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Abstract

Large language models have consistently001
demonstrated remarkable performance across002
a wide spectrum of applications. Nonethe-003
less, the deployment of these models can in-004
advertently expose user privacy to potential005
risks. The substantial memory demands of006
these models during training represent a sig-007
nificant resource consumption challenge. The008
sheer size of these models imposes a consid-009
erable burden on memory resources, which is010
a matter of significant concern in practice. In011
this paper, we present an innovative training012
framework MemDPT that not only reduces the013
memory cost of large language models but also014
places a strong emphasis on safeguarding user015
data privacy. MemDPT provides edge network016
and reverse network designs to accommodate017
various differential privacy memory-efficient018
fine-tuning schemes. Our approach not only019
achieves 2 ∼ 3× memory optimization but020
also provides robust privacy protection, ensur-021
ing that user data remains secure and confiden-022
tial. Extensive experiments have demonstrated023
that MemDPT can effectively provide differen-024
tial privacy efficient fine-tuning across various025
task scenarios.026

1 Introduction027

Large language models (LLMs) (Radford et al.,028

2019; Hoffmann et al., 2022a; Chowdhery et al.,029

2023; Touvron et al., 2023) have already demon-030

strated their capabilities across various domains,031

excelling in a wide range of generation and com-032

prehension tasks (Bang et al., 2023; Robinson et al.,033

2022; Li et al., 2022a). However, complete train-034

ing of LLMs demands significant computational035

resources and time, making it inconvenient to adapt036

the model in downstream tasks (Liu et al., 2022a).037

There exist several methods that offer solutions038

for parameter-efficient fine-tuning (Dettmers et al.,039

2024; Houlsby et al., 2019; Hu et al., 2021). These040

approaches achieve highly effective downstream041

task fine-tuning results by adjusting only a small 042

number of parameters. The goal of such methods is 043

to enable LLMs to adapt to small-scale features in a 044

relatively small dataset, thereby accomplishing spe- 045

cific downstream tasks. Unfortunately, for LLMs, 046

we often encounter situations where the available 047

dataset is small and proprietary, raising concerns 048

about privacy (Bu et al., 2024; Yu et al., 2021; 049

Finlayson et al., 2024). Additionally, the train- 050

ing of LLMs requires substantial training memory 051

(Wang et al., 2023), making it challenging to train 052

on parameter-efficient fine-tuning. 053

A recent line of work that focuses on fine-tuning 054

large models using differential privacy (DP) solu- 055

tions, including both full parameter fine-tuning and 056

parameter efficient fine-tuning approaches (Duan 057

et al., 2024; Bu et al., 2024; Yu et al., 2021). These 058

solutions employ a method called Differential Pri- 059

vacy Stochastic Gradient Descent (DP-SGD) (Yu 060

et al., 2019). The training data is protected by 061

implementing gradient clipping and adding Gaus- 062

sian noise during each iteration to ensure privacy. 063

Compared to traditional fine-tuning approaches, 064

DP allows for downstream task handling with only 065

a small loss in accuracy while maintaining a theo- 066

retical private guarantee (Yu et al., 2021). These 067

approaches exhibit good performance across a vari- 068

ety of tasks and settings. However, these methods 069

still have issues with training memory. In previous 070

research, differential privacy has imposed larger 071

computational and storage overheads, making train- 072

ing such large models challenging in resource- 073

constrained scenarios. Additionally, existing effi- 074

cient parameter fine-tuning with differential privacy 075

schemes has only achieved marginal reductions in 076

memory overhead, with insufficient optimization 077

efficiency in memory resources (Li et al., 2022b; 078

Ke et al., 2024). As models continue to grow, the 079

demand for both memory efficiency and privacy in 080

such scenarios also increases. 081

To address this issue, we propose a solu- 082
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tion called Memory efficient Differential Private083

Tuning (MemDPT), a framework for training084

in scenarios that involve both privacy-protection085

and memory efficient transfer learning. In our086

framework, we explore two efficient methods for087

parameter-efficient fine-tuning, MemDPTside and088

MemDPTrev, which save memory usage from dif-089

ferent perspectives. In this setup, our approach090

not only achieves competitive performance but also091

significantly reduces training memory usage. Ex-092

periments on different datasets and models have093

thoroughly demonstrated the effectiveness and po-094

tential of our approach. Therefore, our work effec-095

tively addresses the issue of insufficient memory in096

private fine-tuning for language models, while also097

providing alternative privacy fine-tuning solutions.098

In summary, our contributions in this paper are099

as follows:100

• We propose a framework called MemDPT,101

which enables efficient fine-tuning of lan-102

guage models with lower training memory103

in differential privacy fine-tuning. This frame-104

work contains two memory optimization meth-105

ods, reducing the memory requirements for106

privacy training of language models.107

• We conduct a systematic analysis of the re-108

lationship between training memory require-109

ments and network architecture. We eluci-110

date the characteristics of fine-tuning mem-111

ory cost under different network architectures,112

demonstrating favorable downstream task per-113

formance in differential privacy.114

• We evaluate our MemDPT framework on mul-115

tiple datasets and models. The results show116

promising performance across various dimen-117

sions, with a substantial improvement in train-118

ing memory.119

2 Preliminaries120

2.1 Memory Footprint on Language Model121

We consider a N multilayer perception: xN =122

fN (fN−1(...f2(f1(x0)))), where x0 as the ini-123

tial PLM input, the ith layer xi = fi(xi−1) =124

σi(Wixi−1) consists of a weight matrix Wi and a125

nonelinear function σi. For the format simplicity,126

the bias term is ignored. We denote hi = Wixi−1127

as the hidden states for the pre-activation of ith128

layer. In backpropagation with loss L, the gradient129

of Wi is calculated with respect to xi using the130

chain rule:131

∂L
∂Wi

=
∂L
∂xN

(
N∏

j=i+1

∂xj

∂hj

∂hj

∂xj−1
)
∂xi

∂hi

∂hi

∂Wi
(1) 132

Denoting the derivative of σ is σ′, then the equa- 133

tion could simplified as: 134

∂L
∂Wi

=
∂L
∂xN

(
N∏

j=i+1

σ′
jWj)σ

′
ixi−1. (2) 135

Thus, in training memory, the core consumption 136

lies in the states of model weights {Wi}Ni=1 and 137

derivative activation functions state {σ′}Ni=1 along 138

the backpropagation path, as well as the optimizer 139

states used during gradient updates. The optimizer 140

states are directly related to the updated model 141

parameters {∆W}. 142

Assuming the batch size is B, the length of the 143

input sequence is T , the model input and output di- 144

mension is d and p, for a standard linear layer xi = 145

σi(Wixi−1), the forward pass stores the intermedi- 146

ate states of the model and the model weights with 147

the memory complexity of O(pd + BTd), while 148

the backward pass is responsible for storing the 149

activation states during the gradient update pro- 150

cess, the results of the output gradients, and the 151

corresponding parameter gradients, with the total 152

memory complexity of O(BT (p+ d) + pd). 153

2.2 Deep learning with differential privacy 154

Differential Privacy (Dwork et al., 2006; Abadi 155

et al., 2016) algorithms demonstrate that under 156

this formulation, the model’s output cannot sig- 157

nificantly help determine whether an individual 158

record exists in the input dataset through certain 159

mathematical derivations. The formal definition is 160

recalled as follows: 161

Definition 1 (Differential Privacy). Given a do- 162

main D, any two datasets D, D′ ⊆ D that differ in 163

exactly one record are called neighboring datasets. 164

A randomized algorithm M : D → R is (ϵ, δ)- 165

differential private if for all neighboring datasets 166

D and D′ and all T ⊆ R, 167

Pr[M(D) ⊆ T ] ≤ eϵ Pr[M(D′) ⊆ T ] + δ

. 168

DP-optimizer. To train a privacy-preserving lan- 169

guage model, the current approach involves pro- 170

viding differential privacy guarantees when com- 171

puting gradients and applying these guarantees to 172
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Module Forward pass Back-propagation Ghost norm in
Book-Keeping

Opacus grad
instantiation

Opacus sum of
weighted grad

Time complexity 2BTpd 4BTpd 2BT 2(p+ d) 2BTpd 2Bpd

Space complexity pd+BTd BT (p+ d) + pd 2BT 2 Bpd 0

Table 1: The time and space complexity of the training process of a model under a single-layer MLP.

optimizers such as SGD or Adam (Abadi et al.,173

2016; Mironov, 2017; Koskela et al., 2020). This174

approach incorporates steps involving per-example175

gradient clipping Gl =
∑

Ci
∂Li

∂W(l)
and adding176

Gaussian noise N (0, I) on gradient G. Where Ci177

is the per-sample clipping factor.178

Book-keeping. To avoid the significant memory179

overhead caused by storing gradients for each sam-180

ple during initialization, Bu et al. (2023) proposed181

a method BK utilizing gradient norms. Using the182

GhostClip (Goodfellow, 2015; Bu et al., 2022) strat-183

egy, the gradient norm of each sample is calculated.184 ∥∥∥∥ ∂Li

∂W

∥∥∥∥2
F
= vec

( ∂L
∂hi

∂L
∂hi

⊤)
· vec

(
xix

⊤
i

)
(3)185

Based on the gradient norms, clipping factors Ci186

and clipping matrices C are generated, which are187

then used to compute the sum of clipped gradient188

in batches Gl = x⊤
(l)diag(C) ∂L

∂h(l)
.189

3 Methodology190

To address the issue of excessive memory con-191

sumption during differential privacy training, we192

have designed two methods: MemDPTside and193

MemDPTrev. These methods help reduce training194

memory usage in different aspects.195

3.1 Side Network Design196

In general, most of the memory consumption197

comes from the model weights and the states of198

activation functions in the backward propagation199

path. By minimizing the consumption of these two200

parts as much as possible, the memory usage dur-201

ing training can be correspondingly reduced. This202

necessitates finding a reasonable design to address203

this situation.204

Assume the base model is F, the model’s pre-205

trained weights, input, output, and parameters are206

Wp, x0, y, θ. The model could formulated as:207

y = F(Wp, θ;x0). (4)208

Traditional parameter-efficient fine-tuning meth- 209

ods cannot avoid the memory consumption associ- 210

ated with the model weights of frozen parameters 211

in the backward propagation path, which can for- 212

mulated as: 213

y = F(Wp +∆W, θ +∆θ;x0). (5) 214

We hope to find a form that remains distinct from 215

the original form when adjusting parameters. That 216

is, there exists such a form: 217

y = αF1(Wp, θ;x0) + βF2(∆W,∆θ;x0). (6) 218

In this form, Side-tuning (Zhang et al., 2020) 219

meets the requirements. Side-tuning introduces a 220

side network that learns the knowledge and features 221

of new tasks, relying on the knowledge contained 222

in the trained model parameters, thus supporting 223

the processing of downstream tasks. 224

Assuming the input and output dimension of the 225

side network is r, we add a liner layer at the last 226

layer of the side network to ensure dimension con- 227

sistency. We use Book-keeping (Bu et al., 2023) 228

for differential privacy fine-tuning. The memory 229

cost includes both the forward and backward prop- 230

agation processes. For the forward process, the bi- 231

lateral forward propagation memory consumption 232

needs to be taken into account, with the complexity 233

of O(pd + r2 + BT (d + r)). For the backward 234

process, gradients need to be computed only in the 235

side network, with a complexity of O(2BTr + r2) 236

for gradients and O(2BT 2) for Ghost Norm. 237

When r ≪ d, the side tuning approach signifi- 238

cantly reduces the training memory required for pri- 239

vacy fine-tuning. However, at sufficiently small r, 240

the performance of side tuning also deteriorates sig- 241

nificantly. To integrate the information of a trained 242

model effectively into edge networks, we adopt the 243

LST (Sung et al., 2022) method. This involves pass- 244

ing the intermediate layer information from the pre- 245

trained model to the edge network through a linear 246

layer f ′. We denote this method as MemDPTside. 247
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(a) Designs of MemDPTrev. (b) Designs of MemDPTside.

Figure 1: Two different MemDPT designs, the left represents reversible network design, and the right represents
edge network design. The trainable parameters are fine-tuned using the differential privacy BK method.

y = F2(∆W,∆θ; yi−1 + f ′
i(xi), y0 = x0). (7)248

Using the MemDPTside method, we can main-249

tain a good performance in fine-tuning our edge250

network with differential privacy. When d/r = 8,251

LST (Sung et al., 2022) and MemDPTside achieves252

an empirically optimal ratio of training memory to253

performance.254

3.2 Reversible Network Design255

Due to the significant amount of training memory256

required to store the state of activation functions257

during batch processing, a large portion of memory258

is consumed by saving activation states {σi}Ni=1.259

Regular parameter-efficient fine-tuning methods260

cannot effectively address this issue. MemDPTside261

reduces the memory needed to store activation func-262

tions by compressing the dimensions of the acti-263

vation functions. However, this method still con-264

sumes some memory. If we could deduce the in-265

termediate states from the output results in reverse,266

we could further reduce the memory demand for267

storing activation states.268

For reversible networks (Gomez et al., 2017;269

Liao et al., 2023), the following form is usually270

satisfied.271

x1
i+1 = αx1

i + Fi(x
2
i ),

x2
i+1 = βx2

i + Gi(x
1
i+1),

x2
i = (x2

i+1 − Gi(x
1
i+1))/β,

x1
i = (x1

i+1 −Fi(x
2
i ))/α.

(8)272

We can obtain the corresponding activation func-273

tion values σi = σi(Wixi−1) from the intermedi-274

ate states {xi}Ni=1 of the model and calculate their275

derivatives, thus avoiding the need to store each 276

activation function value. 277

To enable the two modules of the reversible net- 278

work to both acquire new features and retain the 279

knowledge of the pre-trained model, For module F , 280

we introduced the LoRA (Hu et al., 2021) architec- 281

ture into the FFN layer of the model, continuing the 282

traditional LoRA approach. Meanwhile, for mod- 283

ule G, we used Adapters (Houlsby et al., 2019) as 284

trainable parameters to adapt to downstream tasks. 285

Since the network is reversible, we only need to 286

use constant reproducible space to compute x2
i and 287

x1
i for each layer, which satisfies the requirements 288

for the subsequent backpropagation calculations. 289

We denote this method as MemDPTrev. 290

For reversible networks, we have the following 291

derivation steps. At the beginning of training, when 292

the output of the adapter output is close to 0. xn ≈ 293

Fn(xn−1). Assume that x10 and x20 comes from the 294

initial input x, we have: 295

x1
1 = αx1

0 + F1(x
2
0) ≈ αx0 + x1, (9) 296

x2
1 = βx2

0 + G1(x
1
1) = βx0 + G1(x

1
1) ≈ βx0.

(10)
297

When α → 0, we have x1
1 = x1, x2

1 = βx0. We 298

achieve a relatively stable state of the reversible 299

network by exchanging output values x1
1 = βx0, 300

x2
1 = x1. Through iterative computation like 301

this, the model can be satisfied as x1
n ≈ βxn−1, 302

x2
n ≈ xn. We generate the final output as x = 303

(x1
N+x2

N )/2. In this way, when training reversible 304

models, the continuity of the model’s representa- 305

tion can be maintained, and inference and learning 306

for downstream tasks can be facilitated based on 307

pre-trained models. 308
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Memory(GB)↓ MNLI↑ QQP↑ QNLI↑ SST2↑
Trainable param(%)

ϵ = 1.6 ϵ = 8 ϵ = ∞ ϵ = 1.6 ϵ = 8 ϵ = ∞ ϵ = 1.6 ϵ = 8 ϵ = ∞ ϵ = 1.6 ϵ = 8 ϵ = ∞ ϵ = 1.6 ϵ = 8 ϵ = ∞

DP-Full FT 26.12 26.83 10.93 51.45 84.23 90.65 61.37 84.98 92.30 59.55 84.48 95.13 75.74 86.20 96.18 100%
DP-LoRA 12.68 12.24 7.12 82.89 88.28 90.83 83.85 88.73 91.95 87.51 91.38 94.76 93.58 95.20 96.25 3.82%

DP-Adapters 13.29 13.07 7.38 80.84 86.93 90.15 84.20 87.98 91.37 86.17 90.28 94.36 92.87 95.33 95.82 1.86%
DP-BiTFiT 5.12 5.88 4.82 75.36 83.74 89.19 78.92 85.20 90.65 83.43 87.57 93.56 89.12 93.02 95.38 0.08%

PromptDPSGD 12.58 12.06 7.21 81.33 87.02 90.68 83.58 88.31 91.19 87.15 90.89 94.20 93.12 95.24 95.97 0.96%

MemDPTside 6.18 6.23 5.66 81.30 87.16 90.91 84.56 88.92 91.66 86.95 91.56 94.40 93.60 95.44 95.94 2.10%
MemDPTrev 5.48 5.65 4.78 80.29 86.12 90.21 82.57 88.12 91.25 85.89 90.31 94.10 91.78 93.89 95.32 3.92%

Table 2: Experiments on the RoBERTa-large model. We evaluate the accuracy(%) results and profile to compute the
training memory(GB) with privacy constraints at ϵ = 1.6, 8,∞. We propose two MemDPT architectures as novel
efficient memory privacy fine-tuning schemes.

During the backpropagation process in our re-309

versible network, the intermediate states of the310

model can be obtained by computing the reverse311

steps. As a result, the training memory required312

for activation values can be reduced by reusing a313

fixed-size replaceable memory. The primary train-314

ing memory consumption of the model comes from315

storing the output gradients, storing the parameter316

gradients, and the computational memory required317

by the Ghostnorm method. As shown in Table 1,318

the first two parts mainly rely on the pre-trained319

model and the size of the additional parameters,320

while the Book-keeping strategy requires to store321

training memory of O(4BT 2). Here, we also em-322

ploy the BK algorithm to calculate the norm of the323

samples, thereby obtaining the corresponding gradi-324

ent values. During training, we set batch sizes to 32.325

When dealing with tasks involving input sequence326

lengths of 128, which are medium sequence lengths327

of problems, MemDPT significantly reduces the328

memory required for training due to pd ≫ T 2.329

4 Experimental Setup330

We designed a series of experiments covering dif-331

ferent models and datasets to evaluate the perfor-332

mance of our methods. The specific experimental333

design is as follows.334

Models. We used the RoBERTa-large (Liu et al.,335

2019), GPT-2-large (Radford et al., 2019) model as336

our base models. These models will be fine-tuned337

according to the corresponding downstream tasks,338

and the performance of the fine-tuned models will339

be evaluated under different privacy constraints.340

Baselines. We compare the two methods against341

multiple baselines, including DP-LoRA (Hu et al.,342

2021; Yu et al., 2021), DP-Adapter (Houlsby et al.,343

2019; Yu et al., 2021), DP-BiTFiT (Bu et al., 2024;344

Zaken et al., 2022), and PromptDPSGD (Duan345

et al., 2024; Lester et al., 2021). These methods are346

all privacy-preserving fine-tuning approaches with 347

opacus DP (Yousefpour et al., 2021), and we test 348

them on the same training data to ensure fairness 349

of comparison. 350

Datasets. We conduct experiments on five datasets. 351

Four from the GLUE benchmarks (Wang et al., 352

2018), which cover different NLP tasks. MNLI: 353

the MultiGenre Natural Language Inference Cor- 354

pus. QQP: the Quora Question Pairs2 dataset. 355

QNLI: the Stanford Question Answering dataset. 356

SST2: the Stanford Sentiment Treebank dataset. 357

We also select an NLG task E2E dataset (Duvsek 358

et al., 2019), which is to generates texts to evaluate 359

a restaurant, to evaluate the quality of the model in 360

generation tasks under privacy constraints. More 361

details about the dataset are in Appendix A. 362

Implementation Details. To standardize the train- 363

ing process, we partition each dataset as follows: 364

The text classification dataset includes 50k sam- 365

ples for training, 1k samples for validation, and 366

the remaining data for testing. The E2E dataset 367

includes 42061 samples for training and 4672 sam- 368

ples for validation. We set different privacy con- 369

straint conditions specifically as ϵ = {1.6, 8,∞} 370

and δ = 1/|Dtrain| to assess performance varia- 371

tions among different methods under these con- 372

straints. We chose a learning rate of 5e-4 and used 373

DP-Adam optimizer as the default optimizer for 374

the model, while DP-SGD optimizer is employed 375

for PromptDPSGD. For evaluation metrics, we uti- 376

lize a profiler to track the model’s training memory 377

usage, evaluating the mean memory consumption 378

during training. Default LoRA and Adapters ranks 379

are set to r = 64. For text classification tasks, we 380

compare accuracy. For generation tasks, we em- 381

ployed perplexity, BLEU (Papineni et al., 2002), 382

and ROUGE-L (Lin, 2004) as evaluation metrics 383

to comprehensively assess generation quality. In 384

our experiments, we conduct training with a batch 385

size of 32 and sequence length of 128 in FP16. 386
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Memory(GB)↓ BLEU↑ Rouge-L↑ Perplexity↓
Trainable param(%)

ϵ = 1.6 ϵ = 8 ϵ = ∞ ϵ = 1.6 ϵ = 8 ϵ = ∞ ϵ = 1.6 ϵ = 8 ϵ = ∞ ϵ = 1.6 ϵ = 8 ϵ = ∞

DP-Full FT 58.96 62.23 20.45 62.2 66.8 69.3 63.4 67.8 72.6 2.46 2.23 1.85 100%
DP-LoRA 22.38 21.75 13.68 65.8 67.3 69.5 64.8 69.1 72.4 2.39 2.48 2.32 2.30%

DP-Adapters 23.68 24.12 14.55 65.2 66.9 69.8 65.1 68.5 71.9 2.44 2.35 2.28 1.16%
DP-BiTFiT 9.59 9.71 8.62 61.7 65.2 68.6 62.9 66.4 71.3 2.83 2.58 2.77 0.05%

PromptDPSGD 22.12 20.96 14.18 64.2 66.5 69.1 65.0 68.3 72.0 2.60 2.54 2.39 0.67%

MemDPTside 11.68 11.44 10.17 66.4 68.2 68.9 64.6 68.5 72.7 2.32 2.38 2.24 1.28%
MemDPTrev 9.45 9.88 8.39 65.1 66.1 69.8 64.2 68.1 71.6 2.71 2.65 2.58 2.15%

Table 3: Experiments on the GPT-2-large model. We evaluate the BLEU(%), Rouge-L(%) and Perplexity scores
results on E2E dataset and profile to compute the training memory(GB) with privacy constraints at ϵ = 1.6, 8,∞.

5 Experiments387

5.1 Main Results388

We evaluate various baseline methods on multiple389

task datasets and organized the results of RoBERTa390

and GPT2 separately according to the task type.391

Text classification on RoBERTa-large. As shown392

in Table 2, the two MemDPT methods demonstrate393

competitive performance on text classification tasks394

using the RoBERTa-large model.395

(1) The edge network design achieves the best re-396

sults compared to other baseline methods in nearly397

half of the accuracy evaluations. The average per-398

formance on MemDPTside is similar to DP-LoRA,399

but the edge network design method requires less400

training memory than DP-LoRA.401

(2) Specifically, compared to the performance402

of DP-LoRA under privacy constraints, our403

MemDPTside achieves nearly 2 ∼ 3× optimiza-404

tion in training memory. Simultaneously, we can405

observe that when further memory savings during406

training are required, the reversible network design407

of MemDPT offers an ideal choice.408

(3) Compared to the current most memory-efficient409

method, DP-BiTFiT, our method consistently per-410

forms better in downstream tasks while maintaining411

similar training memory usage. This indicates that412

MemDPTrev can better learn the characteristics of413

downstream tasks and perform gradient clipping414

based on computable activation function values415

while preserving privacy.416

(4) In terms of average performance, MemDPTrev417

improves accuracy by an average of +3.1% com-418

pared to DP-BiTFiT and performs better in scenar-419

ios with higher privacy constraints ϵ, suggesting420

that the model better captures the gradient changes421

of the training data and adapts to downstream tasks.422

Text Generation on GPT-2-large. For generative423

tasks, we employ three metrics to assess the qual-424

ity of animal generation and simultaneously utilize 425

profiles to record the changes in training memory. 426

Experiments on Table 3 indicate that our approach 427

demonstrates performance comparable to text clas- 428

sification tasks in generative tasks. 429

(1) Our edge network design excels in perplex- 430

ity performance compared to other differential 431

privacy parameter tuning methods. Additionally, 432

MemDPTside shows outstanding performance on 433

the BLEU metric. Comparing our method under 434

differential privacy, when the parameter ϵ is set 435

to 1.6 indicating higher privacy demands, perfor- 436

mance in the BLEU metric only drops by 3.5%. 437

This suggests our method better learns the charac- 438

teristics and paradigms of generative tasks, yielding 439

relatively accurate outputs. 440

(2) Compared to DP-BiTFiT, reversible network 441

design exhibits competitive training memory con- 442

sumption requirements, with MemDPTrev maintain- 443

ing strong performance. This approach maintains 444

relatively stable task accuracy under highly con- 445

strained training memory conditions. 446

(3) Compared to full differential privacy fine- 447

tuning, MemDPTrev saves approximately 6 ∼ 8× 448

the training memory in high privacy ϵ = 1.6 sce- 449

narios. These results underscore the promising 450

outlook of our proposed MemDPT framework for 451

generative tasks, maintaining lower training mem- 452

ory requirements even at larger batch sizes. 453

5.2 Analysis 454

We conduct a deep analysis of two MemDPT meth- 455

ods and perform ablation experiments on the cor- 456

responding modules, including the differential pri- 457

vate algorithm and alternative model setting. 458

Book-Keeping in MemDPT. In the setup of these 459

two architectures, we use the BK method for dif- 460

ferential privacy training. BK reduces the required 461

training memory by using Ghostnorm to compute 462
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Privacy Constrains MemDPTside MemDPTrev

Opcaus
ϵ = 1.6, δ = 2× 10−5 7.45 10.66
ϵ = 8.0, δ = 2× 10−5 7.33 10.98
ϵ = ∞, δ = 2× 10−5 5.60 4.82

GhostClip
ϵ = 1.6, δ = 2× 10−5 9.72 8.52
ϵ = 8.0, δ = 2× 10−5 9.54 8.43
ϵ = ∞, δ = 2× 10−5 5.72 4.75

Book-Keeping
ϵ = 1.6, δ = 2× 10−5 6.18 5.48
ϵ = 8.0, δ = 2× 10−5 6.23 5.65
ϵ = ∞, δ = 2× 10−5 5.66 4.78

Table 4: Evaluations of Different DP methods on
MemDPT.

the normalized formulation. To evaluate the im-463

pact of different differential privacy methods dur-464

ing the training process, we conducted experiments465

on these two model designs and measured the aver-466

age memory consumption during the training pro-467

cess. The results are shown in Table 4.468

BK exhibits the best performance in the follow-469

ing scenarios. From the ablation experiments, the470

BK method reduces training memory consump-471

tion by 1.5 ∼ 2× in privacy-preserving compu-472

tation. This highlights the importance of using473

BK within our framework. When there are no pri-474

vacy constraints as ϵ = ∞, all three methods de-475

grade into the standard gradient descent process.476

Under the condition of privacy constraints, if the477

Opcaus method of calculating gradients for each478

sample is adopted, the time complexity for calculat-479

ing the sample gradient in a single layer under the480

two architectures MemDPTside and MemDPTrev is481

O(Bpd/64) and O(4Bpr). This still requires a482

considerable amount of computation time, and in483

MemDPTside, the gradient calculation for the up-484

sampling and downsampling matrices also needs485

to be considered. Meanwhile, we can observe that486

when r is relatively small, the Opcaus method re-487

quires relatively less computational memory. To488

ensure the overall model’s accuracy in downstream489

tasks, the BK method remains the most efficient490

choice.491

Reversible Network Functions. In the design of492

MemDPTrev, we include two sub-functions that are493

used to achieve the reversible design of reversible494

networks. Section 3.2 elaborates on the principles495

of the reversible network’s inversion. This scheme496

leverages the similarity processing of learnable pa-497

rameters in the initial setup. Therefore, we can498

modify the internal design while ensuring that each499

sub-function fulfills its respective role. To further500

understand the differences between various designs,501

Figure 2: Performance of different reversible network
sub-function F design. The private constraint is ϵ =
8.0.

we fix the sub-function G and change the internal 502

architecture of sub-function F , replacing it with dif- 503

ferent parameter-efficient fine-tuning(PEFT) meth- 504

ods. These PEFT methods have been widely used 505

in non-privacy scenarios. In the privacy scenario, 506

we select different methods and incorporate them 507

with MemDPTrev in terms of accuracy and training 508

memory consumption. 509

We have selected several classic and efficient 510

parameter fine-tuning methods to replace the sub- 511

function F here, including LoRA (Hu et al., 2021), 512

Parallel Adapters (He et al., 2021), Prefix tuning 513

(Li and Liang, 2021) and dyLoRA (Valipour et al., 514

2023), and set the constraint ϵ = 8.0. The result is 515

shown in Figure 2. 516

LoRA is superior to other candidate architectures 517

as a reversible network sub-function. Compared 518

to other methods, using F = F(Wp + LR, θ + 519

∆θ;x2i ) results in a slight +0.71 improvement in 520

accuracy. Given the simplicity of LoRA’s network 521

architecture and the similarity in training memory 522

usage across various methods, we finally adopt 523

LoRA as the reversible network sub-function for 524

MemDPTrev. 525

5.3 Training Scale Analysis 526

To understand and compare the training process and 527

accuracy variations of different methods under dif- 528

ferential privacy, we use checkpoints to record the 529

training process of the model. We test three meth- 530

ods: DP-LoRA, MemDPTside, and MemDPTrev 531

on the GPT2-large model, evaluating their BLEU 532

scores. During training, each batch size is set to 32, 533

and the model is trained for 40K steps, observing 534

the performance and changes in BLEU scores. The 535

privacy parameters of the model are set to ϵ = 8 536

and δ = 1
42061 . The result is shown in Figure 3. 537
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Figure 3: The experiment is conducted on the E2E
dataset. The BLEU scores of different methods are
based on the number of training steps of the model.

From the results, MemDPTside and MemDPTrev538

require more training steps to reach stable values539

compared to DP-LoRA. Considering the architec-540

ture of the models themselves, MemDPTside needs541

to be tuned for the entire side network to adapt542

to the corresponding time for downstream tasks.543

Training the low-rank matrices of DP-LoRA is rel-544

atively simpler. As for the reversible network, due545

to the use of approximation methods for learning,546

more training data helps to mitigate the perfor-547

mance loss caused by approximation by adjusting548

the reversible gradients. Additionally, since we549

employ differential privacy methods for training,550

although the BLEU scores during training fluctuate,551

they remain relatively balanced, which aligns with552

our expectations for using differential privacy.553

6 Related Work554

6.1 Differential Private Fine-tuning555

To ensure the privacy needs of the model, differ-556

ential privacy fine-tuning methods offer a feasible557

solution with strong theoretical guarantees (Abadi558

et al., 2016; Song et al., 2013). In terms of model559

structure, PEFT methods can be transferred to dif-560

ferential privacy schemes (Yu et al., 2021; Bu et al.,561

2024; Xu et al., 2024). In methods design, the562

selected differential privacy (Shi et al., 2022a,b)563

approach can provide stronger differential privacy564

constraints more specifically for designated infor-565

mation. In algorithm design, it includes a series566

of studies (Rochette et al., 2020; Du et al., 2023)567

on the computational graph during the differen-568

tial privacy propagation process. Techniques like569

Ghostnorm (Goodfellow, 2015; Li et al., 2021) and570

Book-Keeping (Bu et al., 2023) provide unified571

batch norm computation and batch processing for572

gradient clipping. Although differential privacy573

offers very strong theoretical protections, reduc- 574

ing the memory requirements for training under 575

differential privacy scenarios remains a significant 576

challenge (Du et al., 2023). MemDPT employs 577

efficient and memory-friendly designs at both the 578

model and algorithm levels, thereby reducing train- 579

ing memory requirements while maintaining origi- 580

nal performance. 581

6.2 Parameter Efficient Transfer Learning 582

Training and inference for a large language model 583

require substantial computational resources, which 584

are often limited in many scenarios (Hoffmann 585

et al., 2022b). To reduce the demand for computa- 586

tional resources during training, parameter-efficient 587

fine-tuning methods are applied to transfer learn- 588

ing. This approach involves fine-tuning a small 589

subset of new parameters and integrating them into 590

the model for plug-and-play inference. Common 591

methods include training low-rank matrices (Hu 592

et al., 2021; Valipour et al., 2023; Dettmers et al., 593

2024), adding adapters (Houlsby et al., 2019; He 594

et al., 2021), and performing prefix tuning (Li and 595

Liang, 2021; Liu et al., 2022b) or prompt tuning 596

(Lester et al., 2021) on the inputs of the original 597

model. While most parameter-efficient fine-tuning 598

methods reduce time and space consumption, they 599

still require significant training memory due to the 600

state of activation functions (Sung et al., 2022; Liao 601

et al., 2023). Our framework offers two methods, 602

edge networks, and inverse networks, to reduce the 603

memory required during training. 604

7 Conclusion 605

In this paper, we introduce a framework called 606

MemDPT, which encompasses two methods aimed 607

at addressing the issue of excessive memory con- 608

sumption during training in privacy-sensitive sce- 609

narios. In this process, we reduce the training 610

memory consumption of models in privacy en- 611

vironments using the BK method. With the de- 612

sign of MemDPT, language models can perform 613

downstream tasks under corresponding privacy con- 614

straints across various tasks. Multiple experiments 615

have demonstrated the effectiveness of our ap- 616

proach, achieving significant optimization in train- 617

ing memory. We hope that our method will con- 618

tribute to future private efficient memory optimiza- 619

tion for fine-tuning large language models and be 620

applicable to different training tasks. 621
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Limitation622

Our approach offers a solution to the efficient mem-623

ory tuning problem in differential privacy training,624

alleviating the issue of insufficient training mem-625

ory in privacy scenarios. However, our method also626

has certain limitations. Firstly, for longer context627

texts, since the BK algorithm relies on the context628

length for its time complexity, the memory opti-629

mization might be inadequate. Additionally, due630

to the limitations of large language models, private631

fine-tuning may result in hallucination issues due632

to the inherent knowledge deficiencies of the lan-633

guage model, leading to diminished effectiveness.634

Secondly, during batch training, even the forward635

pass already occupies a significant amount of mem-636

ory, and current open-source large language models637

(such as the Llama series) still require a substan-638

tial amount of training memory for batch training.639

We can consider using distributed training methods640

to address this issue and reduce training memory641

requirements. Moreover, our privacy protection642

scenario targets the differential privacy fine-tuning643

of all content in the training data. In certain spe-644

cific scenarios, we may only need to protect certain645

entities or fields. In the future, we will explore646

solutions for partial information privacy protection647

and attempt to apply our framework to these types648

of problems.649

Ethics Statement650

The data and code we use are all sourced from pub-651

lic information, and our training data does not con-652

tain any specific personal or organizational infor-653

mation or privacy. Our method provides a privacy-654

protecting training approach that can help entities655

or organizations prevent the leakage of sensitive in-656

formation during model training. The information657

and content we use comply with relevant open-658

source protocols and licenses.659
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A Details of Datasets 919

GLUE benchmarks. The General Language Un- 920

derstanding Evaluation (GLUE) benchmark(Wang 921

et al., 2018) represents a comprehensive suite of 922

natural language understanding tasks aimed at ad- 923

vancing the field of machine learning in linguistic 924

applications. We use the following datasets se- 925

lected from GLUE: 926

- MNLI Datasets: The Multi-Genre Natu- 927

ral Language Inference Corpus is a crowd- 928

sourced collection of sentence pairs with tex- 929

tual entailment annotations. It contains 392K 930

samples of the tasks. It involves predicting 931

whether a premise sentence entails, contra- 932

dicts, or neither affects a hypothesis sentence. 933

These entailment predictions are categorized 934

as entailment, contradiction, or neutral. The 935

premise sentences are collected from ten dif- 936

ferent sources, such as transcribed speech, fic- 937

tion, and government reports. 938

- QQP Datasets: The Quora Question Pairs 939

dataset is a collection of question pairs from 940

the community question-answering website 941

Quora, which has 364k samples. The task 942
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associated with this dataset is to determine943

whether a pair of questions are semantically944

equivalent.945

- QNLI Datasets: The Stanford Question946

Answering Dataset is a question-answering947

dataset consisting of question-paragraph pairs,948

where one of the sentences in the paragraph,949

drawn from Wikipedia, contains the answer950

to the corresponding question written by an951

annotator. The task is converted into sentence952

pair classification by forming a pair between953

each question and each sentence in the corre-954

sponding context and filtering out pairs with955

low lexical overlap between the question and956

the context sentence. The task is to determine957

whether the context sentence contains the an-958

swer to the question. This modified version of959

the original task removes the requirement that960

the model select the exact answer and the sim-961

plifying assumptions that the answer is always962

present in the input and that lexical overlap is963

a reliable cue. This process of recasting ex-964

isting datasets into NLI is similar to methods965

introduced and expanded upon. The converted966

dataset is called QNLI (Question-answering967

NLI), which has 104k samples.968

- SST2 Datasets: The Stanford Sentiment Tree-969

bank consists of sentences from movie re-970

views and human annotations of their senti-971

ment. The task involves predicting the senti-972

ment of a given sentence which includes 67k973

samples.974

E2E benchmarks. The E2E dataset(Novikova975

et al., 2017) is a valuable resource for training976

end-to-end, data-driven natural language genera-977

tion (NLG) systems in the restaurant domain. It978

contains template-like information in the restau-979

rant domain, which is used for mapping to natural980

language through end-to-end training. The dataset981

consists of 42061 training samples, 4672 validation982

samples, and 4693 test samples.983

B More Details on Implementation984

In the experiment, we conduct experiments under985

three privacy constraints: {1.6, 8,∞}. Since in the986

reverse network model MemDPTrev, the activation987

function obtains tensor x through reverse computa-988

tion during backpropagation, we need to replace the989

part of the gradient calculation code that originally990

calls the intermediate state x with the calculation 991

formula grad_rev() of the reverse network. Addi- 992

tionally, for the edge model network MemDPTside, 993

we select part of the pre-trained model in each layer 994

as the initialization parameters for the edge net- 995

work. This initialization approach enhances the per- 996

formance of the edge network in downstream tasks. 997

The privacy parameter settings δ = 1/|Dtrain| are 998

same from other works(Bu et al., 2024; Yu et al., 999

2021). When calculating BK, the required interme- 1000

diate state information is also obtained through the 1001

calculation formula grad_rev() . We iteratively 1002

use a single storage space to retain the intermediate 1003

state of the calculation. Thus, when the number 1004

of layers in the LM is L, the training memory op- 1005

timizes from L × O(BTd) to 1 × O(BTd). We 1006

conduct training with a batch size of 32 and se- 1007

quence length of 128 in FP16. 1008
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