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Abstract

Existing works studying behaviors of Large001
Language Models (LLMs) in multilingual set-002
tings focus mainly on general downstream tasks003
such as instruction following. To fill this gap,004
we perform an in-depth analysis of LLMs’005
math reasoning capacity under multilingual006
settings and propose to alleviate the shortage007
of high quality multilingual math reasoning008
post-training data by exploring whether prior009
English math knowledge and additional En-010
glish data helps, and by observing the effects011
of multilingual synthetic data on performance.012
For models pre-trained with mostly English013
data, we find that prior English math knowl-014
edge helps and that scaling English data helps015
only when the training and evaluation data be-016
long to similar distributions (human/machine017
translated). Additonally, we find that inclu-018
sion of multilingual synthetic data leads to019
improved performance on human-translated020
data but degraded performance on machine-021
translated data. Our findings shed light on effec-022
tive finetuning of LLMs for better multilingual023
math reasoning performance given the shortage024
high-quality multilingual math reasoning data.025

1 Introduction026

In the era of modern Large Language Models027

(LLMs), the rising interest in multilingual capabili-028

ties of models has led to the extension of existing029

datasets into different languages via human transla-030

tion (Shi et al., 2023), machine translation services031

or LLM-based translation (Chen et al., 2023b; Li032

et al., 2023; Lai et al., 2023; Chai et al., 2024; Lai033

and Nissim, 2024). Detailed analyses for behaviors034

of models on translated datasets exists for tasks035

like multilingual instruction following (Shaham036

et al., 2024), but are missing for multilingual math037

reasoning, which is an important task to measure038

the reasoning capabilities of LLMs. Moreover, the039

low availability of multilingual math training data,040

as compared to English, hinders improvements as041

well. In this work, we study model behaviors and 042

explore various strategies to improve multilingual 043

math reasoning performance given the scarcity of 044

high quality multilingual data. 045

We first study the variance of cross-lingual per- 046

formance for a wide pool of LLMs when post- 047

trained for a certain language on math reason- 048

ing task. We observe that finetuning multilingual 049

LLMs (which are already pre-trained with target 050

task multilingual data) with additional math reason- 051

ing data belonging to one language does not lead 052

to highly varying performance difference between 053

the training language and other languages, indi- 054

cating that post-training in this scenario leads to 055

saturating results. This is not the case for monolin- 056

gual models (pretrained mostly with English data), 057

which exhibit high performance variance across 058

languages. 059

Despite their variance, monolingual models are 060

suitable to study the impact of different training 061

and data setups for multilingual tasks. We observe 062

that monolingual models having math reasoning 063

capabilities in English transfer better to multilin- 064

gual setting compared to the base model, implying 065

that intermediate training with additional English 066

math reasoning data helps in overall performance. 067

Further, we find that scaling English training data 068

while keeping non-English data constant benefits 069

performance on evaluation sets which align with 070

the training data in-terms of dataset construction 071

(human v/s machine-translated). 072

The above disparity between data distribution 073

of evaluations datasets and the gaining popularity 074

of synthetic data usage for post-training (Huang 075

et al., 2023; Sun et al., 2024; Ri et al., 2024; Dubey 076

et al., 2024), prompt us to examine the effect of 077

introduction of multilingual synthetic data on avail- 078

able benchmarks. We find that scaling synthetic 079

multilingual data obtained via self-training helps 080

the model to consistently perform better on human- 081

translated test set while leading to diminishing per- 082
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formance on machine-translated test set. This result083

highlights the importance of determining the opti-084

mal mix of multilingual datasets (which are domi-085

nantly machine-translated) with synthetic data for086

obtaining maximal model performance.087

Overall, our experiments provide an in-depth un-088

derstanding of the status of multilingual math rea-089

soning, along with insights that can be leveraged to090

train better models. More specifically, models with091

prior English math knowledge and determining the092

appropriate proportion of English and multilingual093

synthetic data in the training data play are crucial094

for multilingual math reasoning.095

2 Related Work096

Multilingual Math Reasoning Measuring the097

capability of models to solve mathematical prob-098

lems is directly correlated with their complex rea-099

soning proficiency. Due to the lack of abundant100

multilingual domain data, most works rely on ex-101

tending datasets using translation models or fron-102

tier LLMs (Chen et al., 2023a; Shi et al., 2023; Lai103

and Nissim, 2024). Works have also focused on104

leveraging auxilary tasks to better align models for105

multilingual data (Zhu et al., 2024a,b). Another106

line of works emphasize on studying the reason-107

ing consistency of LLMs in different languages108

Shi et al. (2023); Chowdhery et al. (2023); Lai and109

Nissim (2024). However, none of the works study110

the differences between the behaviors of monolin-111

gual and multilingual models when finetuned for112

multilingual math.113

Influence of data attributes on multilingual per-114

formance Cross-lingual transfer is a well known115

phenomena, which has been shown to be effective116

in cases with limited multilingual data (Shaham117

et al., 2024; Chen et al., 2023b). Prior works have118

shown that multilingual performance benefits from119

intermediate multitask training in English (Phang120

et al., 2020) and from an imbalance proportion of121

languages in training data (Schäfer et al., 2024).122

While these works are aimed at studying the im-123

pact of data for multilingual tasks in general, our124

work is focused on exploring the effects specifically125

in math settings.126

The predominant focus of related works has been127

disjointly on multilingual math reasoning and the128

impact of data attributes for multilingual tasks in129

general. In this paper, we address the gap of an130

exhaustive comparison of monolingual and multi-131

lingual models for multilingual math reasoning and132

explore techniques to maximize performance by 133

leveraging English and multilingual synthetic data. 134

3 Task Setup 135

The task is framed as a supervised finetuning task, 136

where given a math problem, the objective is to 137

generate the steps to solve the problem and output 138

the final answer. In addition to the question, the 139

model is also prompted with the Chain of Thought 140

prompt template (in the language corresponding 141

to the question), which has been corroborated to 142

enhance performance (Wei et al., 2022). We use 143

the mCoT dataset (Lai and Nissim, 2024) as the 144

training data for all our experiments and use answer 145

exact match (accuracy) as our evaluation metric on 146

the MGSM (Shi et al., 2023) and MSVAMP (Chen 147

et al., 2023a) datasets. 148

4 Improvement strategies under data 149

constraint settings 150

4.1 Cross-lingual performance variance for 151

math/reasoning when trained on a single 152

language 153

We first explore the cross-lingual performance vari- 154

ance in LLMs when trained on a single language. 155

We perform full finetuning of the models for only 156

one epoch to avoid any possibility of overfitting. 157

As shown in Figure 2, we observe that multi- 158

lingual models like Aya23 (Aryabumi et al., 2024) 159

and Qwen2 (Yang et al., 2024), when trained on dif- 160

ferent languages exhibit similar performance (low 161

variance) for any particular language, though the 162

performance range varies depending on the model 163

and the resource level of the language. This implies 164

that the models rely on their existing knowledge de- 165

spite being post-trained specifically for a particular 166

language. We hypothesize that the additional train- 167

ing with data belonging to a particular language 168

does not influence the model much since it has al- 169

ready been trained on vast amounts of multilingual 170

data during the pre- and post- training stages. 171

These observations are contrary for models that 172

have a low proportion of multilingual data in their 173

pre-training corpus like Mistral-7B (Jiang et al., 174

2023a) and Llama3-8B (Dubey et al., 2024) (Fig- 175

ure 3). Such models exhibit considerable variance 176

when the evaluation data language is constant due 177

to additional learning signals provided to them. 178

Next, we study the correlations between lan- 179

guages. Specifically, we tabulate the languages (in 180

Figure 4) which when used to train models lead to 181
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the top-k performance in a particular language. We182

consider only Mistral-7B-v0.1 Base and Llama3183

Base for computing the results since their monolin-184

gual nature provides the best setup to study the in-185

fluence of languages on performance. We consider186

evaluation metrics on the MGSM and MSVAMP187

datasets to bolster the confidence of the observa-188

tions and set k = 4. Unsurprisingly, we observe189

that the target language benefits from training data190

in the same language and that European languages191

(English, Spanish, French, and German) help each192

other.193

Based on the above results, monolingual models194

serve the optimal setting to study the influence of195

different training strategies and dataset mixtures196

since multilingual models might not be affected by197

them.198

4.2 Does additional English math/reasoning199

data help in multilingual setting?200

LLMs post-trained for a specific task or data might201

locate the model in a local minima, which leads202

to poor adaptation and generalization for new203

tasks/data. We intend to explore if this is the case204

when LLMs with math reasoning capabilities in205

English are adapted to multilingual data. To make206

fair comparisons, we experiment with WizardMath207

(Luo et al., 2023), which is a Mistral-7B-v0.1 Base208

model, trained for English Math problems using209

Reinforcement Learning, and Mathstral 1, another210

variant of the Mistral base model. We follow train-211

ing hyperparameters similar to Lai and Nissim212

(2024) and train the models for two epochs.213

We observe that both WizardMath and Math-214

stral outperform Mistral-7B-v0.1 (Table 1) with215

improvements on almost all languages in the evalu-216

ation data (Figure 5). We hypothesize two reasons217

for this gain in performance namely, additional En-218

glish training data 2 and training strategies other219

than supervised finetuning (Uesato et al., 2022; Luo220

et al., 2023; Lightman et al., 2023; Gao et al., 2024)221

Continuing our previous discussion and given222

that English data is easily available for most tasks,223

we design experiments in a controlled setting to224

verify if additional English training data leads to225

improved performance. We sample 25% of non-226

English data from our training set and gradually227

increase the proportion of English data. Thus, we228

sample 25%, 50%, 75% and 100% of English data229

1https://mistral.ai/news/mathstral/
2The models have benchmarks on GSM 8K only, which

suggests the model being suitable mainly for English

Finetuned Model MGSM MSVAMP
Mistral-7B-v0.1 0.68 0.668

WizardMath 0.707 0.696
Mathstral 0.748 0.752

Table 1: Average accuracy of English Math Reasoning
models in multilingual setting. Takeaway: English
math knowledge improves performance

and mix it with the sampled non-English data. 230

Figure 1 shows the results of training a Mistral- 231

7B-v0.1 model on these 4 data mixtures on the 232

MGSM and MSVAMP datasets. We observe that 233

scaling English data mostly improves performance 234

in English with slight effects on non-English data, 235

though the overall performance variations are neg- 236

ligible on MGSM, while non-trivial on MSVAMP. 237

We hypothesize that this is due to data belonging to 238

different distributions. Scaling English data whose 239

Google translations constitute the multilingual com- 240

ponent of the training set helps in improving perfor- 241

mance on MSVAMP (Google Translated) and does 242

not affect results on MGSM (human translated). 243

Thus, training models with prior math knowl- 244

edge is beneficial for multilingual math reasoning, 245

though sole reliance on machine-translated data 246

must be avoided as it might only help improve- 247

ments on machine-translated benchmarks and lead 248

to plateauing performance on human-translated 249

ones. 250

4.3 Impact of synthetic multilingual data 251

We create another controlled setting at a small scale 252

to explore the influence of synthetic multilingual 253

data. We sample 5K samples belonging to each 254

of the 11 languages from the mCoT training data. 255

We call this dataset mCoT-55K. We follow the pro- 256

cedure devised by Wang et al. (2024) to incorpo- 257

rate synthetic data into our training pipeline but 258

restrict it to one iteration of synthetic data genera- 259

tion. First, we perform supervised finetuning (SFT) 260

of Mistral-7B-v0.1 on mCoT-55K, which is treated 261

as the baseline for the experiment. Then we sample 262

5 generations for each sample from the SFT model 263

at a temperature of 0.7. Using the ground truth 264

answer, we construct pair-wise data to train the 265

SFT model further using Direct Policy Optimiza- 266

tion (Rafailov et al., 2024) (DPO). The DPO model 267

is then used to sample positive samples, which are 268

then included with the mCoT-55K samples (we use 269

the same sampling settings as earlier). The SFT 270

model is then trained on this combination of origi- 271
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Figure 1: Mistral-7B-v0.1 on constant non-English
samples and varying proportion of English samples.
Takeaway: Scaling proportion of English helps when
training and test data are created in a similar manner

nal training data and synthetic data to get the final272

model.273

We ablate on the proportion of synthetic data274

used in the final training. More specifically, we275

gradually add 25%, 50%, 75% and 100% of the276

generated synthetic SFT data ensuring a balance in277

the samples per language (entire synthetic data has278

3100 samples per language).279

We find that the addition of synthetic data al-280

ways achieves better performance than the baseline281

model on the human-translated MGSM test set,282

whereas the performance on the Google-translated283

MSVAMP is always poor compared to the baseline284

(Table 2). For MGSM, we do not find any particu-285

lar trend as the synthetic data is scaled, which can286

be attributed to different synthetic samples having287

different quality levels. For MSVAMP, we find that288

the performance decreases as the proportion of syn-289

thetic data increases. We hypothesize that the addi-290

tion of synthetic data adds diversity to the Google-291

Translated training dataset and shift the overall data292

distribution away from Google-Translated distri-293

bution, thus leading to degrading performance on294

MSVAMP and improved results on MGSM.295

The above observations signify that the an ap-296

propriate mixture of machine-translated data and297

multilingual synthetic data is mandatory to opti- 298

mize performance on both human-translated and 299

machine-translated evaluation benchmarks and ad- 300

ditional work is needed to devise methods and pro- 301

vide recommendations for the same. 302

Dataset MGSM MSVAMP
mCoT-55K 0.469 0.615

+ 25% synthetic 0.532 0.596
+ 50% synthetic 0.515 0.577
+ 75% synthetic 0.517 0.553
+ 100% synthetic 0.497 0.525

Table 2: Results for multilingual synthetic data scal-
ing. Takeaway: Synthetic data is similar to human-
generated data since it leads to consistent improvements
on human-translated test bed (MGSM), but degradation
on Google-Translated test bed (MSVAMP)

5 Conclusion 303

We study various aspects revolving around multi- 304

lingual math settings regarding the performance 305

variance of monolingual and multilingual LLMs 306

when trained for only one language, the transfer 307

of English math reasoning models to multilingual 308

data, and the impact of multilingual synthetic data. 309

Given that the majority of multilingual task data is 310

machine-translated, determining the optimal pro- 311

portion of multilingual synthetic data becomes cru- 312

cial to align models toward human generated data. 313

Overall, our findings help us understand the be- 314

haviors and training dynamics of various models 315

in different training data settings and thus help in 316

designing better experimental setups for improving 317

multilingual math reasoning performance. 318

6 Limitations 319

First, our study is limited to 11 languages, for 320

which original English datasets were translated. 321

Moreover, amongst the 11 languages, very few of 322

them belong to the low-resource category. Second, 323

the training dataset used is constructed entirely us- 324

ing machine-translation (Google Translate). Prior 325

works have highlighted the difference between 326

machine-translated data and human-translated data 327

(Jiang et al., 2023b; Luo et al., 2024). Further, we 328

experiment with only one technique of synthetic 329

data generation and restrict our study to models 330

with parameter count in the 7-8 B range due to 331

computation constraints. 332
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A Experimental Settings512

We train our models using a learning rate of 5e− 6513

and a batch size of 8 per GPU with 16 steps of514

gradient accumulation. Cosine learning rate sched-515

uler is used with a linear warm up of 3% train-516

ing steps. The model is trained for a maximum517

sequence length of 1024 and the number of train-518

ing epochs is set to 1 and 2 for the language-wise519

and all language training. We use Pytorch (Paszke520

et al., 2019), Huggingface’s transformers (Wolf521

et al., 2020) and native Pytorch Fully Sharded Data522

Parallel (FSDP) (Zhao et al., 2023) on 8 x H100s523

for training our models.524

B Comparison of models when trained on525

a single language526

Figures 2, 3 and 4 show the results for Section 4.1.527

An interesting observation for Llama3-8B Base is528

that training on Chinese (high resource) and Thai529

(low resource) does not lead to the highest per-530

formance. Many works revolve around adapting531

Llama-based models on Chinese data (Zhao et al.,532

2024; Cui et al., 2023). On the other hand, Wen-Yi533

et al. (2024) show that the behavior of international534

LLMs is similar to Chinese LLMs. Thus, future535

work is needed to investigate if this trend exhibited536

by Llama3 holds for other domains and tasks.537

C Language Wise Results for Mistral538

variants539

Figure 5 shows the results for Section 4.2540
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Figure 2: Language-wise performance matrix for multilingual models on MGSM. Takeaway: Performance on a
fixed evaluation language is consistent for multilingual models despite a language specific post-training
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Figure 3: Language-wise performance matrix for monolingual models on MGSM. Takeaway: Performance on a
fixed evaluation language varies significantly as compared to multilingual models
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Figure 4: Training Languages which lead to highest performances while validating for a particular language.
Takeaway: Same training and validation language work better in most cases; some exceptions are found for
Llama3-8B Base
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Figure 5: Evaluation of Mistral variants on MGSM (top) and MSVAMP (bottom) Takeaway: English math
knowledge improves performance
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