and ν ∈ [−20, 20]. The dataset contains
3,000 hours of data with random episode starting points.

Experimental Scope. We focus on smart grid management as it naturally fits our structural assump-
tions while remaining complex enough to demonstrate consensus necessity. While broader evaluation
would strengthen our claims, our primary contribution is demonstrating that state augmentation with

3All experiments were carried out on a MacBook Pro M3 with 8 GB RAM.
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Figure 3: Cost and demand-satisfaction trajectories for the consensus study. The dashed horizontal
line in (b) marks zero unmet demand.

consensus enables unprecedented scalability, validated by scaling to 1000 agents (Figure A.2a), far
beyond CTDE capabilities.

We set the constraint c to 27% of peak demand (challenging yet feasible). Agents run for 3,000
timesteps with continuous multiplier updates (Algorithm 1). To demonstrate coordination importance,
we compare two variants: with consensus, agents exchange multipliers λi with neighbors and average
them (lines 8–13 in Algorithm 1); without consensus, agents only perform local gradient updates
without coordination. While both maintain grid consumption below the threshold (Figure 2a), the
no-consensus version achieves this by indefinitely postponing demand rather than finding a true
solution.
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Figure 2: Effect of consensus on grid consumption and unmet demand under different constraint
levels.

Testing four constraint levels c ∈ {0.2, 0.3, 0.4, 0.5}, we find that consensus achieves stable unmet
demand for feasible cases (c ≥ 0.3), with lower constraints allowing more grid usage as expected
(Figure 2b). At c = 0.2, even consensus cannot find a solution. Without consensus, the problem
becomes infeasible even for moderate constraints like c ∈ {0.3, 0.4} (Figure 3b). Crucially, at
our target c = 27%, the no-consensus version fails to solve the problem despite meeting grid
constraints—its multipliers never converge (Figure 4b), preventing optimal solution discovery.

The absence of consensus produces both higher operating cost (Figure 3a) and a continued growth
of deferred demand (Figure 3b). These complementary views underline the practical value of the
lightweight neighbour-to-neighbour communication adopted in Algorithm 1.

Figure 4a shows that exchanging the current λi with immediate neighbours causes convergence to
the same value, thereby satisfying the global grid-consumption constraint. Without this exchange
(Figure 4b) the two high-demand agents push their multipliers to the hard cap of 15, signalling that
dual ascent has saturated before a feasible primal solution was found.

Because our algorithm is explicitly designed for constrained optimization whereas most state-of-the-
art MARL methods are not, we ran a second experiment for which we searched for static penalty
weights that make the task solvable at all. We trained a grid of Independent PPO (IPPO) agents, one
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Figure 4: Evolution of the global multipliers λi for the first three agents during execution.

for every (λ, ν)∈ [0, 15] × [0, 28], yielding 414 models in total. Only eight pairs satisfy the 27 %
grid-consumption limit and prevent postponed demand from diverging; they are listed in Table 1 and
visualized in Figure A.1. In our comparisons, we provide the baselines with one of those pairs to
ensure a fair (if slightly biased in their favour) comparison. From the eight feasible pairs we selected
(λ⋆, ν⋆) = (8,−8) and re-trained four multi-agent baselines: MAPPO, MADDPG, MASAC, and
ISAC. Each baseline therefore ran with fixed penalty weights, whereas our method continued to adapt
the multipliers online. For every algorithm we executed 10 roll-outs and recorded (i) the trajectory
that came closest to satisfying the 27 % grid threshold and (ii) the mean total cost of this “best” run.
Figure A.3 (Appendix A) shows that only MAPPO and ISAC keep grid consumption near the limit,
while MASAC and MADDPG overshoot. Even these two “successful” baselines closely match the
operating cost of our decentralized multiplier-adaptive method, which in turn achieves 0 % infeasible
roll-outs across all seeds. Despite their hand-tuned advantage, the baselines still violate the grid
constraints, highlighting their sensitivity to the fixed choice (λ⋆, ν⋆). All four baselines rely on
centralized components; MAPPO, MASAC and ISAC use a joint critic, while MADDPG conditions
each critic on the full joint action.4 Consequently, their computational and memory costs explode as
the population grows, limiting practical use to a few dozen agents. Our method keeps both training
and execution fully decentralized, needs only one policy per agent type, and scales linearly in the
number of agents (see Figure A.2a), giving it a clear advantage for large systems.

8 CONCLUSION

We presented a distributed approach to constrained MARL that combines state-augmented policy
learning with consensus-based coordination. While our assumptions of separable dynamics and
summable rewards restrict applicability compared to general constrained MARL methods, they allow
a highly scalable solution for an important class of real world problems. Our key contributions are:
(i) extending single-agent state augmentation to multi-agent settings through distributed consensus,
(ii) proving convergence bounds for the consensus error, and (iii) demonstrating linear scaling to
thousands of agents.

4The policies may execute decentralized actions at test time, but training still scales at least quadratically
with the number of agents because the critics ingest the joint state–action tuple.
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A ADDITIONAL EXPERIMENTAL FIGURES

This appendix expands the results of Section 7 with the complete diagnostic curves, ablations, and
heat-maps that underpin the summary metrics shown in the main text. Unless stated otherwise, all
experiments rely on the network of n = 7 agents sketched in Figure 1c, where two agents have twice
the demand of the remaining five. We denote the global and local penalty multipliers by (λ, ν) to
match the notation used in Section 7.

A.1 GRID SEARCH OVER FIXED MULTIPLIERS
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(b) Derivative of postponed demand

Figure A.1: Performance of 414 IPPO agents trained with fixed (λ, ν) pairs. Cells left blank
correspond to diverging runs.

To benchmark our method we trained 414 independent PPO (IPPO) models, one for each point on
the grid (λ, ν) ∈ [0, 15]× [−20, 8]. Figure A.1 reports, for every run, the episode-end (a) mean grid
consumption and (b) absolute rate of change of cumulative postponed demand. A small derivative
indicates that demand has stabilized. Only the eight multiplier pairs in Table 1 achieve both low grid
consumption and vanishing postponed demand.

Table 1: Fixed multipliers (λ, ν) that yield stable behaviour in the IPPO grid search.

λ ν

6 −11
8 −8

11 −14
13 −15
13 −20
14 −19
15 −17
15 −18

Our algorithm, by contrast, identifies suitable multipliers automatically at execution time and main-
tains feasibility throughout deployment, thus avoiding expensive hyper-parameter sweeps.
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A.2 SCALABILITY STUDY
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(b) Multiplier convergence

Figure A.2: Scalability of the execution phase. (a) Wall-clock execution time versus agent count. (b)
Running mean of λi for systems of 10, 100, 500, and 1000 agents.

Figure A.2a confirms the linear execution-time scaling predicted by our decentralised design, while
Figure A.2b demonstrates that all agents converge to a common multiplier irrespective of population
size.

A.3 COMPARISON WITH OTHER MARL ALGORITHMS
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Figure A.3: Average performance of state-of-the-art MARL baselines. The grey dashed line marks
the grid-consumption constraint (27 % of peak demand).

Using one of the optimal multiplier pairs from Table 1 ((λ⋆, ν⋆) = (8,−8)), we also evaluated
MAPPO, MASAC, MADDPG, and ISAC. Only ISAC and MAPPO reduce grid consumption to
the desired level, yet both incur the same cost than our consensus-based method and provide no
scalability guarantees.
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B THEORETICAL ANALYSIS

B.1 CONVERGENCE OF THE CONSENSUS ALGORITHM

In this section, we provide a rigorous analysis of the convergence properties of the consensus
algorithm employed in our distributed optimization framework. The convergence properties of
consensus algorithms over networks are well-studied in the literature (Olfati-Saber & Murray,
2004; Olfati-Saber et al., 2007; Xiao & Boyd, 2003). Our analysis follows standard techniques in
distributed optimization and consensus algorithms, as well as properties of graph Laplacians and
their spectra (Chung, 1997). Specifically, we leverage results from spectral graph theory and matrix
analysis to establish the exponential convergence of our algorithm. We examine how the local dual
variables λi converge to a consensus value, ensuring coordination among agents while satisfying
global constraints.

B.1.1 CONSENSUS UPDATE RULE

The consensus update for agent i at iteration ℓ can be written in a standard form for consensus
algorithms:

λi
ℓ+1 = λi

ℓ − ϵ

λi
ℓ −

1

|N i|
∑
j∈N i

λj
ℓ

 ,

= λi
ℓ − ϵ

 1

|N i|
∑
j∈N i

(λi
ℓ − λj

ℓ)

 ,

= λi
ℓ − ϵ

∑
j∈N i

1

|N i|

(
λi
ℓ − λj

ℓ

)
. (B.1)

where ϵ > 0 is the consensus step size. This update rule adjusts each agent’s dual variable towards
the average of its neighbors’ dual variables.

B.1.2 MATRIX FORMULATION

We consider a communication network among the agents, given by an undirected graph G = (V,E),
where V is the set of vertices (agents) and E ⊂ V × V is the set of edges (communication links
between agents). The neighborhood of a node i ∈ V , denoted by N i, is the set of nodes that are
directly connected to node i by an edge; i.e., N i = {j ∈ V | (i, j) ∈ E}.

We aim to express the collective updates in matrix form to facilitate the convergence analysis. To do
this, we first define the necessary matrices and vectors.

Let λℓ = [λ1
ℓ , λ

2
ℓ , . . . , λ

N
ℓ ]T ∈ RN be the global vector of local dual variables at iteration ℓ, and let

1 ∈ RN be a vector of ones. We denote by A ∈ RN×N the adjacency matrix of the graph, where

A(i, j) =

{
1, if (i, j) ∈ E,

0, otherwise,
(B.2)

and by D ∈ RN×N the diagonal degree matrix with D(i, i) = |N i|. We define the (unnormalized)
graph Laplacian as L = D − A, and the random-walk normalized Laplacian as Lrw = D−1L =
I −D−1A.

Then the update of λℓ+1 in vector form is:

λℓ+1 = λℓ − ϵ
(
λℓ −D−1Aλℓ

)
,

= λℓ − ϵLrwλℓ,

= Pλℓ, (B.3)

where P = I − ϵLrw is the Perron matrix, and I is the identity matrix. The graph Laplacian Lrw

captures the connectivity of the communication network among agents.
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B.1.3 ASSUMPTIONS FOR CONVERGENCE

To analyze the convergence of the consensus algorithm, we make the following assumptions:
Assumption B.1 (Connected Graph). The communication graph G = (V,E) is undirected and
connected; that is, there exists a path between any pair of agents.
Assumption B.2 (Step Size). The consensus step size ϵ satisfies 0 < ϵ < 1, ensuring that P remains
a stochastic matrix with non-negative entries.

Assumption B.1 ensures that information can propagate through the network, which is necessary
for achieving global consensus. Assumption B.2 provides a bound on the step size to guarantee
convergence.

B.1.4 CONVERGENCE ANALYSIS

We analyze the convergence of the consensus algorithm by examining the properties of the Perron
matrix P .
Lemma B.3 (Properties of the Perron Matrix). Under Assumptions B.1 and B.2, the Perron matrix
P = I − ϵLrw satisfies the following properties:
(a) P is row-stochastic and irreducible.
(b) The eigenvalues of P are νi = 1− ϵΛi, where Λi are the eigenvalues of the Laplacian Lrw.
(c) All eigenvalues of P satisfy |νi| ≤ 1, the eigenvalue ν1 = 1 has algebraic multiplicity one, and all
other eigenvalues satisfy |νi| < 1.

Proof. (a) Row-Stochasticity and Irreducibility: The elements of P are given by

P (i, j) =


1− ϵ, if i = j,

ϵ
|N i| , if (i, j) ∈ E,

0, otherwise.

For each row i, the sum of the entries is

N∑
j=1

P (i, j) = P (i, i) +
∑
j∈N i

P (i, j)

= (1− ϵ) +
∑
j∈N i

ϵ

|N i|

= (1− ϵ) + ϵ · |N
i|

|N i|
= (1− ϵ) + ϵ = 1.

Thus, P is row-stochastic. Since the graph G is connected (Assumption B.1), and P is non-negative,
it follows that P is irreducible.

(b) Eigenvalues of P : Let Λi be the eigenvalues of Lrw with corresponding eigenvectors vi. Then,

Lrwvi = Λivi.

Therefore,
Pvi = (I − ϵLrw)vi = vi − ϵLrwvi = vi − ϵΛivi = (1− ϵΛi)vi.

Thus, the eigenvalues of P are νi = 1− ϵΛi.

(c) Eigenvalues within [−1, 1]: Since the random-walk Laplacian Lrw is similar to the symmetric
normalized Laplacian

Lsym = D− 1
2 LD− 1

2

via
Lsym = D

1
2 Lrw D− 1

2 ,

they share the same set of eigenvalues {Λi}.
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To see this more explicitly, let Λi and vi be an eigenvalue–eigenvector pair of Lsym, i.e.,

Lsym vi = Λi vi ⇐⇒
(
I − D− 1

2AD− 1
2
)
vi = Λi vi.

Pre-multiplying both sides by D− 1
2 gives(

D− 1
2 − D−1AD− 1

2
)
vi = Λi D

− 1
2 vi ⇐⇒

(
I − D−1A

)
D− 1

2 vi = Λi D
− 1

2 vi.

Recalling that Lrw = I −D−1A, it follows that

Lrw
(
D− 1

2 vi
)

= Λi

(
D− 1

2 vi
)
.

Hence, if (Λi, vi) is an eigenvalue–eigenvector pair of Lsym, then the same Λi and D− 1
2 vi form an

eigenvalue–eigenvector pair of Lrw. Therefore, both matrices share the same eigenvalues. We can
establish the following facts:

1. Real symmetry and positive semidefiniteness: The matrix Lsym is real symmetric (since
L is symmetric and D−1/2 is diagonal). Then, Lsym is diagonalizable, and its eigenvalues
are real. Standard results in spectral graph theory further show Lsym is positive semidefinite,
implying its eigenvalues are nonnegative (Chung, 1997; Godsil & Royle, 2001).

2. Eigenvalues in [0, 2]: From classical bounds on the spectrum of Lsym (e.g., using the
structure of the degree and adjacency matrices), one obtains

0 = Λ1 ≤ Λ2 ≤ · · · ≤ ΛN ≤ 2 (Horn & Johnson, 2012; Mohar et al., 1991).

The eigenvalues of Lrw also lie in [0, 2].

Because 0 ≤ Λi ≤ 2 and 0 < ϵ < 1, we have

|νi| = |1− ϵΛi| ≤ 1,

Since G is connected, the multiplicity of the zero eigenvalue of Lrw is one, so the eigenvalue ν1 = 1
of P has algebraic multiplicity one. Since there are no complex eigenvalues (Lsym is real and
symmetric), all other eigenvalues satisfy |νi| < 1 for i ≥ 2. Hence, all eigenvalues of P lie in [−1, 1].

This ensures that the spectral radius of P is ρ(P ) = 1, and the convergence of the consensus algorithm
is governed by the second-largest eigenvalue in magnitude, which is less than 1.

B.2 GLOBAL CONSENSUS ERROR

We analyze the convergence of the consensus algorithm by first establishing the value to which it
converges, and then proving the rate of convergence.

B.2.1 CONSENSUS VALUE

Lemma B.4 (Consensus Value). Under Assumption B.1, the consensus algorithm converges to a
weighted average of the initial dual variables. Specifically, for any initial vector λ0 ∈ RN ,

lim
ℓ→∞

λℓ = λ̂1,

where

λ̂ =

N∑
i=1

wiλi
0,

and the weights wi are given by

wi =
|N i|∑N
j=1 |N j |

.
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Proof. By the Perron-Frobenius theorem (Horn & Johnson, 2012), since P is a primitive nonnegative
matrix, it satisfies

lim
ℓ→∞

P ℓ = v1w
⊤
1 ,

where v1 = 1 is the right eigenvector corresponding to the eigenvalue 1, and w1 is the unique left
eigenvector satisfying w⊤

1 P = w⊤
1 with v⊤

1 w1 = 1.

The consensus iteration is given by
λℓ = P ℓλ0. (B.4)

Taking the limit as ℓ → ∞,

lim
ℓ→∞

λℓ = lim
ℓ→∞

P ℓλ0 = v1w
⊤
1 λ0 = 1(w⊤

1 λ0) = λ̂1.

This shows that all agents’ dual variables converge to the scalar λ̂, which is a weighted average of the
initial values.

To explicitly determine w1, consider the transition matrix P rw = D−1A, associated with the random
walk normalized Laplacian Lrw where A is the adjacency matrix and D is the degree matrix. For an
undirected graph, P rw satisfies the detailed balance condition (Levin et al., 2009):

wiP rw
ij = wjP rw

ji .

Substituting P rw(i, j) = A(i,j)
|N i| and P rw(j, i) = A(j,i)

|N j | , and since A(i, j) = A(j, i) for undirected
graphs, we obtain

wi

|N i|
=

wj

|N j |
= c,

wi = c|N i|

Since
∑N

i=1 w
i = 1, this implies that

c =
1∑N

i=1 |N i|
,

Therefore, the consensus value is

λ̂ =

N∑
i=1

wiλi
0 =

∑N
i=1 |N i|λi

0∑N
i=1 |N i|

,

which is the degree-weighted average of the initial dual variables.

B.2.2 CONVERGENCE RATE

We now establish the exponential convergence rate to the consensus value λ̂.

Theorem B.5 (Exponential Convergence to Consensus). Under Assumptions B.1 and B.2, the
consensus algorithm converges exponentially fast to λ̂1. Specifically, for any initial vector λ0 ∈ RN ,

∥λℓ − λ̂1∥ ≤ Cρℓ∥λ0 − λ̂1∥, (B.5)

where:

• ρ = maxi≥2 |νi| < 1 where νi are the eigenvalues of P.

• C = κ(V ) = ∥V ∥∥V −1∥ is the condition number of the eigenvector matrix V .

Proof. Define the error vector at iteration ℓ as:

eℓ = λℓ − λ̂1.

From Lemma B.4, we have limℓ→∞ eℓ = 0.
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The consensus update rule is:
λℓ+1 = Pλℓ,

which implies:
eℓ+1 = Peℓ.

Iterating this, we obtain:
eℓ = P ℓe0.

Since P is diagonalizable, we can express it as:

P = V ΓV −1,

where:

• V is the matrix of right eigenvectors of P .

• Γ = diag(ν1, ν2, . . . , νN ) contains the eigenvalues of P , with νi = 1− ϵΛi.

Substituting into the error expression:

eℓ = V ΓℓV −1e0. (B.6)

In the degree-weighted consensus setting, for eigenvalue 1, the matrix P has 1 as its right eigenvector,
while its left eigenvector is w1. By definition, the initial error is e0 = λ0 − λ̂1 (where λ̂ is the
weighted average), we then have

w⊤
1 e0 =

N∑
i=1

wi(λi
0 − λ̂) = 0.

Thus, e0 lies in the subspace orthogonal to w1. Since eℓ = P ℓe0 and w⊤
1 P = w⊤

1 , it follows that

w⊤
1 eℓ = w⊤

1 P
ℓe0 = w⊤

1 e0 = 0 for all ℓ.

Hence, the error remains in the subspace orthogonal to w1 at every iteration, allowing us to exclude
the dominant component in the consensus convergence analysis. Thus,

eℓ = VredΓ
ℓ
redV

−1
red e0,

where:

• Vred consists of eigenvectors corresponding to νi for i ≥ 2.

• Γred = diag(ν2, ν3, . . . , νN ).

To bound the norm of the error, we apply the sub-multiplicative property of matrix norms:

∥eℓ∥ ≤ ∥Vred∥∥Γℓ
red∥∥V −1

red ∥∥e0∥.

Since ∥Γℓ
red∥2 = ρℓ, where ρ = maxi≥2 |νi|, we have:

∥eℓ∥ ≤ ∥V ∥∥V −1∥ρℓ∥e0∥ = Cρℓ∥e0∥,

where C = κ(V ) = ∥V ∥∥V −1∥ is the condition number of V .

Since ρ < 1, the error decays exponentially:

∥eℓ∥ ≤ Cρℓ∥e0∥,

confirming that the consensus algorithm converges exponentially fast to λ̂1.
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B.2.3 BOUNDING THE GLOBAL CONSENSUS ERROR

We aim to bound the consensus error ek+1 = λk+1 − λ̂k+11, where λ̂k+1 is the weighted average of
λi
k+1.

Lemma B.6 (Consensus Error Recursion). Under Assumptions B.1 and B.2, the magnitude of the
consensus error satisfies the recursion

∥ek+1∥ ≤
∥∥PL

∥∥ ∥(ek + α∆V1,k)∥ , (B.7)

where ∆V1,k = V1,k − V̂1,k1 and V̂1,k =
∑N

i=1 |N i|V i
1,k∑N

i=1 |N i| .

Proof. From the gradient descent step,

λi
k+ 1

2
=
[
λi
k − α

( c

N
− V i

1,k

)]
+
.

The weighted average is

λ̂k+ 1
2
=

N∑
i=1

wiλi
k+ 1

2
.

=

N∑
i=1

wi
[
λi
k − α

( c

N
− V i

1,k

)]
+
.

Using the non-expansive property of the projection [·]+, we can write the magnitude of the error after
the gradient step as∥∥∥eik+ 1

2

∥∥∥ =
∥∥∥λi

k+ 1
2
− λ̂k+ 1

2

∥∥∥ (B.8)

=

∥∥∥∥∥[λi
k − α

( c

N
− V i

1,k

)]
+
−

N∑
i=1

wi
[
λi
k − α

( c

N
− V i

1,k

)]
+

∥∥∥∥∥ ,
≤

∥∥∥∥∥λi
k − α

( c

N
− V i

1,k

)
−

N∑
i=1

wi
(
λi
k − α

( c

N
− V i

1,k

))∥∥∥∥∥ ,
=
∥∥∥λi

k − α
( c

N
− V i

1,k

)
−
(
λ̂k − α

( c

N
− V̂1,k

))∥∥∥ ,
=
∥∥∥eik + α

(
V i
1,k − V̂1,k

)∥∥∥ . (B.9)

After the consensus update (B.4),

∥ek+1∥ ≤
∥∥PL

∥∥∥∥∥ek+ 1
2

∥∥∥ . (B.10)

since the consensus step only affects the error term through multiplication by P . Substituting (B.9)
into (B.10) and letting V i

1,k − V̂1,k = ∆V1,k, we obtain (B.7).

Theorem B.7 (Asymptotic Bound on Consensus Error). For the standard assumption of bounded
rewards, the constraint functions V i

1,k are bounded such that ∥∆V1,k∥ ≤ σ for some σ > 0. Then,
the consensus error satisfies

lim
k→∞

∥ek+1∥ ≤ ρLασ

1− ρL
.

where ρ = 1− ϵΛ2 as before.

Proof. Using Lemma B.6 and Theorem B.5, we have

∥ek+1∥ ≤ ∥PL ∥ (∥ek∥+ α∥∆V1,k∥)
≤ ρL ∥ek∥+ ρLασ, (B.11)
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since ∥PL ∥ = ρL in the subspace orthogonal to 1.

Unrolling the recursion:

∥ek+1∥ ≤ ρL ∥ek∥+ ρασ

≤ ρ2L ∥ek−1∥+ ρ2Lασ + ρLασ

≤ . . .

≤ ρL (k+1)∥e0∥+ ρLασ

k∑
t=0

ρtL

= ρL (k+1)∥e0∥+ ρLασ

(
1− ρL (k+1)

1− ρL

)
.

Taking the limit as k → ∞, we obtain

lim
k→∞

∥ek+1∥ ≤ ρLασ

1− ρL
.
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