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Abstract

Existing works studying behaviors of Large
Language Models (LLMs) in multilingual set-
tings focus mainly on general downstream tasks
such as instruction following. To fill this gap,
we perform an in-depth analysis of LLMs’
math reasoning capacity under multilingual
settings and propose to alleviate the shortage
of high quality multilingual math reasoning
post-training data by exploring whether prior
English math knowledge and additional En-
glish data helps, and by observing the effects
of multilingual synthetic data on performance.
For models pre-trained with mostly English
data, we find that prior English math knowl-
edge helps and that scaling English data helps
only when the training and evaluation data be-
long to similar distributions (human/machine
translated). Additonally, we find that inclu-
sion of multilingual synthetic data leads to
improved performance on human-translated
data but degraded performance on machine-
translated data. Our findings shed light on effec-
tive finetuning of LLMs for better multilingual
math reasoning performance given the shortage
high-quality multilingual math reasoning data.

1 Introduction

In the era of modern Large Language Models
(LLMs), the rising interest in multilingual capabili-
ties of models has led to the extension of existing
datasets into different languages via human transla-
tion (Shi et al., 2023), machine translation services
or LLM-based translation (Chen et al., 2023b; Li
et al., 2023; Lai et al., 2023; Chai et al., 2024; Lai
and Nissim, 2024). Detailed analyses for behaviors
of models on translated datasets exists for tasks
like multilingual instruction following (Shaham
et al., 2024), but are missing for multilingual math
reasoning, which is an important task to measure
the reasoning capabilities of LLMs. Moreover, the
low availability of multilingual math training data,
as compared to English, hinders improvements as

well. In this work, we study model behaviors and
explore various strategies to improve multilingual
math reasoning performance given the scarcity of
high quality multilingual data.

We first study the variance of cross-lingual per-
formance for a wide pool of LLMs when post-
trained for a certain language on math reason-
ing task. We observe that finetuning multilingual
LLMs (which are already pre-trained with target
task multilingual data) with additional math reason-
ing data belonging to one language does not lead
to highly varying performance difference between
the training language and other languages, indi-
cating that post-training in this scenario leads to
saturating results. This is not the case for monolin-
gual models (pretrained mostly with English data),
which exhibit high performance variance across
languages.

Despite their variance, monolingual models are
suitable to study the impact of different training
and data setups for multilingual tasks. We observe
that monolingual models having math reasoning
capabilities in English transfer better to multilin-
gual setting compared to the base model, implying
that intermediate training with additional English
math reasoning data helps in overall performance.
Further, we find that scaling English training data
while keeping non-English data constant benefits
performance on evaluation sets which align with
the training data in-terms of dataset construction
(human v/s machine-translated).

The above disparity between data distribution
of evaluations datasets and the gaining popularity
of synthetic data usage for post-training (Huang
et al., 2023; Sun et al., 2024; Ri et al., 2024; Dubey
et al., 2024), prompt us to examine the effect of
introduction of multilingual synthetic data on avail-
able benchmarks. We find that scaling synthetic
multilingual data obtained via self-training helps
the model to consistently perform better on human-
translated test set while leading to diminishing per-



formance on machine-translated test set. This result
highlights the importance of determining the opti-
mal mix of multilingual datasets (which are domi-
nantly machine-translated) with synthetic data for
obtaining maximal model performance.

Overall, our experiments provide an in-depth un-
derstanding of the status of multilingual math rea-
soning, along with insights that can be leveraged to
train better models. More specifically, models with
prior English math knowledge and determining the
appropriate proportion of English and multilingual
synthetic data in the training data play are crucial
for multilingual math reasoning.

2 Related Work

Multilingual Math Reasoning Measuring the
capability of models to solve mathematical prob-
lems is directly correlated with their complex rea-
soning proficiency. Due to the lack of abundant
multilingual domain data, most works rely on ex-
tending datasets using translation models or fron-
tier LLMs (Chen et al., 2023a; Shi et al., 2023; Lai
and Nissim, 2024). Works have also focused on
leveraging auxilary tasks to better align models for
multilingual data (Zhu et al., 2024a,b). Another
line of works emphasize on studying the reason-
ing consistency of LLMs in different languages
Shi et al. (2023); Chowdhery et al. (2023); Lai and
Nissim (2024). However, none of the works study
the differences between the behaviors of monolin-
gual and multilingual models when finetuned for
multilingual math.

Influence of data attributes on multilingual per-
formance Cross-lingual transfer is a well known
phenomena, which has been shown to be effective
in cases with limited multilingual data (Shaham
et al., 2024; Chen et al., 2023b). Prior works have
shown that multilingual performance benefits from
intermediate multitask training in English (Phang
et al., 2020) and from an imbalance proportion of
languages in training data (Schifer et al., 2024).
While these works are aimed at studying the im-
pact of data for multilingual tasks in general, our
work is focused on exploring the effects specifically
in math settings.

The predominant focus of related works has been
disjointly on multilingual math reasoning and the
impact of data attributes for multilingual tasks in
general. In this paper, we address the gap of an
exhaustive comparison of monolingual and multi-
lingual models for multilingual math reasoning and

explore techniques to maximize performance by
leveraging English and multilingual synthetic data.

3 Task Setup

The task is framed as a supervised finetuning task,
where given a math problem, the objective is to
generate the steps to solve the problem and output
the final answer. In addition to the question, the
model is also prompted with the Chain of Thought
prompt template (in the language corresponding
to the question), which has been corroborated to
enhance performance (Wei et al., 2022). We use
the mCoT dataset (Lai and Nissim, 2024) as the
training data for all our experiments and use answer
exact match (accuracy) as our evaluation metric on
the MGSM (Shi et al., 2023) and MSVAMP (Chen
et al., 2023a) datasets.

4 Improvement strategies under data
constraint settings

4.1 Cross-lingual performance variance for
math/reasoning when trained on a single
language

We first explore the cross-lingual performance vari-
ance in LLMs when trained on a single language.
We perform full finetuning of the models for only
one epoch to avoid any possibility of overfitting.
As shown in Figure 2, we observe that multi-
lingual models like Aya23 (Aryabumi et al., 2024)
and Qwen?2 (Yang et al., 2024), when trained on dif-
ferent languages exhibit similar performance (low
variance) for any particular language, though the
performance range varies depending on the model
and the resource level of the language. This implies
that the models rely on their existing knowledge de-
spite being post-trained specifically for a particular
language. We hypothesize that the additional train-
ing with data belonging to a particular language
does not influence the model much since it has al-
ready been trained on vast amounts of multilingual
data during the pre- and post- training stages.
These observations are contrary for models that
have a low proportion of multilingual data in their
pre-training corpus like Mistral-7B (Jiang et al.,
2023a) and Llama3-8B (Dubey et al., 2024) (Fig-
ure 3). Such models exhibit considerable variance
when the evaluation data language is constant due
to additional learning signals provided to them.
Next, we study the correlations between lan-
guages. Specifically, we tabulate the languages (in
Figure 4) which when used to train models lead to



the top-k performance in a particular language. We
consider only Mistral-7B-v0.1 Base and Llama3
Base for computing the results since their monolin-
gual nature provides the best setup to study the in-
fluence of languages on performance. We consider
evaluation metrics on the MGSM and MSVAMP
datasets to bolster the confidence of the observa-
tions and set £ = 4. Unsurprisingly, we observe
that the target language benefits from training data
in the same language and that European languages
(English, Spanish, French, and German) help each
other.

Based on the above results, monolingual models
serve the optimal setting to study the influence of
different training strategies and dataset mixtures
since multilingual models might not be affected by
them.

4.2 Does additional English math/reasoning
data help in multilingual setting?

LLMs post-trained for a specific task or data might
locate the model in a local minima, which leads
to poor adaptation and generalization for new
tasks/data. We intend to explore if this is the case
when LLMs with math reasoning capabilities in
English are adapted to multilingual data. To make
fair comparisons, we experiment with WizardMath
(Luo et al., 2023), which is a Mistral-7B-v0.1 Base
model, trained for English Math problems using
Reinforcement Learning, and Mathstral I another
variant of the Mistral base model. We follow train-
ing hyperparameters similar to Lai and Nissim
(2024) and train the models for two epochs.

We observe that both WizardMath and Math-
stral outperform Mistral-7B-v0.1 (Table 1) with
improvements on almost all languages in the evalu-
ation data (Figure 5). We hypothesize two reasons
for this gain in performance namely, additional En-
glish training data > and training strategies other
than supervised finetuning (Uesato et al., 2022; Luo
etal., 2023; Lightman et al., 2023; Gao et al., 2024)

Continuing our previous discussion and given
that English data is easily available for most tasks,
we design experiments in a controlled setting to
verify if additional English training data leads to
improved performance. We sample 25% of non-
English data from our training set and gradually
increase the proportion of English data. Thus, we
sample 25%, 50%, 75% and 100% of English data

"https://mistral.ai/news/mathstral/
>The models have benchmarks on GSM 8K only, which
suggests the model being suitable mainly for English

Finetuned Model MGSM MSVAMP
Mistral-7B-v0.1 0.68 0.668
WizardMath 0.707 0.696
Mathstral 0.748 0.752

Table 1: Average accuracy of English Math Reasoning
models in multilingual setting. Takeaway: English
math knowledge improves performance

and mix it with the sampled non-English data.

Figure 1 shows the results of training a Mistral-
7B-v0.1 model on these 4 data mixtures on the
MGSM and MSVAMP datasets. We observe that
scaling English data mostly improves performance
in English with slight effects on non-English data,
though the overall performance variations are neg-
ligible on MGSM, while non-trivial on MSVAMP.
We hypothesize that this is due to data belonging to
different distributions. Scaling English data whose
Google translations constitute the multilingual com-
ponent of the training set helps in improving perfor-
mance on MSVAMP (Google Translated) and does
not affect results on MGSM (human translated).

Thus, training models with prior math knowl-
edge is beneficial for multilingual math reasoning,
though sole reliance on machine-translated data
must be avoided as it might only help improve-
ments on machine-translated benchmarks and lead
to plateauing performance on human-translated
ones.

4.3 Impact of synthetic multilingual data

We create another controlled setting at a small scale
to explore the influence of synthetic multilingual
data. We sample 5K samples belonging to each
of the 11 languages from the mCoT training data.
We call this dataset mCoT-55K. We follow the pro-
cedure devised by Wang et al. (2024) to incorpo-
rate synthetic data into our training pipeline but
restrict it to one iteration of synthetic data genera-
tion. First, we perform supervised finetuning (SFT)
of Mistral-7B-v0.1 on mCoT-55K, which is treated
as the baseline for the experiment. Then we sample
5 generations for each sample from the SFT model
at a temperature of 0.7. Using the ground truth
answer, we construct pair-wise data to train the
SFT model further using Direct Policy Optimiza-
tion (Rafailov et al., 2024) (DPO). The DPO model
is then used to sample positive samples, which are
then included with the mCoT-55K samples (we use
the same sampling settings as earlier). The SFT
model is then trained on this combination of origi-
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Figure 1: Mistral-7B-v0.1 on constant non-English
samples and varying proportion of English samples.
Takeaway: Scaling proportion of English helps when
training and test data are created in a similar manner

nal training data and synthetic data to get the final
model.

We ablate on the proportion of synthetic data
used in the final training. More specifically, we
gradually add 25%, 50%, 75% and 100% of the
generated synthetic SFT data ensuring a balance in
the samples per language (entire synthetic data has
3100 samples per language).

We find that the addition of synthetic data al-
ways achieves better performance than the baseline
model on the human-translated MGSM test set,
whereas the performance on the Google-translated
MSVAMP is always poor compared to the baseline
(Table 2). For MGSM, we do not find any particu-
lar trend as the synthetic data is scaled, which can
be attributed to different synthetic samples having
different quality levels. For MSVAMP, we find that
the performance decreases as the proportion of syn-
thetic data increases. We hypothesize that the addi-
tion of synthetic data adds diversity to the Google-
Translated training dataset and shift the overall data
distribution away from Google-Translated distri-
bution, thus leading to degrading performance on
MSVAMP and improved results on MGSM.

The above observations signify that the an ap-
propriate mixture of machine-translated data and

multilingual synthetic data is mandatory to opti-
mize performance on both human-translated and
machine-translated evaluation benchmarks and ad-
ditional work is needed to devise methods and pro-
vide recommendations for the same.

Dataset MGSM MSVAMP
mCoT-55K 0.469 0.615
+ 25% synthetic 0.532 0.596
+ 50% synthetic 0.515 0.577
+ 75% synthetic 0.517 0.553
+ 100% synthetic ~ 0.497 0.525

Table 2: Results for multilingual synthetic data scal-
ing. Takeaway: Synthetic data is similar to human-
generated data since it leads to consistent improvements
on human-translated test bed (MGSM), but degradation
on Google-Translated test bed (MSVAMP)

5 Conclusion

We study various aspects revolving around multi-
lingual math settings regarding the performance
variance of monolingual and multilingual LLMs
when trained for only one language, the transfer
of English math reasoning models to multilingual
data, and the impact of multilingual synthetic data.
Given that the majority of multilingual task data is
machine-translated, determining the optimal pro-
portion of multilingual synthetic data becomes cru-
cial to align models toward human generated data.
Overall, our findings help us understand the be-
haviors and training dynamics of various models
in different training data settings and thus help in
designing better experimental setups for improving
multilingual math reasoning performance.

6 Limitations

First, our study is limited to 11 languages, for
which original English datasets were translated.
Moreover, amongst the 11 languages, very few of
them belong to the low-resource category. Second,
the training dataset used is constructed entirely us-
ing machine-translation (Google Translate). Prior
works have highlighted the difference between
machine-translated data and human-translated data
(Jiang et al., 2023b; Luo et al., 2024). Further, we
experiment with only one technique of synthetic
data generation and restrict our study to models
with parameter count in the 7-8 B range due to
computation constraints.
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A Experimental Settings

We train our models using a learning rate of 5e — 6
and a batch size of 8 per GPU with 16 steps of
gradient accumulation. Cosine learning rate sched-
uler is used with a linear warm up of 3% train-
ing steps. The model is trained for a maximum
sequence length of 1024 and the number of train-
ing epochs is set to 1 and 2 for the language-wise
and all language training. We use Pytorch (Paszke
et al., 2019), Huggingface’s transformers (Wolf
et al., 2020) and native Pytorch Fully Sharded Data
Parallel (FSDP) (Zhao et al., 2023) on 8 x H100s
for training our models.

B Comparison of models when trained on
a single language

Figures 2, 3 and 4 show the results for Section 4.1.
An interesting observation for Llama3-8B Base is
that training on Chinese (high resource) and Thai
(low resource) does not lead to the highest per-
formance. Many works revolve around adapting
Llama-based models on Chinese data (Zhao et al.,
2024; Cui et al., 2023). On the other hand, Wen-Yi
et al. (2024) show that the behavior of international
LLMs is similar to Chinese LLMs. Thus, future
work is needed to investigate if this trend exhibited
by Llama3 holds for other domains and tasks.

C Language Wise Results for Mistral
variants

Figure 5 shows the results for Section 4.2
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Figure 4: Training Languages which lead to highest performances while validating for a particular language.
Takeaway: Same training and validation language work better in most cases; some exceptions are found for
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Figure 5: Evaluation of Mistral variants on MGSM (top) and MSVAMP (bottom) Takeaway: English math
knowledge improves performance
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