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ABSTRACT

A maturing area of research in deep learning is the development of architectures
that can learn explicit representations of relational features. In this paper, we focus
on the problem of learning representations of hierarchical relations, proposing
an architectural framework we call “relational convolutional networks”. Given a
sequence of objects, a “multi-dimensional inner product relation” module produces
a relation tensor describing all pairwise relations. A “relational convolution” layer
then transforms the relation tensor into a sequence of new objects, each describing
the relations within some group of objects at the previous layer. Graphlet filters,
analogous to filters in convolutional neural networks, represent a template of
relations against which the relation tensor is compared at each grouping. Repeating
this yields representations of higher-order, hierarchical relations. We present
the motivation and details of the architecture, together with a set of experiments
to demonstrate how relational convolutional networks can provide an effective
framework for modeling relational tasks that have hierarchical structure.

1 INTRODUCTION

Modeling of relations between objects is important to a range of machine learning problems. For
instance, an image analysis application might rely on comparing objects in terms of relations that
extract color, size, or texture features; a natural language task may use relations that are based on
syntactic or semantic features of pairs of words. To enable efficient learning of relational information,
it is important to explore learning architectures that support processing of relations in a natural,
expressive, and efficient manner.

Compositionality, the ability to compose modules together to build iteratively more complex feature
maps, is key to the success of deep representation learning. For example, in a feed forward network,
each layer builds on the one before, and in a CNN, each convolution builds an iteratively more
complex feature map (Zeiler & Fergus, 2014). So far, work on relational representation learning has
been limited to “flat” first-order architectures. In this work, we propose a compositional framework
for learning hierarchical relational representations, which we call “relational convolutional networks.”

A schematic of the proposed architecture to support hierarchical relational learning is shown in Fig-
ure 1. The key idea involves formalizing a notion of “convolving” a relation tensor, describing the
pairwise relations in a sequence of objects, with a “graphlet filter” which represents a template of
relations between subsets of objects. Each composition of those operations computes relational
features of a higher order.

In a series of experiments, we show how relational convolutional neural networks provide an effective
framework (and inductive bias) for relational learning. We first carry out experiments on “relational
games” proposed as a benchmark for relational reasoning by (Shanahan et al., 2020). This consists of
a suite of binary classification tasks for identifying abstract relational rules between a set of objects
represented as images. We next carry out experiments on a version of the SET game, which requires
processing of higher-order relations between multiple attributes on a set of cards. For both tasks,
relational convolutional networks are able to achieve more sample efficient learning compared to
Transformers, as well as other architectures that have been specifically developed for relational
learning.
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Figure 1: Proposed architecture for relational con-
volutional networks. Hierarchical relations are
modeled by iteratively computing pairwise rela-
tions between objects and convolving the resultant
relation tensor with graphlet filters representing
templates of relations between subsets of objects.

Several previous works have considered the de-
sign of machine learning architectures which
support the representation of relational informa-
tion, in various forms (Battaglia et al., 2018;
Palm et al., 2018; Zhang et al., 2019).

Graph Neural Networks. Graph neural net-
works (GNNs) are a class of neural network
architectures which operate on graphs and pro-
cess “relational” data (Kipf et al., 2018; Kipf &
Welling, 2017; Niepert et al., 2016; Schlichtkrull
et al., 2017; Veličković et al., 2017). A defin-
ing feature of the GNN model is its use of a
form of neural message-passing, wherein the
hidden representation of a node is updated as
a function of the hidden representations of its
neighbors (Gilmer et al., 2017). Typical exam-
ples of tasks which GNNs are applied to include
node classification, graph classification, and link
prediction (Hamilton, 2020).

In GNNs, the ‘relations’ are given to the model
via edges in a graph. In contrast, our architec-
ture, as well as the explicitly relational architec-
tures described below, operate on collections of
objects without any relations given as input. In-
stead, such relational architectures must infer the
relevant relations from the objects themselves.
Still, graph neural networks can be applied to
relational tasks by passing in the collection of
objects along with a complete graph. A Transformer Encoder can be thought of as a special case of
this architecture, and hence is the representative baseline we compare against in our experiments.

Attention as modeling relations Several works have proposed architectures with the ability to
model relations by incorporating an attention mechanism (Locatello et al., 2020; Santoro et al., 2018;
Vaswani et al., 2017; Veličković et al., 2017; Zambaldi et al., 2018). Attention mechanisms model
relations between objects implicitly as an intermediate step in a form of neural message-passing in
order to update the representation of each object as a function of its context.

Emerging literature on “explicitly relational” architectures. There exists a growing literature on
neural architectures which aim to explicitly model relational information between objects. An early
example is (Santoro et al., 2017). Shanahan et al. (2020) proposes the PrediNet architecture, which
aims to learn relational representations which are compatible with predicate logic. Webb et al. (2021)
proposes ESBN, a recurrent neural network augmented with external memory with a memory-write
operation which factors representations into ‘sensory’ and ‘relational’. Kerg et al. (2022) proposes
CoRelNet, a simple architecture based on ‘similarity scores’ which aims to distill the relational
inductive biases discovered in previous work into a minimal architecture.

We aim to contribute to this literature by proposing a framework for learning hierarchical relational
representations in a natural, interpretable, sample-efficient, and parameter-efficient manner.

2 MULTI-DIMENSIONAL INNER PRODUCT RELATION MODULE

A relation function is a function which maps a pair of objects x, y P X to a vector representing the
relation between the two objects. For example, a relation may represent the information “x has the
same color as y”, “x is larger than y”, and “x is to the left of y”. In principle, this can be modeled
by an arbitrary learnable function on the concatenation of the two objects’ representations. For
example, (Santoro et al., 2017) models relations by MLPs applied to the concatenation of pairs of
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objects, gθpx, yq. While this approach may work in some cases, it is missing some crucial inductive
biases. In particular, there is no constraint that the learned pairwise function is in fact relational—
gθpx, yq may just as well represent non-relational information like “x is bright” and “y is small”, as
opposed to relational information like “x is larger than y”.

Recent work has explored using inner products to model relations between objects (Altabaa et al.,
2023; Kerg et al., 2022; Webb et al., 2021). The advantage of such an approach is that it provides
added pressure to learn explicitly relational representations, disentangling relational information from
attributes of individual objects. In particular, it induces a geometry on the object space X which
allows objects to be described in relation to each other. For example, in the symmetric case, the inner
product xφpxq, φpyqy induces a metric on X . In fact, the relation xφpxq, φpyqy attaches well-defined
notions of distance, angles, and orthogonality to the space X .

More generally, we can allow for multi-dimensional relations by having multiple encoding functions,
each extracting a feature to compute a relation on. Furthermore, we can allow for asymmetric
relations by having different encoding functions for each object. Hence, we model relations by,

rpx, yq � pxφ1pxq, ψ1pyqy , . . . , xφdr
pxq, ψdr

pyqyq P Rdr , (1)

where φ1, ψ1, . . . , φdr
, ψdr

are learnable functions. For each dimension of the relation function, the
maps φk, ψk extract a particular attribute of the objects which is then compared by the inner product.

To promote weight sharing, we can have one common non-linear map φ across all dimensions along
with different linear maps for each object and each dimension of the relation. That is,

rpx, yq �
�A
W

p1q
1 φpxq,W p1q

2 φpyq
E
, . . . ,

A
W

pdrq
1 φpxq,W pdrq

2 φpyq
E	

, (2)

where the learnable parameters are φ and W pkq
1 ,W

pkq
2 , k P rdrs. φ : X Ñ Rdφ may be an MLP, for

example, and W pkq
1 ,W

pkq
2 are dproj � dφ matrices. The class of functions realizable by Equation (2)

is the same as Equation (1) but enables greater weight sharing.

The “Multi-dimensional Inner Product Relation” (MD-IPR) module receives a sequence of objects
x1, . . . , xm as input and models the pairwise relations between them by Equation (2), returning an
m�m�dr relation tensor, Rri, js � rpxi, xjq, describing the relations between each pair of objects.

3 RELATIONAL CONVOLUTIONS WITH GRAPHLET FILTERS

3.1 RELATIONAL CONVOLUTIONS WITH DISCRETE GROUPS

Suppose that we have a sequence of objects px1, . . . , xmq P pRdqm and a relation tensor R P
Rm�m�dr describing the pairwise relations between them (obtained by a MD-IPR layer). The
relational convolution operation we will define does two things: 1) extracts features of the relations
between groups of objects using pairwise relations 2) transforms the relation tensor back into a
sequence of objects, allowing it be composed with another relational layer to compute higher-order
relations.

Fix some filter size s   n, where s is a hyperparameter of the relational convolution layer. One ‘filter’
is given by the graphlet f1 P Rs�s�dr . This is a ‘template’ for the pairwise relations between s
objects. Note that the dimension of the relations in this filter matches that of the input relation tensor.
Let g � rns be a subset of the objects of size s. Suppose for now that g is an ordered set (i.e., the
group p1, 2, 3q is different from the group p2, 3, 1q). Then, denote the relation sub-tensor given by
this (ordered) subset by Rrgs :� rRri, jssi,jPg . We define the ‘relational inner product’ between this
relation subtensor and the filter f1 by

xRrgs, f1yrel :�
¸
i,jPg

xRri, js, f1ri, jsyRdr �
¸
i,jPg

¸
kPrdrs

Rri, j, ksf1ri, j, ks. (3)

This is simply the inner product in the corresponding euclidean space Rs2dr . This quantity represents
how much the relations within the objects in g match the relations in the template f1.

The relational convolution layer has nf filters (a hyperparameter). Denote the collection of filters
by f � �

f1, . . . , fnf

� P Rs�s�dr�nf , which we call a graphlet filter. We define the relational inner
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Figure 2: A depiction of the relational convolution operation. The input is a relation tensor R P
Rm�m�dr . A learned set of graphlet filters f P Rs�s�dr�nf are compared to each relation subtensor
Rrgs, g P G, producing the relational convolutionR�f . With a group matrixG P Rm�ng , pR�fqpGq
represents the relational information in a set of ng “soft groups”.

product of a relation subtensor Rrgs with a graphlet filter f as the nf -dimensional vector consisting
of the relational inner products with each individual filter,

xRrgs,fyrel �

�
��
xRrgs, f1yrel

...@
Rrgs, fnf

D
rel

�
�P Rnf . (4)

This vector summarizes various aspects of the relations within a group, captured by several different
filters1.Each filter corresponds to one dimension in the final relation-summarizing vector for the
group g. This is reminiscent of convolutional neural networks, where each filter gives us one channel
in the output tensor.

We can also define a symmetric variant of the relational inner product which is invariant to the
ordering of the elements in g. This can be done by pooling over all permutations of g. In particular,
we suggest max-pooling and average-pooling, although any set-aggregator would be valid. We denote
the permutation-invariant relational inner product by xRrgs, f1yrel,sym,

xRrgs,fyrel,sym � Pool
� @

Rrg1s,fD
rel

: g1 P g!(� , (5)

where g! denotes the set of permutations of the group g. Recall that each xRrg1s,fyrel is nf -
dimensional, and the pooling is done independently for each dimension.

For a given group g � rms, the relational inner product with a graphlet filter, xRrgs,fyrel, gives us a
vector summarizing the relational patterns inside that group. We aim to get a sequence of objects
which each describes the relational patterns within each group of interest. Let G be a set of size-s
groups of the the m objects. The relational convolution between a relation tensor R and a relational
graphlet filter f is the sequence of relational inner products with each group in G,

R � f � pxRrgs,fyrelqgPG �
�
z1, ..., z|G|

� P pRnf q|G| (6)

G is a pre-specified hyperparameter of the relational convolution operation. The choice depends on
the usecase. If some prior information is known about reasonable groupings, this can be encoded in
G. When m is small and no prior information is available, a reasonable choice might be the the set of
all combinations of size s. When m is large, considering all combinations will be intractable. One
solution is to consider a random sample of combinations. In the next subsections, we consider the
problem of learning the relevant groups.

1We have overloaded notation, but will use the convention that a collection of filters is denoted by a bold
symbol to distinguish between the two forms of the relational inner product.

4



Under review as a conference paper at ICLR 2024

3.2 RELATIONAL CONVOLUTIONS WITH ‘SOFT’ GROUPS

In the above formulation, the groups are ‘discrete’. Having discrete groups can be desirable for
interpretability, if the relevant groupings are known a priori or if considering every possible grouping
is computationally and statistically feasible. However, if the relevant groupings are not known, then
considering all possible combinations results in a rapid growth of the number of objects at each layer.

In order to address these issues, we propose explicitly modeling groups. This allows us to control
the number of objects in the output sequence of a relational convolution operation such that only
relevant groups are considered. In the next section, we outline some ways to model ‘soft groups’
using grouping layers. These layers take a sequence of objects and/or the relation tensor as input and
produce a ‘group matrix’ G P Rm�ng representing ng ‘soft groups’. The pi, jq-th entry of the group
matrix represents the degree to which the i-th object belongs to the j-th group. The number of groups
ng is a configurable hyperparameter of the grouping layers. For the remainder of this subsection, we
assume that the group matrix G is given as input to the relational convolution layer.

Consider the group matrix G P Rm�ng and filters f of size s. First, we use G to compute a
“group-match score” for each discrete group g of size s (e.g., g P G � �

rms
s

�
). This is done via

GÐ SoftPluspGq

αgk Ð Normalize

�
��¹

iPg

Gri, ks
�
gPG

�
, g P G, k P rngs,

(7)

where the soft-plus function is Softpluspxq � logpexppx� 1qq, applied elementwise. This has the
effect of making the group matrix G non-negative which is needed for the product of its elements
to represent a “group-match score”. The product inside the softmax is over elements in the discrete
group g P G. Hence, it will be large whenever the soft group Gk :� Gr:, ks aligns with the discrete
group g. Normalizep�q normalizes the group match scores so that

°
g αgk � 1. We propose the use

of sparse normalizers (Laha et al., 2018) so that only a sparse subset of discrete groups in G contribute
to each soft group (see also Appendix B.2). In our experiments, we use ‘sparsemax’ (Martins &
Astudillo, 2016). Thus, αgk is a normalized “group-match score” indicating the degree to which the
discrete group g matches the given soft group Gk.

Now, we can define the ‘soft’ relational inner product given the soft group Gk by

xR,f |GkyR :�
¸
gPG

αgk xRrgs,fyrel . (8)

This notation should be read as “the relational inner product of the relation tensor R with the graphlet
filters f given the group Gk”. This expression is essentially a convex combination of the relational
inner product with all possible discrete groups weighted by how much they match the soft group Gk.

With this modification, the number of objects in the output sequence is fixed and controlled by the
number of groups, ng (which is a hyperparameter). The output sequence of the relational convolution
given groups G is now given by

pR � fqpGq � �xR,f |G1yrel , . . . ,
@
R,f |Gng

D
rel

� P pRnf qng . (9)

4 GROUPING LAYERS

A grouping layer is a layer which outputs a group matrix G P Rm�ng representing the degree to
which each object i P rms belongs to each group j P rngs. The number of groups ng is a configurable
hyperparameter. We briefly describe some proposals for grouping layers with different properties.

Temporal (Positional) Grouping. In the temporal grouping layer, the groups are a function only
of the temporal order of the objects. This can be achieved by learning the group matrix G directly
as a parameter of the model. G will be optimized along with the rest of the model parameters as a
function of its effect on the relational convolution layer. Temporal grouping would be appropriate in
situations where the order in which objects appear is predetermined and indicates the relevant groups.
For example, objects that are positionally close to each other may be grouped together.
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Feature-based Grouping. In a feature-based grouping layer, the group(s) to which each object
belongs is a function of that object’s features (and position). That is,

GÐ

�
��
φp1, x1qJ

...
φpm,xmqJ

�
�� P Rm�ng , (10)

where φ : rms � X Ñ Rng is a learnable function which maps an object’s temporal order i and
feature representation xi to a ng-dimensional group membership vector where the jth entry of the
vector represents the degree to which the object belongs to the jth group. For example φ can be
a multi-layer perceptron of the form φpi, xq � MLPpconcatpei, xqq. Feature-based grouping may
be useful in situations where group membership can be determined for each object using only that
object’s features, irrespective of the context of the other objects in the sequence.

Context-aware Grouping. In some applications, the group(s) to which each object belongs to may
depend on the full context of the other objects in the sequence. One way to model this is to use
a message-passing neural network to update the representations of each object, incorporating the
context of the other objects in the sequence. Then, a multi-layer perceptron is applied to each encoded
object to produce the group membership vector for that object.

Ei Ð MessagePassing pxi, tx1, . . . , xmuq , i P rms

GÐ

�
��
MLPpE1qJ

...
MLPpEmqJ

�
�� P Rm�ng .

(11)

This is the most general form of grouping, as it encompasses the previous two forms as special cases.
The updated representation of each object Ei now contains any relevant information about the other
objects which should be considered in computing its group membership vector. One simple and
effective option for the message-passing operation is to use self-attention. In this case, since an inner
product relation layer precedes the relational convolution layer, the relation tensor can be re-used in
the self-attention operation to compute attention scores.

5 EXPERIMENTS

5.1 RELATIONAL GAMES

The relational games dataset was contributed as a benchmark for relational reasoning by (Shanahan
et al., 2020). It consists of a family of binary classification tasks for identifying abstract relational rules
between a set of objects represented as images. The objects consist of three sets of simple geometric
shapes, referred to as “pentominoes”, “hexominoes”, and “stripes”. The objects are arranged in a
3� 3 grid. Each task corresponds to some relationship between the objects (see Figure 3), and the
target is to classify whether the relationship holds among a given sequence of objects or not.

In our experiments, we evaluate out-of-distribution generalization by training all models on the
pentominoes objects and evaluating on the hexominoes and stripes objects. The input to all models is
presented as a sequence of 9 objects, each represented as a 12� 12� 3 RGB image. In all models,
the objects are processed independently by a CNN with a shared architecture. The individually-
processed sequence of objects is then passed to the relation-processing component of the model. The
results are then flattened and passed through an MLP with a shared architecture to produce the final
prediction. We compare four models: a relational convolutional network (abbreviated RelConvNet),
CoRelNet (Kerg et al., 2022), PrediNet (Shanahan et al., 2020), and a Transformer (Vaswani et al.,
2017). Further, we evaluate variants of RelConvNet with learned grouping layers (temporal, feature-
based, and contextual). The architectural details of each model are described in Appendix A.

The pentominoes split is used for training, and the hexominoes and stripes splits are used to test
out-of-distribution generalization after training. We train for 50 epochs using the categorical cross-
entropy loss and the Adam optimizer with learning rate 0.001, β1 � 0.9, β2 � 0.999, ϵ � 10�7. We
use a batch size of 512. For each model and task, we run 5 trials with different random seeds.
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Pentominoes Hexominoes Stripes

same occurs xoccurs between match patt

Figure 3: Relational games dataset. Left Examples of objects from each split. Right Examples of
problem instances for each task. The first row is an example where the relation holds and the second
row is an example where the relation does not hold.
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Figure 4: Training curves, up to 2,000 batch steps, for each relational games task. Solid lines indicate
the mean over 5 trials and the shaded regions indicate a bootstrap 95% confidence interval.

Sample efficiency. We observe that the relational inductive biases of RelConvNet, and relational
models more generally, grant a significant advantage in sample-efficiency. Figure 4 shows the training
accuracy over the first 2,000 batches for each model. RelConvNet, CoRelNet, and PrediNet are
explicitly relational architectures, whereas the Transformer is not. The Transformer is able to process
relational information through its attention mechanism, but this information is entangled with the
features of individual objects (which, for these relational tasks, is extraneous information). The
Transformer consistently requires the largest amount of data to learn the relational games tasks.
PrediNet tends to be more sample-efficient. RelConvNet and CoRelNet are the most sample-efficient,
with RelConvNet only slightly more sample-efficient on most tasks.

On the ‘match pattern’ task, however, RelConvNet is significantly more sample-efficient. We
attribute this to the fact that RelConvNet is able to model higher-order relations through its relational
convolution module. The ‘match pattern’ task can be thought of as a simple second-order relational
task—it involves computing relations between two groups of objects, and comparing the relations
within the two groups. The relational convolution module naturally models this kind of situation
since it learns representations of the relations among subsets of objects.
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Figure 5: Out-of-distribution generalization on hold-out object sets. Bar heights indicate the mean
over 5 trials and the error bars indicate a bootstrap 95% confidence interval.
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Out-of-distribution generalization. Figure 5 reports model performance on the two hold-out object
sets after training. On the hexominoes objects, which are similar-looking to the pentominoes objects
used for training, RelConvNet and CoRelNet do nearly perfectly. PrediNet and the Transformer
do well on the simpler tasks, but struggle with the more difficult ‘match pattern’ task. The stripes
objects are visually more distinct from the training split objects, making generalization more difficult.
We observe an overall drop in performance for all models. The drop is particularly dramatic
for CoRelNet2. We conjecture that this is due to CoRelNet’s inability to model multi-dimensional
relations, necessitating that all relational information is squeezed into a scalar quantity. The separation
between RelConvNet and the other models is largest on the “match pattern” task of the stripes split
(the most difficult task and the most difficult generalization split). Here, RelConvNet (with temporal
grouping) maintains a mean accuracy of 97% while the other models drop below 65%. We attribute
this to RelConvNet’s ability to naturally represent higher-order relations and model groupings of
objects. This split is also where the addition of learned grouping layers yield improvements over the
variant of RelConvNet with only discrete groups. The grouping layers allow the model to represent
the latent groups which exist in the task, enabling improved out-of-distribution generalization.

5.2 ‘SET’: GROUPING AND COMPOSITIONALITY IN RELATIONAL REASONING

‘SET’ is a card game which forms a simple but challenging relational task. The ‘objects’ are a set
cards each representing four attributes which can take one of three values each. ‘Color’ can be red,
green, or purple; ‘number’ can be one, two, or three; ‘shape’ can be diamond, squiggle, or oval; and
‘fill’ can be solid, striped, or empty. A ‘set’ is a triplet of cards such that each attribute is either the
same on all three cards or different on all three cards. Figure 6a shows a sample of SET cards.

In SET, the task is: given a hand of k ¡ 3 cards, find a ‘set’ among them (typically, SET is played
with k � 12, with two players competing to find a ‘set’ first). This task is deceptively challenging,
and is representative of the type of relational reasoning that humans excel at but machine learning
systems still struggle with. To solve the task, one must process the sensory information of individual
cards to identify the values of each attribute, then somehow search over combinations of cards and
reason about the relations between them. Importantly, this type of relational reasoning requires
attending over several attributes and relations simultaneously while representing some notion of
‘groups’. The construct of relational convolutions proposed in this paper is a step towards developing
machine learning systems which can perform this kind of relational reasoning.

In this section, we evaluate RelConvNet on a task based on ‘SET’ and compare it to several baselines.
The task is: given a sequence of k � 5 images of SET cards, determine whether or not they contain a
‘set’. All models share the common architecture px1, . . . , xkq Ñ CNNÑ t�u Ñ MLPÑ ŷ, where t�u
is RelConvNet, CoRelNet, PrediNet, or a Transformer. The architectures are identical to the previous
section with the exception that RelConvNet uses the permutation-invariant version of the relational
inner product (eq. (5)) with max-pooling, and the projection dimension is changed to 16 to better
match the larger embedding dimension of the card images. The CNN embedder is pre-trained on
the task of classifying the four attributes of the cards and an intermediate layer is used to generate
embeddings of dimension 64 for each card. The output MLP architecture is shared across all models,
and consists of two hidden layers with 64 and 32 neurons, respectively, and ReLU activations.

In SET, there exists
�
81
3

� � 85 320 triplets of cards, of which 1 080 are a ‘set’. We partition the
‘sets’ into training (70%), validation (15%), and test (15%) sets. The training, validation, and test
datasets are generated by sampling k-tuples of cards such that with probability 1{2 the k-tuple does
not contain a set, and with probability 1{2 it contains a set among the corresponding partition of
sets. Partitioning the data in this way allows us to measure the models’ ability to “learn the rule”
and identify new unseen ‘sets’. We train for 100 epochs with the same loss, optimizer, and batch
size as the experiments in the previous section. Figure 6b shows the hold-out test accuracy for each
model. Figures 6c and 6d show the training and validation accuracy over the course of training.

We observe that RelConvNet is able to learn the task and generalize to new ‘sets’ with near-perfect
accuracy. On the other hand, CoRelNet and the Transformer have accuracies only slightly better than
random guessing on the test set, while PrediNet learns nothing that generalizes to the test set. The

2The experiments in (Kerg et al., 2022) on the relational games benchmark use a technique called “context
normalization” (Webb et al., 2020) as a preprocessing step. We choose not to use this technique since it is an
added confounder. We discuss this more in Appendix E.
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(d) Validation accuracy over the course of training.

Figure 6: Results of “contains set” experiments. Bar height/solid lines indicate the mean over 10
trials and error bars/shaded regions indicate 95% bootstrap confidence intervals.

picture becomes more clear when looking at training curves. While the Transformer and PrediNet are
eventually able to fit the training data, they are unable to “learn the rule” in a way that generalizes to
the validation or test sets. This suggests that the Transformer architecture has the general-purpose
function-approximation capabilities to fit a wide array of sequence-tasks, but it does not have the
right inductive biases for specialized relational reasoning. A possible explanation is that relations are
processed only implicitly through its attention mechanism, rather than explicitly via a relation tensor.
Moreover, it does not naturally support reasoning about the relations between groups of objects.
These are strengths of the relational convolutional networks architecture.

6 DISCUSSION

Summary. In this paper, we proposed a framework for hierarchical relational representation learning
via a novel relational convolution operation. The relational convolution operation we propose here
is a ‘convolution’ in the sense that it considers a patch of the relation tensor, given by a group, and
compares the relations within it to a template graphlet filter via an appropriately-defined inner product.
This is analogous to convolutional neural networks, where we would compare an image filter against
different patches of the input image. Since the same graphlet filters are used for all groupings, the
relational convolution operation implements a form of parameter-sharing which yields improved
sample-efficiency and generalization.

An important feature of the relational convolution operation is its interpretability. The filters f �
pf1, . . . , fnf

q are each a particular pattern of relations between s objects. Each object in the output of
a relational convolution R � f represents the degree to which the relations in the group g match the
patterns in each filter. By iteratively applying inner product relation layers and relational convolution
layers, we obtain an architecture which naturally models hierarchical relations.

Limitations and future work. The tasks considered here are solvable by modeling only second-order
relations at most. We observe that the relational convolutional networks architecture saturates the
relational games benchmark of (Shanahan et al., 2020). While the “contains set” task demonstrates
a sharp separation between relational convolutional networks and existing baselines, this task too
only involves second-order relations, and does not fully test the abilities of the framework. A more
thorough evaluation of this architecture, and future architectures for modeling hierarchical relations,

9
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would require the development of new benchmark tasks and datasets which involve a larger number
of objects and higher-order relations. This is a non-trivial task that we leave for future work.

The experiments considered here are synthetic relational tasks designed for a controlled evaluation.
In more realistic settings, we envision relational convolutional networks as modules embedded in a
broader architecture. For example, the relational convolutions framework can be naturally integrated
into a graph neural network by using the relational convolution outputs as the node inputs and the
relation tensor as the graph inputs. Similarly, the framework can be integrated into a Transformer-
based model for general sequence modeling tasks by having the decoder attend to the sequence of
relational objects produced by relational convolutions.

CODE AND DATA

Code and experimental logs are available at: https://[PlaceHolder]
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A EXPERIMENTS SUPPLEMENT

A.1 RELATIONAL GAMES

Table 1 contains text descriptions of each task in the relational games dataset in the experiments
of Section 5.1. Table 2 contains a description of the architectures of each model (or shared component)
in the experiments. Table 3 contains a description of the hyperparameters of the grouping layers
corresponding to the ‘Temporal G’, ‘Feature G’, and ‘Contextual G’ RelConvNet models. All
grouping layers have 16 soft groups, and the normalizer in Equation (7) is sparsemax. Table 4 reports
the accuracy on the hold-out object sets (i.e., the numbers depicted in Figure 5 of the main text).

Task Description

same Two random cells out of nine are occupied by an object. They are the
“same” if they have the same color, shape, and orientation (i.e., identical
image)

occurs The top row contains one object and the bottom row contains three
objects. The “occurs” relationship holds if at least one of the objects in
the bottom row is the same as the object in the top row.

xoccurs Same as occurs, but the relationship holds if exactly one of the objects
in the bottom row is the same as the object in the top row.

between The grid is occupied by three objects in a line (horizontal or vertical).
The “between” relationship holds if the outer objects are the same.

row match
pattern

The first and third rows of the grid are occupied by three objects each.
The “match pattern” relationship holds if the relation pattern in each
row is the same (e.g., AAA, AAB, ABC, etc.)

Table 1: Relational games tasks.

Model / Component Architecture

Common CNN
Embedder

Conv2DÑ MaxPool2DÑ Conv2DÑ MaxPool2DÑ Flatten.
Conv2D: num filters = 16, filter size = 3� 3, activation = relu.
MaxPool2D: stride = 2.

RelConvNet CNNÑ MD-IPRÑ RelConvÑ FlattenÑ MLP.
MD-IPR: relation dim = 16, projection dim = 4, symmetric.
RelConv: num filters = 16, filter size = 3, discrete groups = combinations.

CoRelNet CNNÑ CoRelNetÑ FlattenÑ MLP.
Standard CoRelNet has no hyperparameters.

PrediNet CNNÑ PrediNetÑ FlattenÑ MLP.
PrediNet: key dim = 4, number of heads = 4, num relations = 16.

Transformer CNNÑ TransformerEncoderÑ AveragePoolingÑ MLP.
TransformerEncoder: num layers = 1, num heads = 8, feedforward
intermediate size = 32, activation = relu.

Common output MLP Dense(64, ’relu’)Ñ Dense(2).

Table 2: Model architectures for relational games experiments.

Grouping layer Description
Temporal Grouping G learned directly as parameter.
Feature-based Grouping G produced by MLP with two hidden layers of size 32 and relu activation.
Contextual Grouping G produced by message-passing (via Transformer Encoder Block) followed

by an MLP (eq. (11)). Encoder Block has 4 heads, inner dim = 32, and relu
activation. MLP same as feature-based grouping.

Table 3: hyperparameters of grouping layers.
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Hexos Accuracy Stripes Accuracy
Task Model

same CoRelNet 0.988� 0.006 0.724� 0.112
PrediNet 0.990� 0.004 0.983� 0.007
Transformer 0.997� 0.001 0.993� 0.004
RelConvNet 0.989� 0.002 0.974� 0.003
RelConvNet (Temporal G) 0.981� 0.002 0.965� 0.007
RelConvNet (Feature G) 0.985� 0.001 0.978� 0.006
RelConvNet (Contextual G) 0.981� 0.002 0.969� 0.012

occurs CoRelNet 0.992� 0.004 0.518� 0.012
PrediNet 0.907� 0.020 0.775� 0.046
Transformer 0.881� 0.015 0.724� 0.021
RelConvNet 0.980� 0.001 0.880� 0.015
RelConvNet (Temporal G) 0.983� 0.001 0.920� 0.012
RelConvNet (Feature G) 0.788� 0.112 0.747� 0.099
RelConvNet (Contextual G) 0.951� 0.004 0.830� 0.044

xoccurs CoRelNet 0.980� 0.007 0.606� 0.035
PrediNet 0.872� 0.036 0.810� 0.028
Transformer 0.867� 0.017 0.753� 0.031
RelConvNet 0.967� 0.001 0.946� 0.006
RelConvNet (Temporal G) 0.963� 0.006 0.939� 0.012
RelConvNet (Feature G) 0.760� 0.107 0.754� 0.103
RelConvNet (Contextual G) 0.942� 0.020 0.901� 0.029

between CoRelNet 0.995� 0.001 0.582� 0.063
PrediNet 0.978� 0.006 0.950� 0.019
Transformer 0.986� 0.003 0.961� 0.010
RelConvNet 0.991� 0.001 0.988� 0.002
RelConvNet (Temporal G) 0.992� 0.001 0.979� 0.004
RelConvNet (Feature G) 0.993� 0.001 0.981� 0.003
RelConvNet (Contextual G) 0.992� 0.002 0.972� 0.012

match pattern CoRelNet 0.942� 0.011 0.581� 0.026
PrediNet 0.710� 0.040 0.658� 0.053
Transformer 0.627� 0.005 0.591� 0.006
RelConvNet 0.961� 0.015 0.870� 0.041
RelConvNet (Temporal G) 0.979� 0.003 0.967� 0.002
RelConvNet (Feature G) 0.976� 0.003 0.958� 0.009
RelConvNet (Contextual G) 0.935� 0.047 0.896� 0.060

Table 4: Out-of-distribution generalization results on relational games. We report means � standard
error of mean over 5 trials. These are the numbers associated with Figure 5.

A.2 SET

Table 6 reports the test accuracies in the “contains set” task of Section 5.2 (i.e., the numbers depicted
in Figure 6b of the main text).

B COMPUTATIONAL EFFICIENCY AND PARAMETER EFFICIENCY

B.1 PARAMETER EFFICIENCY

The parameter count of both MD-IPR and relational convolution layers does not scale with the
number of input objects or the number of groups considered. Instead, the parameters are shared
across objects and groups. This has computational and statistical benefits. In particular, it reduces
memory usage and the number of weight updates during backpropagation, as well as making the
statistical estimation of a good choice of parameters easier.
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Model / Component Architecture

Common CNN
Embedder

Conv2DÑ MaxPool2DÑ Conv2DÑ MaxPool2DÑ FlattenÑ
Dense(64, ’relu’) Ñ Dense(64, ’tanh’).
Conv2D: num filters = 32, filter size = 5� 5, activation = relu.
MaxPool2D: stride = 4.

RelConvNet CNNÑ MD-IPRÑ RelConvÑ FlattenÑ MLP.
MD-IPR: relation dim = 16, projection dim = 16, symmetric.
RelConv: num filters = 16, filter size = 3, discrete groups = combinations,
symmetric relational inner product with ‘max’ aggregator.

CoRelNet CNNÑ CoRelNetÑ FlattenÑ MLP.
Standard CoRelNet has no hyperparameters.

PrediNet CNNÑ PrediNetÑ FlattenÑ MLP.
PrediNet: key dim = 4, number of heads = 4, num relations = 16.

Transformer CNNÑ TransformerEncoderÑ AveragePoolingÑ MLP.
TransformerEncoder: num layers = 1, num heads = 8, feedforward
intermediate size = 32, activation = relu.

Common output MLP Dense(64, ’relu’)Ñ Dense(32, ’relu’)Ñ Dense(2).

Table 5: Model architectures for “contains set” experiments.

Accuracy
Model

CoRelNet 0.563� 0.001
PrediNet 0.508� 0.002
RelConvNet 0.979� 0.006
Transformer 0.584� 0.004

Table 6: Hold-out test accuracy on “contains set” task. We report means � standard error of mean
over 10 trials. These are the numbers associated with Figure 6b.

MD-IPR layer. In a multi-dimensional inner product relation module, the parameters are the left
and right projection maps, W pkq

1 ,W
pkq
2 P Rdproj�din , k � 1, . . . , dr, where the projection dimension

dproj and the relation dimension dr are hyperparameters, and din is the dimensionality of the input
objects ( Equation (2)). Hence, the parameter count of a MD-IPR layer is dr � dproj � din. Observe
that while this scales with the dimensionality of the input objects din, it does not scale with the
number of objects m—the same encoders are shared across all pairs of objects.

Relational Convolution layer. The parameters in a relational convolution layer are the graphlet
filters f P Rs�s�dr�nf . Observe that the parameter count is independent of the number of groups
|G| or even the number of objects m. The same graphlet filters are applied to the relation subtensor
corresponding to each grouping of objects. This is similar to how convolutional neural networks
apply the same filters to all patches of an image. The parameter count of a relational convolution
layer depends only on the filter size and number of filters, which are hyperparameters.

B.2 COMPUTATIONAL CONSIDERATIONS

The MD-IPR module computes an m�m relation tensor, where m is the number of input objects.
This quadratic computational and memory cost can be avoided under assumptions of sparsity in the
discrete groups G or group assignment matrix G. Such optimizations will be useful in problems
involving a large number of objects.

Consider first the case relational convolution with discrete groups. The output of the relational
convolution layer is R � f � pxRrgs,fyrelqgPG . For each g P G, Rrgs encodes the relations between
objects inside of g. Hence, rather than computing the full m �m relation tensor, we can instead
compute only,

R :� tRij : D g P G such that i, j P gu .
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When G is sparse and structured, R is sparse.

In the case of relational convolution with (learned) soft groups, the same can be achieved via a sparse
selection in the group match score αgk (Equation (7)). The group match scores αgk can be made
sparse by using sparse normalizers like sparsemax or top-k softmax, for example. Then, the relation
between object i and object j only needs to be computed if there exists a soft group Gk, k P rngs
which assigns non-zero weight to a discrete group g P G which includes both i and j. That is,

R :� tRij : D k P rngs, g P G such that αgk ¡ 0 and i, j P gu .
Thus, only a sparse subset of the m�m relation tensor would need to be computed and stored.

C GEOEMTRY OF REPRESENTATIONS LEARNED BY MD-IPR AND RELCONV

In this section, we explore and visualize the representations learned by MD-IPR and RelConv layers.
In particular, we will visualize the representations produced by the RelConvNet model trained on the
SET task described in Section 5.2. Recall that the MD-IPR layer learns encoders φ1, ψ1, . . . , φdr

, ψdr
.

In this model dr � 16, φi � ψi (so that learned relations are symmetric), and each φi is a linear
transformation to dproj � 4-dimensional space. The representations learned by a selection of 6
encoders is visualized in Figure 7. For each of the 81 possible SET cards, we apply each encoder in
the MD-IPR layer, reduce to 2-dimensions via PCA, and visualize how each encoder separates the 4
attributes: number, color, fill, and shape. Observe, for example, that “Encoder 0” disentangles color
and shape, “Encoder 2” disentangles fill, and “Encoder 3” disentangles number.

Next, we visualize, we explore the geometry of learned representations of relation vectors. That is,
the inner products producing the 16-dimensional relation vector for each pair of objects. For each�
81
2

�
pairs of SET cards, we compute the 16-dimensional relation vector learned by the MD-IPR

layer, reduce to 2 dimensions via PCA, and visualize how the learned relation disentangles the latent
same/different relations among the four attributes. This is shown in Figure 8. We see some separation
of the underlying same/different relations among the four attributes, even with only two dimensions
out of 16.

Finally, we visualize the representations learned by the relational convolution layer. Recall that this
layer learns a set of graphlet filters f P Rs�s�dr�nf which form templates of relational patterns
against which groups of objects are compared. In our experiments, the filter size is s � 3 and the
number of filters is nf � 16. Hence, for each group g of 3 SET cards, the relational convolution
layer produces a 16-dimensional vector, xRrgs,fyrel P Rnf , summarizing the relational structure
of the group. Of the

�
81
3

�
possible triplets of SET cards, we create a balanced sample of “sets” and

“non-sets”. We then compute xRrgs,fyrel and reduce to 2 dimensions via PCA. Figure 9 strikingly
shows that the representations learned by the relational convolution layer very clearly separate triplets
of cards which form a set from those that don’t form a set.

D SOME INITIAL IDEAS ON HIGHER-ORDER RELATIONAL TASKS

As noted in the discussion, the tasks considered in this paper are solvable by modeling second-order
relations at most. One of the main innovations of the relational convolutions architecture over
existing relational architectures is its compositionality and ability to model higher-order relations.
An important direction of future research is to test the architecture’s ability to model hierarchical
relations of increasingly higher order. Constructing such benchmarks is a non-trivial task which
requires careful thought and consideration. This was outside the scope of this paper, but we provide
an initial discussion here which may be useful for constructing such benchmarks in future work.

Propositional logic. Consider evaluating boolean logic formula such as,

x1 ^ ppx2 _ x3q ^ pp x3 ^ x4q _ px5 ^ x6 ^ x7qqq .
Evaluating this logical expression (in this form) requires iteratively grouping objects and computing
the relations between them. For instance, we begin by computing the relation within g1 � px3, x4q
and the relation within g2 � px5, x6, x7q, then we compute the relation between the groups g1 and
g2, etc. For a task which involves logical reasoning of this hierarchical form, one might imagine the
grouping layers in RelConvNet learning the relevant groups and the relational convolution operation
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Figure 7: The encoders learned in the MD-IPR layer represent the latent attributes in the SET cards,
with different encoders seemingly specializing to encode one or two attributes.

computing the relations within each group. Taking inspiration from logical reasoning with such
hierarchical structure may lead to interesting benchmarks of higher-order relational representation.

Sequence modeling. In sequence modeling (e.g., language modeling), modeling the relations between
objects is usually essential. For example, syntactic and semantic relations between words are crucial
to parsing language. Higher-order relations are also important, capturing syntactic and semantic
relational features across different locations in the text and across multiple length-scales and layers of
hierarchy (see for example some relevant work in linguistics Frank et al., 2012; Rosario et al., 2002).
The attention matrix in Transformers can be thought of as implicitly representing relations between
tokens. It is possible that composing Transformer layers also learns hierarchical relations. However,
as shown in this work and previous work on relational representation, Transformers have limited
efficiency in representing relations. Thus, incorporating relational convolutions into Transformer-
based sequence models may yield meaningful improvements in the relational aspects of sequence
modeling. One way to do this is by cross-attending to a the sequence of relational objects produced
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Figure 8: The relations learned by the MD-IPR layer encodes the latent relations underlying the SET
task.
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Figure 9: The relational convolution layer produces representations which separates ‘sets’ from
‘non-sets’.

by relational convolutions, each of which summarizes the relations within a group of objects at some
level of hierarchy.

Set embedding. The objective of set embedding is to map a collection of objects to a euclidean vector
which represents the important features of the objects in the set (Zaheer et al., 2017). Depending
on what the set embedding will be used for, it may need to represent a combination of object-level
features and relational information, including perhaps relations of higher order. A set embedder
which incorporates relational convolutions may be able to generate representations which summarize
relations between objects at multiple layers of hierarchy.

Visual scene understanding. In a visual scene, there are typically several objects with spatial,
visual, and semantic relations between them which are crucial for parsing the scene. The CLEVR
benchmark on visual scene understanding (Johnson et al., 2017) was used in early work on relational
representation (Santoro et al., 2017). In more complex situations, the objects in the scene may fall
into natural groupings, and the spatial, visual, and semantic relations between those groups may be
important for parsing a scene (e.g., objects forming larger components with functional dependence
determined by the relations between them). Integrating relational convolutions into a visual scene
understanding system may enable reasoning about such higher-order relations.

E DISCUSSION ON USE OF TCN IN EVALUATING RELATIONAL
ARCHITECTURES

In Section 5.1 the CoRelNet model of Kerg et al. (2022) was among the baselines we compared to. In
that work, the authors also evaluate their model on the relational games benchmark. A difference
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between their experimental set up and ours is that they use a method called “context normalization”
as a preprocessing step on the sequence of objects.

“Context normalization” was proposed by Webb et al. (2020). The proposal is simple: Given a
sequence of objects, px1, . . . , xmq, and a set of context windows W1, . . . ,WW � t1, . . . ,mu which
partition the objects, each object is normalized along each dimension with respect to the other objects
in its context. That is, pz1, . . . , zmq � CNpx1, . . . , xmq is computed as,

µ
pkq
j � 1

|Wk|
¸

tPWk

pxtqj

σ
pkq
j �

d
1

|Wk|
¸

tPWk

�
pxtqj � µpkqj

	2

� ε

pztqj � γj

�
pxtqj � µpkqj

σ
pkq
j

�
� βj , for t PWk

where γ � pγ1, . . . , γdq, β � pβ1, . . . , βdq are learnable gain and shift parameters for each dimension
(initialized at 1 and 0, respectively, as with batch normalization). The context windows represent
logical groupings of objects that are assumed to be known. For instance, (Kerg et al., 2022; Webb
et al., 2021) consider a “relational match-to-sample” task where 3 pairs of objects are presented in
sequence, and the task is to identify whether the relation in the first pair is the same as the relation
in the second pair or the third pair. Here, the context windows would be the pairs of objects. In the
relational games “match rows pattern” task, the context windows would be each row.

It is reported in (Kerg et al., 2022; Webb et al., 2021) that context normalization significantly
accelerates learning and improves out-of-distribution generalization. Since (Kerg et al., 2022; Webb
et al., 2021) use context normalization in their experiments, in this section we aim to explain our
choice to exclude it. We argue that context normalization is a confounder and that an evaluation of
relational architectures without such preprocessing is more informative.

To understand how context normalization works, consider first a context window of size 2, and let
β � 0, γ � 1. Then, along each dimension, we have

CNpx, xq � p0, 0q ,
CNpx, yq � psignpx� yq, signpy � xqq .

In particular, what context normalization does when there are two objects is, along each dimension,
output 0 if the value is the same, and �1 if it is different (encoding whether it is larger or smaller).
Hence, it makes the context-normalized output independent of the original feature representation.
For tasks like relational games, where the key relation to model is same/different, this preprocessing
is directly encoding this information in a “symbolic” way. In particular, for two objects x1, x2,
context normalized to produce z1, z2, we have that x1 � x2 if and only if xz1, z2y � 0. This makes
out-of-distribution generalization trivial, and does not properly test a relational architecture’s ability
to model the same/different relation.

Similarly, consider a context window of size 3. Then, along each dimension, we have,

CNpx, x, xq � p0, 0, 0q ,

CNpx, x, yq �
�

1?
2
signpx� yq, 1?

2
signpx� yq, 1?

2
signpy � xq



.

Again, context normalization symbolically encodes the relational pattern. For any triplet of objects,
regardless of the values they take, context normalization produces identical output in the cases above.
With context windows larger than 3, the behavior becomes more complex.

These properties of context normalization make it a confounder in the evaluation of relational
architectures. In particular, for small context windows especially, context normalization symbolically
encodes the relevant information. Experiments on relational architectures should evaluate the
architectures’ ability to learn those relations from data. Hence, we do not use context normalization
in our experiments.
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