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Abstract

Large language models have consistently
demonstrated remarkable performance across
a wide spectrum of applications. Nonethe-
less, the deployment of these models can in-
advertently expose user privacy to potential
risks. The substantial memory demands of
these models during training represent a sig-
nificant resource consumption challenge. The
sheer size of these models imposes a consid-
erable burden on memory resources, which is
a matter of significant concern in practice. In
this paper, we present an innovative training
framework MemDPT that not only reduces the
memory cost of large language models but also
places a strong emphasis on safeguarding user
data privacy. MemDPT provides edge network
and reverse network designs to accommodate
various differential privacy memory-efficient
fine-tuning schemes. Our approach not only
achieves 2 ~ 3x memory optimization but
also provides robust privacy protection, ensur-
ing that user data remains secure and confiden-
tial. Extensive experiments have demonstrated
that MemDPT can effectively provide differen-
tial privacy efficient fine-tuning across various
task scenarios.

1 Introduction

Large language models (LLMs) (Radford et al.,
2019; Hoffmann et al., 2022a; Chowdhery et al.,
2023; Touvron et al., 2023) have already demon-
strated their capabilities across various domains,
excelling in a wide range of generation and com-
prehension tasks (Bang et al., 2023; Robinson et al.,
2022; Li et al., 2022a). However, complete train-
ing of LLMs demands significant computational
resources and time, making it inconvenient to adapt
the model in downstream tasks (Liu et al., 2022a).
There exist several methods that offer solutions
for parameter-efficient fine-tuning (Dettmers et al.,
2024; Houlsby et al., 2019; Hu et al., 2021). These
approaches achieve highly effective downstream

task fine-tuning results by adjusting only a small
number of parameters. The goal of such methods is
to enable LLMs to adapt to small-scale features in a
relatively small dataset, thereby accomplishing spe-
cific downstream tasks. Unfortunately, for LLMs,
we often encounter situations where the available
dataset is small and proprietary, raising concerns
about privacy (Bu et al., 2024; Yu et al., 2021;
Finlayson et al., 2024). Additionally, the train-
ing of LLMs requires substantial training memory
(Wang et al., 2023), making it challenging to train
on parameter-efficient fine-tuning.

A recent line of work that focuses on fine-tuning
large models using differential privacy (DP) solu-
tions, including both full parameter fine-tuning and
parameter efficient fine-tuning approaches (Duan
et al., 2024; Bu et al., 2024; Yu et al., 2021). These
solutions employ a method called Differential Pri-
vacy Stochastic Gradient Descent (DP-SGD) (Yu
et al., 2019). The training data is protected by
implementing gradient clipping and adding Gaus-
sian noise during each iteration to ensure privacy.
Compared to traditional fine-tuning approaches,
DP allows for downstream task handling with only
a small loss in accuracy while maintaining a theo-
retical private guarantee (Yu et al., 2021). These
approaches exhibit good performance across a vari-
ety of tasks and settings. However, these methods
still have issues with training memory. In previous
research, differential privacy has imposed larger
computational and storage overheads, making train-
ing such large models challenging in resource-
constrained scenarios. Additionally, existing effi-
cient parameter fine-tuning with differential privacy
schemes has only achieved marginal reductions in
memory overhead, with insufficient optimization
efficiency in memory resources (Li et al., 2022b;
Ke et al., 2024). As models continue to grow, the
demand for both memory efficiency and privacy in
such scenarios also increases.

To address this issue, we propose a solu-



tion called Memory efficient Differential Private
Tuning (MemDPT), a framework for training
in scenarios that involve both privacy-protection
and memory efficient transfer learning. In our
framework, we explore two efficient methods for
parameter-efficient fine-tuning, MemDPTg;q. and
MemDPT,.,, which save memory usage from dif-
ferent perspectives. In this setup, our approach
not only achieves competitive performance but also
significantly reduces training memory usage. Ex-
periments on different datasets and models have
thoroughly demonstrated the effectiveness and po-
tential of our approach. Therefore, our work effec-
tively addresses the issue of insufficient memory in
private fine-tuning for language models, while also
providing alternative privacy fine-tuning solutions.

In summary, our contributions in this paper are
as follows:

* We propose a framework called MemDPT,
which enables efficient fine-tuning of lan-
guage models with lower training memory
in differential privacy fine-tuning. This frame-
work contains two memory optimization meth-
ods, reducing the memory requirements for
privacy training of language models.

* We conduct a systematic analysis of the re-
lationship between training memory require-
ments and network architecture. We eluci-
date the characteristics of fine-tuning mem-
ory cost under different network architectures,
demonstrating favorable downstream task per-
formance in differential privacy.

* We evaluate our MemDPT framework on mul-
tiple datasets and models. The results show
promising performance across various dimen-
sions, with a substantial improvement in train-
ing memory.

2 Preliminaries

2.1 Memory Footprint on Language Model

We consider a N multilayer perception: xy =
In(fn=1(fa(fi(0)))), where xo as the ini-
tial PLM input, the i*" layer x; = f;(x;_1) =
0;(W;x;_1) consists of a weight matrix W; and a
nonelinear function ;. For the format simplicity,
the bias term is ignored. We denote h; = W;x;_;
as the hidden states for the pre-activation of 7"
layer. In backpropagation with loss £, the gradient
of W; is calculated with respect to x; using the
chain rule:
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Denoting the derivative of o is o”, then the equa-
tion could simplified as:
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Thus, in training memory, the core consumption
lies in the states of model weights {W;}¥, and
derivative activation functions state {o'} | along
the backpropagation path, as well as the optimizer
states used during gradient updates. The optimizer
states are directly related to the updated model
parameters { AW }.

Assuming the batch size is B, the length of the
input sequence is 7', the model input and output di-
mension is d and p, for a standard linear layer ; =
0;(W;x;_1), the forward pass stores the intermedi-
ate states of the model and the model weights with
the memory complexity of O(pd + BT'd), while
the backward pass is responsible for storing the
activation states during the gradient update pro-
cess, the results of the output gradients, and the
corresponding parameter gradients, with the total
memory complexity of O(BT'(p + d) + pd).

2.2 Deep learning with differential privacy

Differential Privacy (Dwork et al., 2006; Abadi
et al., 2016) algorithms demonstrate that under
this formulation, the model’s output cannot sig-
nificantly help determine whether an individual
record exists in the input dataset through certain
mathematical derivations. The formal definition is
recalled as follows:

Definition 1 (Differential Privacy). Given a do-
main D, any two datasets D, D' C D that differ in
exactly one record are called neighboring datasets.
A randomized algorithm M : D — R is (€,0)-
differential private if for all neighboring datasets
Dand D' and all T C R,

PrM(D) CT]) < e Pr[M(D') CT])+6

DP-optimizer. To train a privacy-preserving lan-
guage model, the current approach involves pro-
viding differential privacy guarantees when com-
puting gradients and applying these guarantees to



Ghost norm in |Opacus grad |Opacus sum of

Module Forward pass|Back-propagation|g ook-Keeping |instantiation | weighted grad
| Time complexity | 2BTpd |  4BTpd  |2BT*(p+d)| 2BTpd | 2Bpd |
‘Space complexity‘ pd + BTd ‘ BT(p+d) + pd ‘ 2BT? ‘ Bpd ‘ 0 ‘

Table 1: The time and space complexity of the training process of a model under a single-layer MLP.

optimizers such as SGD or Adam (Abadi et al.,
2016; Mironov, 2017; Koskela et al., 2020). This
approach incorporates steps involving per-example
gradient clipping G; = > C; 3%21) and adding
Gaussian noise N (0, I) on gradient G. Where C;
is the per-sample clipping factor.

Book-keeping. To avoid the significant memory
overhead caused by storing gradients for each sam-
ple during initialization, Bu et al. (2023) proposed
a method BK utilizing gradient norms. Using the
GhostClip (Goodfellow, 2015; Bu et al., 2022) strat-
egy, the gradient norm of each sample is calculated.
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Based on the gradient norms, clipping factors C;
and clipping matrices C are generated, which are
then used to compute the sum of clipped gradient

. . oL
in batches G; = w(Tl)dlag(C)ah(l).

3 Methodology

To address the issue of excessive memory con-
sumption during differential privacy training, we
have designed two methods: MemDPT;4. and
MemDPT,,. These methods help reduce training
memory usage in different aspects.

3.1 Side Network Design

In general, most of the memory consumption
comes from the model weights and the states of
activation functions in the backward propagation
path. By minimizing the consumption of these two
parts as much as possible, the memory usage dur-
ing training can be correspondingly reduced. This
necessitates finding a reasonable design to address
this situation.

Assume the base model is F, the model’s pre-
trained weights, input, output, and parameters are
Wy, 20, y, 0. The model could formulated as:

y = F(Wy,0;20). C))

Traditional parameter-efficient fine-tuning meth-
ods cannot avoid the memory consumption associ-
ated with the model weights of frozen parameters
in the backward propagation path, which can for-
mulated as:

y=F(W,+ AW, 0+ Ab; ). %)

We hope to find a form that remains distinct from
the original form when adjusting parameters. That
is, there exists such a form:

y = aF1(Wp,0;20) + fF2(AW, Ab; ). (6)

In this form, Side-tuning (Zhang et al., 2020)
meets the requirements. Side-tuning introduces a
side network that learns the knowledge and features
of new tasks, relying on the knowledge contained
in the trained model parameters, thus supporting
the processing of downstream tasks.

Assuming the input and output dimension of the
side network is r, we add a liner layer at the last
layer of the side network to ensure dimension con-
sistency. We use Book-keeping (Bu et al., 2023)
for differential privacy fine-tuning. The memory
cost includes both the forward and backward prop-
agation processes. For the forward process, the bi-
lateral forward propagation memory consumption
needs to be taken into account, with the complexity
of O(pd + r%2 + BT(d + r)). For the backward
process, gradients need to be computed only in the
side network, with a complexity of O(2BTr + 1?)
for gradients and O(2BT?) for Ghost Norm.

When r < d, the side tuning approach signifi-
cantly reduces the training memory required for pri-
vacy fine-tuning. However, at sufficiently small r,
the performance of side tuning also deteriorates sig-
nificantly. To integrate the information of a trained
model effectively into edge networks, we adopt the
LST (Sung et al., 2022) method. This involves pass-
ing the intermediate layer information from the pre-
trained model to the edge network through a linear
layer f’. We denote this method as MemDPTg;ge.
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Figure 1: Two different MemDPT designs, the left represents reversible network design, and the right represents
edge network design. The trainable parameters are fine-tuned using the differential privacy BK method.

y=Fo (AW, Ab0;y,1 + fi(xi),y0 = x0). (7)

Using the MemDPTg;4. method, we can main-
tain a good performance in fine-tuning our edge
network with differential privacy. When d/r = 8,
LST (Sung et al., 2022) and MemDPTj;q4. achieves
an empirically optimal ratio of training memory to
performance.

3.2 Reversible Network Design

Due to the significant amount of training memory
required to store the state of activation functions
during batch processing, a large portion of memory
is consumed by saving activation states {o; }¥ ;.
Regular parameter-efficient fine-tuning methods
cannot effectively address this issue. MemDPTj;ge
reduces the memory needed to store activation func-
tions by compressing the dimensions of the acti-
vation functions. However, this method still con-
sumes some memory. If we could deduce the in-
termediate states from the output results in reverse,
we could further reduce the memory demand for
storing activation states.

For reversible networks (Gomez et al., 2017,
Liao et al., 2023), the following form is usually
satisfied.

m}H = am} + .7-"1-(:1322),
2 2 1
xi 1 = Bz + Gi(xi4q),

2 = (a2, — Gi(z!1))/ 5,

Z;
x} = (@) — Fi(x]))/ o

®)

We can obtain the corresponding activation func-
tion values o; = 0;(W;x;_1) from the intermedi-
ate states {x; })¥; of the model and calculate their

derivatives, thus avoiding the need to store each
activation function value.

To enable the two modules of the reversible net-
work to both acquire new features and retain the
knowledge of the pre-trained model, For module F,
we introduced the LoRA (Hu et al., 2021) architec-
ture into the FFN layer of the model, continuing the
traditional LoRA approach. Meanwhile, for mod-
ule G, we used Adapters (Houlsby et al., 2019) as
trainable parameters to adapt to downstream tasks.
Since the network is reversible, we only need to
use constant reproducible space to compute x? and
a:zl for each layer, which satisfies the requirements
for the subsequent backpropagation calculations.
We denote this method as MemDPT,, .

For reversible networks, we have the following
derivation steps. At the beginning of training, when
the output of the adapter output is close to 0. z,, ~
Fn(xn_1). Assume that 2§ and 22 comes from the
initial input x, we have:

o] = oz + Fi(x]) ~ azo + 21, (9

x? = Bxj + Gi(z1) = Bzo + Gi(x]) ~ Bo.
(10)

When a — 0, we have z1 = z1, 22 = Bzo. We

achieve a relatively stable state of the reversible
network by exchanging output values =1 = Bz,
x? = x;. Through iterative computation like
this, the model can be satisfied as ac}L ~ fx,_1,
x2 =~ mx,. We generate the final output as x =
(L, +x%)/2. In this way, when training reversible
models, the continuity of the model’s representa-
tion can be maintained, and inference and learning
for downstream tasks can be facilitated based on
pre-trained models.



| Memory(GB)/ MNLIt QQPt QNLIp SST2t | Trainable param(%)
‘621.6 €e=8 e€=00 €=16 €=8 e=00 €=16 €=8 e=00 €=16 e€=8 e=00 e=16 e€=38 E:OO‘

DP-Full FT | 26.12 2683 1093 5145 8423 90.65 6137 8498 9230 5955 8448 9513 7574 8620 96.18 100%
DP-LoRA 1268 1224 712 8289 8828 9083 8385 8873 9195 8751 9138 9476 9358 9520 96.25 3.82%
DP-Adapters | 1329 1307 738  80.84 8693 90.15 8420 87.98 9137 8617 9028 9436 9287 9533 9582 1.86%
DP-BiTFT | 512 583 482 7536 8374 89.19 7892 8520 90.65 8343 8757 9356 89.12 9302 9538 0.08%
PromptDPSGD | 12.58 1206 721 8133 87.02 90.68 8358 8831 91.19 8715 90.89 9420 93.12 9524 9597 0.96%
MemDPTqe. | 6.8 623 566 8130 87.16 9091 8456 8892 91.66 8695 9156 9440 93.60 9544 9594 2.10%
MemDPT, | 548 565 478 8029 8612 9021 8257 88.12 9125 8589 9031 9410 9178 9389 9532 3.92%

Table 2: Experiments on the RoBERTa-large model. We evaluate the accuracy(%) results and profile to compute the
training memory(GB) with privacy constraints at € = 1.6, 8, co. We propose two MemDPT architectures as novel

efficient memory privacy fine-tuning schemes.

During the backpropagation process in our re-
versible network, the intermediate states of the
model can be obtained by computing the reverse
steps. As a result, the training memory required
for activation values can be reduced by reusing a
fixed-size replaceable memory. The primary train-
ing memory consumption of the model comes from
storing the output gradients, storing the parameter
gradients, and the computational memory required
by the Ghostnorm method. As shown in Table 1,
the first two parts mainly rely on the pre-trained
model and the size of the additional parameters,
while the Book-keeping strategy requires to store
training memory of O(4BT?). Here, we also em-
ploy the BK algorithm to calculate the norm of the
samples, thereby obtaining the corresponding gradi-
ent values. During training, we set batch sizes to 32.
When dealing with tasks involving input sequence
lengths of 128, which are medium sequence lengths
of problems, MemDPT significantly reduces the
memory required for training due to pd > T2.

4 Experimental Setup

We designed a series of experiments covering dif-
ferent models and datasets to evaluate the perfor-
mance of our methods. The specific experimental
design is as follows.

Models. We used the RoOBERTa-large (Liu et al.,
2019), GPT-2-large (Radford et al., 2019) model as
our base models. These models will be fine-tuned
according to the corresponding downstream tasks,
and the performance of the fine-tuned models will
be evaluated under different privacy constraints.

Baselines. We compare the two methods against
multiple baselines, including DP-LoRA (Hu et al.,
2021; Yu et al., 2021), DP-Adapter (Houlsby et al.,
2019; Yu et al., 2021), DP-BiTFiT (Bu et al., 2024,
Zaken et al., 2022), and PromptDPSGD (Duan
et al., 2024; Lester et al., 2021). These methods are

all privacy-preserving fine-tuning approaches with
opacus DP (Yousefpour et al., 2021), and we test
them on the same training data to ensure fairness
of comparison.

Datasets. We conduct experiments on five datasets.
Four from the GLUE benchmarks (Wang et al.,
2018), which cover different NLP tasks. MNLI:
the MultiGenre Natural Language Inference Cor-
pus. QQP: the Quora Question Pairs2 dataset.
QNLI: the Stanford Question Answering dataset.
SST2: the Stanford Sentiment Treebank dataset.
We also select an NLG task E2E dataset (Duvsek
et al., 2019), which is to generates texts to evaluate
a restaurant, to evaluate the quality of the model in
generation tasks under privacy constraints. More
details about the dataset are in Appendix A.

Implementation Details. To standardize the train-
ing process, we partition each dataset as follows:
The text classification dataset includes 50k sam-
ples for training, 1k samples for validation, and
the remaining data for testing. The E2E dataset
includes 42061 samples for training and 4672 sam-
ples for validation. We set different privacy con-
straint conditions specifically as e = {1.6,8, 00}
and § = 1/|Dyrain| to assess performance varia-
tions among different methods under these con-
straints. We chose a learning rate of 5e-4 and used
DP-Adam optimizer as the default optimizer for
the model, while DP-SGD optimizer is employed
for PromptDPSGD. For evaluation metrics, we uti-
lize a profiler to track the model’s training memory
usage, evaluating the mean memory consumption
during training. Default LoRA and Adapters ranks
are set to r = 64. For text classification tasks, we
compare accuracy. For generation tasks, we em-
ployed perplexity, BLEU (Papineni et al., 2002),
and ROUGE-L (Lin, 2004) as evaluation metrics
to comprehensively assess generation quality. In
our experiments, we conduct training with a batch
size of 32 and sequence length of 128 in FP16.



‘ Memory(GB)J BLEUT Rouge-L1 Perplexity Trainable param (%)
‘611.6 e=8 e=0 €=16 €=8 e=0 e€=16 =8 e=00 €=16 =8 e=00

DP-Full FT 5896 6223 2045 62.2 66.8 69.3 63.4 67.8 72.6 2.46 2.23 1.85 100%
DP-LoRA 2238 21.75 13.68 65.8 67.3 69.5 64.8 69.1 724 2.39 2.48 2.32 2.30%
DP-Adapters 23.68 24.12 14.55 65.2 66.9 69.8 65.1 68.5 71.9 2.44 2.35 2.28 1.16%
DP-BiTFiT 9.59 9.71 8.62 61.7 65.2 68.6 62.9 66.4 71.3 2.83 2.58 2.77 0.05%
PromptDPSGD | 22.12 2096 14.18 64.2 66.5 69.1 65.0 68.3 72.0 2.60 2.54 2.39 0.67%
MemDPTjj4e 11.68 11.44 10.17 66.4 68.2 68.9 64.6 68.5 72.7 2.32 2.38 2.24 1.28%
MemDPT,., 9.45 9.88 8.39 65.1 66.1 69.8 64.2 68.1 71.6 2.71 2.65 2.58 2.15%

Table 3: Experiments on the GPT-2-large model. We evaluate the BLEU(%), Rouge-L(%) and Perplexity scores
results on E2E dataset and profile to compute the training memory(GB) with privacy constraints at e = 1.6, 8, co.

5 Experiments

5.1 Main Results

We evaluate various baseline methods on multiple
task datasets and organized the results of ROBERTa
and GPT?2 separately according to the task type.

Text classification on RoBERTa-large. As shown
in Table 2, the two MemDPT methods demonstrate
competitive performance on text classification tasks
using the RoBERTa-large model.

(1) The edge network design achieves the best re-
sults compared to other baseline methods in nearly
half of the accuracy evaluations. The average per-
formance on MemDPT;q. is similar to DP-LoRA,
but the edge network design method requires less
training memory than DP-LoRA.

(2) Specifically, compared to the performance
of DP-LoRA under privacy constraints, our
MemDPTg4. achieves nearly 2 ~ 3x optimiza-
tion in training memory. Simultaneously, we can
observe that when further memory savings during
training are required, the reversible network design
of MemDPT offers an ideal choice.

(3) Compared to the current most memory-efficient
method, DP-BiTFiT, our method consistently per-
forms better in downstream tasks while maintaining
similar training memory usage. This indicates that
MemDPT,., can better learn the characteristics of
downstream tasks and perform gradient clipping
based on computable activation function values
while preserving privacy.

(4) In terms of average performance, MemDPT,.,
improves accuracy by an average of +3.1% com-
pared to DP-BiTFiT and performs better in scenar-
ios with higher privacy constraints €, suggesting
that the model better captures the gradient changes
of the training data and adapts to downstream tasks.

Text Generation on GPT-2-large. For generative
tasks, we employ three metrics to assess the qual-

ity of animal generation and simultaneously utilize
profiles to record the changes in training memory.
Experiments on Table 3 indicate that our approach
demonstrates performance comparable to text clas-
sification tasks in generative tasks.

(1) Our edge network design excels in perplex-
ity performance compared to other differential
privacy parameter tuning methods. Additionally,
MemDPTg;4. shows outstanding performance on
the BLEU metric. Comparing our method under
differential privacy, when the parameter € is set
to 1.6 indicating higher privacy demands, perfor-
mance in the BLEU metric only drops by 3.5%.
This suggests our method better learns the charac-
teristics and paradigms of generative tasks, yielding
relatively accurate outputs.

(2) Compared to DP-BiTFiT, reversible network
design exhibits competitive training memory con-
sumption requirements, with MemDPT,., maintain-
ing strong performance. This approach maintains
relatively stable task accuracy under highly con-
strained training memory conditions.

(3) Compared to full differential privacy fine-
tuning, MemDPT,., saves approximately 6 ~ 8x
the training memory in high privacy e = 1.6 sce-
narios. These results underscore the promising
outlook of our proposed MemDPT framework for
generative tasks, maintaining lower training mem-
ory requirements even at larger batch sizes.

5.2 Analysis

We conduct a deep analysis of two MemDPT meth-
ods and perform ablation experiments on the cor-
responding modules, including the differential pri-
vate algorithm and alternative model setting.

Book-Keeping in MemDPT. In the setup of these
two architectures, we use the BK method for dif-
ferential privacy training. BK reduces the required
training memory by using Ghostnorm to compute



‘ Privacy Constrains MemDPTgqe MemDPT,ey
€e=16,0=2x10" 7.45 10.66
Opcaus €=8.0,0=2x10"° 7.33 10.98
€=00,0=2x107° 5.60 4.82
€e=16,0=2x10" 9.72 8.52
GhostClip | ¢=8.0,0 =2x107° 9.54 8.43
€=00,0 =2x107° 5.72 4.75
e=16,0=2x10"° 6.18 548
Book-Keeping | ¢ =8.0,6 =2 x 107° 6.23 5.65
€=00,0 =2x107° 5.66 4.78

Table 4: Evaluations of Different DP methods on
MemDPT.

the normalized formulation. To evaluate the im-
pact of different differential privacy methods dur-
ing the training process, we conducted experiments
on these two model designs and measured the aver-
age memory consumption during the training pro-
cess. The results are shown in Table 4.

BK exhibits the best performance in the follow-
ing scenarios. From the ablation experiments, the
BK method reduces training memory consump-
tion by 1.5 ~ 2X in privacy-preserving compu-
tation. This highlights the importance of using
BK within our framework. When there are no pri-
vacy constraints as € = oo, all three methods de-
grade into the standard gradient descent process.
Under the condition of privacy constraints, if the
Opcaus method of calculating gradients for each
sample is adopted, the time complexity for calculat-
ing the sample gradient in a single layer under the
two architectures MemDPT;4. and MemDPT,., is
O(Bpd/64) and O(4Bpr). This still requires a
considerable amount of computation time, and in
MemDPTgq4., the gradient calculation for the up-
sampling and downsampling matrices also needs
to be considered. Meanwhile, we can observe that
when r is relatively small, the Opcaus method re-
quires relatively less computational memory. To
ensure the overall model’s accuracy in downstream
tasks, the BK method remains the most efficient
choice.

Reversible Network Functions. In the design of
MemDPT,.,, we include two sub-functions that are
used to achieve the reversible design of reversible
networks. Section 3.2 elaborates on the principles
of the reversible network’s inversion. This scheme
leverages the similarity processing of learnable pa-
rameters in the initial setup. Therefore, we can
modify the internal design while ensuring that each
sub-function fulfills its respective role. To further
understand the differences between various designs,
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Figure 2: Performance of different reversible network
sub-function F design. The private constraint is € =
8.0.

we fix the sub-function G and change the internal
architecture of sub-function JF, replacing it with dif-
ferent parameter-efficient fine-tuning(PEFT) meth-
ods. These PEFT methods have been widely used
in non-privacy scenarios. In the privacy scenario,
we select different methods and incorporate them
with MemDPT,., in terms of accuracy and training
memory consumption.

We have selected several classic and efficient
parameter fine-tuning methods to replace the sub-
function F here, including LoRA (Hu et al., 2021),
Parallel Adapters (He et al., 2021), Prefix tuning
(Li and Liang, 2021) and dyLoRA (Valipour et al.,
2023), and set the constraint € = 8.0. The result is
shown in Figure 2.

LoRA is superior to other candidate architectures
as a reversible network sub-function. Compared
to other methods, using ¥ = F(W, + LR, 0 +
Af; z?) results in a slight +0.71 improvement in
accuracy. Given the simplicity of LoORA’s network
architecture and the similarity in training memory
usage across various methods, we finally adopt
LoRA as the reversible network sub-function for
MemDPT,y.

5.3 Training Scale Analysis

To understand and compare the training process and
accuracy variations of different methods under dif-
ferential privacy, we use checkpoints to record the
training process of the model. We test three meth-
ods: DP-LoRA, MemDPT4., and MemDPT,e,
on the GPT2-large model, evaluating their BLEU
scores. During training, each batch size is set to 32,
and the model is trained for 40K steps, observing
the performance and changes in BLEU scores. The
privacy parameters of the model are set to € = 8
and § = ﬁ. The result is shown in Figure 3.
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Figure 3: The experiment is conducted on the E2E
dataset. The BLEU scores of different methods are
based on the number of training steps of the model.

From the results, MemDPT;4. and MemDPT,,
require more training steps to reach stable values
compared to DP-LoRA. Considering the architec-
ture of the models themselves, MemDPT;4e needs
to be tuned for the entire side network to adapt
to the corresponding time for downstream tasks.
Training the low-rank matrices of DP-LoRA is rel-
atively simpler. As for the reversible network, due
to the use of approximation methods for learning,
more training data helps to mitigate the perfor-
mance loss caused by approximation by adjusting
the reversible gradients. Additionally, since we
employ differential privacy methods for training,
although the BLEU scores during training fluctuate,
they remain relatively balanced, which aligns with
our expectations for using differential privacy.

6 Related Work

6.1 Differential Private Fine-tuning

To ensure the privacy needs of the model, differ-
ential privacy fine-tuning methods offer a feasible
solution with strong theoretical guarantees (Abadi
et al., 2016; Song et al., 2013). In terms of model
structure, PEFT methods can be transferred to dif-
ferential privacy schemes (Yu et al., 2021; Bu et al.,
2024; Xu et al., 2024). In methods design, the
selected differential privacy (Shi et al., 2022a,b)
approach can provide stronger differential privacy
constraints more specifically for designated infor-
mation. In algorithm design, it includes a series
of studies (Rochette et al., 2020; Du et al., 2023)
on the computational graph during the differen-
tial privacy propagation process. Techniques like
Ghostnorm (Goodfellow, 2015; Li et al., 2021) and
Book-Keeping (Bu et al., 2023) provide unified
batch norm computation and batch processing for
gradient clipping. Although differential privacy

offers very strong theoretical protections, reduc-
ing the memory requirements for training under
differential privacy scenarios remains a significant
challenge (Du et al., 2023). MemDPT employs
efficient and memory-friendly designs at both the
model and algorithm levels, thereby reducing train-
ing memory requirements while maintaining origi-
nal performance.

6.2 Parameter Efficient Transfer Learning

Training and inference for a large language model
require substantial computational resources, which
are often limited in many scenarios (Hoffmann
et al., 2022b). To reduce the demand for computa-
tional resources during training, parameter-efficient
fine-tuning methods are applied to transfer learn-
ing. This approach involves fine-tuning a small
subset of new parameters and integrating them into
the model for plug-and-play inference. Common
methods include training low-rank matrices (Hu
et al., 2021; Valipour et al., 2023; Dettmers et al.,
2024), adding adapters (Houlsby et al., 2019; He
et al., 2021), and performing prefix tuning (Li and
Liang, 2021; Liu et al., 2022b) or prompt tuning
(Lester et al., 2021) on the inputs of the original
model. While most parameter-efficient fine-tuning
methods reduce time and space consumption, they
still require significant training memory due to the
state of activation functions (Sung et al., 2022; Liao
et al., 2023). Our framework offers two methods,
edge networks, and inverse networks, to reduce the
memory required during training.

7 Conclusion

In this paper, we introduce a framework called
MemDPT, which encompasses two methods aimed
at addressing the issue of excessive memory con-
sumption during training in privacy-sensitive sce-
narios. In this process, we reduce the training
memory consumption of models in privacy en-
vironments using the BK method. With the de-
sign of MemDPT, language models can perform
downstream tasks under corresponding privacy con-
straints across various tasks. Multiple experiments
have demonstrated the effectiveness of our ap-
proach, achieving significant optimization in train-
ing memory. We hope that our method will con-
tribute to future private efficient memory optimiza-
tion for fine-tuning large language models and be
applicable to different training tasks.



Limitation

Our approach offers a solution to the efficient mem-
ory tuning problem in differential privacy training,
alleviating the issue of insufficient training mem-
ory in privacy scenarios. However, our method also
has certain limitations. Firstly, for longer context
texts, since the BK algorithm relies on the context
length for its time complexity, the memory opti-
mization might be inadequate. Additionally, due
to the limitations of large language models, private
fine-tuning may result in hallucination issues due
to the inherent knowledge deficiencies of the lan-
guage model, leading to diminished effectiveness.
Secondly, during batch training, even the forward
pass already occupies a significant amount of mem-
ory, and current open-source large language models
(such as the Llama series) still require a substan-
tial amount of training memory for batch training.
We can consider using distributed training methods
to address this issue and reduce training memory
requirements. Moreover, our privacy protection
scenario targets the differential privacy fine-tuning
of all content in the training data. In certain spe-
cific scenarios, we may only need to protect certain
entities or fields. In the future, we will explore
solutions for partial information privacy protection
and attempt to apply our framework to these types
of problems.

Ethics Statement

The data and code we use are all sourced from pub-
lic information, and our training data does not con-
tain any specific personal or organizational infor-
mation or privacy. Our method provides a privacy-
protecting training approach that can help entities
or organizations prevent the leakage of sensitive in-
formation during model training. The information
and content we use comply with relevant open-
source protocols and licenses.
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A Details of Datasets

GLUE benchmarks. The General Language Un-
derstanding Evaluation (GLUE) benchmark(Wang
et al., 2018) represents a comprehensive suite of
natural language understanding tasks aimed at ad-
vancing the field of machine learning in linguistic
applications. We use the following datasets se-
lected from GLUE:

- MNLI Datasets: The Multi-Genre Natu-
ral Language Inference Corpus is a crowd-
sourced collection of sentence pairs with tex-
tual entailment annotations. It contains 392K
samples of the tasks. It involves predicting
whether a premise sentence entails, contra-
dicts, or neither affects a hypothesis sentence.
These entailment predictions are categorized
as entailment, contradiction, or neutral. The
premise sentences are collected from ten dif-
ferent sources, such as transcribed speech, fic-
tion, and government reports.

- QQP Datasets: The Quora Question Pairs
dataset is a collection of question pairs from
the community question-answering website
Quora, which has 364k samples. The task



associated with this dataset is to determine
whether a pair of questions are semantically
equivalent.

- QNLI Datasets: The Stanford Question
Answering Dataset is a question-answering
dataset consisting of question-paragraph pairs,
where one of the sentences in the paragraph,
drawn from Wikipedia, contains the answer
to the corresponding question written by an
annotator. The task is converted into sentence
pair classification by forming a pair between
each question and each sentence in the corre-
sponding context and filtering out pairs with
low lexical overlap between the question and
the context sentence. The task is to determine
whether the context sentence contains the an-
swer to the question. This modified version of
the original task removes the requirement that
the model select the exact answer and the sim-
plifying assumptions that the answer is always
present in the input and that lexical overlap is
a reliable cue. This process of recasting ex-
isting datasets into NLI is similar to methods
introduced and expanded upon. The converted
dataset is called QNLI (Question-answering
NLI), which has 104k samples.

- SST2 Datasets: The Stanford Sentiment Tree-
bank consists of sentences from movie re-
views and human annotations of their senti-
ment. The task involves predicting the senti-
ment of a given sentence which includes 67k
samples.

E2E benchmarks. The E2E dataset(Novikova
et al., 2017) is a valuable resource for training
end-to-end, data-driven natural language genera-
tion (NLG) systems in the restaurant domain. It
contains template-like information in the restau-
rant domain, which is used for mapping to natural
language through end-to-end training. The dataset
consists of 42061 training samples, 4672 validation
samples, and 4693 test samples.

B More Details on Implementation

In the experiment, we conduct experiments under
three privacy constraints: {1.6,8, co}. Since in the
reverse network model MemDPT,.,, the activation
function obtains tensor & through reverse computa-
tion during backpropagation, we need to replace the
part of the gradient calculation code that originally
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calls the intermediate state  with the calculation
formula grad_rev () of the reverse network. Addi-
tionally, for the edge model network MemDPTg;4e,
we select part of the pre-trained model in each layer
as the initialization parameters for the edge net-
work. This initialization approach enhances the per-
formance of the edge network in downstream tasks.
The privacy parameter settings 0 = 1/|Dyyqin| are
same from other works(Bu et al., 2024; Yu et al.,
2021). When calculating BK, the required interme-
diate state information is also obtained through the
calculation formula grad_rev() . We iteratively
use a single storage space to retain the intermediate
state of the calculation. Thus, when the number
of layers in the LM is L, the training memory op-
timizes from L x O(BTd) to 1 x O(BTd). We
conduct training with a batch size of 32 and se-
quence length of 128 in FP16.



