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Abstract

We study the Continuous-Discrete Kalman Filter
(CD-KF) for State-Space Models (SSMs) where
continuous-time dynamics are observed via multi-
ple sensors with discrete, irregularly timed mea-
surements. Our focus extends to scenarios in
which the measurement process is coupled with
the states of an auxiliary SSM. For instance,
higher measurement rates may increase energy
consumption or heat generation, while a sensor’s
accuracy can depend on its own spatial trajec-
tory or that of the measured target. Each sensor
thus carries distinct costs and constraints asso-
ciated with its measurement rate and additional
constraints and costs on the auxiliary state. We
model measurement occurrences as independent
Poisson processes with sensor-specific rates and
derive an upper bound on the mean posterior co-
variance matrix of the CD-KF along the mean
auxiliary state. The bound is continuously differ-
entiable with respect to the measurement rates,
which enables efficient gradient-based optimiza-
tion. Exploiting this bound, we propose a finite-
horizon optimal control framework to optimize
measurement rates and auxiliary-state dynam-
ics jointly. We further introduce a deterministic
method for scheduling measurement times from
the optimized rates. Empirical results in state-
space filtering and dynamic temporal Gaussian
process regression demonstrate that our approach
achieves improved trade-offs between resource
usage and estimation accuracy.
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1. Introduction
State-space models (SSMs) are fundamental tools for ad-
dressing sequential inference challenges in time-series fore-
casting, signal processing, and dynamic systems. A core
task in SSMs is Bayesian filtering, which aims to com-
pute the posterior distribution of latent states online given
noisy observations. For linear systems driven by indepen-
dently and identically distributed process noise with known
dynamics, the Kalman filter (KF) is the optimal linear fil-
ter in mean squared error (Kalman, 1960). In the case of
nonlinear dynamics, approximate inference methods such
as the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF) are commonly used (Simon, 2006;
Särkkä & Svensson, 2023). In this paper, we focus on the
Continuous-Discrete Kalman Filter (CD-KF) setup, where
continuous-time state evolution is observed via multiple
sensors with discrete, and possibly irregularly timed, mea-
surements. This choice is motivated by the fact that many
real-world processes (e.g., blood pressure, ocean tempera-
ture, or radiation levels) evolve continuously but are only
observed intermittently due to hardware constraints and op-
erational considerations. Such formulation is especially
relevant when selecting from multiple sensors operating un-
der distinct costs, conditions, and constraints. Moreover, the
measurement process is often coupled to auxiliary dynamics
such as a sensor’s temperature, spatial position, or stored
energy, which affect measurement cost and quality. For
example, consider a low-orbit satellite observing terrestrial
phenomena (e.g., ocean temperature) using sensors whose
accuracy depends on the satellite’s orbital position. The
satellite has two types of sensors: high-resolution sensors
that are accurate during daylight periods, and radar-based
sensors that are always available, but are energy-intensive
and less accurate. Another example is a glucose monitoring
setup where a diabetic patient tracks blood glucose via three
different types of sensors: a continuous glucose monitor
that provides noisy but frequently sampled measurements,
intermittent finger-prick tests that offer higher accuracy but
cause patient discomfort, and very accurate but infrequent
and costly clinical blood tests. In these examples, the sen-
sors differ not only in accuracy but also in their relation to
auxiliary quantities such as energy consumption, monetary
costs, and human discomfort. This means that adopting
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a naive strategy of uniform high-rate sampling for all the
sensors is undesirable and practically infeasible. Instead,
measurement decisions must be scheduled to balance be-
tween minimizing the uncertainty in what they are measur-
ing while simultaneously accounting for their interaction
with dynamically changing auxiliary variables.

In the literature, most existing works do not consider the
continuous-discrete setup. Additionally, scheduling mea-
surements while simultaneously considering their interac-
tion with an auxiliary state has not been explored directly in
the literature. In this paper, we address this gap by formaliz-
ing the problem of optimal sensor scheduling for continuous-
discrete SSMs with auxiliary dynamics and proposing an
optimization scheme to solve it. Specifically, we model the
arrival of the measurements from each sensor as a Poisson
process with a time-varying rate. We then formulate an op-
timization problem that is continuously differentiable with
respect to the measurement rates of each sensor and other
relevant decision variables affecting the auxiliary dynamics
(e.g, the trajectory of a vehicle carrying a sensor). Finally,
we provide a deterministic strategy to select the measure-
ment time instances for each sensor based on the optimized
measurement rate for that sensor. Our contributions in this
paper are summarized as follows:

1. We derive an upper bound on the mean posterior co-
variance matrix of the CD-KF conditioned on the mean
auxiliary state. This bound is continuously differen-
tiable with respect to the sensor-specific measurement
rates, which enables efficient gradient-based optimiza-
tion.

2. We propose the setup of a finite-horizon optimal control
framework to jointly optimize measurement rates and
other inputs that are relevant to the auxiliary dynamics.

3. We propose a deterministic method for obtaining mea-
surement time events from the optimized rates. The
method is based on minimizing the Wasserstein dis-
tance between the distribution of measurement events
generated by the optimized Poisson rates and an empir-
ical distribution determined by the expected number of
measurements for each sensor.

2. Related Works
Sensor Scheduling and Selection in Kalman Filtering:
The problem of optimizing sensor usage in Kalman filtering
has been studied across diverse settings. Early work by (Ny
et al., 2009) addressed continuous-time sensor management
for Linear Time-Invariant (LTI) systems but assumed con-
tinuous measurements, a restrictive assumption for practical
systems with discrete, asynchronous sensor observations.
Subsequent studies focused on discrete-time formulations:

(Orihuela et al., 2014) developed periodic scheduling poli-
cies for discrete LTI systems, while (Marelli et al., 2019)
introduced stochastic scheduling strategies under resource
constraints. Optimal control perspectives have also been
explored, such as the infinite-horizon formulation in (Zhao
et al., 2014) and the finite-horizon networked control frame-
work in (Ayan et al., 2020), which incorporated auxiliary
network dynamics but retained a discrete-time LTI assump-
tion. These works do not address the continuous-discrete
setting with irregular measurements, nor do they consider
the coupling between sensor scheduling and general aux-
iliary state dynamics (e.g., sensor’s spatial trajectory and
the available stored energy). Our work generalizes these ap-
proaches by unifying continuous-time state evolution with
stochastic measurement scheduling via Poisson processes
and integrating auxiliary state dynamics into the framework.

Active Sensing: Active sensing encompasses both sensor
scheduling and trajectory optimization to maximize infor-
mation gain. Recent advances leverage deep learning for
sequential decision-making, for example, (Yoon et al., 2018)
used recurrent neural networks to dynamically select med-
ical tests based on patient history, while (Qin et al., 2024)
proposed controlled neural ordinary differential equations
to determine optimal measurement intervals in continuous-
discrete settings. However, these methods focus on dis-
crete classification tasks (e.g., disease diagnosis) rather
than Bayesian state estimation. Recent work by (Napoli-
tano et al., 2024) optimized for informative trajectories for
Gaussian process (GP) regression in a model learning setup.
However, these approaches do not consider the challenge
of sensor scheduling and selection with general auxiliary
state dynamics interacting with the sensor (e.g., the sensor’s
temperature affects its accuracy).

Bayesian Optimization: Bayesian Optimization (BO) has
been widely adopted for optimizing expensive black-box
functions, particularly in experimental design (Snoek et al.,
2012). Classical BO methods rely on acquisition functions
like Expected Improvement (Jones et al., 1998) or Upper
Confidence Bound (Srinivas et al., 2012) to balance explo-
ration and exploitation. Recent extensions integrate BO with
reinforcement learning for sequential decision-making un-
der uncertainty (Ling et al., 2016). BO has also been used to
design experiments with mutual information in (Kleinegesse
& Gutmann, 2020). These methods do not exploit known
system dynamics or state-space structures. In contrast, our
work leverages the analytic properties of the CD-KF to
derive differentiable bounds on the estimation error (mean-
squared error), which enables gradient-based optimization
of measurement policies. Additionally, these approaches do
not account for the influence of auxiliary dynamics on the
measurements and their costs and constraints. Our formula-
tion generalizes these settings by unifying continuous-time
dynamics, stochastic measurement scheduling, and auxiliary
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state constraints within a single optimal control framework.

To the best of our knowledge, the framework of scheduling
sensors and measurements in a CD-KF setup with auxiliary
dynamics has not been explored before. This work proposes
this framework and presents some results on efficiently solv-
ing a class of this problem.

3. Notation
We denote by Sn≥0 (Sn>0) the cones of positive semi-definite
(positive definite) n × n matrices. The Loewner order on
Sn≥0 (Sn>0) is written as A ⪯ B (A ≺ B), while element-
wise inequalities are written as ≤e, <e,≥e, and >e. We
write In for the n × n identity matrix, and tr(M) for the
trace of a matrix M . The Dirac measure at ti is denoted δti .
The indicator function 1A : X → {0, 1} is defined by

1A(x) :=

{
1, x ∈ A,

0, x /∈ A.

4. Background: Bayesian Filtering for SSMs
A (continuous-discrete stochastic) SSM is governed by:

dx = A(t)xdt+ σ(t)dW, x0 ∼ N (µ0,Σ0), (1a)
y(ti) = C(ti)x(ti) + v(ti), v(ti) ∼ N (0, R(ti)), (1b)

where x ∈ Rn is the state, dW ∈ Rm is a Wiener process,
A(t) ∈ Rn×n and σ(t) ∈ Rn×m define the drift and diffu-
sion matrices, y(ti) ∈ Rq is a discrete-time measurement
at time ti (here, i indexes the measurement occasions, so ti
denotes the i-th observation time), v(ti) is the measurement
noise v(ti) ∼ N (0, R(ti)) with R(ti) ∈ Sq>0 (independent
and identically distributed), and C(ti) ∈ Rq×n is the output
matrix.

For time instants t1 < t2 < · · · < ti, The Bayesian fil-
tering problem involves sequentially obtaining p(x(ti) |
y(t1), . . . , y(ti)). For linear-Gaussian SSMs, the CD-KF
provides exact closed-form solutions for both the filtering
density p(x(ti) | y(t1), . . . , y(ti)) and the prediction den-
sity p(x(t) | y(t1), . . . , y(ti)) for t > ti (Jazwinski, 2013).
Given a Gaussian prior x(0) ∼ N (µ0,Σ0) with µ0 ∈ Rn

and Σ0 ∈ Sn>0, the CD-KF follows the following steps:

Prediction (t ∈ [ti−1, ti)):

dµ

dt
= A(t)µ, (2a)

dΣ

dt
= A(t)Σ + ΣA⊤(t) + σ(t)σ⊤(t), (2b)

Update (at measurement ti):

µ(ti) = µ(t−i ) +K(Σ(t−i ), ti)
(
y(ti)− C(ti)µ(t

−
i )
)
,

(3a)

Σ(ti) =
(
In −K(Σ(t−i ), ti)C(ti)

)
Σ(t−i ), (3b)

where

K(Σ(t−i ), ti) :=

Σ(t−i )C
⊤(ti)

(
C(ti)Σ(t

−
i )C

⊤(ti) +R(ti)
)−1

, (4)

is the Kalman gain. Let N(t) be the total number of mea-
surements up until time t, then the equation for the covari-
ance Σ in the CD-KF can be written compactly as

dΣ

dt
= A(t)Σ + ΣA⊤(t) + σ(t)σ⊤(t)

−K(Σ, t)C(t)Σ

N(t)∑
i=1

δti , (5)

where δti is the dirac delta measure at ti.

5. The Problem Setup
We consider a multi-sensor setup in which, at each mea-
surement time, a sensor s ∈ {1, . . . , S} can be selected
from S available sensors. Additionally, we introduce an
auxiliary state ξ ∈ Rnξ (e.g., representing the position of a
vehicle and its energy storage), governed by the following
dynamics:

dξp
dt

= fp(ξ, u, t) +

S∑
s=1

gs(ξ, u, t)

Ns(t)∑
i=1

δtsi , (6a)

dξu
dt

= fu(ξu, u, t), (6b)

where ξ = [ξu ξp]
⊤. Here, ξp ∈ Rnp denotes the ”per-

turbed” part of ξ affected by measurements, while ξu ∈
Rnξ−np represents the unperturbed part. The input sig-
nal u ∈ Rmξ (e.g., the velocity of a vehicle) influences
the dynamics, and Ns(t) represents the total number of
measurements up to time t for sensor s with tsi being the
i-th measurement instant for that sensor. Note that the dif-
ferential equation for ξu depends only on ξu. Therefore,
given an initial condition ξu(0) = ξu0 and an input trajctory
u(t) ∈ Rmξ , then we can solve for ξu(t) independantly
from the measurement times. The functions fp, g1, . . . , gS
and fu are assumed to be Lipschitz continuous in ξ, u, and
t.

Decomposing the auxiliary state into ξp and ξu is general
and does not impose restrictions. For instance, if all of ξ
is perturbed by measurements, then ξ = ξp; conversely,
if none of ξ is perturbed, then ξ = ξu. This division be-
comes crucial later when analyzing the covariance structure
of the KF. Often, such decomposition arises naturally. For
example, ξu may represent the kinematics or dynamics of a
vehicle, which are typically independent of measurements,
while ξp might correspond to the stored energy of the vehi-
cle, which depends on position and velocity (e.g., locations
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for recharging or energy consumption rates at different ter-
rains). Additionally, the stored energy can decrease with
each measurement, and the consumed energy by each mea-
surement event for sensor s ∈ {1, . . . , S} is characterized
by gs.

We now extend the SSM in (1a) to incorporate the auxiliary
state ξ:

dx = A(ξ, t)x dt+ σ(ξ, t) dW, x0 ∼ N (µ0,Σ0), (7a)
ys(ti) = Cs(ξ(ti), ti)x(ti) + vs(ξ(ti), ti), (7b)

where ys(ti) is the measurement taken by sensor s at time
ti, Cs is the corresponding output matrix with the measure-
ment noise being vs(ξ(ti), ti) ∼ N (0, Rs(ξ(ti), ti)). Here,
we also assume that A, σ,C1, . . . , CS and R1, . . . , RS are
Lipshitz continuous in ξ and t.

Our goal in this paper is to jointly optimize the measurement
times for each sensor and the input u within the context of a
CD-KF.

In this paper, we will consider the following assumption for
the dynamics of the auxiliary variables in (6).

Assumption 5.1. The functions fp and gs(ξ, u, t) are con-
cave (convex) for all s ∈ {1, . . . , S} with respect to ξp (in
the elementwise or product order sense).

This concavity (convexity) assumption is essential for deriv-
ing upper (lower) bounds that lead to a tractable optimiza-
tion problem for the state ξp. Importantly, it encompasses a
broad class of systems, including all affine systems of the
form α(ξu, u, t)ξp + β(ξu, u, t), which satisfy this assump-
tion.

6. The Kalman Filter with Randomized
Measurements

We now describe the randomized KF framework that forms
the foundation for computing optimal measurement rates.
Specifically, we model the arrival of measurements from
each sensor s ∈ {1, . . . , S} as a Poisson processNs(t) with
time-dependent intensity λs(t). The composite measure-
ment count is N(t) =

∑S
s=1Ns(t), and the randomized

covariance matrix evolution for the CD-KF then becomes:

dΣ =
(
A(ξ, t)Σ + ΣA⊤(ξ, t) + σ(ξ, t)σ⊤(ξ, t)

)
dt

−
S∑

s=1

Ks(Σ, ξ, t)Cs(ξ, t)Σ dNs,
(8)

where the Kalman gain Ks(Σ, ξ, t) is given by:

Ks(Σ, ξ, t) :=

ΣC⊤
s (ξ, t)

(
Cs(ξ, t)ΣC

⊤
s (ξ, t) +Rs(ξ, t)

)−1
.

Similarly, the perturbed part of the auxiliary state becomes

dξp = fp(ξ, u, t) dt+

S∑
s=1

gs(ξ, u, t) dNs. (9)

We now state the following two propositions, which enable
us to formulate a deterministic optimization problem in the
rates λ1, . . . , λS and the input u. Throughout the rest of the
paper, we will assume that the jump size functions satisfy
the mean-square integrability condition (e.g., see Theorem
3.20 in (Hanson, 2007)).

Proposition 6.1 (Covariance Matrix Bound). Given initial
conditions ξ0 ∈ Rnξ and Σ0 ∈ Sn>0, let ξ(t) be the solu-
tion to (9) with ξ(0) = ξ0 and Σ(t) be the solution to (8)
with Σ(0) = Σ0. Let ξ̄(t) := E[ξ(t)] with ξ̄(0) = ξ0 and
Σ̄(t; ξ∗) := E[Σ(t)|ξ(t) = ξ∗(t)] for some ξ∗(t) ∈ Rnξ

with Σ̄(t; ξ∗) = Σ0. Then, the solution Σ̂(t) of

dΣ̂

dt
= A(ξ∗, t)Σ̂ + Σ̂A⊤(ξ∗, t) + σ(ξ∗, t)σ⊤(ξ∗, t)

−
S∑

s=1

λs(t)Ks(ξ
∗, t)Cs(ξ

∗, t)Σ̂, Σ̂(0) = Σ0, (10)

satisfies Σ̄(t; ξ∗) ⪯ Σ̂(t), ∀t ≥ 0.

Proposition 6.2 (Auxiliary State Bound). Let ξ̂(t) :=

[ξ̂p(t) ξu(t)]
⊤ ∈ Rnξ be the solution to

dξ̂p
dt

= fp(ξ̂, u, t) +

S∑
s=1

λs(t)gs(ξ̂, u, t), ξ̂(0) = ξ0,

(11)
where ξu evolves according to (6b). If fp and g1, . . . , gS
are concave (convex) with respect to ξp (Assumption 5.1),

then ξ̄(t) ≤e ξ̂(t)
(
ξ̄(t) ≥e ξ̂(t)

)
, ∀t ≥ 0.

The proofs are provided in Appendix B.
Remark 6.3. If A, σ,C1, . . . , CS , and R1, . . . , RS do not
depend on ξp, then E [Σ(t)] = E [Σ(t) | ξ(t) = ξ∗(t)] .
Moreover, if fp, g1, . . . , gS are affine in ξp, then ξ̄p(t) =

ξ̂p(t).

7. The Optimal Control Problem
This section will utilize the bounds from Proposition 6.1
and Proposition 6.2 to formulate a general optimal con-
trol problem to calculate u and the rates λ1, . . . , λS for a
horizon [0, T ]. Consider that we have a continuously dif-
ferentiable running cost L : Rnξ × Sn>0 × U × RS

≥0 →
R with a continuously differentiable terminal cost LT :
Rnξ × Sn>0 × U × RS

≥0 → R which we desire to min-
imize (e.g., minimizing tr(Σ̂)). In addition to the costs,
consider that we have ncr continuously differentiable run-
ning constraints C : Rnξ ×Sn>0×U×RS

≥0 → Rncr together
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with ncT continuously differentiable terminal constraints
CT : Rnξ × Sn>0 × U × RS

≥0 → RncT (e.g, ξp(T ) ≥ 0
if ξp(T ) represent energy). We formulate the following
general optimal control problem:

min
λ≥e0, u∈U,

ξ̂∈Rnξ , Σ̂∈Sn>0

∫ T

0

L
(
ξ̂, Σ̂, u, λ

)
dt

+ LT

(
ξ̂(T ), Σ̂(T ), u(T ), λ(T )

) (12a)

subject to

dΣ̂

dt
= A(ξ̂, t)Σ̂ + Σ̂A⊤(ξ̂, t) + σ(ξ̂, t)σ⊤(ξ̂, t)

−
S∑

s=1

λs(t)Ks(ξ̂, t)Cs(ξ̂, t)Σ̂,

(12b)

dξ̂p
dt

= fp(ξ̂, u, t) +

S∑
s=1

λs(t)gs(ξ̂, u, t), (12c)

dξu
dt

= fu(ξu, u, t), (12d)

ξ̂(0) = ξ0, Σ̂(0) = Σ0, (12e)
λ(t) ≥e 0, u(t) ∈ U , ∀t ∈ [0, T ], (12f)

C
(
ξ̂(t), Σ̂(t), u(t), λ(t)

)
≤e 0, ∀t ∈ [0, T ], (12g)

CT
(
ξ̂(T ), Σ̂(T ), u(T ), λ(T )

)
≤e 0, (12h)

where U ⊂ Rmξ . Since Σ̂(t) and ξ̂p(t) represent bounds
on the true mean covariance and mean perturbed state, the
cost functions L, LT and the constraints C, CT are assumed
to be monotonically non-increasing (in the Loewner or-
der) in Σ̂, and monotonically non-decreasing (respectively,
non-increasing) in ξ̂p if fp and g1, . . . , gS are concave (re-
spectively, convex) in ξp (element-wise)1. This ensures that
the bounds from Propositions 6.1 and 6.2 provide mean-
ingful constraints and costs. When fp and gs are affine in
ξp, we have ξ̄p(t) = ξ̂p(t) for all t ≥ 0, so no additional
monotonicity restrictions are required with respect to ξ̂p.
Since we typically want to decrease or upper bound uncer-
tainty, the requirement for monotonically increasing costs
and constraints with respect to Σ̂ is not restrictive. Note
that one can also add slack variables to relax constraints and
other optimization-related variables to (12). Furthermore,
we assume the following:

Assumption 7.1 (Feasibility). There exists at least one ad-
missible pair (u(·), λ(·)) with a corresponding Σ̂(·) and ξ(·)
such that C ≤e 0 and CT ≤e 0 are satisfied.

1We say for a differentiable function f : Rn → Rm that it is
non-decreasing (non-increasing) if ∂fi/∂xj ≥ 0 (∂fi/∂xj ≤ 0)
for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

Obtaining a closed-form solution to the problem in (12)
is generally intractable. Thankfully, several numerical ap-
proaches can be utilized to obtain an approximate solution
to the problem (Rao, 2009) (see Appendix D for a summary
of these methods and the choice for the examples in this
paper).

Remark 7.2. For the OCP in (12), we use ξ̂ from Propo-
sition 6.2 in the cost, in the constraints, and also for the
dynamics of Σ̂. By Proposition 6.1, Σ̂ then upper-bounds
the true covariance Σ̄(t; ξ̂). We distinguish three cases for
our setup and the OCP in (12). The first case is when
fp, g1, . . . , gS are affine in ξp. In this situation, we have
ξ̂ = ξ̄ and the constraints and the costs in the OCP in
(12) are for the exact mean trajectory ξ̄. Additionally, Σ̂
will be an upper-bound for the covariance matrix along the
mean trajectory ξ̄, and the costs and the constraints in the
OCP will thus target the mean behaviour. If fp, g1, . . . , gS
are nonlinear but are concave (respectively, convex) in
ξp (Assumption 5.1), then ξ̂ upper-bounds (respectively,
lower-bounds) ξ̄, so any monotonically non-decreasing (re-
spectively, non-increasing) cost or constraint depending
only on ξ̂ remains meaningful. However, without further
convexity/concavity assumptions on A, σ,C1, . . . , CS and
R1, . . . , RS from (7), it need not follow that Σ̂ = Σ̄(t; ξ̂)
bounds Σ̄(t; ξ̄). Nevertheless, if the dynamics are locally
nearly linear (similar to the EKF mean approximation
dξ̄
dt ≈ fp(ξ̄, u, t) +

∑Ns

s=1 λs(t)gs(ξ̄, u, t) (Simon, 2006;
Särkkä & Svensson, 2023)), one finds Σ̂ ≈ Σ̄(t; ξ̄), and
thus, still approximately targets the mean behavior. Finally,
in the fully nonlinear case violating Assumption 5.1, we can
still treat ξ̂ as a heuristic approximation for ξ̄ without formal
guarantees if the dynamics are locally nearly linear. Empiri-
cal results in Appendix H show that this approximation can
yield acceptable performance in many scenarios.

Remark 7.3. While this paper focuses on an optimal control
setup, Proposition 6.1 and Proposition 6.2 offer the oppor-
tunity to attempt different control strategies to compute λ
and u depending on the specific problem of interest. For
example, we can use control barrier function techniques
(Ames et al., 2019) to find a feedback law for λ and u such
that the set Sc := {Σ ∈ Sn>0 | tr(Σ) ≤ c} with c > 0 is
forward-invariant.

8. Deterministic Selection of Measurement
Times

After solving the OCP in (12) for the measurement rates
λ and inputs u, we would like to select the measurement
times for each sensor s ∈ {1, . . . , S} within the horizon
[0, T ] which are, loosely speaking, closely related to the
average behavior of a Poisson process with rate λs. Rely-
ing on sampling the Poisson process to select measurement
times is not suitable for a finite-horizon planning task as
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we could sample a realization which is far from the average
behaviour of the process. While this realization could pro-
vide a better solution, in terms of the cost and constraints
in (12), than the average one, it could also provide a worse
solution. Therefore, we aim to deterministically select the
measurement times to be as close as possible to the average
behavior according to a specific metric. To select determin-
istic measurement points t̄s = (t̄s1, . . . , t̄

s
ns
) for sensor s

with intensity rate λs(t) over [0, T ], we cast the problem as
one of optimal quantization. Define the normalized intensity
measure

µs(dt) =
λs(t)

Λs(T )
dt, where Λs(T ) =

∫ T

0

λs(t) dt,

and let τs ∼ µs be the random variable that describes the
time of a measurement from sensor s. Our goal is then to
approximate µs by a discrete measure νs = νs,t̄s given by:

νs(dt) =
1

ns

ns∑
i=1

δt̄si (dt).

Denote τds ∼ νs to be the discrete random variable rep-
resenting the time of measurement of sensor s under νs.
We select t̄s which minimizes the squared Wasserstein-2
distance,

W 2
2 (µs, νs) = inf

γ∈Γ(µs,νs)

∫
[0,T ]2

|t− t′|2 dγ(t, t′),

where Γ(µs, νs) is the set of all couplings of µs and νs. In
one dimension, this distance simplifies to:

W 2
2 (µs, νs) =

∫ 1

0

(
F−1
s (p)−G−1

s (p)
)2
dp,

where Fs and Gs are the cumulative distribution functions
(CDFs) of µs and νs, respectively (Villani et al., 2009).
In this case, we have Fs(t) =

∫ t

0
λs(t)
Λs(T ) dt = Λs(t)

Λs(T ) and
Gs(t) =

1
ns

∑ns

i=1 1[t̄si ,∞)(t).

Proposition 8.1 (Optimal Quantization Points). The points
t̄s1, . . . , t̄

s
ns

that minimize W 2
2 (µs, νs) are the conditional

centroids on ns intervals of equal probability under µs.
Specifically,

t̄si = E
[
τs | τs ∈ [asi−1, a

s
i ]
]
=

∫ as
i

as
i−1

t λs(t) dt∫ as
i

as
i−1

λs(t) dt
, (13)

where asi = F−1
s

(
i
ns

)
for i = 1, . . . , ns − 1, as0 = 0, and

asns
= T . With this construction, νs matches the first mo-

ment of µs (i.e. E[τs] = E[τds ]) and the variance difference
is Var(τs)−Var(τds ) =W 2

2 (µs, νs).

The proof can be found in Appendix C. Note that Λs(a
s
i ) =

Λs

(
F−1
s ( i

ns
)
)
= Λs

(
Λ−1
s

(
Λs(T )

i
ns

))
= Λs(T )i

ns
for all

i ∈ {1, . . . , ns−1}. In other words, in Propositions 8.1, we
divide Λs(T ) into ns equal parts. This strategy distributes
points more densely in regions where λs(t) is large while
preserving the mean of µs and minimizing second-order
distortion in the Wasserstein-2 sense. The solution is unique
and admits a closed-form expression, making it computa-
tionally efficient. Furthermore, minimizing the Wasserstein
distance is equivalent to minimizing the quantization error
E[mint∈t̄s ||τs − t||2], which is a classic result from optimal
quantization theory for probability distributions (Graf &
Luschgy, 2000). To match the average number of measure-
ments, we select ns = ⌊Λs(T ) + 0.5⌋.

To clarify Proposition 8.1, assume for simplicity that Λs(T )
is an integer, then according to Proposition 8.1, we will par-
tition [0, T ] into intervals such that Λs(a

s
i )− Λs(a

s
i−1) = 1

for i ∈ {1, . . . , ns} if ns = Λs(T ). This means that we par-
tition [0, T ] into intervals wherein each one of them contains
exactly one measurement on average. The location of that
one measurement in each interval is taken to be the mean of

λs(t)
Λs(as

i )−Λs(as
i−1)

= λs(t) over that interval. We select the

measurement times for each sensor s ∈ {1, . . . , S} based
on Proposition 8.1 independently.

9. Experiments
In many real-world applications (e.g., environmental mon-
itoring (Alvear et al., 2017; Bird et al., 2018), and search-
and-rescue (Waharte & Trigoni, 2010)), robots must oper-
ate under limited energy resources while gathering data in
potentially hazardous environments. We consider such a
scenario where a robot, constrained by its energy capacity,
needs to collect measurements (e.g., pollutant concentra-
tion, air quality, temperature) using two onboard sensors for
temporal GP regression 2.

9.1. Robot Model and Problem Setup

The state ξu = [pr, θr]
⊤ ∈ R3 represents the planner robot’s

position pr ∈ R2 and its heading θr ∈ R. It evolves accord-
ing to a unicycle model (see Appendix J for details). The
input u = [v, ω]⊤ ∈ R2 consists of the heading velocity v
and the angular velocity ω, both subject to physical bounds.
The energy state ξp = η ∈ R evolves according to

dη

dt
= ce exp

(
−re∥pr−pe∥2

)
−cuv−cuω−

2∑
s=1

Ns∑
i=1

cs δtsi ,

(14)
2The code for generating the results, in addition to

the corresponding animations and different examples, can
be found on https://github.com/MOHAMMADZAHD93/
When2measureKF
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Figure 1. The planned proposed mean solution according to (12) and the true simulated solution based on the proposed measurement
times selected according to (13) from the calculated rates λ for (a) without radiation damage and (b) with radiation damage. xp represents
the true process, x̂p represents the KF estimate of it, and x̂s

p represents the RTS estimate of it (the GP regression output).
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where cu ≥ c1 ≥ c2 ≥ 0 are the energy costs of using the
inputs and the sensors. The term ce exp

(
−re∥pr − pb∥2

)
(with ce, re ≥ 0) represents an energy charging source (e.g.,
solar) with its maximum charging rate at the base located at
pb ∈ R2.

The measurement noise covariance matrices depend on the
robot–process distance:

Rs(pr) = Rsmax
exp
(
rs∥pr − pp∥2

)
, s ∈ {1, 2}, (15)

where R2max
> R1max

> 0, r2 > r1 > 0, and pp ∈
R2 is the location of the process. This setup implies that
sensor 1 is more accurate but also consumes more energy
than sensor 2. Starting at the base pb with initial energy
ξp(0) = ξ0 ≥ 0, the robot must collect measurements at pp
and return to pb by time T ≥ 0 while ensuring that there is
sufficient residual energy to continue operating. We employ
the state-space representation of the Matérn kernel (degree
1) for the GPs (Särkkä & Hartikainen, 2012; Todescato
et al., 2020). Kalman filtering and smoothing (Rauch-Tung-
Striebel (RTS)) with this state-space representation is known
to be equivalent to GP regression (see Appendix I for more
details). The objective is to reduce uncertainties in the CD-
KF estimate; hence, schedule measurements to minimize
tr(Σ), where Σ is the Kalman filter’s covariance matrix for
the estimated process (an upper bound on the smoothing
covariance). In the OCP in (12), the running cost is

L(ξ̂, Σ̂, u, λ, ε) = wΣ tr(Σ̂)+wλ λ
⊤λ+wu u

⊤u+wε ε
2,

(16)
where wε ≫ wΣ ≥ wλ ≥ wu ≥ 0, and the terminal cost
is zero. To avoid large fluctuations in tr(Σ̂), we add the
constraint tr(Σ̂(t)) ≤ cΣ + ε(t) for t ∈ [1/2, T ], where
ε(t) ≥ 0 is a slack variable to ensure feasibility. We en-
forced the constraint on Σ̂ only for t ∈ [1/2, T ] since requir-
ing the trace of Σ̂ to decrease rapidly can be restrictive and
will always lead to large ε at the beginning of the horizon.
The running constraints C thus encodes the input bounds
u ≤e u ≤e ū, λ ≥e 0, the trace constraint tr(Σ̂) ≤ cΣ + ε
(enforced for t ∈ [1/2, T ]), ε ≥ 0, and an energy lower
bound η̂ ≥ cη with cη ≥ 0. The terminal constraint CT
encodes that the robot should return to the base at the end
of the horizon pr(T ) = pb. Note that the dynamics of Σ
do not depend on the auxiliary state ξp. The results of the
optimization and simulation for a horizon of T = 1 are
illustrated in Figure 1(a).

9.2. Radioactive Environment Extension

We next examine a setting inspired by nuclear or chemical
disaster scenarios, where the process of interest is located
in a dangerously radioactive zone (Bird et al., 2018). Each
measurement in this area degrades the sensors’ accuracy
over time. Specifically, the auxiliary state is now ξp =
[η ζ1 ζ2]

⊤ ∈ R3, where ζ1 and ζ2 denote the accumulated

radiation damage on Sensors 1 and 2, respectively. The
damage dynamics are

dζs
dt

=

Ns∑
i=1

γi exp
(
−rζ∥pr − pp∥2

)
δtsi , (17)

where γ1 > γ2 ≥ 0, implying Sensor 1 is more susceptible
to radiation damage than Sensor 2, and rζ > 0. Conse-
quently, the sensor covariance matrices become Rs(ξ) =
Rsmax exp

(
rs∥pr − pp∥2

)
exp(rsζs) , s ∈ {1, 2}. Radia-

tion damage thus exponentially increases the measurement
noise of each sensor. Figure 1(b) presents results for this
second scenario.

9.3. Comparisions

The approach used for the example jointly optimizes
scheduling sensors while optimizing other inputs for the
auxiliary dynamics. To our knowledge, there exist no meth-
ods that jointly optimize inputs for auxiliary dynamics to-
gether with scheduling sensors in a continuous-discrete
setup. Therefore, we compare our approach with baseline
strategies that utilize different measurement schemes while
employing the optimized inputs for the auxiliary states. The
baseline scheduling strategies are summarized as follows:

• Random: Discretize the horizon uniformly according
to the number of discretization points for the OCP
(NO). Then, sample the measurement times for each
sensor s ∈ {1, . . . , S} according to a Poisson process
with constant rate λs = NO/S.

• Greedy: Discretize the horizon into small time steps.
Then, at each time step and for each sensor, compute a
“score” equal to the immediate reduction in the trace of
the predicted covariance minus the associated sensor
costs and penalties on constraint violations. The mea-
surement is then chosen according to the sensor with
the highest positive score. If all the scores are negative,
then we do not perform a measurement.

• M-Optimized: Instead of finding the measurement
times according to the quantization rule in (13), we
sample multiple realizations of measurement times ac-
cording to the corresponding Poisson process with the
optimized rates. Afterwards, we pick the measurement
times corresponding to the realization with the mini-
mum value of the cost function modified with penalties
on constraint violations.

Table 1 summarize the statistics for the comparisons where
”Optimized” refers to our suggested approach.

9.4. Discussion of the Results

From Figure 1, we observe that solving the optimal control
problem in both scenarios yields a planned robot trajectory

8
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Table 1. Trajectory Statistics for the Covariance Trace, Energy,
and Degradation Over the Horizon. The proposed approach in this
paper is denoted as ”Optimized”.

Covariance Trace

Method Mean Std Maximum

Optimized 1.90221 0.3406 2.94496
M-Optimized 1.92461 0.364315 3.00148
Greedy 2.60768 0.487677 3.21866
Random 2.2275 0.469839 2.9206

Energy η

Method Mean Std Maximum

Optimized 21.5435 10.1709 50.0
M-Optimized 22.3106 10.1279 50.0
Greedy -1.67343 14.0586 50.0
Random -17.4417 31.3537 50.0

Degradation (ζ1 + ζ2)

Method Mean Std Maximum

Optimized 0.0905529 0.0654335 0.185626
M-Optimized 0.0845751 0.0688232 0.195288
Greedy 0.193289 0.081316 0.232247
Random 0.792406 0.557986 1.57578

together with a corresponding measurement schedule for
both of the sensors to track the measured process. We also
remark from the figure that the planned upper bound Σ̂ on
the mean for Σ nicely tracks the simulated true solutions for
Σ with measurement times calculated according to Proposi-
tion 8.1. We observe the same for η, ζ1, and ζ2. Additionally,
we note that the trace of Σ for the radioactive case is on
average higher than that for the non-radioactive case and the
smoothing results (GP regression results) are visually worse
for the radioactive case. This is expected since the radioac-
tive environment case is more challenging. The results in
Table 1 suggest that our method (”Optimized”) outperforms
the greedy and random scheduling approaches for the robot
example. The results also demonstrate that our determinis-
tic quantization provides similar results to ”M-Optimized”
without having to sample multiple realizations. Sampling
multiple realizations can be computationally expensive and
unrealistic since we do not have the real measurements to
compute the corresponding cost for each realization. Over-
all, the results demonstrate the potential and feasibility of
utilizing the proposed approach in the CD-KF setup with
auxiliary dynamics for sensor scheduling and selection. See
Appendix E for another example involving water quality
monitoring with fouling and active defouling. In addition,
an example with spacecraft monitoring targets on Earth can
be found in Appendix F. Moreover, Appendix G provides
a discussion on how our approach can be generalized to

uncertain and nonlinear SSMs with an example of a robot
estimating the position and velocity of a moving target while
attempting to track it. Finally, in Appendix H we provide
examples for cases where the auxiliary dynamics do not
satisfy Assumption 5.1.

10. Conclusion
We propose a novel methodology for sensor scheduling in
SSMs that incorporates auxiliary state-space dynamics. By
modeling the occurrence of sensor measurements through
independent inhomogeneous Poisson processes with sensor-
specific rates, we derive a continuously differentiable up-
per bound on the mean posterior covariance matrix of the
CD-KF conditioned on the mean auxiliary state. This dif-
ferentiability enables efficient gradient-based optimization
of the sensor measurement rates. In addition, we formu-
late a finite-horizon optimal control problem that jointly
optimizes these measurement rates with inputs for auxiliary
dynamics. We further provide a quantization-based method
for selecting deterministic sensor measurement times that
closely match the mean behavior of Poisson processes with
optimized measurement rates, thereby matching the actual
sensor schedule with the intended resource–accuracy trade-
offs. An Empirical evaluation in state-space filtering and
dynamic GP regression confirms the feasibility and potential
of this approach.
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Ayan, O., Gürsu, H. M., Hirche, S., and Kellerer, W. Aoi-
based finite horizon scheduling for heterogeneous net-

9



Optimal Sensor Scheduling and Selection with Auxiliary Dynamics

worked control systems. In GLOBECOM 2020: IEEE
Global Communications Conference, pp. 1–7. IEEE,
2020.

Bemporad, A. and Morari, M. Robust model predictive
control: A survey. In Robustness in Identification and
Control, pp. 207–226. Springer, 2007.

Bird, B., Griffiths, A., Martin, H., Codres, E., Jones, J.,
Stancu, A., Lennox, B., Watson, S., and Poteau, X. A
robot to monitor nuclear facilities: Using autonomous
radiation-monitoring assistance to reduce risk and cost.
IEEE Robotics & Automation Magazine, 26(1):35–43,
2018.

Bock, H. G. and Plitt, K. J. A multiple shooting algorithm
for direct solution of optimal control problems*. IFAC
Proceedings Volumes, 17(2):1603–1608, 1984. ISSN
1474-6670. 9th IFAC World Congress: A Bridge Between
Control Science and Technology, Budapest, Hungary,
July 2–6, 1984.

Budincevic, M. A comparison theorem of differential equa-
tions. Novi Sad J. Math, 40(1):55–56, 2010.
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A. Convexity of the Kalman Update
The following lemma will be necessary to find the bound on Proposition 6.1.

Lemma A.1. Let Σ ∈ Sn>0, C ∈ Rm×n, and R ∈ Sm>0, then the map Σ 7→ ΣC⊤ (CΣC⊤ +R
)−1

CΣ is convex.

Proof. A map f : Sn>0 → Sn≥0 is convex if and only if its epigraph

epi(f) = { (Σ, X) | Σ ≻ 0, X ⪰ f(Σ)}

is a convex set. Thus, we need to show that

X ⪰ f(Σ) := ΣC⊤(C ΣC⊤ +R
)−1

C Σ

defines a convex constraint in (Σ, X). By the Schur complement, X ⪰ f(Σ) holds if and only if(
X ΣC⊤

C Σ C ΣC⊤ +R

)
⪰ 0. (18)

Since each block of this matrix depends affinely on the pair (Σ, X), the set of all (Σ, X) satisfying the above block-positivity
is described by a linear matrix inequality. Since sets that are defined by linear matrix inequalities are convex, we conclude
that

epi(f) =

{
(Σ, X) : Σ ≻ 0,

(
X ΣC⊤

C Σ C ΣC⊤ +R

)
⪰ 0

}
is convex, which shows that f(Σ) is convex.

Note that concavity and convexity are understood here in terms of the natural order structure associated with the notion of
positive semidefiniteness (Loewner order).

B. Proof of Proposition 6.1 and Proposition 6.2
We start by writing the conditional infinitesimals (Chapter 4 in (Hanson, 2007)) for (8) and (9)

E [dΣ | Σ = Σ∗, ξ = ξ∗] =

(
A(ξ∗, t)Σ∗ +Σ∗A(ξ∗, t)⊤ + σ(ξ∗, t)σ(ξ∗, t)⊤ −

Ns∑
s=1

λs(t)Ks(Σ
∗, ξ∗, t)Cs(ξ

∗, t)Σ∗

)
dt,

(19)

E [dξ | ξ = ξ∗] =

(
fp(ξ

∗, t) +

Ns∑
s=1

λs(t)gs(ξ
∗, t)

)
dt. (20)

Let ξ̄(t) := E[ξ(t)] then dξ̄ = E[dξ] = E [E [dξ | ξ]] where the first equality follows by Fubini’s theorem and the mean-
square integrability condition, and the second equality by the tower property. Utilizing assumption 5.1 with Jensen’s
inequality, we therefore get

dξ̄ = E

[
fp(ξ, t) +

Ns∑
s=1

λs(t)gs(ξ, t)

]
dt ≤e (fp(ξ̄, t) +

Ns∑
s=1

λs(t)gs(ξ̄, t))dt. (21)

Letting dξ̂
dt = fp(ξ̂, t) +

∑Ns

s=1 λs(t)gs(ξ̂, t), with ξ̂(0) = ξ̄(0) = ξ0 ∈ Rnξ , we conclude proposition 6.2 using the
comparision theorem of ordinary differential equations (McNabb, 1986; Budincevic, 2010).

Similarly, denoting Σ̄(t; ξ∗) := E[Σ(t) | ξ(t) = ξ(t)∗] and taking the expectation with respect to Σ in (8), we get

dΣ̄(t; ξ∗) :=(
A(ξ∗, t)Σ̄(t; ξ∗) + Σ̄(t; ξ∗)A(ξ∗, t)⊤ + σ(ξ∗, t)σ(ξ∗, t)⊤−

Ns∑
s=1

λs(t)E [Ks(Σ, ξ
∗, t)Cs(ξ

∗, t)Σ | ξ = ξ∗]

)
dt. (22)

12
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Using Lemma A.1, we can apply Jensen’s inequality to obtain

dΣ̄(t; ξ∗)

dt
⪯ A(ξ∗, t)Σ̄(t; ξ∗) + Σ̄(t; ξ∗)A(ξ∗, t)⊤

+ σ(ξ∗, t)σ(ξ∗, t)⊤ −
Ns∑
s=1

λs(t)Ks(Σ̄(t; ξ
∗), ξ∗, t)Cs(ξ

∗, t)Σ̄(t; ξ∗) := F (Σ̄, ξ∗, t) (23)

Now let dΣ̂
dt = A(ξ∗, t)Σ̂ + Σ̂A(ξ∗, t)⊤ + σ(ξ∗, t)σ(ξ∗, t)⊤ −∑Ns

s=1 λs(t)Ks(Σ̂, ξ
∗, t)Cs(ξ

∗, t)Σ̂ = F (Σ̂, ξ∗, t) with
Σ̂(0) = Σ̄(0) = Σ0 ∈ Sn>0. By noting that F is order-preserving in the covariance matrix (Σ̂ ⪰ Σ̄ ⇒ F (Σ̂, ξ∗, t) ⪰
F (Σ̄, ξ∗, t)), we conclude Σ̂(t) ⪰ Σ̄(t) for all t ≥ 0 using the comparison theorem of ordinary differential equations. This
concludes the bound in Proposition 6.1.

C. Proof of Proposition 8.1
Proof. Since µs is supported on [0, T ] with CDF Fs, the quantile function

F−1
s (p) = inf{t ∈ [0, T ] : Fs(t) ≥ p}

partitions the interval into subintervals [asi−1, a
s
i ] each having mass 1

ns
under µs. The discrete measure νs has CDF Gs with

jumps at t̄si , so

G−1
s (p) = t̄si for p ∈

(
i−1
ns
, i
ns

]
.

Hence,

W 2
2 (µs, νs) =

∫ 1

0

(
F−1
s (p)−G−1

s (p)
)2
dp = min

t̄s1,...,t̄
s
ns

ns∑
i=1

∫ i
ns

i−1
ns

(
F−1
s (p)− t̄si

)2
dp.

Taking derivatives with respect to each t̄si and setting them to zero yields

t̄si = ns

∫ i
ns

i−1
ns

F−1
s (p) dp = E

[
τs | τs ∈ [asi−1, a

s
i ]
]
.

Uniqueness follows from the strict convexity of the squared-error objective. To see that E[τs] = E[τds ], observe that

E[τs] =
1

ns

ns∑
i=1

t̄si =

∫ T

0

t µs(dt) = E[τds ],

since each t̄si is the average of τs over the interval [asi−1, a
s
i ]. Finally, we have Var(τs) − Var(τds ) = W 2

2 (µs, νs) which
follows by the definition of W 2

2 (µs, νs).

D. Numerical Solutions for Optimal Control Problems
There are several numerical methods to solve continuous-time OCPs. We list here the common methods used for solving
them.

Direct methods (Böhme & Frank, 2017) work by discretizing the time axis and formulating the problem as a finite-
dimensional Nonlinear Program (NLP). There are two common approaches for direct methods: direct single shooting and
direct collocation.

In direct single shooting, the control trajectories u(t) and λ(t) are parametrized using techniques such as piecewise-constant
or polynomial basis functions. The system dynamics are then integrated forward to compute the objective and constraint
values, with the NLP’s decision variables corresponding to the control parameters. Direct collocation (von Stryk, 1993; Bock
& Plitt, 1984) follows a similar approach but also parametrizes the state trajectories, optimizing over both control and state
parameters. Continuity or matching conditions are enforced through the system’s differential equations. Direct methods are
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Figure 2. Mean absolute difference between all the trajectories and the one with Nd = 400. Computation times are reported for each Nd.

well-suited for handling problems with many constraints and benefit from efficient off-the-shelf NLP solvers such as IPOPT
(Wächter & Biegler, 2006). However, as the time grid becomes finer, it can lead to large-scale optimization problems.

Indirect methods (Rao, 2009; Passenberg, 2012) rely on necessary conditions for optimality (e.g., Pontryagin’s Minimum
Principle (Rozonoer, 1959)). One formulates the costate (or adjoint) equations and boundary conditions, then solves a
boundary value problem (BVP). While indirect methods can offer a deeper analytical insight into the problem, they can be
challenging to implement for problems with many inequality constraints and nontrivial system dynamics. Additionally,
numerical tools to solve BVP are sensitive to initial conditions.

In practice, the choice between direct and indirect methods often depends on problem size, constraint complexity, and the
availability of good initial guesses or analytical insights.

For the examples in this paper, we choose a direct collocation approach with forward Euler discretization and adaptive
discretization steps. To ensure the positive definiteness of the covariance matrix in the NLP setup, we parametrized it with a
Cholesky decomposition. These choices are not limited and one can, in principle, experiment with different choices based
on the specific problem to solve.

It is important to note that discretization-based methods for OCPs with constraints over a horizon t ∈ [T1, T2] may not
strictly satisfy the constraints for all t ∈ [T1, T2] due to numerical approximation errors. The choice of the discretization
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scheme inherently depends on the specific problem structure and its solution. While increasing the number of discretization
points or adopting higher-order integration methods can improve accuracy, these enhancements often come with an increased
computational cost. Figure D illustrates this trade-off in a two-sensor scheduling scenario for a two-dimensional CD-KF.
We apply implicit Euler discretization with varying numbers of discretization points and quantify the resulting estimation
error against a high-resolution reference (400 discretization points). Additionally, we record wall-clock runtimes on an Intel
Core™ Ultra 7 155H @ 1.40 GHz device with 64 GB RAM. The optimization problems are formulated in Julia using the
JuMP (Dunning et al., 2017) framework and solved with IPOPT (Wächter & Biegler, 2006). As the number of discretization
points increases, the estimation accuracy improves, but at the cost of higher computation times.
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Figure 3. Water fouling example. The KF estimate is x̂p and the RTS estimate is x̂s
p.

E. Additional Example: Water Quality Monitoring with Fouling and Active Defouling
In many real-world water quality monitoring applications, sensors deployed in rivers, lakes, or coastal areas are prone to
fouling due to the accumulation of biological, chemical, or sedimentary deposits. Fouling degrades sensor performance by
increasing the measurement noise (Delauney et al., 2010). In addition, active defouling techniques (e.g., ultrasonic cleaning)
have been developed to counteract fouling, although these methods incur their own operational costs (Delgado et al., 2021).
In this example, we describe a model in which sensor scheduling is optimized jointly with active defouling control.
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We assume that the water quality parameter evolves according to a linear model:

dxp = −κ (xp − xamb) dt+ σ dW, xp(0) ∼ N (µ0,Σ0), (24)

with parameters set to κ > 0, xamb > 0, and σ > 0.

Each sensor provides a measurement of xp at discrete times where the noise covariance Rs of each sensor s ∈ {1, 2}
depends on the fouling level via

Rs(ξ, t) = Rs0 exp
(
λfs ξ

s
p(t)

)
, (25)

where ξps is the fouling level for sensor s, R10 > R20 > 0, and λf1 = λf2 > 0. Higher fouling leads to a larger Rs and,
hence, lower measurement accuracy.

For each sensor s, the fouling level evolves as

dξsp
dt

= −
(
αf
s + γfs us(t)

)
ξsp(t) +

Ns∑
i=1

ρfs δtsi , s ∈ {1, 2}, (26)

where the parameters αf
1 = αf

2 > 0 represent the natural cleaning rate, ρf1 , ρ
f
2 > 0 representing the parameters for the

fouling increase per measurement with ρf2 > ρf1 > 0, us(t) ≥ 0 represent active fouling control with rates γf1 = γf2 > 0.
Remark that the second sensor can provide more accurate measurements (R02 < R01) but is more prone to fouling with
each measurement (ρf2 > ρf1 ) due, for example, to an increased surface area. The goal is to schedule the measurements for a
CD-KF while optimizing for the defouling inputs u = [u1 u2]

⊤. We formulate an optimal control problem of the form in
(12) for a horizon of T = 24 hr where the running cost is

L(ξ̂, Σ̂, u, λ, ε) = wΣ tr(Σ̂) + wλ λ
⊤λ+ wu u

⊤u,

where wΣ ≥ wλ ≥ wu > 0. The running constraints includes input bounds u ≤e u ≤e ū and an upper bound on the
fouling for each sensor ξ̂1p, ξ̂

2
p ≤ cξ with cξ > 0. Figure E shows the results. We can see from the results how the scheduling

scheme brings the trace of the covariance matrix to a low level compared to its initial value. Additionally, we see that the
planned measurements result in good estimates of the process. It is also worth noting how the OCP solution uses both the
sensors equally in the beginning to reduce the trace of the covariance quickly. After that, the OCP solution reduces the rate
of measurements for sensor 2 while saturating the defouling input to clean it. At the same time, it increases the rate of
measurement for the first sensor while simultaneously increasing the defouling input at a faster rate.

F. Additional Example: Spacecraft Monitoring Targets
We consider two spacecraft in circular low Earth orbit at an altitude of 500 km separated by π rad. Each platform is tasked
to monitor two processes on Earth’s surface (for example, surface temperature and humidity). We model each target’s local
dynamics as an Ornstein Uhlenbeck process (equivalent to a Gaussian process with exponential kernel; see Appendix H):

dx1 = A1 x1 dt+ σ1 dW1,

dx2 = A2 x2 dt+ σ2 dW2,

where A1, A2 < 0 and σ1, σ2 > 0.

Each spacecraft has two distinct sensors. The first sensor on each spacecraft is a sensor whose accuracy depends on solar
illumination. The second sensor on each spacecraft operates independently of solar illumination but requires higher energy
per measurement. The accuracy of the first sensor with solar illumination is better than the second one, but it become worse
in the absence of illumination. Additionally, daylight sensors are more prone to fail when used excessively compared to
the other sensors. To capture these sensors in our framework, we denote the output matrices C1 and C2 for the first and
second sensor in the first spacecraft, respectively, and C3 and C4 for the first and second sensor in the second spacecraft,
respectively. We also denote the same for the corresponding measurement-noise variances R1, R2, R3, R4. Since each
platform can only observe a ground target when it falls within its line of sight, we model the output matrices according to an
angular visibility function:

Cs

(
θsati , θτj

)
= exp

(
−
(
κδ
(
1− cos

(
θsati − θτj

))
1− cos(δ)

)4
)
, i ∈ {1, 2}, j ∈ {1, 2}, s ∈ {1, 2, 3, 4}.
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Figure 4. spacecraft example with the targeted processes. The KF estimates are x̂1, x̂2 and the RTS estimates are x̂s
1, x̂

s
2. See an animation

of the results on https://github.com/MOHAMMADZAHD93/When2measureKF.

Here, θsati denotes the angular position of the i-th spacecraft, θτj denotes the geodetic longitude of the j-th surface target, δ
is the half-cone angle defining the field of view, and κδ > 0 is a shaping constant.

For the daylight-dependent sensors (Sensor 1 aboard spacecraft 1 and Sensor 3 aboard spacecraft 2), we model the
instantaneous measurement variance as a smooth function of the solar illumination angle:

Rs

(
θsati , θ⊙

)
= Rmin ρκ⊙

(
θsati , θ⊙

)
+ Rmax

[
1− ρκ⊙

(
θsati , θ⊙

)]
, i ∈ {1, 2}, s ∈ {1, 3},

where
ρκ(θ, θ

′) =
1

1 + exp
(
−κ cos(θ − θ′)

) ,
where θ⊙ is the solar illumination angle, Rmax > Rmin > 0, and κ⊙ > 0 is a shaping constant determining how sharply
the variance transitions from Rmin (when the platform and sun are coaligned) to Rmax. For the solar independent sensors
(sensor 2 and sensor 4), we fix the variance at a nominal value

R2 = R4 = R⊕,
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Figure 5. spacecraft example with measurement rates and the energy states. See an animation of the results on https://github.
com/MOHAMMADZAHD93/When2measureKF.

chosen so that Rmin < R⊕ < Rmax. In a more detailed analysis, one could distinguish Earth occultation of direct sunlight
from simple misalignment, but here we adopt this smooth logistic model in order to keep the example concise.

Each spacecraft carries an onboard battery whose stored energy (η1 for the first spacecraft and η2 for the second one) evolves
according to

dη1
dt

= − ph + pc ρκη

(
θsat1 , θ⊙

)
u1 +

2∑
s=1

Ns∑
i=1

cs δtsi ,

dη2
dt

= − ph + pc ρκη

(
θsat2 , θ⊙

)
u2 +

4∑
s=3

Ns∑
i=1

cs δtsi ,

where ph > 0 is the nominal operating power of each spacecraft, pc > 0 is the peak solar charging power, κη > 0 is a
shaping constant, u1, u2 ∈ [0, 1] are control variables controlling the charging of each battery such that the stored energy
does not exceed an upper limit, and cs is the energy cost per measurement of sensor s, with c1 = c3 > c2 = c4 > 0.
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We formulate an optimal control problem with a horizon of T = 24 hr. The running cost is

L(ξ̂, Σ̂, u, λ, ε) = wΣ (Σ̂1 + Σ̂2) + wλ λ
⊤Qλ,

where Σ1 and Σ2 are the variances of the CD-KF estimate for first target process and the second target process, respectively,
and wΣ ≥ wλ ≥ wu > 0, and Q = diag([10 1 10 1]) used to increase the weights on Sensor 1 and Sensor 3 as they
are more prone to fail with excessive use than Sensor 2 and Sensor 4. The running constraints includes input bounds
0 ≤e u ≤e 1, and a bound on the maximum stored energy η̂i ≤ ηmax, i ∈ {1, 2}. The results are shown in Figure F and
Figure F. We see from F that the scheduling scheme manages to provide estimates tracking the processes nicely. We see an
obvious periodic behaviour for the variances for each process. This periodicity is natural as both spacecraft passes over the
target processes with periodically. We can observe this periodicity also in Figure F for both the scheduled measurement
rates and the stored energy for each spacecraft.

G. A Receding Horizon Framework for Unknown or Nonlinear Dynamics
In many practical scenarios, the dynamics that govern the process we wish to filter are either uncertain or nonlinear. One
approach to extend our framework to handle these cases is a Receding Horizon (RH) formulation or a model predictive
framework. RH approaches enjoy a rich literature showing that, by repeatedly solving a finite-horizon OCP with updated
model information, one can retain provable closed-loop guarantees even when the prediction model is misspecified or
learned online (Bemporad & Morari, 2007). Since our proposed approach in this paper is cast as an OCP, we can naturally
extend it to an RH setup and utilize the existing approaches for robust or learning-based RH.

One way to extend our approach to an RH setup is to solve the OCP in (12) at time tl for a horizon [tl, T + tl], obtain the
measurement rates and the other possible control inputs over the horizon [tl, T + tl], use (13) to find the time tl+1 for the
first sensor s∗ to measure within the interval [tl, T + tl], apply the possible control for t ∈ [tl, tl+1], measure with s∗ at tl+1,
update the KF estimates and the uncertain parameters of the model based on the measurement at time tl+1, and re-solve the
OCP for the horizon [tl+1, T + tl+1] and repeat. In case of a nonlinear SSM, we can use the EKF (Simon, 2006; Särkkä &
Svensson, 2023) for each OCP optimization. The EKF uses linearized dynamics for the covariance propagation, and we
can update the linearized dynamics after each measurement between the finite-horizon OCPs. To illustrate this approach,
we implemented a moving target tracking task in which a mobile robot with a unicycle model with an energy budget must
localize and track a target whose true motion follows a constant turn rate velocity model perturbed by noise

dxτ = vτ cos θτ dt+ σx dWx,

dyτ = vτ sin θ dt+ σy dWy,

dvτ = σv dWv,

dθτ = ωτ dt+ σθ dWθ,

dωτ = σω dWω.

(27)

where pτ = [xτ , yτ ]
⊤ is the position coordinates of the target, θτ is the heading of the target, vτ , ωτ are the heading

linear and angular velocity of the target, respectively, and σx, σy, σv, σθ, σω > 0 with Wx,Wy,Wv,Wθ and Wω being
independent Wiener processes. The OCP and the CD-KF assume a constant velocity model for the target with random
perturbations on the velocity only

dx = ṽx dt

dy = ṽy dt

dṽx = σvx dWvx ,

dṽy = σvy dWvy ,

(28)

where p̃τ = [x, y]
⊤ is the position coordinates of the target, ṽx, ṽy are the linear velocities on the horizontal and vertical

axis, respectively, and σvx , σvy > 0 with Wvx and Wvy being independent Wiener processes. We assume we have two
sensors for the position of the target and that the measurement noise covariance matrices are given as the ones in (15) with
pp replaced with pτ for simulation and the estimated p̃τ in the OCP. Additionally, the energy of the robot follows the same
dynamics in (14) but with a constant charging rate that does not depend on the position of the robot (more suitable for target
tracking). We used an RH setup to plan for the measurements and the robot’s velocities for a horizon of T = 0.05 where for
each OCP optimization, we use the current estimate for the target according to the constant velocity model (28) instead of
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Figure 6. Target Tracking example utilizing an RH approach. The KF position estimates are x̂, ŷ and the RTS position estimates are
x̂s, ŷs. See an animation of the results on https://github.com/MOHAMMADZAHD93/When2measureKF.

the model (27) which was used for simulation. The running cost for each OCP is

L(ξ̂, Σ̂, u, λ, ε) = wΣ tr(Σ̂) + wλ λ
⊤λ+ wu u

⊤u

where wΣ ≥ wλ ≥ wu ≥ 0, and the terminal cost being the distance between the robot and the predicted location of the
target according to the model in (28). The running constraints C encodes the input bounds u ≤e u ≤e ū, λ ≥e 0, and an
energy lower bound η̂ ≥ cη with cη ≥ 0. The terminal constraint CT encodes a tighter lower bound on energy to ensure
feasibility for the next optimization. The results are illustrated in Figure G. The results in Figure G show that the RH
implementation manages to make the robot obtain close estimates to the target’s position, which enables the robot to track
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it closely. Additionally, we can see that the energy drops to a lower value close to the terminal constraint on energy with
measurement-induced oscillations. We also see that the same thing happens to the covariance matrix of the CD-KF.

H. Experiments for Nonconcave/Nonconvex Auxiliary Dynamics
In this section, we will solve the OCP in (12) for several cases in which we modify the auxiliary dynamics for the robot
example in Section 9 and the water sensors in Appendix E to violate the concavity/convexity assumption 5.1. For the robot
example in Section 9, we consider three different cases in which we modify equation (17) to be

dζs
dt

=

Ns∑
i=1

γi exp
(
−rζ∥pr − pp∥2

)(1

2
+

1

2
ψζ(ζs)

)
δtsi , (29)

where ψζ(ζs) =
1

1+exp(−ζs)
for the first case, ψζ(ζs) =

1
(1+exp(−ζs))

3 for the second and third case (the degradation cost
doubles as the degradation state for each sensor increases). The difference in the third case is that we modify the energy
dynamics in equation (14) to be

dη

dt
= ceψη1

(η) exp
(
re∥pr − pe∥2

)
− cuv

2 − cuω
2 −

2∑
s=1

Ns∑
i=1

csψη2
(η) δtsi , (30)

where ψη1
(η) = 1+exp(−(η−20))

2+exp(−(η−20)) (charging efficiency is halfed as the stored energy increases), and ψη2
(η) = 1 +

exp(−η2/52) (low stored energy increases the energy costs). For the example of the water sensors in Appendix E,
we consider a case in which fouling equation in (26) is modified to be

dξsp
dt

= −
(
αf
s + γfs us(t)

) (
ξsp(t)

)3
+

Ns∑
i=1

ρfs δtsi , s ∈ {1, 2}. (31)

The results for the different cases are shown in Figure 7, Figure 8, Figure 9, and Figure 10. The figures for robot cases show
that we can still obtain satisfactory results even if the dynamics for the auxiliary states violate assumption 5.1. The same can
also be said for the results of the modified water fouling example in Figure 10, except for the fouling state of the second
sensor, where it can be seen that the planned fouling becomes different from the true one towards the end. Nevertheless, the
planned and true covariance matrix Σ for all of these examples are similar. These empirical examples support the idea in
Remark 7.2 that our method can still work in situations where the dynamics of the perturbed auxiliary state have a local
near-linear behaviour.

22



Optimal Sensor Scheduling and Selection with Auxiliary Dynamics

0.00 0.25 0.50 0.75 1.00
−1.0

−0.5

0.0

0.5

1.0

Time

x
p

x̂p ± 1σ True xp

x̂s
p ± 1σ Sensor 1

Sensor 2

0.00 0.25 0.50 0.75 1.00
0

1

2

3

Time

tr
(Σ

)

Planned Σ̂ True Σ

Sensor 1 Sensor 2

0.00 0.25 0.50 0.75 1.00
0.000

0.025

0.050

0.075

0.100

0.125

Time

R
ad

ia
ti
on

d
am

ag
e

True ζ1 Planned ζ̂1
True ζ2 Planned ζ̂2
Sensor 1 Sensor 2

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

Time

E
n
er
gy

Planned η̂ True η
Sensor 1 Sensor 2

Figure 7. The first modified (nonconvex/nonconcave) case for the robot example in Section 9. The KF estimate is x̂p and the RTS estimate
is x̂s

p.
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Figure 8. The second modified (nonconvex/nonconcave) case for the robot example in Section 9. The KF estimate is x̂p and the RTS
estimate is x̂s

p.
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Figure 9. The third modified (nonconvex/nonconcave) case for the robot example in Section 9. The KF estimate is x̂p and the RTS
estimate is x̂s

p.
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Figure 10. The modified water fouling example in Appendix E (nonconvex/nonconcave). The KF estimate is x̂p and the RTS estimate is
x̂s
p.
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I. State-Space Realization for Gaussian Processes
A one-dimensional GP with a covariance kernel whose power spectral density is rational admits an exact representation as
an SSM (Hartikainen & Särkkä, 2010; Särkkä & Hartikainen, 2012; Todescato et al., 2020). In this framework, forward
filtering via the CD-KF combined with backward RTS smoothing computes the exact posterior mean and covariance of
GP regression (Hartikainen & Särkkä, 2010). The CD-KF and RTS algorithms achieve this with O(N) computational
complexity for N measurements (in contrast to O(N3) with the traditional Gaussian Process regression), thus enabling
scalable inference for large datasets.

For linear-Gaussian models, the smoothing covariance matrix is always dominated by the filtering covariance in the Loewner
order. Consequently, the OCP in (12) inherently controls both the filtering and smoothing uncertainties. This means
our framework for sensor scheduling with auxiliary dynamics in this paper can be used in connection with efficient GP
regression.

For kernels with non-rational spectral densities (e.g., the squared-exponential kernel), approximations can be constructed
using rational function expansions such as Padé approximants (Todescato et al., 2020). These approximations will yield
finite-dimensional SSM representations.

J. Unicycle Model
For a unicycle model of a robot, we have the state

ξp =

[
pr
θ

]
, where pr =

[
pr1
pr2

]
represents the planar position with respect to a global frame, and θ is the heading angle. The linear (heading) velocity is v
and the angular velocity is ω. The kinematic equations are then

ξ̇p =

ṗr1ṗr2
θ̇

 =


v cos(θ)

v sin(θ)

ω

 .
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