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Abstract

We present FlowRL, a novel framework for online reinforcement learning that
integrates flow-based policy representation with Wasserstein-2-regularized opti-
mization. We argue that in addition to training signals, enhancing the expressive-
ness of the policy class is crucial for the performance gains in RL. Flow-based
generative models offer such potential, excelling at capturing complex, multimodal
action distributions. However, their direct application in online RL is challenging
due to a fundamental objective mismatch: standard flow training optimizes for
static data imitation, while RL requires value-based policy optimization through a
dynamic buffer, leading to difficult optimization landscapes. FlowRL first models
policies via a state-dependent velocity field, generating actions through determinis-
tic ODE integration from noise. We derive a constrained policy search objective
that jointly maximizes Q through the flow policy while bounding the Wasserstein-2
distance to a behavior-optimal policy implicitly derived from the replay buffer.
This formulation effectively aligns the flow optimization with the RL objective,
enabling efficient and value-aware policy learning despite the complexity of the pol-
icy class. Empirical evaluations on DMControl and Humanoidbench demonstrate
that FlowRL achieves competitive performance in online reinforcement learning
benchmarks.We have released our code here.

1 Introduction

Recent advances in iterative generative models,

particularly Diffusion Models (DM) [16.38] and & L . Z
Flow Matching (FM) [23} 24, 41]], have demon- f w = £
strated remarkable success in capturing complex 5 £ p
multimodal distributions. These models excel in & g 8
tasks such as high-resolution image synthesis [7], 2 B E £
robotic imitation learning [6,2]], and protein struc- ’ prCessmle  Humnniboen  Dhchend i e e

ture prediction [18} 3], owing to their expressivity
and ability to model stochasticity. A promising yet
underexplored application lies in leveraging their
multimodal generation capabilities to enhance re-
inforcement learning (RL) policies, particularly
in environments with highly stochastic or multi-
modal dynamics.

Figure 1: (left) Normalized scores comparing
FlowRL and DM-based RL (QVPO) on 12 chal-
lenging DMC-hard and HumanoidBench tasks,
and 3 DMC-easy & middle tasks. (right) Compu-
tational efficiency on the Dogrun task: 1M-step
training time and single env step inference time.
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Traditional RL frameworks alternate between Q-function estimation and policy updates [39], often
parameterizing policies as Gaussian [[13] or deterministic policies [37, [12] to maximize expected
returns. However, directly employing diffusion or flow-based models as policies introduces a
fundamental challenge: the misalignment between RL objectives, which aim to optimize value-aware
distributions, and generative modeling, which imitates static data distributions. This discrepancy
becomes exacerbated in online RL, where nonstationary data distributions and evolving Q-value
estimates lead to unstable training [[12]].

While recent methods have pioneered the use of diffusion model (DM)-based policies in online
reinforcement learning [45, |8, 143], these approaches still suffer from high computational cost and
inefficient sample usage (see Section [Z). By contrast, flow-based models (FMs), despite their ability
to represent complex and multimodal policies, have yet to be effectively integrated into online RL
frameworks.

Our method distinguishes itself by leveraging carefully selected replay buffer data as a reference
distribution to align flow-based policies with high-value behaviors while preserving multimodality.
Inspired by prior works such as SIL [28] and OBAC [26]], which utilised behaviour policies to
guide policy optimization but limit policy expressivity to capture diverse behaviors, we propose a
unified framework that integrates flow-based action generation with Wasserstein-2-regularized [10]
distribution matching. Specifically, our policy extraction objective simultaneously maximizes Q-
values through flow-based actor and minimizes distribution distance from high-reward trajectories
identified in the replay buffer. By reformulating this dual objective as a guided flow-matching loss, we
enable the policy to adaptively imitate empirically optimal behaviors while exploring novel actions
that maximize future returns. Besides, this approach retains the simplicity of standard actor-critic
architectures, without requiring lengthy iterative sampling steps or auxiliary inference tricks [[19,
8l—yet fully exploits the multimodality of flow models to discover diverse, high-performing policies.
We evaluate our approach on challenging DMControl [40] and HumanoidBench [36], demonstrating
competitive performance against state-of-the-art baselines. Notably, our framework achieves one-step
policy inference, significantly reducing computational overhead and training instability caused by
backpropagation through time (BPTT) [43,31]. Experimental results highlight both the empirical
effectiveness of our method and its practical advantages in scalability and efficiency, establishing a
robust pathway for integrating expressive generative models into online RL.

2 Related Work

In this section, we provide a comprehensive survey of existing policy extraction paradigms based
on iterative generative models based policy, with a particular focus on recent advances that leverage
diffusion and flow-based models in offline or online reinforcement learning. We categorize these
approaches according to their underlying policy optimization objective and highlight their respective
advantages and limitations.

Generalized Behavior Cloning Generalized Behavior Cloning, often akin to weighted behavioral
cloning or weighted regression [33}32], trains policies by imitating high-reward trajectories from a
replay buffer, weighted by advantage or value estimates, thereby avoiding BPTT. Previous methods
like EDP [19], QGPO [25], QVPO [8]], and QIPO [46] implemented these paradigms, enhancing
computational efficiency by bypassing BPTT. However, as demonstrated in prior research, this
approach has been empirically shown to be inefficient [30, 31]], and often leads to suboptimal
performance.

Reverse process as policy parametrizations These methods use reparameterized policy gradients,
computing gradients of the Q-function with respect to policy parameters directly through the genera-
tive model’s reverse sampling process, similar to the reparameterization trick commonly employed
in Gaussian-based policies [13]]. Previous methods, such as DQL [44]], DiffCPS [15]], Consistency-
AC [9], and DACER [43]], backpropagate gradients through the reverse diffusion process, which,
while flexible, incurs significant computational costs due to iterative denoising and backpropagation
through time (BPTT) [30]. These factors limit the scalability of such algorithms to more complex
environments. To address this, FQL [31]] distills a one-step policy from a flow-matching policy,
reducing computational cost, but requires careful hyperparameter tuning.



Other Approaches. Beyond above methods, alternative methods include action gradients [45} 34],
hybrid Markov Decision Processes (MDPs) [35] , rejection sampling [4] or combinations of above
strategies [27].

The distinction between these methods underscores an inherent trade-off between computational
simplicity and the efficiency of policy extraction. Generalized Behavior Cloning emphasizes ease
of implementation, often at the expense of policy extraction efficiency. In contrast, reparameterized
policy gradients facilitate direct policy updates but incur increased complexity. These observations
highlight the necessity for further research to achieve a better balance between expressivity and
scalability when applying iterative generative models to reinforcement learning.

3 Preliminaries

3.1 Reinforcement Learning

Consider the Markov Decision Process (MDPs) [1]] defined by a 5-tuple M = (S, A, P, r,v), where
S € R™ and A € R™ represent the continuous state and action spaces, P(s’|s,a) : S x A — A(S)
denotes the dynamics distribution of the MDPs, r(s,a) : S x A — A(R) is a reward function,
v € [0,1) gives the discounted factor for future rewards. The goal of RL is to find a policy
m(als) : & — A(A) that maximizes the cumulative discounted reward:

thr(st,at)l : (1
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In this paper, we focus on the online off-policy RL setting, where the agent interacts with the en-
vironment and collects new data into a replay buffer D < D U {(s,a, s’,r)}. The replay buffer
consequently maintains a distribution over trajectories induced by a mixture of historical behav-
ior policies m3. At the k-th iteration step, the online learning policy is denoted as 7y, with its
corresponding () value function defined by:

Qﬂ—k (Sa Cl) = Eﬂ'k,P
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and it can be derived by minimizing the TD error [39]:

arg1min B, o.rwp |(Q7(5.0) = TQ™ (s.))°]

where T Q™ (s,a) = r(5,0) + 7 Eynp(fou, armm (1) Q7 (5, 0')]
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Similarly, we distinguish the following key elements:

* Optimal policy and Q-function: The optimal policy 7* maximizes the expected cumulative
reward, and the associated Q-function Q* (s, a) characterizes the highest achievable return.

* Behavior policy and replay buffer: The behavior policy 73 is responsible for generating the data
stored in the replay buffer [22] 26]. Its Q-function, Q™4 (s, a), reflects the expected return when
following 7g. Notably, D is closely tied to the distribution of g, such that actions sampled from
D are supported by those sampled from g (i.e., a € D = a ~ 7).

* Behavior-optimal policy: Among all behavior policies present in the buffer, we define mg- as the
one that achieves the highest expected return, with Q-function Q™#* (s, a).

These definitions yield the following relationship, which holds for any state-action pair:
Q" (s,a) 2 Q™" (s,a) =2 Q™ (s, a). 4)

This relationship suggests that, although direct access to the optimal policy is typically infeasible, the
value of the optimal behavior policy constitutes a theoretical lower bound [28]] on the performance
that can be achieved by policies derived from the replay buffer.



3.2 Flow Models

Continuous Normalizing Flows (CNF) [5] model the time-varying probability paths by defining
a transformation between an initial distribution py and a target data distribution p; [23} 24]. This
transformation is parameterized by a flow v, (x) governed by a learned time-dependent vector field
ve(z) [, following the ordinary differential equation (ODE):

d
%wt(l’) = Ut(¢t(l‘))7 )

and the continuity equation [42]:

d
%pt(ac) + V- [pi(x)vs(2)] =0, Vo e R™L (©6)

Flow Matching. Flow matching provides a theoretically grounded framework for training
continuous-time generative models through deterministic ordinary differential equations (ODEs).
Unlike diffusion models that rely on stochastic dynamics governed by stochastic differential equa-
tions (SDEs) [38]], flow matching operates via a deterministic vector field, enabling simpler training
objectives and more efficient sampling trajectories. The core objective is to learn a neural velocity
field vp : [0, 1] x RY — R? that approximates a predefined conditional target velocity field u(¢, z|z1).

Given a source distribution ¢(x°) and target distribution p(z!), the training process involves mini-
mizing the conditional flow matching objective [23|:

Lemi(0) = E o)) ||ve(t,2?) — u(t,at[Y)|]3, (7

z'~p, 20~g

where the linear interpolation path is defined as 2! = tx! + (1 — ¢)2° with u(t, 2*|2') = 2 — 2°.

This formulation induces a probability flow governed by the ODE:

o ~velta), 2~ @®)

which transports samples from ¢ to p.

4 Method

In this section, we detail the design of our method. We first parameterize the policy as a flow model,
where actions are generated by integrating a learned velocity field over time. For policy improvement,
we model policy learning as a constrained policy search that maximizes expected returns while bound-
ing the distance to an optimal behavior policy. Practically, we circumvent intractable distribution
matching and optimal behavior policy by aligning velocity fields with elite historical actions through
regularization and implicit guidance, enabling efficient constraint enforcement.

4.1 Flow Model based Policy Representation.

We parameterize mg with vy (t, s, a?), a state-action-time dependent velocity field, as an actor for
reinforcement learning. The policy 7y can be derived by solving ODE (8] :

1
mo(s,a’) = a® + / vg(t, s, a’)dt, )
0

where a® ~ N(0, I?). The superscript ¢ denotes the continuous time variable in the flow-based ODE
process to distinguish it from discrete Markovian time steps in reinforcement learning. (For brevity,
the terminal condition at ¢ = 1 is omitted in the notation.) The Flow Model derives a deterministic
velocity field vg from an ordinary differential equation (ODE). However, when a° is sampled from a
random distribution, the model effectively functions as a stochastic actor, exhibiting diverse behaviors
across sampling instances. This diversity in generated trajectories inherently promotes enhanced
exploration in online reinforcement learning.

Recall the definition in Section [3.1} Following the notation of 75 and 7s-, we can define the
corresponding velocity fields as follows:



Let vg be the velocity field induced by the behavior policy mg, such that:

vg(s,a) = a—a’.

where s5,a ~ D, and a’ ~ N(0, I?).

Similarly, let vg~ denote the velocity field induced by the behavior-optimal policy 7g«:

vg-(s,a) = a — a°.

where a ~ g+, and a® ~ N(0, I?).

4.2 Optimal-Behavior Constrained Policy Search with Flow Models

Building on the discussion in Section[3.1} where the optimal behavior policy is established as a lower
bound for the optimal policy, we proceed to optimize the following objective under a constrained
policy search setting:
0" = argmax Egor, [Q™(s,0a)],
b (10)
s.t. D (mg,mp+) <e.

Here, D(my, mp~) denotes a distance metric between the current policy and the optimal behavior
policy distributions.

The objective is to maximize the expected reward E,..r, [Q7 (s, a)] while constraining the learned
policy 7y to remain within an e-neighborhood of the optimal behavior policy 73+, i.e., D(mg, mg+) < €.
This formulation utilizes the Q-function, a widely used and effective approach for policy extraction,
while ensuring fidelity to the optimal behavior policy.

Despite its theoretical appeal, this optimization paradigm exhibits two inherent limitations:

* Challenges in computing distributional distances: For flow-based models, computing policy
densities at arbitrary samples is computationally expensive, which limits the practicality of distance
metrics such as the KL divergence for sample-based estimation and policy regularization.

* Inaccessibility of the optimal behavior policy mg-: The replay buffer contains trajectories from
a mixture of policies, making it difficult to directly sample from g+ or to reliably estimate its
associated velocity field, thereby complicating the computation of related quantities in practice.

4.3 A Tractable Surrogate Objective
To overcome the aforementioned challenges, we propose the following solutions:

» Wasserstein Distance as Policy Constraints: We introduce a policy regularization method based
on the alignment of velocity fields. This approach bounds the Wasserstein distance between policies
by characterizing their induced dynamic transport processes, thereby imposing direct empirical
constraints on the evolution of policies without requiring density estimation.

* Implicit Guidance for Optimal Behaviors: Instead of explicitly constraining the policy to match
the inaccessible g+, we leverage implicit guidance from past best-performing behaviors in the
buffer, enabling efficient revisiting of arbitrary samples and encouraging the policy to remain within
a high-quality region of the action space.

In particular, we adopt the squared Wasserstein-2 distance for its convexity with respect to the
policy distribution and ease of implementation. This metric is also well-suited for measuring the
velocity field between policies and enables efficient sample-based regularization within the flow-based
modeling framework. In general, we can define the Wasserstein-2 Distance [42] as follows :

Definition 4.1 (Wasserstein-2 Distance) Given two probability measures p and ¢ on R”, the
squared Wasserstein-2 distance between p and ¢ is defined as:

W2(p.q) = inf / @,y — ylPdedy, ()
YEI(p,q) JR? xR™

where I1(p, q) denotes the joint distributions of p and ¢, v on R” x R™ with marginals p and q.
Specifically, we derive a tractable upper bound for the Wasserstein-2 distance (proof in [A.T)):



Theorem 4.1 (W-2 Bound for Flow Matching) Let vy and vg- be two velocity fields inducing
time-evolving distributions 7f (a|s) and 7}. (als), respectively. Assume v is Lipschitz continuous

in a with constant L. a’ = ta + (1 — t)a®. Then, the squared Wasserstein-2 distance between 7y and
mg+ att = 1 satisfies:

1
W3 (mg,mp+) < eZL/ Eommge [va(s,at,t) — Ug~
0

2} dt. (12)

By explicitly constraining the Wasserstein-2 distance, the model enforces proximity between the
current policy and the optimal policy stored in the buffer. This objective is inherently consistent
with the generative modeling goal of minimizing distributional divergence. The regularization
mechanism benefits from the representational expressiveness of flow-based models in capturing
diverse, high-performing action distributions while systematically restricting policy updates.

However, while the upper bound of Wasserstein-2 distance above is theoretically tractable, sampling
directly from mg- or evaluating its velocity field remains a computational barrier in practice. To
circumvent this limitation, we introduce an implicit guidance (I3) mechanism through the Q™5
which is more readily estimable:

]Ea'~7r9,t ~U(0,1) |:f (Qﬂ'ﬁ* (57a) - Qﬂ-g (S,CL/)) ||U9(37at7t) - (0, - a0)||2:| ) (13)

s,a~D
f o< max (Q™" —Q™,0). (14)

The constraint incorporates a non-negative weighting function, as defined in Eq. (T4), thereby
establishing an adaptive regularization mechanism. A positive value of f signifies that the behavioral
policy achieves superior performance relative to the current policy; under these circumstances, the
constraint adaptively regularizes the current policy towards the optimal behavioral policy.

The implicit form of the constraints in Eq. enables efficient utilization of arbitrary samples from
the replay buffer, thus improving sample efficiency. Moreover, by relaxing the strict constraint on the
Wasserstein-2 distance, the modified objective enhances computational efficiency. Notwithstanding
this relaxation, policy improvement guarantees remain valid, as demonstrated in the following
theorem (proof in Appendix [A.2)):
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Figure 2: Illustration of Theorem 4.2 on a bandit toy example: (left) behavior data in the replay buffer;
(middle) implicit value-guided flow matching steers the policy toward the high-performance behavior
policy(mg-), heatmap shows Q™ — Q™#*, white lines indicate transport paths; (right) standard flow
matching leads to dispersed sampling with high variance under limited flow steps.

Theorem 4.2 (Weighted CFM) Let 7 (a|s) be the current policy induced by velocity field vy, ,
and f, a non-negative weighting function with f o Q™" — Q™. Minimizing the objective (13)
yields an improved policy distribution:

(s, a)mp-(als)

O (15)

T (als) =

where Z(s) = [, f - mi(als) da is the normalization factor.



Figure [23] shows that, as guaranteed by Theorem 4.2, flow matching with guidance can steer the
policy toward the 7g-, even without direct sampling from it. For details of the toy example settings,

see Appendix [B.4]

4.4 A Practical Implementation

Building on the theoretical developments above, we now present a practical implementation of
FlowRL, as detailed in Algorithm|[I]

Policy Evaluation Recall the constraint in Eq. @I), which necessitates the evaluation of both the
current policy value function Q™ and the optimal behavioral policy value function Q™5*. The value
function Q™ is estimated using standard Bellman residual minimization, as described in Eq. (3. For
Q75" , leveraging the definition of 73, we similarly adopt the following objective:

arg min K, 4, o)op [(Q”ﬁ* (s,a) — T8 Qe (s, a))z} , (16)
Q?\'B* [aakhen]
T Q" (5,a) = r(s,a) + YEynp [max Q™ (s',0')| )

To circumvent the difficulties of directly evaluating the max operator, we leverage techniques from
offline reinforcement learning to estimate (Q"#*. Among these approaches, we adopt expectile
regression [20] due to its simplicity and compatibility with unmodified data pipelines. Specifically,
the value function V™#* and the action-value function )"4* are estimated by solving the following
optimization problems:

arg \I/I’lflﬁe E(s,a)ND [Lg (Qﬂﬁ* (Sv a) — Ve (S))] ) (18)
arg min B, o o r)np [(r 49V () = Q7 (s,0))°] (19)
Q”r *

where L3 (x) = |7 — 1(z < 0)|2? denotes the expectile regression loss and 7 is the expectile factor.

Policy Extraction Accordingly, the policy extraction problem for flow-based models can be
formulated as the following constrained optimization:

0" = arg max Esnp, ammy [@™ (5, a)] (20)

st. Eganpaimm, | f QT — Q™) ||vg(s, a’,t) — (a — ao)‘ﬂ <e 1)

Although a closed-form solution can be derived using the Lagrangian multiplier and KKT conditions,
it is generally intractable to apply in practice due to the unknown partition function [32, [33} [26]].
Therefore, we adopt a Lagrangian form, leading to the following objective:

L(0) = Es,anp,arnm[Q7 (s,0') =X [ F(Q7 = Q™)[lvg — (a =) —¢ []. (22
———
exploration exploitation

Where A is the Lagrangian multiplier, which is often set as a constant in practice L1, 21]].

Objective (22) can be interpreted as comprising two key components: (1) maximization of the
learned Q-function, which encourages the agent to explore unknown regions and facilitates policy
improvement; and (2) a policy distribution regularization term, which enforces alignment with optimal
behavior policies and thereby promotes the exploitation of high-quality actions.

Conceptual similarities exist between our method and both self-imitation learning [28] and tandem
learning [29}[17]. Self-imitation learning focuses on exploiting high-reward behaviors by encouraging
the policy to revisit successful past experiences, typically requiring complete trajectories and modifi-
cations to the data pipeline. In contrast, our method operates directly on individual samples from
the buffer, enabling more flexible and efficient sample utilization. Tandem learning, by comparison,
decomposes the learning process into active and passive agents to facilitate knowledge transfer, with
a primary emphasis on value learning, whereas our approach is centered on policy extraction.



Algorithm 1 Flow RL

Require: Critic ™, critic Q”E, value V”E, flow model vy, replay buffer D = (), weighting function

1: repeat

2 for each environment step do

3: a~my(als), rs ~ P(s]s,a)

4: D+ DU{(s,a,s,1r)}

5 end for

6 for each gradient step do

7 Estimate value for 7y : Update Q™ by (3),
8: Estimate value for 75~ : Update Q™#* by (I9), update V™5~ by (I8)
9: Update vy by 22))

10: end for

11: until reach the max environment steps

5 Experiments

To comprehensively evaluate the effectiveness and generality of FlowRL, we conduct experiments
on a diverse set of challenging tasks from DMControl [40] and HumanoidBench [36]. These
benchmarks encompass high-dimensional locomotion and human-like robot (Unitree H1) control
tasks. Our evaluation aims to answer the following key questions:

1. How does FlowRL compare to previous online RL algorithms and existing diffusion-based online
algorithms?

2. Can the algorithm still demonstrate strong performance in the absence of any explicit exploration
mechanism?

3. How does the constraint affect the performance?

We compare FlowRL against two categories of baselines to ensure comprehensive evaluation: (1)
Model-free RL: We consider three representative policy parameterizations: deterministic policies
(TD3 [12]]), Gaussian policies (SAC [13]]), and diffusion-based policies (QVPO [8]], the previous
state-of-the-art for diffusion-based online RL). (2) Model-based RL: TD-MPC2 [14]], a strong model-
based method on these benchmarks, is included for reference only, as it is not directly comparable to
model-free methods.

5.1 Results and Analysis

The main results are summarized in Figure 3] which shows the learning curves across tasks. FlowRL
consistently outperforms or matches the model-free baselines on the majority of tasks, demonstrating
strong generalization and robustness, especially in challenging high-dimensional (e.g., the DMC dog
domain, where s € R?23 and a € R3®) and complex control settings (e.g., Unitree H1). Compared
to strong model-based baselines, FlowRL achieves comparable results but is much more efficient
in terms of wall-clock time. Notably, both during the training and evaluation stage, we use flow
steps N = 1, and do not employ any sampling-based action selection used in [8,[19]. Despite the
absence of any explicit exploration mechanism, FlowRL demonstrates strong results, which can be
attributed to both the inherent stochasticity and exploratory capacity of the flow-based actor and the
effective exploitation of advantageous actions identified by the policy constraint. These findings
indicate that, while exploration facilitates the discovery of high-reward actions, the exploitation of
previously identified advantageous behaviors is equally essential.

5.2 Ablation Studies

One of the central designs in FlowRL is the introduction of a policy constraint mechanism. This
design aims to guide the policy towards optimal behavior by adaptively weighting the constraint based
on the relative advantage of the optimal behavioral policy over the current policy. To rigorously assess
the necessity and effectiveness of this component, we address Q3 by conducting ablation studies
in which the policy constraint is omitted from FlowRL. Experimental results in Figure [4alindicate
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Figure 3: Main results. We provide performance comparisons for tasks (first column: DMC-
easy/middle; second and third columns: DMC-hard; fourth and fifth columns: HumanoidBench).
For comprehensive results, please refer to Appendix D] All model-free algorithms (FlowRL, SAC,
QVPO, TD3) are evaluated with 5 random seeds, while the model-based algorithm (TD-MPC2) uses
3 seeds. Note that direct comparison between model-free methods and the model-based TD-MPC?2 is
not strictly fair; TD-MPC2 is included just as a reference.

that the presence of the policy constraint leads to improvements in performance and, by constraining
the current policy towards the optimal behavioral policy, enhances sample efficiency. These benefits
are especially pronounced in environments with complex dynamics (e.g., H1 control tasks from
HumanoidBench), highlighting the importance of adaptive policy regularization in challenging task
settings.

dognin 1000 —_n1-walkvO0 D =
Wihout Constraint = Without Constrant Flow steps = 5
w— Flow steps = 10
750 750 750
£ £ c
% 500 2 500 % 500
4 & o«
250 / 250 250
0 0= 0
0 0.5M 1M 0 05M 1M 15M 2M 0 0.5M 1M
steps steps steps

(a) Effect of the constraint: FlowRL with theconstraint achieves higher (b) Sensitivity to flow steps: The
returns compared to the variant without the constraint. number of flow steps has a limited
. . . effect on FlowRL performance.
Figure 4: Ablation studies

We also investigate the sensitivity of the algorithm to different choices of the number of flow steps
(N=1,5,10). Experimental results in Figure b demonstrate that varying the number of flow steps
has only a limited impact on the overall performance. Specifically, using a smaller number of
flow steps does not substantially affect the final policy performance. On the other hand, increasing
the number of flow steps results in longer backpropagation through time (BPTT) chains, which
significantly increases computational complexity and training time. These findings suggest that
FlowRL is robust to the choice of flow step and that single-step inference is generally sufficient
for achieving stable and efficient learning in practice.We attribute this robustness to the learned
Q-function acting as an implicit consistency signal (23): by assigning higher value estimates to
desirable actions, the Q-function steers disparate sampling trajectories toward common high-value
endpoints, so variation in integration schedule has limited impact on realized behavior. From the
flow-matching perspective, the objective in Eq. (23) can thus be interpreted as comprising two
complementary terms: a weighted CFM term, and a max-Q term that functions as an intrinsic,
path-wise consistency constraint. Unlike the diffusion/flow-matching objectives used in generative
modeling—where few-step sampling typically relies on auxiliary explicit consistency constructs (e.g.,
path-agreement constraints, distillation, or velocity averaging),the max-Q objective in reinforcement



learning naturally provides a form of self-consistency that aligns sampling paths toward high-return
actions, obviating the need for additional consistency supervision.

L(0) = Esanp,armm [Q7 (5,0") =X | F(Q™" —Q™)[vg — (a =[P = |].  (23)
N——
Consistency Weighted CFM

6 Conclusion

We introduces FlowRL, a practical framework that integrates flow-based generative models into online
reinforcement learning through Wasserstein-2 distance constrained policy search. By parameterizing
policies as state-dependent velocity fields, FlowRL leverages the expressivity of flow models to
model action distributions. To align policy updates with value maximization, we propose an implicit
guidance mechanism that regularizes the learned policy using high-performing actions from the
replay buffer. This approach avoids explicit density estimation and reduces iterative sampling steps,
achieving stable training and improved sample efficiency. Empirical results demonstrate that FlowRL
achieves competitive performance.
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A Proofs in the Main Text

RL objective:

mp = argmax@Q™®

Ty constraint policy search

Y

mg = argmazrQ™

s.t. W22 Cﬂ'g,ﬂ}}) <e

Upper bound for W-2 distance

Y

w9 = argmaxrQ™

s.t. |lvg—vg|® <e

Implicit guide

w9 = argmaxQ™

s.t. f (Q”E — Q’”’) Hvo —(a — aO)H2 <e

Lagrange form

Euvrys-0lQ7(5,0)] — Esan A (£(@7F = @) v — (a — a”)||?)]

Figure 5: Theoretical sketch of FlowRL

Here, we present a sketch of theoretical analyses in Figure [5] We model the policy learning as a
constrained policy search that maximizes expected returns while bounding the distance to an optimal
behavior policy. To avoid sampling from 75, we employ guided flow matching, which allows the
constraint to utilize arbitrary data from the buffer. Finally, we solve the problem using Lagrangian
relaxation.

A.1 Proof for Theorem 4.1

Before the proof, we first introduce the following lemma [10]:

Lemma 1 :Let ¢ (z0) and ¢} (z0) be the two different flow maps induced by v! and v} starting
from 22, and assume vé are Lipschitz continuous in z with constant L. Define their difference as
Ay (z%) = Pt (2°) — 4L (x1). (For notational consistency, we denote the time variable as a superscript.)
Then the difference satisfies the following inequality:

2 Aulwo) < ok (2) — (0 Ol + Ll (o)l
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By rewriting equivalently, we have:

DA (@) = o4 (6 (%)) — (04 (2)) + (¥4 (2)) — vh (1))

dt
3o (t) % (t)

Since v§ is Lipschitz continuous in = with constant L, we have:

lv3(z) = w3 ()l < Lllz —yll

By Lipschitz continuity,

165 (D] < LI Ap(2?)]|
Then,

HAt <8 (®) + L A(2)]

This concludes the proof of the inequality satisfied by the difference of the two flow maps.

Let vp and vg- be two velocity fields that induce time-evolving distributions 7j (als) and 7. (als),

respectively((we omit the superscript ¢ = 1 for policy distributions, i.e., mp(als) = w}(als)).).
Assume vg- is Lipschitz continuous with constant L. Then, define f(t) = ||A;(xo)||, by Lemma
1,we have:

d

—f(t) < (16, ()] + Lf (),
where 0, (t) = vg(t, ¢ (s,a")) — vg«. Then, we have,

d e Lt
A Cr0) =t LG

Then we can get (by simply intergrating from O to t both side and multiplying e~%%):

e It - te_Lm »(m)||ldm.
f() - 1(0) < / 16, (m)ld

The initial policy distribution a® ~ p(a®) is shared between the two velocity fields, so f(0) = 0.
Therefore,

t
F(t) < e / e~ T, (m) | dn.
0
Att =1,

1
1) < et / e~ lug (5, (s, a®), m)

By taking the expectation and using Jensen’s inequality:
1
Bl /(1] < ¢ [ By llun(s.a,0) = o[l
0

And use the definition of the Wasserstein-2 distance:

Wi(mgmse) = inf / el

YEIl(mg,mgx)

where II(mg, mg~) denotes the set of all couplings between 7y and 7g~. Construct the following
coupling ~ and define:

* ag = Py(xo),
* ag. =p.(z0).
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By definition, the coupling ~ is defined via the joint distribution of (a ~ g, a ~ mg+) induced by
ag ~ po- So, for any coupling ~,

Wimma) < [ - ylPdrten).
Rn™xR™
With the constructed coupling substituted, we have
/]R ol = ylPdy(z,y) = Eao [[lvg(a”) — 5. (a°)[%] = Eao[f(1)?].
nR7

Recall that the flow-based policy models transport the initial distribution po(a®) to the final policy
distributions 7y and 7g+ at t = 1. The squared Wasserstein-2 distance between 7y and 7+ can be
bounded as

W3 (7o, ms+) < Eqo[f(1)7]. (24)
Thus,

1
W22(779’ 775*) < 82L/ Ea~‘n’§[”1}9(8’ at) — Upx (Saa)”Q]dS (25)
0

A.2 Proof for Theorem 4.2

The weighted loss can be written as:
twl®)= [ o) [ flsa) mulals) fuu(s.a'st) - (a - a®)dads
s~D s,a~D

where p(s) is the state distribution in replay buffer, a® ~ N (0, %), t ~ U(0,1), a’ = ta+ (1 —t)a®.

Assuming the weighted policy distribution is:

fsa)mlals)  ere Z(s):/ f(s,a) m(als) da.

s a'ls) =
k+1( | ) Z(S) s,a~D

Substituting above 7511 (a’|s) into the loss function, we have:
Lw®) = [ p0)206) [ mnla]s) fon(s.atst) - (@ o) dads
s~D s,a~D

The expectation form:
Lw(0) = Ego, amme1(als) [2(5) [va(s,a",t) = (a = a”))]] .
The gradient of Ly () is:
VoLw(0) = Esup, ammyii(als) [Z(s) Vollve(s,a,t) — (a — ao))||] .

Z(s) does not depend on 6, that means, minimizing L (#) is equivalent to minimizing the expected
loss under the new distribution 711 (a|s), provided that our assumption holds.

B Hyperparameters and Experiment Settings

In this section, we provide comprehensive details regarding the implementation of FlowRL, the
baseline algorithms, and the experimental environments. All experiments are conducted on a single
NVIDIA H100 GPU and an Intel(R) Platinum 8480C CPU, with two tasks running in parallel on the
GPU.

B.1 Hyperparameters
The hyperparameters used in our experiments are summarized in Table [I| For the choice of the
weighting function, we use f(z) = I(z) - exp(z), where I(z) is the indicator function, i.e.,
1, ifz>0
I(x) =4
() {O, otherwise

For numerical stability, the ) function is normalized by subtracting its mean exclusively during the
computation of the weighting function.
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Table 1: Hyperparameters

Hyperparameter Value
Optimizer Adam
Critic learning rate 3x 107
Actor learning rate 3x 107
Discount factor 0.99
Batchsize 256

H t

yperparameters Replay buffer size 1 x 10°

Expectile factor 7 0.9
Lagrangian multiplier A 0.1
Flow steps N 1
ODE Slover Midpoint Euler
Network hidden dim 512

Value network Network hidden layers 3
Network activation function mish
Network hidden dim 512

Policy network Network hidden layers 2
Network activation function elu

B.2 Baselines

In our experiments, we have implemented SAC, TD3, QVPO and TD-MPC2 using their original
code bases and slightly tuned them to match our evaluation protocol to ensure a fair and consistent
comparison.

* For SAC [13], we utilized the open-source PyTorch implementation, available at https://githubl
com/pranz24/pytorch-soft-actor-critic,

» TD3 [[12] was integrated into our experiments through its official codebase, accessible at https!
//github.com/sfujim/TD3,

* QVPO [8] was integrated into our experiments through its official codebase, accessible at https:
//https://github.com/wadx2019/qvpo.

* TD-MPC2 [14] was employed with its official implementation from https://github.com/
nicklashansen/tdmpc2 and used their official results.

Figure 6: Task domain visualizations
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B.3 Environment Details

We validate our algorithm on the DMControl [40] and HumanoidBench [36]], including the most
challenging high-dimensional and Unitree H1 humanoid robot control tasks. On DMControl, tasks
are categorized into DMC easy & middle (walker and quadruped domains), and DMC hard (dog and
humanoid domains). On HumanoidBench, we focus on tasks that do not require dexterous hands.

Task State dim Action dim
Walker Run 24 6
Walker Stand 24 6
Quadruped Walk 78 12
Humanoid Run 67 24
Humanoid Walk 67 24
Dog Run 223 38
Dog Trot 223 38
Dog Stand 223 38
Dog Walk 223 38

Table 2: Task dimensions for DM Control.

Task Observation dim Action dim
H1 Balance Hard 77 19
H1 Balance Simple 64 19
H1 Crawl 51 19
H1 Maze 51 19
H1 Reach 57 19
H1 Sit Hard 64 19

Table 3: Task dimensions for HumanoidBench.

B.4 Toy Example Setup

We consider a 2D toy example as follows. The behavior policy is a Gaussian mixture model with 10
components, each with mean

pr = (10 cos(27k/10), 10sin(27k/10)), k=0,1,...,9,

and covariance I. The initial distribution is a Gaussian A/((0,0), I). Q™ — Q™ is defined as
— ||z — (0, 8.66)* — 3,

and f(xz) = I(z) - z. Flow steps N = 5.

C Limitation and Future Work

In this work, we propose a flow-based reinforcement learning framework that leverages the behavior-
optimal policy as a constraint. Although competitive performance is achieved even without explicit
exploration, investigating efficient adaptive exploration mechanisms remains a promising direction
for future research.

D More Experimental Results
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Figure 7: Experimental results are reported on 12 tasks drawn from HumanoidBench and DMC-hard,
3 tasks from DMC-easy & middle.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.
Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the paper discusses its limitations in the appendix. Although compet-
itive performance is achieved without explicit exploration mechanisms, the exploration
regularization mechanism remains an important direction for future work.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, the paper provides the full set of assumptions and complete proofs for all
theorems in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper fully discloses all information needed to reproduce the main
experimental results. Pseudocode is provided in the main text, and all experimental settings,
hyperparameters, and baseline details are included in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the code will be made available after the open-source approval process is
completed.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: Yes, all hyperparameters and experimental setup details necessary to under-
stand the results are provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, for all model-free algorithms, five random seeds are used, and for model-
based algorithm, three random seeds are used. All results are presented as mean + standard
deviation.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the appendix provides detailed information about the specific computa-
tional devices used for the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We make sure the code was anonymous
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the appendix discusses both potential positive societal impacts and
limitations of the work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all sources of data and code are properly credited in the appendix, with
licenses and terms of use clearly indicated.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:|[NA]

Justification:
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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